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Introduction: Heart diseases (CVDs) are a major cause of morbidity and mortality 
in all global regions and thus there is the pressing need to develop early detection 
and effective management approaches. Traditional cardiovascular monitoring 
systems do not necessarily have real-time analyzing solutions and individual 
understanding, which leads to delayed interventions. Moreover, one of the 
greatest issues in digital healthcare applications remains to be data privacy and 
security.
Methods: The proposed research is to present a developed model of CVD 
detection that will combine Internet of Things (IoT)-based wearable devices, 
electronic clinical records, and access control using blockchain. The system 
starts by registering patients and medical personnel and then proceeds with 
collecting physiological as well as clinical data. Kalman filtering helps in improving 
data reliability in the pre-processing stage. Shallow and deep feature extraction 
methods are used to describe complicated patterns of data. A Refracted Sand Cat 
Swarm Optimization (SCSO) algorithm is used as part of feature maximization. 
A new TriBoostCardio Ensemble model (CatBoost, AdaBoost, and LogitBoost) 
is used to conduct the classification task and enhance the predictive accuracy. 
Smart contracts provide safe and transparent access to health information.
Results: There are experimental results that the proposed framework enhances 
high predictive accuracy and detecting cardiovascular diseases earlier than 
traditional ones. The combination between SCSO feature selection and the 
TriBoostCardio Ensemble model improves the sturdiness of the model and 
precision of classification.
Discussion: Besides the fact that the presented framework promotes the 
accuracy and timeliness of CVD detection, it also way to deal with important 
problems related to the data privacy and integrity with the help of blockchain-
based access control. This solution offers a stable and trustworthy solution to 
the current healthcare systems with the combination of the smart optimization 
of features, ensemble learning, and secure data management.
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1 Introduction

Cardiovascular diseases (CVD) continue to be a significant global 
health issue, requiring new and creative strategies to address the 
shortcomings of conventional healthcare methods. Given the annual 
high number of deaths due to CVDs, there is a clear requirement for 
ongoing monitoring and early identification (Moshawrab et al., 2023; 
Chang et al., 2022; Nagavelli et al., 2022). The rise of the Internet of 
Things brings about a revolutionary method by connecting wearable 
devices and sensors to offer immediate health information 
(Keikhosrokiani and Kamaruddin, 2022). This move toward constant, 
individualized monitoring signifies a pivotal advancement in 
cardiovascular care, filling in the deficiencies in standard occasional 
clinical methods (Saeed et al., 2023; Ahmed et al., 2022).

In the changing field of healthcare, advanced technologies have 
led to new solutions for addressing important challenges. One such 
significant approach is combining Internet of Things and blockchain 
technologies for monitoring cardiovascular disease in remote patients 
(Alshamrani, 2022). This innovative combination improves healthcare 
efficiency and ensures the security of patient data. Cardiovascular 
diseases remain a leading cause of death globally, highlighting the 
need for continuous monitoring to detect early signs and prevent 
adverse events. Traditional healthcare models often lack real-time 
insights into patients’ heart health, prompting the exploration of 
advanced technologies to fill this gap (Eisa and Alnaggar, 2022; Tiwari 
et al., 2022; Ketu and Mishra, 2022). The synergy of IoT and 
blockchain presents a promising solution to overcome these 
limitations in conventional methods.

The Internet of Things makes it possible to connect medical 
devices, wearables, and sensors, allowing vital signs to be monitored 
continuously in real time. This interconnected system gives healthcare 
providers access to a complete set of data that provides patient’s 
cardiovascular health data without clinical visits (Hasanova et al., 
2022; Roy et al., 2022). Wearable devices with embedded sensors track 
physiological measurements like heart rate, blood pressure, and ECG 
data and send this information securely to a central system.

Blockchain technology strengthens the healthcare system by 
addressing issues of data security, privacy, and integrity. Its decentralized 
and unchangeable nature ensures that patient data cannot be altered and 
is only accessible to authorized individuals. This creates trust among 
patients and healthcare providers, promoting a transparent and secure 
environment for managing sensitive health information (Dammak et 
al., 2022; Bataineh et al., 2022; Azbeg et al., 2022).

The combination of IoT and blockchain in remote patient 
monitoring for detecting cardiovascular disease is driven by a 
comprehensive effort to improve healthcare results. This method seeks 
to give patients more control through ongoing monitoring, promoting a 
model centered on the patient. At the same time, it deals with important 
issues like data security and privacy by using blockchain’s decentralized 
and tamper-resistant characteristics. By encouraging early detection, 
personalized care, and cost-effective treatments, this integration signifies 
a crucial move toward a future in healthcare defined by proactive 
strategies that involve patients and better overall health results.

	•	 To develop a real-time patient monitoring system using the 
combination of IoT and Blockchain in healthcare and privacy 
and trust.

	•	 The use of RL-SCSO for feature selection improves convergence 
toward an optimal subset essential for robust CVD detection.

	•	 The proposed TriBoostCardio Ensemble Model uses CatBoost, 
AdaBoost, and LogitBoost for detecting CVD which outruns the 
existing methods.

This paper is structured as follows: Section 2 reviews the 
literature that highlights the worldwide incursion caused by 
cardiovascular diseases (CVDs), the drawbacks of traditional 
monitoring systems, and the opportunities of the IoT and 
blockchain technologies in terms of continuous, safe, and real-time 
health surveillance. Section 3 outlines the materials used and the 
methodology proposed to be used in the detection of cardiovascular 
disease. Sections 4, 5 cover the results of the experiment with 
comparative analyses of the current methods. Lastly, Section 6 
summarizes the major findings of the paper, gives recommendations, 
enumerates limitations, and proposes future research directions.

2 Related works

This section presents the Recent research on cardiovascular 
disease (CVD) detection has grown to prioritize the use of machine 
learning, deep learning, and IoT-based monitoring systems to enhance 
the accuracy of the diagnostic and real-time analysis. Hybrid and 
ensemble models, feature optimization methods and signal-based 
methods that utilize ECG and PPG signals have been studied. 
Nevertheless, most of the available approaches have issues of 
interpretability, scalability, and data security. To overcome these 
shortcomings, the latest literature has started to use blockchain and 
sophisticated optimization models to boost the model transparency, 
performance, and reliability in healthcare applications.

Konstantonis et al. (2022) analyzed the detection of cardiovascular 
disease in rheumatoid arthritis patient’s carotid/femoral arterial 
imaging and using machine learning methods. The study categorized 
CVD risk factors into office-based measures, carotid ultrasound image-
based phenotypes, and blood biomarkers. Three machine learning 
classifiers such as Linear Discriminant Analysis (LDA), Support Vector 
Machine (SVM), and Random Forest were utilized. The study analyzed 
CVD risk factors in three categories: carotid ultrasound phenotypes, 
blood biomarkers, and conventional measures. The study assessed the 
performance of these classifiers to predict CVD risk in rheumatoid 
arthritis patients. While the research contributes to the intersection of 
machine learning and cardiovascular health, more specific performance 
metrics and clinical implications would enhance its impact.

Kallimani et al. (2022) presented a new method, Hybrid Deep 
Learning-Based Heart Disease Detection and Classification (FSHDL-
HDDC) technique, for detecting and classifying heart disease in 
e-healthcare. It combines data normalization, missing value 
imputation, and the elite opposition-based squirrel search algorithm 
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(EO-SSA) algorithm for feature selection. The addition of ACNN-
LSTM improves heart disease detection. While this model 
demonstrates innovative feature selection using EO-SSA and powerful 
deep learning techniques, its complexity could make it challenging to 
interpret and computationally inefficient. Balancing model complexity 
with practical deployment is vital for integrating it into real-world 
e-healthcare environments seamlessly.

Alqahtani et al. (2022) presented a method that combines machine 
learning and deep learning models to predict cardiovascular disease. 
The approach achieves an accuracy of 88.70% by using six classification 
algorithms and random forest for feature extraction from a publicly 
available dataset. Although the ensemble approach improves 
prediction accuracy, it may lack transparency in decision-making due 
to its combination of various algorithms. A more thorough 
examination of the model’s interpretability could enhance 
understanding of its practical use and challenges in clinical settings.

De Vries et al. (2023) examined the use of non-invasive 
electrocardiography with artificial intelligence to detect congenital heart 
disease in fetuses. The study involves training an artificial neural network 
(ANN) on fetal electrocardiograms and incorporating a Bayesian 
updating rule to improve its performance. While the study provides 
valuable insights into non-invasive CHD detection, it lacks information 
about the interpretability of the algorithm and potential false-positive/
negative rates. The opaque nature of artificial neural networks could 
affect clinical trust, underscoring the need for further investigation into 
their transparency for successful integration into prenatal care practices.

Al Bataineh and Manacek (2022) improved the heart disease 
prediction by using various machine learning (ML) algorithms, with 
a focus on a multilayer perceptron trained with a particle swarm 
optimization (PSO) algorithm. The study compares 10 different ML 
algorithms on the Cleveland Heart Disease dataset. Hybrid models 
can be complex and may pose challenges in understanding decision-
making processes. A more thorough exploration of the algorithm’s 
transparency and its potential limitations in real-world clinical 
applications could enhance the evaluation of the MLP-PSO algorithm.

Islam et al. (2023) presented an Internet of Things system for 
remote health monitoring. This system uses sensors to measure heart 
rate, blood oxygen level, ECG signal data, and body temperature. The 
aggregated data is sent to a server by executing the MQTT protocol. 
Finally, the CNN architecture with an attention layer classifies 
potential diseases. While this system provides comprehensive real-
time health monitoring, it may lack clarity in explaining how the deep 
learning model makes decisions due to its complexity. This could raise 
concerns about trusting the accuracy of the system’s diagnostic 
outcomes and gaining trust in the system’s recommendations for 
successful implementation in real-world healthcare scenarios.

Sadad et al. (2022) introduced a new method for detecting 
cardiovascular disease using photoplethysmography signals with 
IoT-enabled wearable patient monitoring devices. The research 
investigates machine learning methods such as decision tree, naive 
Bayes, and SVM along with one-dimensional CNN-long short-term 
memory (1D CNN-LSTM). The system, designed for continuous 
monitoring, achieves an impressive accuracy of 99.5% using the 
PPG-BP dataset. Cloud computing is used to improve the efficiency 
and connectivity of the monitoring system for cardiac patients. 
However, more attention should be given to ensuring that the 
proposed model can be applied effectively across different 
patient groups.

Samuel et al. (2023) developed a blockchain-based coalition 
network to share COVID-19 information securely. In the developed 
coalition system, health facilities can exchange information while 
optimizing their profits. Furthermore, each organization selected the 
finest replies from the suggested fictional play to study other people’s 
techniques and update its own beliefs. From the investigation 
outputs, it exposed 15% minimized computational cost and 26% 
proof-of-work.

Rani et al. (2022) suggested a health monitoring system using 
various CNN models. Here, blockchain was used to enable security. 
The suggested routing method routed the data to its destination with 
the least amount of energy consumption and network overhead by 
taking into account variables like likelihood, credibility rating, and 
node energy. The simulation results exposed better performance by 
means of 92% accuracy.

3 Materials and methods

In this section, the proposed framework, which is the combination 
of wearable IoT-powered sensors, electronic clinical records, and 
blockchain technology, to offer the secure and reliable cardiovascular 
disease detection, is introduced. Patients and the staff members are 
registered with the help of smart contracts, which offer access to any 
data in a specified manner and can be audited. Kalman filtering 
eliminates disturbance and inaccuracy in the wearable sensor-based 
physiological parameters. It is based on a combination of shallow and 
deep features representations to examine the input image in their 
entirety, and the Refracted Sand Cat Swarm Optimization (SCSO) 
algorithm to apply the most useful features in selecting the best ones. 
TriBoostCardio Ensemble Model as the combination of CatBoost, 
AdaBoost and LogitBoost can achieve the classification accuracy 
improvement but blockchain-based access control ensures the data 
safety, preservation of transparency and privacy.

The system architecture is a general system that incorporates the 
IoT-based data acquisition, preprocessing, feature engineering, feature 
optimization, classification, and blockchain-secured storage displays 
in Figure 1. IoT edge devices initially gather physiological indications 
and clinical measurements and send them to the gateway. Kalman 
filtering is used to de-noise the sensor readings and stabilize them and 
then the normalization and feature construction is performed. CNN/
LSTM models are used to extract shallow clinical features and deep 
representations and combine them into a single feature vector. The 
RL-SCSO optimizer then picks the most discriminative features and 
these are inputted into the TriBoost ensemble classifier comprising of 
CatBoost, AdaBoost, and LogitBoost classifiers. The resulting CVD 
prediction and the data hash are uploaded to the Ethereum blockchain 
via a smart contract and the entire encrypted record is stored 
off-chain. The stored results are accessed by authorized medical 
personnel through permission verification on-chain.

3.1 Registration

In the proposed system for monitoring and detecting heart disease 
using blockchain technology, a registration process is done for both 
patients and medical staff to ensure efficient data management and 
access control.
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3.1.1 Patient’s registration
The Medical healthcare service provider (MHSP) registers the 

details of all patients receiving hospital services, including those 
who are hospitalized as well as elderly individuals being remotely 
monitored by medical staff. Patient details, such as their Ethereum 
address used as phone number, age, name, ID, etc., are securely 
stored in the blockchain. Each patient is assigned to a specific 
Medical Staff member who oversees their healthcare needs. 
Patients receive authorization to access and review their 
health data.

3.1.2 Staff registration
The registration process also includes Medical Staff, which 

consists of doctors, nurses, and paramedical staff. Each member 
is registered by the MHSP with personal details such as an 
Ethereum address for identification, name, license ID, and role. 
It is important to ensure that the appropriate permissions are 
given to each medical staff within this access control system. 
Doctors can access historical patient data, request real-time 
information, and create reports for diagnosis and treatment. 
Nurses have access to both historical and real-time patient data 
and can request doctor interventions in critical conditions. 
Paramedical staff can process requests related to specific patients 
like meal preparation, patient transfers, and sample collections 
for laboratory analysis. The patient’s ID is used to display relevant 
parameters for the requested medical staff members in order to 
maintain secure data-sharing environment within the 

blockchain-based healthcare system. Architecture of the proposed 
health monitoring system shown in Figure 2.

3.2 Data acquisition

The dataset used in the study is the publicly available CVD in Kaggle 
in the links https://www.kaggle.com/datasets/jocelyndumlao/
cardiovascular-disease-dataset and https://physionet.org/content/scg-rhc-
wearable-database/1.0.0/ [Access Date 01-07-2024], which has 70,000 
patient records and 14 clinical attributes. The data set is composed of 
demographic data (age, gender), variables of symptoms (type of chest pain), 
physiological variables (resting blood pressure, serum cholesterol, 
maximum heart rate, ST depression), and diagnostic variables (fasting 
blood sugar, resting ECG, exercise-induced angina, slope of the ST 
segment, and number of major vessels). The target variable is a binary 
variable, that is, the absence (0) or presence (1) of cardiovascular disease. 
Attributes are both numeric and categorical with ranges of resting BP 
(94–200 mmHg), serum cholesterol (126–564 mg/dL), maximum heart 
rate (71–202 bpm), and oldpeak (0–6.2). The data provides a wide range of 
patient features, which develop a strong model. Data variability, 
inconsistency management, and bias due to an imbalance were to be 
prevented by doing descriptive statistics and distribution checks. The study 
uses a publicly available, fully anonymized cardiovascular disease dataset 
obtained from Kaggle. No personal identifiers are included, and no new 
human data were collected. As the analysis is conducted on secondary 
de-identified data, ethical approval and informed consent are not required.

FIGURE 1

End-to-end system architecture of the proposed TriBoost Cardio framework.
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3.3 Data pre-processing

The Data Pre-Processing Layer is important for ensuring the 
accuracy of heart disease prediction from wearable sensor data. 
These data are often inconsistent, incomplete, and noisy. To 
handle these challenges, various pre-processing techniques are 
used. One of these techniques is Kalman filtering, which 
effectively removes duplicate records, noise, and discrepancies 
from the data. This unsupervised filtering algorithm works well 
with real-time sensor data by providing values closer to the actual 
sensor readings without adding extra noise. Additionally, two 
other unsupervised filters are used: one removes irrelevant 
attributes while the other replaces missing values with mean or 
median values to improve the overall quality of the structured 
dataset.

Traditional methods for storing data, such as off-chain servers or 
cloud/Blockchain platforms, encounter challenges related to 
unauthorized changes or deletions and high costs. This proposed 
architecture suggests a dynamic approach to data storage. Instead of 
saving all retrieved data without discrimination, each piece of 
information undergoes analysis and is compared to predefined limits. 
The values that go beyond these thresholds are stored in the secure 
and tamper-resistant Blockchain platform. This helps reduce the risk 
of data manipulation and maximize resource efficiency.

Heart Rate Analysis evaluate the heart rate data obtained from a 
sensor in relation to the patient’s age retrieved from the Blockchain 
using their unique patient ID. The algorithm uses a function named 
heart_rate that returns a boolean value indicating whether the heart 
rate falls within acceptable limits. Abnormal heart rate patterns are 
flagged based on specified conditions within this function. By 

FIGURE 2

Architecture of the proposed health monitoring system.
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dynamically determining thresholds based on the patient’s age, it 
ensures an age-specific assessment of heart rate. If the heart rate 
exceeds or falls below the thresholds, it signals potential deviation 
requiring further attention or intervention by setting the result as 
True; otherwise, it remains False. This provides real-time monitoring 
of anomalous heart rates for prompt identification and addressing of 
potential health concerns in patients by healthcare professionals. 
Figure 3 displays Block diagram of the proposed disease detection 
framework.

This adaptive strategy ensures that only pertinent and substantial 
data exceeding predetermined benchmarks is retained, thereby 
contributing to efficient use of storage resources and robustness in 
predicting heart disease within this proposed framework. Kalman 
filtering improves the accuracy of the physiological data that is sent by 
wearable IoT sensors by minimizing noise, removing measurement 
anomalies, and fixing gaps or unreliable measurements. IoT devices 
are often subject to noise caused by motion artifacts, signal 
interference as well as environmental changes. Kalman filter is a 
recursive estimator that forecasts the next state of the physiological 
measurement and corrects it with sensor data that are observed. This 
prediction–correction process smooths signal variations, detects 
anomalous values, and estimates corrupted values with statistically 
optimal values. Kalman filtering enhances downstream feature 
extraction, classification accuracy, and guarantees reliable data to 
monitor real-time cardiovascular disease due to the provision of 
cleaner and more stable input signals.

3.4 Feature extraction

3.4.1 Shallow features

3.4.1.1 Heart rate
The heart rate is a key physiological measure indicating the 

number of heartbeats per minute (bpm). It can be measured by feeling 
peripheral arteries or using medical devices like electrocardiograms. 
The normal resting heart rate for adults usually ranges from 60 to 
100 bpm. When the heart consistently beats above 100 bpm, it may 
indicate tachycardia and signal conditions such as fever or cardiac 

issues. On the other hand, a consistent heart rate below 60 bpm, 
known as bradycardia, could point to conditions like heart block, 
hypothyroidism, or an athlete’s well-conditioned heart.

3.4.1.2 Blood pressure
It is essential for evaluating cardiovascular health and provide 

important information about the functioning of the circulatory 
system. Systolic and diastolic blood pressure, measured in millimeters 
of mercury (mmHg), indicate the force exerted by the heart during 
contraction and at rest between beats, respectively. Elevated values in 
either category are linked to increased cardiovascular risk, highlighting 
the importance of maintaining optimal blood pressure levels for 
overall health. Pulse pressure, calculated as the difference between 
systolic and diastolic pressures, offers valuable insights into arterial 
stiffness and compliance, aiding in identifying potential cardiovascular 
issues. Monitoring these blood pressure features are vital components 
of preventing and managing cardiovascular disease, enabling timely 
actions to promote overall cardiovascular well-being.

3.4.1.3 Lipid profile feature
It provide important information about the levels of various lipids 

and cholesterol components in the blood, offering insights into 
cardiovascular health. The lipid profile includes measurements of total 
cholesterol, low-density lipoprotein (LDL) cholesterol, high-density 
lipoprotein (HDL) cholesterol, and triglycerides.

3.4.1.4 Total cholesterol
It represents the overall amount of cholesterol in the blood.

3.4.1.5 Low-density lipoprotein
It is often labeled as “bad” because elevated levels can contribute 

to arterial plaque formation.

3.4.1.6 High-density lipoprotein
It is considered “good” as it helps remove LDL from the 

bloodstream, reducing the risk of arterial blockages. Triglycerides 
indicate excess calories or unhealthy dietary habits. High levels of 
triglycerides and LDL, along with low HDL increase the risk of 
atherosclerosis and coronary artery disease.

FIGURE 3

Block diagram of the proposed disease detection framework.
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3.4.1.7 Body mass index features
It refers to measurements related to the size, shape, and 

composition of the human body. It estimates body fat based on weight 
and height. Excess weight may be linked to an increased likelihood of 
developing cardiovascular diseases such as hypertension, diabetes, and 
coronary artery disease.

3.4.2 Deep features

3.4.2.1 ECG signal
Convolutional Neural Networks are crucial in healthcare, 

particularly for cardiovascular disease detection. CNNs automatically 
learn hierarchical and spatial representations, making them effective 
in processing medical images and time-series data like 
electrocardiograms. 1D CNNs extract precise features from raw ECG 
signals by capturing local patterns within the temporal domain. This 
capability helps in identifying specific cardiac cycle components such 
as P-waves, QRS complexes, and T-waves. For medical imaging 
purposes, both 2D or 3D CNNs efficiently process angiograms or MRI 
scans without manual feature engineering. This ability is helps in 
identifying structural abnormalities within the cardiovascular system. 
It not only enhances the accuracy of diagnosis but also streamlines the 
analysis of intricate patterns within medical images and time-
series data.

3.4.2.2 Temporal patterns
We use RNNs to capture temporal patterns and long-term 

dependencies crucial for understanding heart conditions. RNNs, 
especially LSTMs, are designed to excel in understanding long-term 
connections within sequential data. In ECG analysis, these networks 
can comprehend the chronological relationship between successive 
heartbeats. LSTMs use memory cells to selectively store and remember 
information from previous time steps, enabling them to learn and 
recall patterns, irregularities, and variations in the ECG signal. The 
ability of LSTMs to capture sequential connections is essential for 
accurate detection and prediction of arrhythmia. By understanding 
the detailed relationships between consecutive heartbeats, these 
networks can identify abnormal patterns that indicate irregular heart 
rhythms.

3.4.3 Feature fusion
Feature fusion combines shallow and deep features to create a 

more effective representation of physiological data. Shallow features 
offer insights into the temporal and statistical characteristics of signals, 
while deep features capture spatial and temporal patterns. The process 
involves combining these distinct feature sets for improved 
discriminative power, robustness, information utilization, adaptability 
to diverse data types, and reduced overfitting. This approach enhances 
accuracy and interpretability in cardiovascular health assessment.

The feature-fusion approach combines shallow physiological 
features and deep temporal–spatial features derived based on ECG 
and clinical signals. Interpretable clinical features like heart rate, 
cholesterol level, blood pressure and symptom-based features are 
shallow features, which are good baseline features to cardiovascular 
risks assessment. Morphological patterns, rhythm dynamics, and 
long-term temporal dependencies, which are not represented by 
shallow descriptors, are encoded in deep features, which are obtained 

with CNN and LSTM networks. Fusion process is a concatenation of 
normalized shallow features and final deep-feature embeddings, 
resulting in a single high-dimensional feature. This joint representation 
is better at discriminability, as it combines clinical knowledge with 
automatically discovered signal patterns to create a richer and more 
informative feature space to the RL-SCSO optimizer and TriBoost 
classifier.

3.5 Feature selection

To select the relvant features we propose Refracted SCSO 
optimization which based on the behavior of sand cats in their natural 
environment. Sand cats have a special skill to hear sounds that are 
lower than 2 kHz, which distinguishes them from domestic cats. They 
are well-suited to living in harsh desert conditions and have adapted 
by having fur-covered soles and palms for protection against extreme 
temperatures, making it difficult to track their footprints. This 
algorithm is based on the behavior of sand cats in their natural 
environment. Sand cats have a special skill to hear sounds that are 
lower than 2 kHz, which distinguishes them from domestic cats. They 
are well-suited to living in harsh desert conditions and have adapted 
by having fur-covered soles and palms for protection against extreme 
temperatures, making it difficult to track their footprints.

The sand cat has excellent hearing, especially its sensitivity to 
low-frequency sounds, which makes it an extraordinary animal. In 
challenging environments, sand cats hunt at night and rest 
underground during the day in order to find prey when the 
temperature is cooler.

The sand cat’s foraging and hunting behavior involves quickly 
finding prey on the ground, which serves as the basis for the SCSO 
algorithm. This optimization process mimics the initial steps of 
population initialization seen in natural foraging behavior of sand cats.

The fitness function outlined in Equation 1 is computed.

	
λδ η= +

f

S
Fit

T 	
(1)

where δ  signifies the classification error rate. Additionally, S  
denotes the size of the chosen subset, while fT  represents the total 
number of features within the dataset. The parameters λ and η  are 
utilized to indicate the significance of both classification accuracy and 
subset length. Notably, λ falls within the range [0, 1], while ( )η λ= −1 .

3.5.1 Search for prey
During the exploration stage, each sand cat’s location is 

represented as Q. The algorithm takes advantage of sand cats’ 
exceptional hearing ability for detecting low frequencies below 2 kHz. 
In mathematical terms, Equation 2 defines the sensitivity range VS and 
Equation 3 determines a crucial factor U that regulates balance 
between exploration and exploitation capabilities in the algorithm. 
These mathematical expressions are essential for guiding the 
algorithm’s search for prey during its exploratory phase, mirroring the 
keen sensory perception of sand cats in their natural habitat.
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γγ
 ×

= − 
 max

S
IV

I 	
(2)

	 ( )= × × −2 0,1 s sU rand V V 	 (3)

Where = 2y ,I  and maxI  represents the current iteration and 
maximum iteration number, respectively.

During the exploration phase, each sand cat randomly moves to 
a new position within its range of sensitivity. This random behavior 
improves the efficiency of the algorithm for both exploring and 
exploiting resources. To prevent getting stuck in a local best solution, 
a strategy that promotes diversity is used by assigning a different 
sensitivity range rangeV  to each sand cat. As described in Equation 4, 
this personalized sensitivity range guarantees that each sand cat 
explores a unique area, leading to more thorough exploration of 
potential solutions and decreasing the chance of early convergence.

	 ( )= ×0,1range SV rand V 	 (4)

Each sand cat dynamically adjusts its position in pursuit of prey, 
guided by an intricate interplay between its individualized sensitivity 
range rangeV , optimal candidate position ( )ocpQ t , and current location 

( )curQ t . The mathematical formula governing this adaptive movement 
is described in Equation 5. This formula makes a strategic exploration 
strategy, enabling the sand cats to efficiently explore and exploit the 
solution space as they adapt their positions based on the interplay of 
these factors.

	 ( ) ( ) ( ) ( )( )+ = × − ×1 0,1range ocp curQ t V Q t Q t rand 	 (5)

3.5.2 Attack prey (exploitation stage)
In the exploitation stage, Equation 6 quantifies the proximity 

between the prey and the sand cat, simulating the moment when the 
sand cat attacks. The sand cat’s sensitivity range is represented as a 
circular area, and its movement direction is determined by a random 
angle β  selected using the Roulette Wheel algorithm. This random 
angle ranges from 0° to 360°, corresponding to a value between [−1, 
1]. This approach allows the sand cat to move in various directions 
within their search space. Afterward, Equation 7 gives the predatory 
movement toward the prey, ensuring that the cat advances toward its 
hunting position.

	 ( ) ( ) ( )− = × −0,1sc pr bestQ Q t rand Qcur t∣ ∣	 (6)

	 ( ) ( ) ( )β−+ = − × ×1 cosbest sc pr rangeQ t Q t Q V 	 (7)

3.5.3 Refraction learning
Light refraction occurs when light passes through the boundary 

between two different mediums, such as air and water, causing the 
light to change direction due to a difference in speed. The RL 
technique operates based on this principle of light refraction. We 
incorporate this method in SCSO algorithm which helps in 
discovering optimal solutions by enabling a wider exploration range 
and preventing the algorithm to trap in local optima. It achieves this 

by considering various potential solutions and enhancing the 
trade-off between exploring new possibilities and exploiting existing 
ones. Additionally, the algorithm can prioritize specific areas where 
favorable solutions are more likely to be found with faster 
convergence.

The inverse of global optima ∗T  can be determined through the 
process of refraction learning using Equation 10.

	 ( ) ( ) ( ) ( )δ µ∗ ∗= + + + −/ 2 / 2 /T LB UB LB UB l T 	 (8)

The refraction index µ  is computed using Equation 11.

	

θµ
θ

= 1

2

sin
sin 	

(9)

	
( )( )θ ∗= + −1sin /2 /LB UB T k

	
(10)

	 ( )( )θ ′∗= − ′+2sin /2 /T LB UB k 	 (11)

where T  signifies the point of incidence (initial candidate solution) 
while ′T  represents the point of refraction (opposite candidate 
solution). The center point of the search interval (LB, UB) is denoted 
by CP. Additionally, g indicates the distance between Y and C, and ′k  
represents the distance between ′T  and CP.

RL-SCSO algorithm is an improvement of the feature-selection 
performance of the original SCSO optimizer by improving the 
exploration and exploitation stages. Traditional SCSO makes use of 
sensitivity-based movement to find the best feature subsets, and can 
suffer premature convergence in high-dimensional biomedical data. 
The RL element proposes the use of a refraction-based learning 
scheme that creates a counter-solution to the existing candidate based 
on a refractive index based on feature-space boundaries. The 
mechanism enhances the search diversity and makes the algorithm 
explore unvisited areas of the feature space. Consequently, RL-SCSO 
minimizes the chance of local minima trapping and approaches 
feature subsets with greater discriminative power with more 
uniformity. The enhanced search behavior results in the improved 
selection of features, less redundancy, and the increased accuracy of 
classification to predict cardiovascular disease.

3.6 TriBoostCardio ensemble detection 
model

The proposed TriBoostCardio Ensemble Model uses the strengths 
of CatBoost, AdaBoost, and LogitBoost, which provides a strong and 
adaptable method for detecting cardiovascular disease. CatBoost is 
recognized for its ability to handle categorical features and effectively 
learn complex patterns in the data. AdaBoost trains weak learners 
sequentially with a focus on misclassified instances, adding flexibility 
in challenging data scenarios. LogitBoost uses iterative logistic 
regression to enhance the model’s predictive capabilities by prioritizing 
instances that need extra attention. By combining these different 
boosting algorithms, the ensemble model benefits from their unique 
learning strategies, ensuring comprehensive coverage of intricate 
patterns within physiological data. The combination of voting or 
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weighted averaging optimally integrates predictions from each base 
learner into a unified and accurate model.

In our proposed TriBoostCardio Ensemble Model for identifying 
cardiovascular disease, a majority voting method is used to combine 
predictions. Each individual model makes its own prediction, and the 
final decision is made by choosing the class that receives the most 
votes. This approach gives equal importance to the predictions of 
CatBoost, AdaBoost, and LogitBoost. For example, if two out of these 
three models predict no presence of cardiovascular disease while one 
predicts its presence, “no presence” is chosen as the final combined 
prediction based on majority voting. This enhances accuracy in 
detecting cardiovascular disease.

3.6.1 LogitBoost
It is a variation of the boosting algorithm intended for binary 

classification tasks. It works by progressively improving the model’s 
predictive abilities through training weak learners in sequence. The 
process starts with initializing a base learner, usually a simple model 
such as a decision stump, and assigning equal weights to each instance 
in the dataset. Subsequently, it iterates through the training process, 
focusing on instances that were misclassified in the previous round. 
During each iteration, a new weak learner (logistic regression model) 
is trained on the weighted dataset with higher emphasis given to 
misclassified instances. The weights are updated based on the 
misclassification error. The final model is an additive combination of 
all trained weak learners; each contributes proportionally based on its 
accuracy. LogitBoost adapts its learning strategy by giving more 
weight to challenging instances and hence can adjust according to data 
complexity. This adaptability combined with using diverse weak 
learners makes LogitBoost robust and valuable for tasks like 
cardiovascular disease detection where capturing intricate patterns in 
physiological data is vital for accurate diagnosis.

3.6.2 CatBoost
It is a high-performing gradient boosting algorithm that is 

beneficial for detecting cardiovascular disease. It effectively processes 
categorical variables without requiring extensive preprocessing, which 
is particularly advantageous in the context of cardiovascular health 
datasets. The algorithm utilizes a robust symmetric tree learning 
approach to capture complex patterns and dependencies within the 
data. By iteratively building an ensemble of decision trees and 
implementing a depth-growth strategy to control model complexity, 
CatBoost addresses overfitting concerns. Additionally, its efficient 
handling of missing values contributes to the overall robustness of the 
model. Finally, predictions from individual trees are combined in the 
final ensemble, resulting in a powerful and accurate predictive tool for 
cardiovascular disease detection. With its adaptability to categorical 
features and resistance to overfitting, CatBoost proves valuable in 
constructing predictive models for health-related tasks involving 
mixed types of features commonly found in cardiovascular health 
datasets.

3.6.3 AdaBoost
Adaptive Boosting, also known as AdaBoost, is a robust ensemble 

learning technique used in the detection of cardiovascular diseases. It 
works by training weak learners sequentially and placing emphasis on 
misclassified instances to improve predictive accuracy. The algorithm 
starts with initializing a base learner, such as a decision stump, and 

assigns equal weights to each instance in the dataset. In successive 
iterations, AdaBoost focuses on misclassified instances from the 
existing ensemble by assigning them higher weights for increased 
attention. Weak learners like decision trees are then trained using the 
weighted dataset in an iterative manner. The final model is a weighted 
combination of these weak learners, where each learner’s contribution 
is proportional to its accuracy. Additionally, its ability to combine 
diverse outputs from weak learners and resistance to overfitting 
contribute significantly toward building reliable predictive models for 
cardiovascular disease detection.

TriBoost ensemble combines CatBoost, AdaBoost and LogitBoost, 
which uses the learning advantages of each booster. CatBoost is very 
useful with categorical and heterogeneous tabular data, AdaBoost is 
very useful with misclassified samples by using adaptive weighting, 
and LogitBoost is very useful with probability calibration using 
iterative logistic regression. Although both of these models are 
effective in their own right, they exhibit varying error patterns, that is, 
they make errors in different parts of the data space. Majority voting 
to combine them minimizes model specific bias and variance resulting 
in a more stable and robust classifier. This complementary behavior 
allows TriBoost to capture linear, nonlinear and boundary level 
variations in cardiovascular data better than any individual classifier. 
As a result, the ensemble has better generalization, higher accuracy of 
detection and better performance in imbalanced or noisy data 
conditions.

3.7 Application layer

This layer acts as a specialized tool to enhance the management 
and monitoring of cardiovascular health. It provides personalized 
features and insights to meet the unique needs of individuals 
diagnosed with heart conditions. Patients can use the app to monitor 
important health metrics like blood pressure, heart rate, and 
medication adherence in real-time. The app also includes automated 
reminders for medication schedules and appointments, ensuring that 
patients adhere to their treatment plans. Continuous monitoring 
combined with trend analysis allows for early detection of any 
deviations from baseline health parameters. Additionally, the app 
enables secure communication between patients and healthcare 
providers, facilitating remote consultations, result-sharing, and timely 
interventions.

3.8 Access control

The proposed smart healthcare system uses blockchain technology 
and a smart contract on the Ethereum network to simplify and secure 
various aspects of patient care, treatment, and payment processes. The 
system involves key entities such as the Smart Healthcare System, 
Drug Store for Healthcare Services, patients, medical insurers, and a 
Research and Development Lab. The algorithm outlines how the 
smart contract governs these interactions.

The proposed smart contract for access control leverages 
Ethereum’s blockchain technology to govern and secure interactions 
among users in a decentralized manner. The contract, named 
introduces a structured approach to managing user roles and 
permissions within a blockchain-based ecosystem. Within this 
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contract, user roles, namely ‘Patient’, ‘Doctor’, and ‘Administrator’, are 
clearly defined through an enumeration named ‘UserRole’. The 
‘UserDetails’ struct has essential information about each user, 
including their Ethereum address, assigned role, and registration status.

To ensure secure access, the contract employs two modifiers: 
‘onlyRegisteredUser’ and ‘onlyUserRole’. The former verifies whether 
a user is registered, while the latter ensures that the user possesses the 
required role for specific functionalities. These modifiers serve as 
safeguards, preventing unauthorized access to critical sections of the 
smart contract.

The algorithm provides functions such as ‘registerUser’ for users 
to register with the smart contract, specifying their desired roles. An 
administrator, identified as having the role of an ‘Administrator’, can 
utilize the ‘grantUserRole’ function to assign additional roles to users. 
The contract also includes a sample function, ‘restrictedFunction’, 
representing restricted functionality that can only be accessed by 
registered users with the role of a ‘Doctor’.

This access control algorithm establishes a foundation for 
decentralized and secure user management within a blockchain. It 
ensures that users are registered and assigned appropriate roles, 
enhancing transparency and accountability.

The smart contract begins in a state labeled “NotReady,” and 
important information like PatientID, patient name, and the IPFS 
hash of the Electronic Health Record are set during the contract’s 
creation. The algorithm utilizes Ethereum’s smart contract capabilities 
to manage critical data efficiently ensuring verification when needed. 
Additionally it keeps track of insurance company approvals using 
mappings with associated hash values which contributes to creating 
an auditable record of this process. In practical terms, a patient 
initiates this process triggering requests for approval by several 
systems. The events functions ensure that everything proceeds 
stepwise. This approach encourages transparency, security, and 
accountability.

The use of blockchain technology is included to provide secure, 
non-tamperable, and auditory management of sensitive patient data, 
gathered by IoT sensors and clinical records. Conventional centralized 
healthcare data systems are prone to unauthorized modification, 
single-point failures and privacy violation. Blockchain overcomes 
these challenges by storing access permissions, patient identifiers and 
data-sharing rules in a decentralized registry that is protected by 
cryptographic hashing. The smart contracts also create a high access 
control, where only authorized medical personnel can access or 
modify patient information. All transactions are time-stamped and 
immutable, which makes blockchain better in terms of data integrity, 
traceability, and the absence of the ability to manipulate data 
retrospectively. This secure infrastructure guarantees trust, 
transparency and confidentiality in all the steps of data transmission 
and analysis in a real-time cardiovascular monitoring setting. 
Algorithm 1 explains the Refracted SCSO for optimal feature selection.

The elements incorporated into the suggested framework is chosen 
due to the fact that each of them solves a particular challenge of the 
IoT-based cardiovascular monitoring. The pre-processing requires 
Kalman filtering since the physiological signals of wearable devices are 
usually noisy, subject to motion artifact, and missing fluctuations; 
Kalman filtering offers real-time smoothing and precise determination 
of the state, which is trustworthy inputs to further analysis. Refracted 
SCSO is also added to the feature selection since cardiovascular 

datasets have redundant and correlated variables, which compromise 
the performance of classifier; SCSO has a good global search capability, 
converges efficiently, and avoids local optima better than the traditional 
optimizers, leading to a small and discriminative set of features. The 
TriBoostCardio ensemble (CatBoost, AdaBoost, and LogitBoost) are 
selected since each boosting algorithm has its own complementary 
advantages: CatBoost is better at using heterogeneous clinical data and 
categorical variables, AdaBoost is better at focusing on samples that are 
hard to classify, and LogitBoost is better at providing stable probabilistic 
modeling. The combination of these models produces superior 
robustness, better generalization and increased predictive accuracy 
compared to using each of the single classifiers individually. Combined, 
these elements guarantee an effective, noisy, and clinically stable CVD 
detection pipeline.

The suggested system include an Ethereum-based blockchain 
layer that guarantees the safety and impossibility to tamper with 
patient information. On-chain storage is only done on metadata, 
including the hashed patient ID, encrypted record pointer, and 
timestamp, with full clinical records stored in encrypted off-chain 
storage. IoT devices send hashed physiological data to a gateway, data 
is hashed and a transaction is sent to the blockchain using a lightweight 
smart contract based on role-based access control. Data is accessed by 
authorized clinicians by verifying on-chain permissions, and the 
off-chain encrypted file is retrieved. It is a hybrid on-chainarchitecture 
which facilitates integrity verification, decentralized auditing, and 
controlled data sharing at minimal blockchain storage and 
transaction cost.

ALGORITHM 1

Refracted SCSO for optimal feature selection.
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In this paper, the blockchain block is deployed on a private 
Ethereum network with Ganache to provide low latency and 
complete control over data privacy. This network had 10 validator 
nodes who were operating under a lightweight PoA (Proof-of-
Authority) consensus mechanism. The average gas cost was of 
41,000 units, or approximately less than 0.002 ETH on a private 
chain. The mean transaction time is 1.2 s, and the block time was 
set to 2 s, which allows recording IoT data almost in real-time. 
This architecture guarantees scalability, low operation cost, and 
a simple way of dealing with continuous streams of 
physiological data.

4 Results

The proposed health monitor system for CVD detection using 
developed Triboost Cardio Ensemble model is implemented in 
MATLAB on Intel core® i5 processor, 2.6 GHz, 128 GB RAM, 64-bit 
OS. It is trained on CatBoost (500 trees), AdaBoost (200 estimators), 
LogitBoost (100 iterations), and RL-SCSO (population 100 
iterations). Deep features are extracted with 1D-CNN and 
LSTM. Training is done on an 80:20 division, 5-fold cross-validation, 
Adam optimizer (LR = 0.001), batch size of 32 and Min-Max 
normalization with Kalman filtering. The blockchain layer is 
implemented on a private Ethereum (Ganache, PoA consensus) and 
the access-control verification of less than 10 ms. The experiment is 
carried out by using public access datasets from Kaggle. The data are 
collected from CVD dataset and patient data wearable 
Seismocardiogram Signal and Right Heart Catheter (SCG-RHC) 
devices from Kaggle. Also, the competence of the proposed model 
is verified via several simulation results with the existing models like 
ANN, SVM, RF, CatBoost, LogitBoost, and AdaBoost for various 
performance measures including accuracy, and sensitivity. Besides, 
the performance of the proposed RL-SCSO is verified via a 
comparative analysis with other optimization algorithms like COA, 
PSO, SSA, and MOA models.

4.1 Comparative evaluation

The proposed Triboost ensemble model and its attained results are 
discussed in this section. Here, the developed model accomplished 
better results as portrayed in Figure 4. For accuracy (Acc), the 
proposed network achieved 0.6% better than AdaBoost, 0.3% better 
than LogitBoost, 1.32% better than CatBoost, 1.62% improved than 
ANN, 2.54% better than SVM, and 2.84% improved than RF. Similarly, 
the proposed network attained 0.82, 0.84, 0.51, 0.84, 1.34, and 1.68% 
better than AdaBoost, LogitBoost, CatBoost, ANN, SVM and RF, 
respectively, for sensitivity (Sen). As for specificity (Spe), the 
introduced model reached enhanced results which is 1.31, 0.7, 1.51, 
2.63, 3.74, and 3.84% better than AdaBoost, LogitBoost, CatBoost, 
ANN, SVM and RF, respectively. The developed Triboost ensemble 
model reached improved precision (Pre) results which is 0.51, 0.51, 
0.51, 0.71, 0.92, and 2.46% better than AdaBoost, LogitBoost, 
CatBoost, ANN, SVM and RF, respectively.

Figure 5 specifies the performance of Positive Predictive Value 
(PPV), F-measure, Negative Predictive Value (NPV), and Matthew 
Correlation Coefficient (MCC) of developed model over other 
networks. Here, the developed model gets 0.2% better than AdaBoost, 
0.4% better than LogitBoost, 0.6% better than CatBoost, 0.8% 
improved than ANN, 1.01% better than SVM, and 3.77% improved 
than RF for PPV. For F-measure, the proposed network reached 0.72, 
0.51, 0.11, 0.21, 1.33, and 1.64% better than AdaBoost, LogitBoost, 
CatBoost, ANN, SVM and RF, respectively. Similarly, the developed 
model gets better results for NPV and MCC as well. In Figure 6, the 
False Positive Rates (FPR) and False Negative Rates (FNR) values are 
given. Here, the suggested model achieved enhanced results by 
outruns the existing models.

Figure 7 shows the convergence of proposed RL-SCSO algorithm 
over other SOTA models. Here, the proposed one achieved better 
results which is 6.5% better than COA, 3.45% better than PSO, 2.34% 
better than SSA, 1.62% and improved than MOA. From Figure 7, it is 
evident that the proposed algorithm is competent in achieving better 
performance. Figure 8 shows the time complexity of proposed 

FIGURE 4

Comparative evaluation of suggested Triboost ensemble model over other models with respect to Acc, Sen, Spe, and Pre.
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RL-SCSO model over other models. Hither, the proposed RL-SCSO 
obtained 1.03 (s) for selecting the optimal features which is 29.3, 
58.06, 69.3, and 77.4% better than COA, PSO, SSA, and MOA, 
respectively (Table 1).

From Figure 9, it is clear that the proposed RL-SCSO played a 
crucial role in attaining better performance. Also, the proposed 
RL-SCSO outruns the existing models. Thus, the optimal feature 
selection using proposed RL-SCSO showed its competence and 
efficiency in accomplishing better performance. The chosen 
baseline models that compared are ANN, SVM, RF, AdaBoost, 
LogitBoost and CatBoost, which are the most commonly used 
algorithmic families in CVD prediction, both classical machine 
learning classifiers and neural network-based methods and 
boosting ensembles. Such models have been widely used in the 
CVD literature and offer a reasonable description of conventional 
and ensemble learning strategies. Despite other boosting 
algorithms like XGBoost and LightGBM being more popular in 

general tabular classification problems, CatBoost was selected as 
the representative gradient boosting benchmark, because it has 
better capabilities to work with categorical clinical data, less 
hyperparameter optimization is required, and it is more 
computationally efficient in an IoT-blockchain setting.

Table 2 presents overall performance analysis of proposed 
model over other models. Here, the proposed model attained better 
accuracy of 98.4% which is higher than the existing models. 
Similarly, for sensitivity, specificity, and precision, the proposed 
model outruns other models. The proposed model has a high NPV 
of 0.991 and a MCC of 0.974, indicating its exceptional ability to 
accurately identify individuals without CVD while maintaining 
balanced sensitivity and specificity. Existing methods such as 
CatBoost, AdaBoost, LogitBoost, ANN, SVM, and RF also 
demonstrate strong performance but with slightly lower NPV and 
MCC values. Although these existing methods perform well, they 
fall slightly short compared to the proposed model.

FIGURE 5

Comparative evaluation of suggested Triboost ensemble model over other models with respect to PPV, F1-score, NPV, and MCC.

FIGURE 6

FPR and FNR analysis of proposed network over other networks.
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Figure 10 shows the LIME feature-importance analysis, 
highlighting which clinical variables influenced the model’s prediction 
for a given case. Green bars indicate features that increase the 
likelihood of CVD, while red bars decrease it. The ST-segment slope 
and serum cholesterol have the strongest positive influence, whereas 
resting blood pressure, chest pain, and fasting blood sugar reduce the 
predicted risk. This demonstrates that the model relies on clinically 
meaningful features and provides interpretable decision insights.

Figure 11 illustrates the classification performance of the proposed 
TriBoostCardio model for distinguishing between CVD and non-CVD 
cases. The model correctly identified 494 out of 500 non-CVD samples 

and 490 out of 500 CVD samples, leading to very low false positives 
(6) and false negatives (10). The high number of correctly classified 
cases in both classes reflects the strong discriminative capability of the 
ensemble model. These results support the model’s high overall 
accuracy of 98.4% and demonstrate its effectiveness in reducing 
misclassification errors in practical CVD prediction scenarios.

Figure 12 shows the ROC analysis for both the proposed 
TriBoostCardio model and the baseline classifiers. The proposed 
model achieves the highest AUC (0.984) with the lowest FPR 
(0.009), demonstrating its strong ability to separate CVD from 
non-CVD classes. The ROC curves of ANN, SVM, RF, CatBoost, 

FIGURE 7

Convergence graph of proposed RL-SCSO model over other algorithms.

FIGURE 8

Time complexity of proposed RL-SCSO model over other algorithms.
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TABLE 1  Recent trends and technologies involved in CVD classification and security purposes.

Authors Methods Dataset Weakness Results

Konstantonis et al. (2022) RF, SVM and LDA CVD dataset Failed to predict mild and early 

levels

Accuracy of 98% and AUC of 

0.98

Kallimani et al. (2022) ACNN-LSTM Cleveland UCI Repository Limited data were used for 

evaluation

Accuracy of 97%

Alqahtani et al. (2022) ML Ensemble Model CVD dataset Need to improve the developed 

network performance

Accuracy of 88%

de Vries et al. (2023) ANN Cleveland Heart Disease dataset Need to improve the performance 

better

Accuracy of 71% and 

sensitivity of 63%

Al Bataineh and 

Manacek (2022)

MLP-PSO Model Cleveland Heart Disease dataset Further improvement is mandatory 

concerning performance

Accuracy of 84%

Islam et al. (2023) CNN ECG Heartbeat Categorization Dataset 

- MITBIH Arrhythmia Database

Limited data source and sensor 

were used

Accuracy of 98% and F1-

Score of 98%

Sadad et al. (2022) DT, NB, SVM and 1D CNN-

LSTM models

PPG-BP dataset Exposed computational complexity Accuracy of 99%

Samuel et al. (2023) Blockchain-based Coalition 

Network

CVD dataset Proof-of-work need to be 

improved

15% minimized 

computational cost and 26% 

proof-of-work

Rani et al. (2022) ResNet50, VGG19, 

InceptionV3, and SqueezeNet

CVD dataset Accuracy of the system is needed 

to be enhanced

Accuracy of 92%

FIGURE 9

Performance of proposed Triboost ensemble model and other models with and without optimal feature selection.

TABLE 2  Overall performance analysis of proposed model over existing models.

Methods Sen Spec Acc Precision PPV F1-Score NPV FPR FNR MCC

AdaBoost 0.961 0.975 0.978 0.97 0.978 0.965 0.988 0.011 0.011 0.969

LogitBoost 0.96 0.981 0.98 0.97 0.976 0.967 0.986 0.011 0.012 0.97

CatBoost 0.963 0.973 0.971 0.97 0.974 0.971 0.978 0.013 0.014 0.963

ANN 0.96 0.962 0.968 0.968 0.972 0.97 0.968 0.018 0.018 0.954

SVM 0.956 0.951 0.959 0.966 0.97 0.959 0.956 0.032 0.029 0.934

RF 0.952 0.95 0.956 0.951 0.943 0.956 0.944 0.033 0.04 0.905

Proposed 0.969 0.988 0.984 0.975 0.98 0.972 0.991 0.009 0.009 0.974
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LogitBoost, and AdaBoost show comparatively lower AUC values, 
confirming the superior diagnostic performance of the proposed 
ensemble.

4.2 Blockchain performance analysis

A controlled Ethereum test environment is used to assess the 
performance of blockchain. Storing a record took an average of 
1.9 s to complete the transaction confirmation time, whereas 
authorization through smart-contract reads took less than 10 ms. 
The storeRecord function used around 120, 000 gas per transaction 
and the system had a throughput of 0.5 transactions per second 
when tested. The findings affirm that blockchain layer offers secure 
data processing with reasonable latency and calculation overhead 
to healthcare monitoring applications.

4.3 Privacy and security evaluation of the 
Blockchain layer

To ensure that the blockchain layer is effective in securing the data 
of the patients, a privacy and security assessment are performed. A test 
case is conducted whereby authorized clinicians and unauthorized 
users tried to access stored cardiovascular records. The access control 
based on smart contracts is able to allow all of the authorized and 
reject all of the unauthorized ones. The authorization function of the 
contract had a response time of 10 ms on average, which means that 
it had a small overhead in the process of retrieving secure data. These 
findings indicate that the blockchain aspect offers high privacy 
protection, high tampering resistance, and high access control to the 
suggested healthcare monitoring system.

4.4 Discussion

This research aims to introduce a novel technique to detect CVD 
in IoT settings. For data security, a blockchain mechanism is involved. 
Thereby, this research intends to achieve accuracy, security and 
efficiency. For this reason, an ensemble technique is utilized to detect 
the CVD and blockchain-enabled decentralized network is employed 
to ensure security and optimization concept is used to attain efficiency 
of the developed classifier by feeding it with optimal features. From 
this experimentation setup, the proposed TriBoostCardio ensemble 
model accomplished all the research goals such as enhanced accuracy 
98.4%, security and efficiency. The efficiency of the proposed CVD 
detection framework is measured through a comparative study with 
the baseline and SOTA models.

The baseline methods such as CatBoost, AdaBoost, and LogitBoost 
models attained considerable performance however, medical data 
needs to be assessed carefully so that misclassifications are avoided. 
The proposed TriBoostCardio ensemble model outruns the baseline 
models by 0.6% better than AdaBoost, 0.4% better than CatBoost, and 

FIGURE 10

LIME feature-importance analysis.

FIGURE 11

Confusion matrix of the proposed TriBoostCardio model.
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1.32% better than LogitBoost. On the other hand, TriBoostCardio 
ensemble model accomplished better accuracy which is 1.62% 
improved than ANN, 2.54% improved than SVM, and 2.84% better 
than RF. Thus, the proposed TriBoostCardio ensemble model 
outperformed SOTA models and proved its efficiency in 
detecting CVD.

In addition to the improvement of performance, the suggested 
framework has significant clinical implications. TriBoostCardio 
model is added to the existing hospital information systems to 
facilitate real-time cardiovascular monitoring. The wearable IoT 
devices are capable of transmitting ECG, heart rate, and 
physiological data in real-time to hospital dashboards, which will 
clinicians monitor abnormalities sooner and intervene before 
complications occur. The access control system is also based on the 
blockchain that guarantees that the patient data shared among 
cardiologists, nurses, and emergency teams cannot be altered and 
is auditable to enhance confidence in digital health processes. 
Remote cardiac monitoring programs also be supported by the 
system, which means that high-risk patients is monitored at home 
with the smart wearables and avoid unnecessary visits to the 
hospital, which also allow receiving medical assistance in time. Such 
practical integration pathways underscore the fact that the model is 
implemented in the real clinical setting.

This research utilized open access datasets for experimentation 
which is limited due to certain reasons. Subsequently, real-time data 
using IoT wearables are sensitive and have private information of 
concerning patients. Acquiring these data is highly confidential and 
large volumes of data is difficult to gather. These constraints limit the 

data acquisition. Additionally, implementing blockchain technology 
in IoT settings requires high computational power and resources. 
Blockchain networks need a lot of energy, which is expensive, 
especially when they use proof-of-work consensus processes. On 
considering computational complexity, in future, simplified 
architecture will be designed with the use of various CNN architectures 
and real-time data will be gathered and train the network to achieve 
real-time applications for CVD detection in IoT settings.

5 Conclusion

In this paper, an advanced framework was developed for 
cardiovascular disease detection. The systematic process flow, from 
patient registration to data analysis, incorporates advanced features 
such as Refracted SCSO optimization for feature selection and the 
TriBoostCardio Ensemble Detection Model, ensuring a thorough and 
accurate examination of physiological data. The integration of smart 
contracts for access control enhances data security and privacy. 
Preliminary results showcase the effectiveness of the ensemble model, 
with an impressive overall accuracy of 98.4%. The model exhibits high 
sensitivity at 98%, ensuring a low rate of false negatives in identifying 
potential cardiovascular issues. The Negative Predictive Value (NPV) 
is at 99.1%, underscoring the model’s reliability in correctly identifying 
disease-free cases. The MCC stands at 97.4%, emphasizing the 
robustness of the ensemble model in capturing true positive and true 
negative cases. While experimental results show promising 
advancements in predictive accuracy, sensitivity, and specificity, 

FIGURE 12

ROC curve comparison of the proposed TriBoostCardio model.
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further validation and refinement are imperative to assess the 
methodology’s robustness across diverse healthcare scenarios.
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