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Introduction: Heart diseases (CVDs) are a major cause of morbidity and mortality
in all global regions and thus there is the pressing need to develop early detection
and effective management approaches. Traditional cardiovascular monitoring
systems do not necessarily have real-time analyzing solutions and individual
understanding, which leads to delayed interventions. Moreover, one of the
greatest issues in digital healthcare applications remains to be data privacy and
security.

Methods: The proposed research is to present a developed model of CVD
detection that will combine Internet of Things (loT)-based wearable devices,
electronic clinical records, and access control using blockchain. The system
starts by registering patients and medical personnel and then proceeds with
collecting physiological as well as clinical data. Kalman filtering helps inimproving
data reliability in the pre-processing stage. Shallow and deep feature extraction
methods are used to describe complicated patterns of data. A Refracted Sand Cat
Swarm Optimization (SCSO) algorithm is used as part of feature maximization.
A new TriBoostCardio Ensemble model (CatBoost, AdaBoost, and LogitBoost)
is used to conduct the classification task and enhance the predictive accuracy.
Smart contracts provide safe and transparent access to health information.
Results: There are experimental results that the proposed framework enhances
high predictive accuracy and detecting cardiovascular diseases earlier than
traditional ones. The combination between SCSO feature selection and the
TriBoostCardio Ensemble model improves the sturdiness of the model and
precision of classification.

Discussion: Besides the fact that the presented framework promotes the
accuracy and timeliness of CVD detection, it also way to deal with important
problems related to the data privacy and integrity with the help of blockchain-
based access control. This solution offers a stable and trustworthy solution to
the current healthcare systems with the combination of the smart optimization
of features, ensemble learning, and secure data management.
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1 Introduction

Cardiovascular diseases (CVD) continue to be a significant global
health issue, requiring new and creative strategies to address the
shortcomings of conventional healthcare methods. Given the annual
high number of deaths due to CVDs, there is a clear requirement for
ongoing monitoring and early identification (Moshawrab et al., 2023;
Chang et al., 2022; Nagavelli et al., 2022). The rise of the Internet of
Things brings about a revolutionary method by connecting wearable
devices and sensors to offer immediate health information
(Keikhosrokiani and Kamaruddin, 2022). This move toward constant,
individualized monitoring signifies a pivotal advancement in
cardiovascular care, filling in the deficiencies in standard occasional
clinical methods (Saeed et al., 2023; Ahmed et al., 2022).

In the changing field of healthcare, advanced technologies have
led to new solutions for addressing important challenges. One such
significant approach is combining Internet of Things and blockchain
technologies for monitoring cardiovascular disease in remote patients
(Alshamrani, 2022). This innovative combination improves healthcare
efficiency and ensures the security of patient data. Cardiovascular
diseases remain a leading cause of death globally, highlighting the
need for continuous monitoring to detect early signs and prevent
adverse events. Traditional healthcare models often lack real-time
insights into patients’ heart health, prompting the exploration of
advanced technologies to fill this gap (Eisa and Alnaggar, 2022; Tiwari
et al,, 2022; Ketu and Mishra, 2022). The synergy of IoT and
blockchain presents a promising solution to overcome these
limitations in conventional methods.

The Internet of Things makes it possible to connect medical
devices, wearables, and sensors, allowing vital signs to be monitored
continuously in real time. This interconnected system gives healthcare
providers access to a complete set of data that provides patient’s
cardiovascular health data without clinical visits (Hasanova et al.,
2022; Roy et al., 2022). Wearable devices with embedded sensors track
physiological measurements like heart rate, blood pressure, and ECG
data and send this information securely to a central system.

Blockchain technology strengthens the healthcare system by
addressing issues of data security, privacy, and integrity. Its decentralized
and unchangeable nature ensures that patient data cannot be altered and
is only accessible to authorized individuals. This creates trust among
patients and healthcare providers, promoting a transparent and secure
environment for managing sensitive health information (Dammak et
al., 2022; Bataineh et al., 2022; Azbeg et al., 2022).

The combination of IoT and blockchain in remote patient
monitoring for detecting cardiovascular disease is driven by a
comprehensive effort to improve healthcare results. This method seeks
to give patients more control through ongoing monitoring, promoting a
model centered on the patient. At the same time, it deals with important
issues like data security and privacy by using blockchain’s decentralized
and tamper-resistant characteristics. By encouraging early detection,
personalized care, and cost-effective treatments, this integration signifies
a crucial move toward a future in healthcare defined by proactive
strategies that involve patients and better overall health results.
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« To develop a real-time patient monitoring system using the
combination of IoT and Blockchain in healthcare and privacy
and trust.

o The use of RL-SCSO for feature selection improves convergence
toward an optimal subset essential for robust CVD detection.

o The proposed TriBoostCardio Ensemble Model uses CatBoost,
AdaBoost, and LogitBoost for detecting CVD which outruns the
existing methods.

This paper is structured as follows: Section 2 reviews the
literature that highlights the worldwide incursion caused by
cardiovascular diseases (CVDs), the drawbacks of traditional
monitoring systems, and the opportunities of the IoT and
blockchain technologies in terms of continuous, safe, and real-time
health surveillance. Section 3 outlines the materials used and the
methodology proposed to be used in the detection of cardiovascular
disease. Sections 4, 5 cover the results of the experiment with
comparative analyses of the current methods. Lastly, Section 6
summarizes the major findings of the paper, gives reccommendations,
enumerates limitations, and proposes future research directions.

2 Related works

This section presents the Recent research on cardiovascular
disease (CVD) detection has grown to prioritize the use of machine
learning, deep learning, and IoT-based monitoring systems to enhance
the accuracy of the diagnostic and real-time analysis. Hybrid and
ensemble models, feature optimization methods and signal-based
methods that utilize ECG and PPG signals have been studied.
Nevertheless, most of the available approaches have issues of
interpretability, scalability, and data security. To overcome these
shortcomings, the latest literature has started to use blockchain and
sophisticated optimization models to boost the model transparency,
performance, and reliability in healthcare applications.

Konstantonis et al. (2022) analyzed the detection of cardiovascular
disease in rheumatoid arthritis patient’s carotid/femoral arterial
imaging and using machine learning methods. The study categorized
CVD risk factors into office-based measures, carotid ultrasound image-
based phenotypes, and blood biomarkers. Three machine learning
classifiers such as Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM), and Random Forest were utilized. The study analyzed
CVD risk factors in three categories: carotid ultrasound phenotypes,
blood biomarkers, and conventional measures. The study assessed the
performance of these classifiers to predict CVD risk in rheumatoid
arthritis patients. While the research contributes to the intersection of
machine learning and cardiovascular health, more specific performance
metrics and clinical implications would enhance its impact.

Kallimani et al. (2022) presented a new method, Hybrid Deep
Learning-Based Heart Disease Detection and Classification (FSHDL-
HDDC) technique, for detecting and classifying heart disease in
e-healthcare. It combines data normalization, missing value
imputation, and the elite opposition-based squirrel search algorithm
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(EO-SSA) algorithm for feature selection. The addition of ACNN-
LSTM improves heart disease detection. While this model
demonstrates innovative feature selection using EO-SSA and powerful
deep learning techniques, its complexity could make it challenging to
interpret and computationally inefficient. Balancing model complexity
with practical deployment is vital for integrating it into real-world
e-healthcare environments seamlessly.

Alqahtani et al. (2022) presented a method that combines machine
learning and deep learning models to predict cardiovascular disease.
The approach achieves an accuracy of 88.70% by using six classification
algorithms and random forest for feature extraction from a publicly
available dataset. Although the ensemble approach improves
prediction accuracy, it may lack transparency in decision-making due
to its combination of various algorithms. A more thorough
examination of the model’s interpretability could enhance
understanding of its practical use and challenges in clinical settings.

De Vries et al. (2023) examined the use of non-invasive
electrocardiography with artificial intelligence to detect congenital heart
disease in fetuses. The study involves training an artificial neural network
(ANN) on fetal electrocardiograms and incorporating a Bayesian
updating rule to improve its performance. While the study provides
valuable insights into non-invasive CHD detection, it lacks information
about the interpretability of the algorithm and potential false-positive/
negative rates. The opaque nature of artificial neural networks could
affect clinical trust, underscoring the need for further investigation into
their transparency for successful integration into prenatal care practices.

Al Bataineh and Manacek (2022) improved the heart disease
prediction by using various machine learning (ML) algorithms, with
a focus on a multilayer perceptron trained with a particle swarm
optimization (PSO) algorithm. The study compares 10 different ML
algorithms on the Cleveland Heart Disease dataset. Hybrid models
can be complex and may pose challenges in understanding decision-
making processes. A more thorough exploration of the algorithm’s
transparency and its potential limitations in real-world clinical
applications could enhance the evaluation of the MLP-PSO algorithm.

Islam et al. (2023) presented an Internet of Things system for
remote health monitoring. This system uses sensors to measure heart
rate, blood oxygen level, ECG signal data, and body temperature. The
aggregated data is sent to a server by executing the MQTT protocol.
Finally, the CNN architecture with an attention layer classifies
potential diseases. While this system provides comprehensive real-
time health monitoring, it may lack clarity in explaining how the deep
learning model makes decisions due to its complexity. This could raise
concerns about trusting the accuracy of the systems diagnostic
outcomes and gaining trust in the system’s recommendations for
successful implementation in real-world healthcare scenarios.

Sadad et al. (2022) introduced a new method for detecting
cardiovascular disease using photoplethysmography signals with
IoT-enabled wearable patient monitoring devices. The research
investigates machine learning methods such as decision tree, naive
Bayes, and SVM along with one-dimensional CNN-long short-term
memory (1D CNN-LSTM). The system, designed for continuous
monitoring, achieves an impressive accuracy of 99.5% using the
PPG-BP dataset. Cloud computing is used to improve the efficiency
and connectivity of the monitoring system for cardiac patients.
However, more attention should be given to ensuring that the
proposed model can be applied effectively across different
patient groups.
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Samuel et al. (2023) developed a blockchain-based coalition
network to share COVID-19 information securely. In the developed
coalition system, health facilities can exchange information while
optimizing their profits. Furthermore, each organization selected the
finest replies from the suggested fictional play to study other people’s
techniques and update its own beliefs. From the investigation
outputs, it exposed 15% minimized computational cost and 26%
proof-of-work.

Rani et al. (2022) suggested a health monitoring system using
various CNN models. Here, blockchain was used to enable security.
The suggested routing method routed the data to its destination with
the least amount of energy consumption and network overhead by
taking into account variables like likelihood, credibility rating, and
node energy. The simulation results exposed better performance by
means of 92% accuracy.

3 Materials and methods

In this section, the proposed framework, which is the combination
of wearable IoT-powered sensors, electronic clinical records, and
blockchain technology, to offer the secure and reliable cardiovascular
disease detection, is introduced. Patients and the staff members are
registered with the help of smart contracts, which offer access to any
data in a specified manner and can be audited. Kalman filtering
eliminates disturbance and inaccuracy in the wearable sensor-based
physiological parameters. It is based on a combination of shallow and
deep features representations to examine the input image in their
entirety, and the Refracted Sand Cat Swarm Optimization (SCSO)
algorithm to apply the most useful features in selecting the best ones.
TriBoostCardio Ensemble Model as the combination of CatBoost,
AdaBoost and LogitBoost can achieve the classification accuracy
improvement but blockchain-based access control ensures the data
safety, preservation of transparency and privacy.

The system architecture is a general system that incorporates the
ToT-based data acquisition, preprocessing, feature engineering, feature
optimization, classification, and blockchain-secured storage displays
in Figure 1. IoT edge devices initially gather physiological indications
and clinical measurements and send them to the gateway. Kalman
filtering is used to de-noise the sensor readings and stabilize them and
then the normalization and feature construction is performed. CNN/
LSTM models are used to extract shallow clinical features and deep
representations and combine them into a single feature vector. The
RL-SCSO optimizer then picks the most discriminative features and
these are inputted into the TriBoost ensemble classifier comprising of
CatBoost, AdaBoost, and LogitBoost classifiers. The resulting CVD
prediction and the data hash are uploaded to the Ethereum blockchain
via a smart contract and the entire encrypted record is stored
off-chain. The stored results are accessed by authorized medical
personnel through permission verification on-chain.

3.1 Registration

In the proposed system for monitoring and detecting heart disease
using blockchain technology, a registration process is done for both
patients and medical staff to ensure efficient data management and
access control.
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FIGURE 1

End-to-end system architecture of the proposed TriBoost Cardio framework.

3.1.1 Patient’s registration

The Medical healthcare service provider (MHSP) registers the
details of all patients receiving hospital services, including those
who are hospitalized as well as elderly individuals being remotely
monitored by medical staff. Patient details, such as their Ethereum
address used as phone number, age, name, ID, etc., are securely
stored in the blockchain. Each patient is assigned to a specific
Medical Staff member who oversees their healthcare needs.
Patients receive authorization to access and review their
health data.

3.1.2 Staff registration

The registration process also includes Medical Staff, which
consists of doctors, nurses, and paramedical staff. Each member
is registered by the MHSP with personal details such as an
Ethereum address for identification, name, license ID, and role.
It is important to ensure that the appropriate permissions are
given to each medical staff within this access control system.
Doctors can access historical patient data, request real-time
information, and create reports for diagnosis and treatment.
Nurses have access to both historical and real-time patient data
and can request doctor interventions in critical conditions.
Paramedical staff can process requests related to specific patients
like meal preparation, patient transfers, and sample collections
for laboratory analysis. The patient’s ID is used to display relevant
parameters for the requested medical staff members in order to
maintain environment within the

secure data-sharing
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blockchain-based healthcare system. Architecture of the proposed
health monitoring system shown in Figure 2.

3.2 Data acquisition

The dataset used in the study is the publicly available CVD in Kaggle

the  links
cardiovascular-disease-dataset and https://physionet.org/content/scg-rhc-
wearable-database/1.0.0/ [Access Date 01-07-2024], which has 70,000
patient records and 14 clinical attributes. The data set is composed of

in https://www.kaggle.com/datasets/jocelyndumlao/

demographic data (age, gender), variables of symptoms (type of chest pain),
physiological variables (resting blood pressure, serum cholesterol,
maximum heart rate, ST depression), and diagnostic variables (fasting
blood sugar, resting ECG, exercise-induced angina, slope of the ST
segment, and number of major vessels). The target variable is a binary
variable, that is, the absence (0) or presence (1) of cardiovascular disease.
Attributes are both numeric and categorical with ranges of resting BP
(94-200 mmHg), serum cholesterol (126-564 mg/dL), maximum heart
rate (71-202 bpm), and oldpeak (0-6.2). The data provides a wide range of
patient features, which develop a strong model. Data variability,
inconsistency management, and bias due to an imbalance were to be
prevented by doing descriptive statistics and distribution checks. The study
uses a publicly available, fully anonymized cardiovascular disease dataset
obtained from Kaggle. No personal identifiers are included, and no new
human data were collected. As the analysis is conducted on secondary
de-identified data, ethical approval and informed consent are not required.
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FIGURE 2
Architecture of the proposed health monitoring system.

3.3 Data pre-processing

The Data Pre-Processing Layer is important for ensuring the
accuracy of heart disease prediction from wearable sensor data.
These data are often inconsistent, incomplete, and noisy. To
handle these challenges, various pre-processing techniques are
used. One of these techniques is Kalman filtering, which
effectively removes duplicate records, noise, and discrepancies
from the data. This unsupervised filtering algorithm works well
with real-time sensor data by providing values closer to the actual
sensor readings without adding extra noise. Additionally, two
other unsupervised filters are used: one removes irrelevant
attributes while the other replaces missing values with mean or
median values to improve the overall quality of the structured
dataset.

Frontiers in Artificial Intelligence

Traditional methods for storing data, such as off-chain servers or
cloud/Blockchain platforms, encounter challenges related to
unauthorized changes or deletions and high costs. This proposed
architecture suggests a dynamic approach to data storage. Instead of
saving all retrieved data without discrimination, each piece of
information undergoes analysis and is compared to predefined limits.
The values that go beyond these thresholds are stored in the secure
and tamper-resistant Blockchain platform. This helps reduce the risk
of data manipulation and maximize resource efficiency.

Heart Rate Analysis evaluate the heart rate data obtained from a
sensor in relation to the patient’s age retrieved from the Blockchain
using their unique patient ID. The algorithm uses a function named
heart_rate that returns a boolean value indicating whether the heart
rate falls within acceptable limits. Abnormal heart rate patterns are
flagged based on specified conditions within this function. By
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dynamically determining thresholds based on the patients age, it
ensures an age-specific assessment of heart rate. If the heart rate
exceeds or falls below the thresholds, it signals potential deviation
requiring further attention or intervention by setting the result as
True; otherwise, it remains False. This provides real-time monitoring
of anomalous heart rates for prompt identification and addressing of
potential health concerns in patients by healthcare professionals.
Figure 3 displays Block diagram of the proposed disease detection
framework.

This adaptive strategy ensures that only pertinent and substantial
data exceeding predetermined benchmarks is retained, thereby
contributing to efficient use of storage resources and robustness in
predicting heart disease within this proposed framework. Kalman
filtering improves the accuracy of the physiological data that is sent by
wearable IoT sensors by minimizing noise, removing measurement
anomalies, and fixing gaps or unreliable measurements. IoT devices
are often subject to noise caused by motion artifacts, signal
interference as well as environmental changes. Kalman filter is a
recursive estimator that forecasts the next state of the physiological
measurement and corrects it with sensor data that are observed. This
prediction—correction process smooths signal variations, detects
anomalous values, and estimates corrupted values with statistically
optimal values. Kalman filtering enhances downstream feature
extraction, classification accuracy, and guarantees reliable data to
monitor real-time cardiovascular disease due to the provision of
cleaner and more stable input signals.

3.4 Feature extraction
3.4.1 Shallow features

3.4.1.1 Heart rate

The heart rate is a key physiological measure indicating the
number of heartbeats per minute (bpm). It can be measured by feeling
peripheral arteries or using medical devices like electrocardiograms.
The normal resting heart rate for adults usually ranges from 60 to
100 bpm. When the heart consistently beats above 100 bpm, it may
indicate tachycardia and signal conditions such as fever or cardiac

10.3389/frai.2025.1734013

issues. On the other hand, a consistent heart rate below 60 bpm,
known as bradycardia, could point to conditions like heart block,
hypothyroidism, or an athlete’s well-conditioned heart.

3.4.1.2 Blood pressure

It is essential for evaluating cardiovascular health and provide
important information about the functioning of the circulatory
system. Systolic and diastolic blood pressure, measured in millimeters
of mercury (mmHg), indicate the force exerted by the heart during
contraction and at rest between beats, respectively. Elevated values in
either category are linked to increased cardiovascular risk, highlighting
the importance of maintaining optimal blood pressure levels for
overall health. Pulse pressure, calculated as the difference between
systolic and diastolic pressures, offers valuable insights into arterial
stiffness and compliance, aiding in identifying potential cardiovascular
issues. Monitoring these blood pressure features are vital components
of preventing and managing cardiovascular disease, enabling timely
actions to promote overall cardiovascular well-being.

3.4.1.3 Lipid profile feature

It provide important information about the levels of various lipids
and cholesterol components in the blood, offering insights into
cardiovascular health. The lipid profile includes measurements of total
cholesterol, low-density lipoprotein (LDL) cholesterol, high-density
lipoprotein (HDL) cholesterol, and triglycerides.

3.4.1.4 Total cholesterol
It represents the overall amount of cholesterol in the blood.

3.4.1.5 Low-density lipoprotein
It is often labeled as “bad” because elevated levels can contribute
to arterial plaque formation.

3.4.1.6 High-density lipoprotein

It is considered “good” as it helps remove LDL from the
bloodstream, reducing the risk of arterial blockages. Triglycerides
indicate excess calories or unhealthy dietary habits. High levels of
triglycerides and LDL, along with low HDL increase the risk of
atherosclerosis and coronary artery disease.

Data
acquisition

Data pre-
processing

Feature
Extraction

FIGURE 3
Block diagram of the proposed disease detection framework.

Shallow
features

Feature
Selection

Feature
Extraction

Detection
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3.4.1.7 Body mass index features

It refers to measurements related to the size, shape, and
composition of the human body. It estimates body fat based on weight
and height. Excess weight may be linked to an increased likelihood of
developing cardiovascular diseases such as hypertension, diabetes, and
coronary artery disease.

3.4.2 Deep features

3.4.2.1 ECG signal

Convolutional Neural Networks are crucial in healthcare,
particularly for cardiovascular disease detection. CNNs automatically
learn hierarchical and spatial representations, making them effective
data like
electrocardiograms. 1D CNNG extract precise features from raw ECG

in processing medical images and time-series
signals by capturing local patterns within the temporal domain. This
capability helps in identifying specific cardiac cycle components such
as P-waves, QRS complexes, and T-waves. For medical imaging
purposes, both 2D or 3D CNNss efficiently process angiograms or MRI
scans without manual feature engineering. This ability is helps in
identifying structural abnormalities within the cardiovascular system.
It not only enhances the accuracy of diagnosis but also streamlines the
analysis of intricate patterns within medical images and time-
series data.

3.4.2.2 Temporal patterns

We use RNNs to capture temporal patterns and long-term
dependencies crucial for understanding heart conditions. RNN,
especially LSTMs, are designed to excel in understanding long-term
connections within sequential data. In ECG analysis, these networks
can comprehend the chronological relationship between successive
heartbeats. LSTMs use memory cells to selectively store and remember
information from previous time steps, enabling them to learn and
recall patterns, irregularities, and variations in the ECG signal. The
ability of LSTMs to capture sequential connections is essential for
accurate detection and prediction of arrhythmia. By understanding
the detailed relationships between consecutive heartbeats, these
networks can identify abnormal patterns that indicate irregular heart
rhythms.

3.4.3 Feature fusion

Feature fusion combines shallow and deep features to create a
more effective representation of physiological data. Shallow features
offer insights into the temporal and statistical characteristics of signals,
while deep features capture spatial and temporal patterns. The process
involves combining these distinct feature sets for improved
discriminative power, robustness, information utilization, adaptability
to diverse data types, and reduced overfitting. This approach enhances
accuracy and interpretability in cardiovascular health assessment.

The feature-fusion approach combines shallow physiological
features and deep temporal-spatial features derived based on ECG
and clinical signals. Interpretable clinical features like heart rate,
cholesterol level, blood pressure and symptom-based features are
shallow features, which are good baseline features to cardiovascular
risks assessment. Morphological patterns, rhythm dynamics, and
long-term temporal dependencies, which are not represented by
shallow descriptors, are encoded in deep features, which are obtained
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with CNN and LSTM networks. Fusion process is a concatenation of
normalized shallow features and final deep-feature embeddings,
resulting in a single high-dimensional feature. This joint representation
is better at discriminability, as it combines clinical knowledge with
automatically discovered signal patterns to create a richer and more
informative feature space to the RL-SCSO optimizer and TriBoost
classifier.

3.5 Feature selection

To select the relvant features we propose Refracted SCSO
optimization which based on the behavior of sand cats in their natural
environment. Sand cats have a special skill to hear sounds that are
lower than 2 kHz, which distinguishes them from domestic cats. They
are well-suited to living in harsh desert conditions and have adapted
by having fur-covered soles and palms for protection against extreme
temperatures, making it difficult to track their footprints. This
algorithm is based on the behavior of sand cats in their natural
environment. Sand cats have a special skill to hear sounds that are
lower than 2 kHz, which distinguishes them from domestic cats. They
are well-suited to living in harsh desert conditions and have adapted
by having fur-covered soles and palms for protection against extreme
temperatures, making it difficult to track their footprints.

The sand cat has excellent hearing, especially its sensitivity to
low-frequency sounds, which makes it an extraordinary animal. In
challenging environments, sand cats hunt at night and rest
underground during the day in order to find prey when the
temperature is cooler.

The sand cat’s foraging and hunting behavior involves quickly
finding prey on the ground, which serves as the basis for the SCSO
algorithm. This optimization process mimics the initial steps of
population initialization seen in natural foraging behavior of sand cats.

The fitness function outlined in Equation 1 is computed.

Fit—/15+77||TS|| (1)
f

where J signifies the classification error rate. Additionally, |S|
denotes the size of the chosen subset, while Tf represents the total
number of features within the dataset. The parameters A and 77 are
utilized to indicate the significance of both classification accuracy and
subset length. Notably, A falls within the range [0, 1], whilez7 = (1 - /'L).

3.5.1 Search for prey

During the exploration stage, each sand cat’s location is
represented as Q. The algorithm takes advantage of sand cats’
exceptional hearing ability for detecting low frequencies below 2 kHz.
In mathematical terms, Equation 2 defines the sensitivity range Vgand
Equation 3 determines a crucial factor U that regulates balance
between exploration and exploitation capabilities in the algorithm.
These mathematical expressions are essential for guiding the
algorithm’s search for prey during its exploratory phase, mirroring the
keen sensory perception of sand cats in their natural habitat.
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x1

Vs =y—[7 ] @)
Imax

U=2x mnd(O,l)x Vs =V (3)

Where y=2,I and I,,x represents the current iteration and
maximum iteration number, respectively.

During the exploration phase, each sand cat randomly moves to
a new position within its range of sensitivity. This random behavior
improves the efficiency of the algorithm for both exploring and
exploiting resources. To prevent getting stuck in a local best solution,
a strategy that promotes diversity is used by assigning a different
sensitivity range Vyg, to each sand cat. As described in Equation 4,
this personalized sensitivity range guarantees that each sand cat
explores a unique area, leading to more thorough exploration of
potential solutions and decreasing the chance of early convergence.

Viange =rand (0,1) x Vg (4)

Each sand cat dynamically adjusts its position in pursuit of prey,
guided by an intricate interplay between its individualized sensitivity
range Viange, optimal candidate position Qyp (t), and current location
Qeur (t) The mathematical formula governing this adaptive movement
is described in Equation 5. This formula makes a strategic exploration
strategy, enabling the sand cats to efficiently explore and exploit the
solution space as they adapt their positions based on the interplay of
these factors.

Q(t+1) = Vyange X(Qocp () ~ Quur (t) x rand (0,1)) (5)

3.5.2 Attack prey (exploitation stage)

In the exploitation stage, Equation 6 quantifies the proximity
between the prey and the sand cat, simulating the moment when the
sand cat attacks. The sand cat’s sensitivity range is represented as a
circular area, and its movement direction is determined by a random
angle /3 selected using the Roulette Wheel algorithm. This random
angle ranges from 0° to 360°, corresponding to a value between [—1,
1]. This approach allows the sand cat to move in various directions
within their search space. Afterward, Equation 7 gives the predatory
movement toward the prey, ensuring that the cat advances toward its
hunting position.

Qsc—pr = Quest (t)xrand(0,1)—Qcur(t)| (6)

Q(t+1):Qh€S!(t)_Qscferangexcos(ﬂ) (7)

3.5.3 Refraction learning

Light refraction occurs when light passes through the boundary
between two different mediums, such as air and water, causing the
light to change direction due to a difference in speed. The RL
technique operates based on this principle of light refraction. We
incorporate this method in SCSO algorithm which helps in
discovering optimal solutions by enabling a wider exploration range
and preventing the algorithm to trap in local optima. It achieves this
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by considering various potential solutions and enhancing the
trade-off between exploring new possibilities and exploiting existing
ones. Additionally, the algorithm can prioritize specific areas where
favorable solutions are more likely to be found with faster
convergence.

'The inverse of global optima T* can be determined through the
process of refraction learning using Equation 10.

T*=(LB+UB)/2+(LB+UB)/(218)-T" /(1) ®8)

The refraction index u is computed using Equation 11.

_sin6

_sin92 (9)
sin@lz((LB+UB)/2—T*)/k (10)
sin¢, =T —((LB+UB)/2)/ K 11

where T signifies the point of incidence (initial candidate solution)
while T’ represents the point of refraction (opposite candidate
solution). The center point of the search interval (LB, UB) is denoted
by CP. Additionally, ¢ indicates the distance between Y and C, and k'
represents the distance between T' and CP.

RL-SCSO algorithm is an improvement of the feature-selection
performance of the original SCSO optimizer by improving the
exploration and exploitation stages. Traditional SCSO makes use of
sensitivity-based movement to find the best feature subsets, and can
suffer premature convergence in high-dimensional biomedical data.
The RL element proposes the use of a refraction-based learning
scheme that creates a counter-solution to the existing candidate based
on a refractive index based on feature-space boundaries. The
mechanism enhances the search diversity and makes the algorithm
explore unvisited areas of the feature space. Consequently, RL-SCSO
minimizes the chance of local minima trapping and approaches
feature subsets with greater discriminative power with more
uniformity. The enhanced search behavior results in the improved
selection of features, less redundancy, and the increased accuracy of
classification to predict cardiovascular disease.

3.6 TriBoostCardio ensemble detection
model

The proposed TriBoostCardio Ensemble Model uses the strengths
of CatBoost, AdaBoost, and LogitBoost, which provides a strong and
adaptable method for detecting cardiovascular disease. CatBoost is
recognized for its ability to handle categorical features and effectively
learn complex patterns in the data. AdaBoost trains weak learners
sequentially with a focus on misclassified instances, adding flexibility
in challenging data scenarios. LogitBoost uses iterative logistic
regression to enhance the model’s predictive capabilities by prioritizing
instances that need extra attention. By combining these different
boosting algorithms, the ensemble model benefits from their unique
learning strategies, ensuring comprehensive coverage of intricate
patterns within physiological data. The combination of voting or
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weighted averaging optimally integrates predictions from each base
learner into a unified and accurate model.

In our proposed TriBoostCardio Ensemble Model for identifying
cardiovascular disease, a majority voting method is used to combine
predictions. Each individual model makes its own prediction, and the
final decision is made by choosing the class that receives the most
votes. This approach gives equal importance to the predictions of
CatBoost, AdaBoost, and LogitBoost. For example, if two out of these
three models predict no presence of cardiovascular disease while one
predicts its presence, “no presence” is chosen as the final combined
prediction based on majority voting. This enhances accuracy in
detecting cardiovascular disease.

3.6.1 LogitBoost

It is a variation of the boosting algorithm intended for binary
classification tasks. It works by progressively improving the model’s
predictive abilities through training weak learners in sequence. The
process starts with initializing a base learner, usually a simple model
such as a decision stump, and assigning equal weights to each instance
in the dataset. Subsequently, it iterates through the training process,
focusing on instances that were misclassified in the previous round.
During each iteration, a new weak learner (logistic regression model)
is trained on the weighted dataset with higher emphasis given to
misclassified instances. The weights are updated based on the
misclassification error. The final model is an additive combination of
all trained weak learners; each contributes proportionally based on its
accuracy. LogitBoost adapts its learning strategy by giving more
weight to challenging instances and hence can adjust according to data
complexity. This adaptability combined with using diverse weak
learners makes LogitBoost robust and valuable for tasks like
cardiovascular disease detection where capturing intricate patterns in
physiological data is vital for accurate diagnosis.

3.6.2 CatBoost

It is a high-performing gradient boosting algorithm that is
beneficial for detecting cardiovascular disease. It effectively processes
categorical variables without requiring extensive preprocessing, which
is particularly advantageous in the context of cardiovascular health
datasets. The algorithm utilizes a robust symmetric tree learning
approach to capture complex patterns and dependencies within the
data. By iteratively building an ensemble of decision trees and
implementing a depth-growth strategy to control model complexity,
CatBoost addresses overfitting concerns. Additionally, its efficient
handling of missing values contributes to the overall robustness of the
model. Finally, predictions from individual trees are combined in the
final ensemble, resulting in a powerful and accurate predictive tool for
cardiovascular disease detection. With its adaptability to categorical
features and resistance to overfitting, CatBoost proves valuable in
constructing predictive models for health-related tasks involving
mixed types of features commonly found in cardiovascular health
datasets.

3.6.3 AdaBoost

Adaptive Boosting, also known as AdaBoost, is a robust ensemble
learning technique used in the detection of cardiovascular diseases. It
works by training weak learners sequentially and placing emphasis on
misclassified instances to improve predictive accuracy. The algorithm
starts with initializing a base learner, such as a decision stump, and
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assigns equal weights to each instance in the dataset. In successive
iterations, AdaBoost focuses on misclassified instances from the
existing ensemble by assigning them higher weights for increased
attention. Weak learners like decision trees are then trained using the
weighted dataset in an iterative manner. The final model is a weighted
combination of these weak learners, where each learner’s contribution
is proportional to its accuracy. Additionally, its ability to combine
diverse outputs from weak learners and resistance to overfitting
contribute significantly toward building reliable predictive models for
cardiovascular disease detection.

TriBoost ensemble combines CatBoost, AdaBoost and LogitBoost,
which uses the learning advantages of each booster. CatBoost is very
useful with categorical and heterogeneous tabular data, AdaBoost is
very useful with misclassified samples by using adaptive weighting,
and LogitBoost is very useful with probability calibration using
iterative logistic regression. Although both of these models are
effective in their own right, they exhibit varying error patterns, that is,
they make errors in different parts of the data space. Majority voting
to combine them minimizes model specific bias and variance resulting
in a more stable and robust classifier. This complementary behavior
allows TriBoost to capture linear, nonlinear and boundary level
variations in cardiovascular data better than any individual classifier.
As a result, the ensemble has better generalization, higher accuracy of
detection and better performance in imbalanced or noisy data
conditions.

3.7 Application layer

This layer acts as a specialized tool to enhance the management
and monitoring of cardiovascular health. It provides personalized
features and insights to meet the unique needs of individuals
diagnosed with heart conditions. Patients can use the app to monitor
important health metrics like blood pressure, heart rate, and
medication adherence in real-time. The app also includes automated
reminders for medication schedules and appointments, ensuring that
patients adhere to their treatment plans. Continuous monitoring
combined with trend analysis allows for early detection of any
deviations from baseline health parameters. Additionally, the app
enables secure communication between patients and healthcare
providers, facilitating remote consultations, result-sharing, and timely
interventions.

3.8 Access control

The proposed smart healthcare system uses blockchain technology
and a smart contract on the Ethereum network to simplify and secure
various aspects of patient care, treatment, and payment processes. The
system involves key entities such as the Smart Healthcare System,
Drug Store for Healthcare Services, patients, medical insurers, and a
Research and Development Lab. The algorithm outlines how the
smart contract governs these interactions.

The proposed smart contract for access control leverages
Ethereum’s blockchain technology to govern and secure interactions
among users in a decentralized manner. The contract, named
introduces a structured approach to managing user roles and
permissions within a blockchain-based ecosystem. Within this
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contract, user roles, namely ‘Patient, ‘Doctor, and ‘Administrator’, are
clearly defined through an enumeration named ‘UserRole. The
‘UserDetails’ struct has essential information about each user,
including their Ethereum address, assigned role, and registration status.

To ensure secure access, the contract employs two modifiers:
‘onlyRegisteredUser’ and ‘onlyUserRole’ The former verifies whether
a user is registered, while the latter ensures that the user possesses the
required role for specific functionalities. These modifiers serve as
safeguards, preventing unauthorized access to critical sections of the
smart contract.

The algorithm provides functions such as ‘registerUser’ for users
to register with the smart contract, specifying their desired roles. An
administrator, identified as having the role of an ‘Administrator, can
utilize the ‘grantUserRole function to assign additional roles to users.
The contract also includes a sample function, ‘restrictedFunction;,
representing restricted functionality that can only be accessed by
registered users with the role of a ‘Doctor’

This access control algorithm establishes a foundation for
decentralized and secure user management within a blockchain. It
ensures that users are registered and assigned appropriate roles,
enhancing transparency and accountability.

The smart contract begins in a state labeled “NotReady; and
important information like PatientID, patient name, and the IPFS
hash of the Electronic Health Record are set during the contract’s
creation. The algorithm utilizes Ethereum’s smart contract capabilities
to manage critical data efficiently ensuring verification when needed.
Additionally it keeps track of insurance company approvals using
mappings with associated hash values which contributes to creating
an auditable record of this process. In practical terms, a patient
initiates this process triggering requests for approval by several
systems. The events functions ensure that everything proceeds
stepwise. This approach encourages transparency, security, and
accountability.

The use of blockchain technology is included to provide secure,
non-tamperable, and auditory management of sensitive patient data,
gathered by IoT sensors and clinical records. Conventional centralized
healthcare data systems are prone to unauthorized modification,
single-point failures and privacy violation. Blockchain overcomes
these challenges by storing access permissions, patient identifiers and
data-sharing rules in a decentralized registry that is protected by
cryptographic hashing. The smart contracts also create a high access
control, where only authorized medical personnel can access or
modify patient information. All transactions are time-stamped and
immutable, which makes blockchain better in terms of data integrity,
traceability, and the absence of the ability to manipulate data
This
transparency and confidentiality in all the steps of data transmission

retrospectively. secure infrastructure guarantees trust,
and analysis in a real-time cardiovascular monitoring setting.
Algorithm 1 explains the Refracted SCSO for optimal feature selection.

The elements incorporated into the suggested framework is chosen
due to the fact that each of them solves a particular challenge of the
IoT-based cardiovascular monitoring. The pre-processing requires
Kalman filtering since the physiological signals of wearable devices are
usually noisy, subject to motion artifact, and missing fluctuations;
Kalman filtering offers real-time smoothing and precise determination
of the state, which is trustworthy inputs to further analysis. Refracted
SCSO is also added to the feature selection since cardiovascular
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Input:
N — population size
MaxlIter — maximum number of iterations
dim — number of features
LB, UB — lower and upper bounds
o, B — exploration—exploitation control parameters
Rf — refraction coefficient
Output:
Xpese— optimal feature subset
Begin

1: Initialize population X;(i = 1to N) randomly within [LB, UB]
2: Evaluate fitness f (X;) for all sand cats

3: Determine the best solution X,

4: For iter = 1 to Maxlter do

5 Update sensory range S = exp(-(iter / Maxlter))
6: For each sand cat X; do

// decay function

7: Generate random search direction d
8: If rand < o then
9: // Exploration using long-range movement
10: Xipew =X;+S *d
11: Else
12: // Exploitation using short-range movement
13: Xinew=Xi + B * Xpest- X;)
14: End If
15: | Apply refraction operator (proposed enhancement)
16: Xrefmz:ted’ Xl:newJr Rf* (Xinew' Xi)
17: // Boundary control
18: Xrefractea™ Clip(xrefracterl- LB, UB)
19: // Evaluate candidate solution
20: If f(Xyefractea= ) < f(X;) then
21: X = Xrefraﬁted
22: End If
23:  End For
24:  Update global best X,
25: End For
26: Return Xppqp
End
ALGORITHM 1

Refracted SCSO for optimal feature selection.

datasets have redundant and correlated variables, which compromise
the performance of classifier; SCSO has a good global search capability,
converges efficiently, and avoids local optima better than the traditional
optimizers, leading to a small and discriminative set of features. The
TriBoostCardio ensemble (CatBoost, AdaBoost, and LogitBoost) are
selected since each boosting algorithm has its own complementary
advantages: CatBoost is better at using heterogeneous clinical data and
categorical variables, AdaBoost is better at focusing on samples that are
hard to classify, and LogitBoost is better at providing stable probabilistic
modeling. The combination of these models produces superior
robustness, better generalization and increased predictive accuracy
compared to using each of the single classifiers individually. Combined,
these elements guarantee an effective, noisy, and clinically stable CVD
detection pipeline.

The suggested system include an Ethereum-based blockchain
layer that guarantees the safety and impossibility to tamper with
patient information. On-chain storage is only done on metadata,
including the hashed patient ID, encrypted record pointer, and
timestamp, with full clinical records stored in encrypted oft-chain
storage. IoT devices send hashed physiological data to a gateway, data
is hashed and a transaction is sent to the blockchain using a lightweight
smart contract based on role-based access control. Data is accessed by
authorized clinicians by verifying on-chain permissions, and the
off-chain encrypted file is retrieved. It is a hybrid on-chainarchitecture
which facilitates integrity verification, decentralized auditing, and
controlled data sharing at minimal blockchain storage and
transaction cost.
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In this paper, the blockchain block is deployed on a private
Ethereum network with Ganache to provide low latency and
complete control over data privacy. This network had 10 validator
nodes who were operating under a lightweight PoA (Proof-of-
Authority) consensus mechanism. The average gas cost was of
41,000 units, or approximately less than 0.002 ETH on a private
chain. The mean transaction time is 1.2 s, and the block time was
set to 2 s, which allows recording IoT data almost in real-time.
This architecture guarantees scalability, low operation cost, and
a simple way of dealing with continuous streams of
physiological data.

4 Results

The proposed health monitor system for CVD detection using
developed Triboost Cardio Ensemble model is implemented in
MATLAB on Intel core® i5 processor, 2.6 GHz, 128 GB RAM, 64-bit
OS. It is trained on CatBoost (500 trees), AdaBoost (200 estimators),
LogitBoost (100 iterations), and RL-SCSO (population 100
iterations). Deep features are extracted with 1D-CNN and
LSTM. Training is done on an 80:20 division, 5-fold cross-validation,
Adam optimizer (LR =0.001), batch size of 32 and Min-Max
normalization with Kalman filtering. The blockchain layer is
implemented on a private Ethereum (Ganache, PoA consensus) and
the access-control verification of less than 10 ms. The experiment is
carried out by using public access datasets from Kaggle. The data are
collected from CVD dataset and patient data wearable
Seismocardiogram Signal and Right Heart Catheter (SCG-RHC)
devices from Kaggle. Also, the competence of the proposed model
is verified via several simulation results with the existing models like
ANN, SVM, RE, CatBoost, LogitBoost, and AdaBoost for various
performance measures including accuracy, and sensitivity. Besides,
the performance of the proposed RL-SCSO is verified via a
comparative analysis with other optimization algorithms like COA,
PSO, SSA, and MOA models.

10.3389/frai.2025.1734013

4.1 Comparative evaluation

The proposed Triboost ensemble model and its attained results are
discussed in this section. Here, the developed model accomplished
better results as portrayed in Figure 4. For accuracy (Acc), the
proposed network achieved 0.6% better than AdaBoost, 0.3% better
than LogitBoost, 1.32% better than CatBoost, 1.62% improved than
ANN, 2.54% better than SVM, and 2.84% improved than RE Similarly,
the proposed network attained 0.82, 0.84, 0.51, 0.84, 1.34, and 1.68%
better than AdaBoost, LogitBoost, CatBoost, ANN, SVM and RE,
respectively, for sensitivity (Sen). As for specificity (Spe), the
introduced model reached enhanced results which is 1.31, 0.7, 1.51,
2.63, 3.74, and 3.84% better than AdaBoost, LogitBoost, CatBoost,
ANN, SVM and RE, respectively. The developed Triboost ensemble
model reached improved precision (Pre) results which is 0.51, 0.51,
0.51, 0.71, 0.92, and 2.46% better than AdaBoost, LogitBoost,
CatBoost, ANN, SVM and RE, respectively.

Figure 5 specifies the performance of Positive Predictive Value
(PPV), F-measure, Negative Predictive Value (NPV), and Matthew
Correlation Coefficient (MCC) of developed model over other
networks. Here, the developed model gets 0.2% better than AdaBoost,
0.4% better than LogitBoost, 0.6% better than CatBoost, 0.8%
improved than ANN, 1.01% better than SVM, and 3.77% improved
than RF for PPV. For F-measure, the proposed network reached 0.72,
0.51, 0.11, 0.21, 1.33, and 1.64% better than AdaBoost, LogitBoost,
CatBoost, ANN, SVM and RE, respectively. Similarly, the developed
model gets better results for NPV and MCC as well. In Figure 6, the
False Positive Rates (FPR) and False Negative Rates (FNR) values are
given. Here, the suggested model achieved enhanced results by
outruns the existing models.

Figure 7 shows the convergence of proposed RL-SCSO algorithm
over other SOTA models. Here, the proposed one achieved better
results which is 6.5% better than COA, 3.45% better than PSO, 2.34%
better than SSA, 1.62% and improved than MOA. From Figure 7, it is
evident that the proposed algorithm is competent in achieving better
performance. Figure 8 shows the time complexity of proposed
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RL-SCSO model over other models. Hither, the proposed RL-SCSO
obtained 1.03 (s) for selecting the optimal features which is 29.3,
58.06, 69.3, and 77.4% better than COA, PSO, SSA, and MOA,
respectively (Table 1).

From Figure 9, it is clear that the proposed RL-SCSO played a
crucial role in attaining better performance. Also, the proposed
RL-SCSO outruns the existing models. Thus, the optimal feature
selection using proposed RL-SCSO showed its competence and
efficiency in accomplishing better performance. The chosen
baseline models that compared are ANN, SVM, RF, AdaBoost,
LogitBoost and CatBoost, which are the most commonly used
algorithmic families in CVD prediction, both classical machine
learning classifiers and neural network-based methods and
boosting ensembles. Such models have been widely used in the
CVD literature and offer a reasonable description of conventional
and ensemble learning strategies. Despite other boosting
algorithms like XGBoost and LightGBM being more popular in
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general tabular classification problems, CatBoost was selected as
the representative gradient boosting benchmark, because it has
better capabilities to work with categorical clinical data, less
hyperparameter optimization is required, and it is more
computationally efficient in an IoT-blockchain setting.

Table 2 presents overall performance analysis of proposed
model over other models. Here, the proposed model attained better
accuracy of 98.4% which is higher than the existing models.
Similarly, for sensitivity, specificity, and precision, the proposed
model outruns other models. The proposed model has a high NPV
of 0.991 and a MCC of 0.974, indicating its exceptional ability to
accurately identify individuals without CVD while maintaining
balanced sensitivity and specificity. Existing methods such as
CatBoost, AdaBoost, LogitBoost, ANN, SVM, and RF also
demonstrate strong performance but with slightly lower NPV and
MCC values. Although these existing methods perform well, they
fall slightly short compared to the proposed model.
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Figure 10 shows the LIME feature-importance analysis,
highlighting which clinical variables influenced the model’s prediction
for a given case. Green bars indicate features that increase the
likelihood of CVD, while red bars decrease it. The ST-segment slope
and serum cholesterol have the strongest positive influence, whereas
resting blood pressure, chest pain, and fasting blood sugar reduce the
predicted risk. This demonstrates that the model relies on clinically
meaningful features and provides interpretable decision insights.

Figure 11 illustrates the classification performance of the proposed
TriBoostCardio model for distinguishing between CVD and non-CVD
cases. The model correctly identified 494 out of 500 non-CVD samples
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and 490 out of 500 CVD samples, leading to very low false positives
(6) and false negatives (10). The high number of correctly classified
cases in both classes reflects the strong discriminative capability of the
ensemble model. These results support the model’s high overall
accuracy of 98.4% and demonstrate its effectiveness in reducing
misclassification errors in practical CVD prediction scenarios.
Figure 12 shows the ROC analysis for both the proposed
TriBoostCardio model and the baseline classifiers. The proposed
model achieves the highest AUC (0.984) with the lowest FPR
(0.009), demonstrating its strong ability to separate CVD from
non-CVD classes. The ROC curves of ANN, SVM, RE, CatBoost,
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TABLE 1 Recent trends and technologies involved in CVD classification and security purposes.

Authors

Konstantonis et al. (2022)

Methods

RE, SVM and LDA

Dataset

CVD dataset

WEELGISSS

Failed to predict mild and early

10.3389/frai.2025.1734013

Results

Accuracy of 98% and AUC of

InceptionV3, and SqueezeNet

levels 0.98
Kallimani et al. (2022) ACNN-LSTM Cleveland UCI Repository Limited data were used for Accuracy of 97%
evaluation
Alqahtani et al. (2022) ML Ensemble Model CVD dataset Need to improve the developed Accuracy of 88%
network performance
de Vries et al. (2023) ANN Cleveland Heart Disease dataset Need to improve the performance Accuracy of 71% and
better sensitivity of 63%
Al Bataineh and MLP-PSO Model Cleveland Heart Disease dataset Further improvement is mandatory | Accuracy of 84%
Manacek (2022) concerning performance
Islam et al. (2023) CNN ECG Heartbeat Categorization Dataset = Limited data source and sensor Accuracy of 98% and F1-
- MITBIH Arrhythmia Database were used Score of 98%
Sadad et al. (2022) DT, NB, SVM and 1D CNN- PPG-BP dataset Exposed computational complexity | Accuracy of 99%
LSTM models
Samuel et al. (2023) Blockchain-based Coalition CVD dataset Proof-of-work need to be 15% minimized
Network improved computational cost and 26%
proof-of-work
Rani et al. (2022) ResNet50, VGG19, CVD dataset Accuracy of the system is needed Accuracy of 92%

to be enhanced
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FIGURE 9
Performance of proposed Triboost ensemble model and other models with and without optimal feature selection.
TABLE 2 Overall performance analysis of proposed model over existing models.
Methods Sen Spec Acc Precision PPV F1-Score NPV FPR FNR MCC
AdaBoost 0.961 0.975 0.978 0.97 0.978 0.965 0.988 0.011 0.011 0.969
LogitBoost 0.96 0.981 0.98 0.97 0.976 0.967 0.986 0.011 0.012 0.97
CatBoost 0.963 0.973 0.971 0.97 0.974 0.971 0.978 0.013 0.014 0.963
ANN 0.96 0.962 0.968 0.968 0.972 0.97 0.968 0.018 0.018 0.954
SVM 0.956 0.951 0.959 0.966 0.97 0.959 0.956 0.032 0.029 0.934
RF 0.952 0.95 0.956 0.951 0.943 0.956 0.944 0.033 0.04 0.905
Proposed 0.969 0.988 0.984 0.975 0.98 0.972 0.991 0.009 0.009 0.974
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FIGURE 10
LIME feature-importance analysis.
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FIGURE 11
Confusion matrix of the proposed TriBoostCardio model

LogitBoost, and AdaBoost show comparatively lower AUC values,
confirming the superior diagnostic performance of the proposed
ensemble.

4.2 Blockchain performance analysis

A controlled Ethereum test environment is used to assess the
performance of blockchain. Storing a record took an average of
1.9s to complete the transaction confirmation time, whereas
authorization through smart-contract reads took less than 10 ms.
The storeRecord function used around 120, 000 gas per transaction
and the system had a throughput of 0.5 transactions per second
when tested. The findings affirm that blockchain layer offers secure
data processing with reasonable latency and calculation overhead
to healthcare monitoring applications.
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4.3 Privacy and security evaluation of the
Blockchain layer

To ensure that the blockchain layer is effective in securing the data
of the patients, a privacy and security assessment are performed. A test
case is conducted whereby authorized clinicians and unauthorized
users tried to access stored cardiovascular records. The access control
based on smart contracts is able to allow all of the authorized and
reject all of the unauthorized ones. The authorization function of the
contract had a response time of 10 ms on average, which means that
it had a small overhead in the process of retrieving secure data. These
findings indicate that the blockchain aspect offers high privacy
protection, high tampering resistance, and high access control to the
suggested healthcare monitoring system.

4.4 Discussion

This research aims to introduce a novel technique to detect CVD
in IoT settings. For data security, a blockchain mechanism is involved.
Thereby, this research intends to achieve accuracy, security and
efficiency. For this reason, an ensemble technique is utilized to detect
the CVD and blockchain-enabled decentralized network is employed
to ensure security and optimization concept is used to attain efficiency
of the developed classifier by feeding it with optimal features. From
this experimentation setup, the proposed TriBoostCardio ensemble
model accomplished all the research goals such as enhanced accuracy
98.4%, security and efficiency. The efficiency of the proposed CVD
detection framework is measured through a comparative study with
the baseline and SOTA models.

The baseline methods such as CatBoost, AdaBoost, and LogitBoost
models attained considerable performance however, medical data
needs to be assessed carefully so that misclassifications are avoided.
The proposed TriBoostCardio ensemble model outruns the baseline
models by 0.6% better than AdaBoost, 0.4% better than CatBoost, and
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FIGURE 12
ROC curve comparison of the proposed TriBoostCardio model.

1.32% better than LogitBoost. On the other hand, TriBoostCardio
ensemble model accomplished better accuracy which is 1.62%
improved than ANN, 2.54% improved than SVM, and 2.84% better
than RE Thus, the proposed TriBoostCardio ensemble model
outperformed SOTA models and proved its efficiency in
detecting CVD.

In addition to the improvement of performance, the suggested
framework has significant clinical implications. TriBoostCardio
model is added to the existing hospital information systems to
facilitate real-time cardiovascular monitoring. The wearable IoT
devices are capable of transmitting ECG, heart rate, and
physiological data in real-time to hospital dashboards, which will
clinicians monitor abnormalities sooner and intervene before
complications occur. The access control system is also based on the
blockchain that guarantees that the patient data shared among
cardiologists, nurses, and emergency teams cannot be altered and
is auditable to enhance confidence in digital health processes.
Remote cardiac monitoring programs also be supported by the
system, which means that high-risk patients is monitored at home
with the smart wearables and avoid unnecessary visits to the
hospital, which also allow receiving medical assistance in time. Such
practical integration pathways underscore the fact that the model is
implemented in the real clinical setting.

This research utilized open access datasets for experimentation
which is limited due to certain reasons. Subsequently, real-time data
using IoT wearables are sensitive and have private information of
concerning patients. Acquiring these data is highly confidential and
large volumes of data is difficult to gather. These constraints limit the
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data acquisition. Additionally, implementing blockchain technology
in IoT settings requires high computational power and resources.
Blockchain networks need a lot of energy, which is expensive,
especially when they use proof-of-work consensus processes. On
considering computational complexity, in future, simplified
architecture will be designed with the use of various CNN architectures
and real-time data will be gathered and train the network to achieve
real-time applications for CVD detection in IoT settings.

5 Conclusion

In this paper, an advanced framework was developed for
cardiovascular disease detection. The systematic process flow, from
patient registration to data analysis, incorporates advanced features
such as Refracted SCSO optimization for feature selection and the
TriBoostCardio Ensemble Detection Model, ensuring a thorough and
accurate examination of physiological data. The integration of smart
contracts for access control enhances data security and privacy.
Preliminary results showcase the effectiveness of the ensemble model,
with an impressive overall accuracy of 98.4%. The model exhibits high
sensitivity at 98%, ensuring a low rate of false negatives in identifying
potential cardiovascular issues. The Negative Predictive Value (NPV)
is at 99.1%, underscoring the models reliability in correctly identifying
disease-free cases. The MCC stands at 97.4%, emphasizing the
robustness of the ensemble model in capturing true positive and true
negative cases. While experimental results show promising
advancements in predictive accuracy, sensitivity, and specificity,
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further validation and refinement are imperative to assess the
methodology’s robustness across diverse healthcare scenarios.
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