AUTHOR=Mayuranathan M. , Anitha V. , Nehru P. , Nikolic Bosko , Janjić Miloš , Bacanin Nebojsa TITLE=Triboostcardio ensemble model for cardiovascular disease detection using advanced blockchain-enabled health monitoring JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2026 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1734013 DOI=10.3389/frai.2025.1734013 ISSN=2624-8212 ABSTRACT=IntroductionHeart diseases (CVDs) are a major cause of morbidity and mortality in all global regions and thus there is the pressing need to develop early detection and effective management approaches. Traditional cardiovascular monitoring systems do not necessarily have real-time analyzing solutions and individual understanding, which leads to delayed interventions. Moreover, one of the greatest issues in digital healthcare applications remains to be data privacy and security.MethodsThe proposed research is to present a developed model of CVD detection that will combine Internet of Things (IoT)-based wearable devices, electronic clinical records, and access control using blockchain. The system starts by registering patients and medical personnel and then proceeds with collecting physiological as well as clinical data. Kalman filtering helps in improving data reliability in the pre-processing stage. Shallow and deep feature extraction methods are used to describe complicated patterns of data. A Refracted Sand Cat Swarm Optimization (SCSO) algorithm is used as part of feature maximization. A new TriBoostCardio Ensemble model (CatBoost, AdaBoost, and LogitBoost) is used to conduct the classification task and enhance the predictive accuracy. Smart contracts provide safe and transparent access to health information.ResultsThere are experimental results that the proposed framework enhances high predictive accuracy and detecting cardiovascular diseases earlier than traditional ones. The combination between SCSO feature selection and the TriBoostCardio Ensemble model improves the sturdiness of the model and precision of classification.DiscussionBesides the fact that the presented framework promotes the accuracy and timeliness of CVD detection, it also way to deal with important problems related to the data privacy and integrity with the help of blockchain-based access control. This solution offers a stable and trustworthy solution to the current healthcare systems with the combination of the smart optimization of features, ensemble learning, and secure data management.