AUTHOR=Zhang Jiangxiao , Gao Feng , He Shengmei , Zhang Bin TITLE=Laplace-guided fusion network for camouflage object detection JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2026 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1732820 DOI=10.3389/frai.2025.1732820 ISSN=2624-8212 ABSTRACT=Camouflaged object detection (COD) aims to identify objects that are visually indistinguishable from their surrounding background, making it challenging to precisely distinguish the boundaries between objects and backgrounds in camouflaged environments. In recent years, numerous studies have leveraged frequency-domain methods to aid in camouflage target detection by utilizing frequency-domain information. However, current methods based on the frequency domain cannot effectively capture the boundary information between disguised objects and the background. To address this limitation, we propose a Laplace transform-guided camouflage object detection network called the Self-Correlation Cross Relation Network (SeCoCR). In this framework, the Laplace-transformed camouflage target is treated as high-frequency information, while the original image serves as low-frequency information. These are then separately input into our proposed Self-Relation Attention module to extract both local and global features. Within the Self-Relation Attention module, key semantic information is retained in the low-frequency data, and crucial boundary information is preserved in the high-frequency data. Furthermore, we design a multi-scale attention mechanism for low- and high-frequency information, Low-High Mix Fusion, to effectively integrate essential information from both frequencies for camouflage object detection. Comprehensive experiments on three COD benchmark datasets demonstrate that our approach significantly surpasses existing state-of-the-art frequency-domain-assisted methods.