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Laplace-guided fusion network
for camouflage object detection

Jiangxiao Zhang, Feng Gao*, Shengmei He and Bin Zhang

Xingtai University, Xingtai, HeBei, China

Camouflaged object detection (COD) aims to identify objects that are
visually indistinguishable from their surrounding background, making it
challenging to precisely distinguish the boundaries between objects and
backgrounds in camouflaged environments. In recent years, numerous studies
have leveraged frequency-domain methods to aid in camouflage target
detection by utilizing frequency-domain information. However, current methods
based on the frequency domain cannot effectively capture the boundary
information between disqguised objects and the background. To address this
limitation, we propose a Laplace transform-guided camouflage object detection
network called the Self-Correlation Cross Relation Network (SeCoCR). In
this framework, the Laplace-transformed camouflage target is treated as
high-frequency information, while the original image serves as low-frequency
information. These are then separately input into our proposed Self-Relation
Attention module to extract both local and global features. Within the
Self-Relation Attention module, key semantic information is retained in the
low-frequency data, and crucial boundary information is preserved in the
high-frequency data. Furthermore, we design a multi-scale attention mechanism
for low- and high-frequency information, Low-High Mix Fusion, to effectively
integrate essential information from both frequencies for camouflage object
detection. Comprehensive experiments on three COD benchmark datasets
demonstrate that our approach significantly surpasses existing state-of-the-art
frequency-domain-assisted methods.

KEYWORDS

camouflage object detection, feature fusion, frequency domain, laplace-transformed,
multi-scale fusion

1 Introduction

In the natural world, animals, plants, and insects often employ camouflage strategies to
avoid predation by either utilizing environmental features or modifying their appearance
and coloration to achieve seamless integration with their surroundings (Sengar and
Mukhopadhyay, 2017d, 2020b, 2017a,b, 2020a, 2017c). COD focuses on identifying such
visually concealed targets within complex and deceptive scenes (Fan et al., 2020a). The
core challenge of COD lies in the high visual similarity between the object and its
background, which significantly increases task complexity. COD has demonstrated wide
applicability across various domains, including military surveillance, medical diagnostics,
and agricultural monitoring. For example, it is relevant in detecting camouflaged soldiers
or equipment in military contexts, identifying and segmenting polyps in endoscopic images
for medical analysis (Fan et al., 2020b), and monitoring crop growth stages in precision
agriculture (Zheng et al., 2018). In these scenarios, accurate detection of camouflaged
targets can be vital for operational success or early-stage diagnosis.

Owing to its broad range of practical applications, COD has garnered increasing
attention from the research community and has witnessed notable advancements in recent
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years (Zhou et al., 2024; Sun et al., 2022; Liu et al., 2024). However,
COD remains a highly challenging task due to two primary factors.
The first is camouflage deception, where the object shares similar
colors and textures with the surrounding background, making it
difficult to achieve even coarse localization. The second is the
edge perception challenge, caused by extremely ambiguous object
boundaries, which significantly hinders accurate segmentation
even after approximate localization is obtained. To tackle these
challenges, most existing approaches focus on enhancing boundary
awareness or introducing additional information to improve the
detection performance and robustness of COD models. Moreover,
methods that combine multi-level features from different semantic
depths are often used to balance spatial detail and contextual
semantics. Despite this, such fusion strategies are still limited by
the intrinsic ambiguity of camouflaged targets.

Among CNN-based architectures, most existing methods
improve COD by employing dual-branch structures and attention
mechanisms to enhance the perception of object boundaries. While
these approaches strengthen edge awareness and thus improve
detection accuracy, they often overlook the underlying structural
correlations between camouflaged objects and their surrounding
backgrounds. Capturing these intrinsic relationships can guide the
model to more effectively distinguish and segment camouflaged
regions. This observation suggests that not only emphasize salient
object features, but also model the mutual dependency between
object and background in a more principled manner.

Recent developments in computer vision research have
increasingly recognized the valuable role that frequency-domain
features play in augmenting boundary recognition performance
within COD systems (He et al., 2023; Le et al., 2025; Zhong et al.,
2022). For example, FEDER (He et al., 2023) and FDNet (Zhong
et al., 2022) leverage wavelet transforms to fuse high- and low-
frequency components, thereby improving detection performance.
However, wavelet-based methods present limitations: the low-
frequency sub-band typically requires further decomposition to
reveal semantic content, and the high-frequency sub-bands (LH,
HL, HH) may carry noise or redundant details. CamoFA adopts
a Fourier transform-based strategy to adaptively integrate low-
frequency components from reference images with high-frequency
details of the input image. While this method enhances detection
capability, Fourier transforms inherently lose spatial locality,
making it challenging to accurately localize object edges and often
introducing redundant information.

To overcome these shortcomings, we explore the potential
of the Laplace transform, which excels at highlighting regions
with sharp intensity changes. By emphasizing high-frequency
variations, the Laplace transform helps the network focus on
fine-grained boundary features, which are critical for detecting
camouflaged objects. Based on this observation, we propose a
Laplace-guided framework, termed Self-Correlation Cross Relation
Network (SeCoCR). SeCoCR is a dual-branch architecture: the
first branch extracts global features from the original image
using a Vision Transformer (ViT), while the second branch
extracts local features from the Laplace-transformed image using
a Convolutional Neural Network (CNN). Two key modules are
introduced within this framework: Self-Relation Attention (SRA)
and Low-High Mix Fusion. At each feature extraction stage, the
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SRA module is used to compute self-correlation representations
for both global and local features, enhancing the contextual
expressiveness of each. These enriched features are then fused
through the Low-High Mix Fusion module, enabling effective
integration of local detail and global context. This design not
only strengthens the boundary sensitivity of the model but also
improves its resilience to background noise, thereby achieving a
better balance between precision and generalization.
In summary, our main contributions are as follows:

e We propose a new COD framework, termed Self-Correlation
Relation Network (SeCoCR). This
introduces a new perspective by explicitly incorporating
into the

detection process, enabling more accurate localization and

Cross framework

Laplace-based frequency-domain information
segmentation of camouflaged targets that exhibit minimal
contrast with the background.

e We design two key components within the SeCoCR
architecture to facilitate effective feature learning. First, the
Self-Relation Attention (SRA) module captures and reinforces
intra-branch contextual dependencies, allowing the model to
better preserve subtle spatial information within each stage.
Second, the Low-High Mix Fusion (LHMF) module performs
hierarchical integration of global semantics and fine-grained
local details, yielding a unified representation that significantly
boosts the discriminative power of the model.

e Extensive experiments conducted on three challenging COD
benchmarks demonstrate that SeCoCR outperforms 19
state-of-the-art COD methods, showcasing its effectiveness
and generalizability.

2 Related works

2.1 Camouflage object detection

COD aims to identify and segment objects that are deliberately
concealed or naturally blend into their surroundings. Over the
years, researchers have explored various approaches, ranging from
early hand-engineered techniques to modern deep learning-based
frameworks that leverage large-scale datasets and sophisticated
model architectures. The advent of convolutional neural networks
(CNNs) has led to a paradigm shift in COD. One of the
pioneering works in this domain is SINet (Fan et al, 2020a),
which introduced a two-stage architecture inspired by predator
hunting behaviors. The model was designed to first search for
camouflaged targets and then refine their segmentation. ZoomNet
(Pang et al, 2022) and related methods simulate the human
eye’s ability to dynamically zoom in and out to identify potential
targets at varying resolutions. These multi-scale analysis techniques
exploit spatial context at both coarse and fine levels, improving the
ability to detect small or faint objects that may be missed when
viewed only at a single scale. PFNet Yang et al. (2021), another
bio-inspired model, incorporates a focus mechanism that mimics
human attention shifts. The network learns to prioritize regions
with a higher likelihood of containing camouflaged objects and
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iteratively refines its attention maps, leading to more accurate
localization. C2FNet (Sun et al., 2021), for example, emphasized
the integration of contextual cues. By leveraging a coarse-to-fine
strategy, it progressively refines object boundaries and improves
detection precision through enhanced feature fusion. Similarly,
methods such as TINet (Zhu et al, 2021), DGNet (Ji et al,
2023), and CINet (Li et al., 2023) explicitly introduced texture-
aware modules, recognizing that texture dissimilarities can play
a decisive role in separating camouflaged objects from their
environment. More recent contributions push the boundary of
COD by integrating domain-specific cues and innovative learning
paradigms. EANet (Liu et al., 2024) significantly improves the
recognition accuracy in hard-boundary regions by selectively
focusing on key boundary features while suppressing confusing
texture interference. By integrating multi-scale feature fusion and
an iterative refinement strategy, it progressively generates high-
resolution segmentation masks. DINet (Zhou et al., 2024) adopts
a dual-branch decoder architecture to separately learn the core
regions and edge details of the target. It introduces an interactive
feature fusion module to dynamically integrate these two types
of features and incorporates a global context unit to enhance the
localization capability of the main object features. DAD (Li et al.,
2025) proposes a unified difference-aware decoder that mimics
the two-stage processing of the human visual system to effectively
enhance foreground-background contrast in complex scenes.

2.2 Camouflage object detection in
Frequency Domain

Several recent efforts investigate frequency domain information
to uncover fine-grained boundaries and subtle texture differences.
For instance, FEDER (He et al., 2023) enhances the performance
of COD by leveraging a learnable wavelet-based decomposition
mechanism that separates features into multiple frequency bands
and selectively emphasizes the most informative ones. Additionally,
an ODE-inspired edge reconstruction module is introduced
to refine object boundaries, thereby improving localization
precision. The Frequency Enhancement Module (FEM) (Zhong
et al, 2022) employs the Discrete Cosine Transform (DCT)
to extract informative frequency-domain features and applies a
learnable enhancement process to emphasize meaningful patterns.
To effectively integrate spatial and frequency information, a
Feature Alignment (FA) mechanism is designed to align and
fuse RGB and frequency-domain features. Furthermore, a High-
Order Relation (HOR) module is proposed to model subtle
variations between features, facilitating more accurate localization
of camouflaged objects in complex scenes. CamoFA (Le et al,
2025) introduces a learnable frequency-domain enhancement
strategy that combines the strengths of the Fourier Transform
and Conditional Generative Adversarial Networks (CGANSs). This
approach adaptively integrates the low-frequency components of
reference images with the high-frequency details of input images,
thereby improving the model’s ability for COD.

Although several existing frequency-domain-based methods
have achieved notable progress in COD, our proposed SeCoCR
framework introduces a fundamentally different and more effective
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design in several key aspects. First, we utilize the Laplace transform
to enhance high-frequency components that are strongly correlated
with object boundaries. This enables our model to directly
highlight the contours of camouflaged objects while simultaneously
suppressing redundant background textures, which is particularly
beneficial in challenging low-contrast scenarios. In contrast,
CamoFA (Le et al, 2025) leverages a conditional generative
adversarial network (CGAN) to perform frequency-domain fusion.
However, CGAN-based training is inherently unstable and
sensitive to hyperparameter tuning, often leading to suboptimal
convergence and inconsistent performance. FDNet (Zhong et al.,
2022), on the other hand, applies a static feature alignment strategy
in the frequency domain. While effective to some extent, it lacks the
flexibility to capture more complex and spatially varying boundary
structures present in highly camouflaged scenes. In contrast to
these approaches, our SeCoCR framework employs a multi-level
Low-High Frequency Mix Fusion (LHMF) strategy that enables
deterministic, spectrum-guided cross-attention. This mechanism
adaptively integrates complementary information from both low-
frequency (global semantic context) and high-frequency (fine-
grained boundary details) components across different feature
hierarchies. As a result, SeCoCR can better preserve structural
integrity and improve target-background separability, leading to
more accurate and robust detection performance.

3 Methodology

Accurately locating camouflaged object regions is a key
challenge in computer vision, with the main difficulty stemming
from the high similarity between foreground targets and
background environments in terms of texture, color, and semantic
features. To address this challenge, this paper proposes SeCoCR, a
dual-branch collaborative reasoning network specifically designed
for COD. The core innovation of this network lies in its multi-
modal feature collaborative enhancement mechanism. At each
processing stage, SeCoCR extracts deep semantic features from the
original image and high-frequency boundary features enhanced by
the Laplacian transform through parallel branches, respectively.
It also designs a fusion module for high- and low-frequency
information to achieve hierarchical complementary fusion
of semantic information and boundary cues, where semantic
features provide regional consistency constraints, while boundary
features focus on local detail enhancement. Finally, the feature
reconstruction loss forces the network to sharpen target contours
while preserving semantic integrity.

3.1 Overall architecture

The overall framework of the proposed method is illustrated
in Figurel and consists of two main modules across three
progressive parts: Part 1: The input image undergoes a Laplacian
transformation to emphasize local boundary information. This
preprocessing step accentuates high-frequency components
critical for identifying camouflaged object boundaries against
complex backgrounds. The transformed image is then processed

by a convolutional neural network to extract local features.
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The overall architecture

Meanwhile, the original image is fed into a Transformer-
based encoder to capture global contextual features. Part 2:
For each stage in the hierarchical feature extraction process,
the extracted features are refined and fused. Specifically, both
local and global features are passed through the proposed Self-
Relation Attention (SRA) module to emphasize informative
representations and suppress noise. The SRA module adaptively
recalibrates feature responses to prioritize salient regions while
attenuating irrelevant activations. The enhanced features are
then fused via the Low-High Mix Fusion (LHM) module,
which integrates high-frequency details from the Laplacian
branch with low-frequency semantics from the original image
branch. This dual-branch fusion strategy ensures complementary
information exchange between structural details and semantic
context. Part 3: In this stage, the multi-scale features from each
level are fed into a decoder to progressively reconstruct the
camouflaged object mask. The fusion of different resolutions
and levels enables the model to maintain fine boundary details
while preserving global structure. Losses are computed across
multiple scales to ensure robust supervision during training. The
hierarchical supervision mitigates gradient vanishing and enhances
feature discriminability.

In the Laplace-guided local branch, we adopt a convolutional
neural network (CNN) to extract multi-level structural cues
from the Laplacian-transformed images. At each stage, the same
lightweight convolutional block is applied to capture fine edge
details and texture variations around camouflaged boundaries.
Specifically, each block consists of two 1x1 convolutions and
one 3x3 convolution with a residual connection, which enhances
local representation capacity while keeping the model efficient.
Moreover, the spatial resolution and channel dimension of
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the CNN features are aligned with those of the Transformer
backbone at each stage, so that the subsequent SRA and LHMF
modules can perform structurally consistent multi-stage fusion.
For the Transformer branch, we adopt the Pyramid Vision
Transformer (PVT).

3.2 Self-relation attention

To enhance the discriminative capability of feature
representations, particularly under complex scenarios such as
COD, where foreground and background share highly similar
textures, we propose a Self-Relation Attention (SRA) module.
This module is designed to selectively emphasize informative
spatial responses and suppress irrelevant or noisy activations by
modeling the internal relationships within feature maps. The
self-relation mechanism computes pairwise affinities between
spatial locations, allowing the network to amplify coherent
features while suppressing inconsistent responses, crucial for
resolving texture ambiguities in camouflage scenarios. The SRA
module is lightweight and can be seamlessly integrated into
multi-stage feature processing pipelines, making it suitable for
both CNN-based local feature branches and Transformer-based
global context branches.

Given an input feature map F e RIXWXC where H,
W, and C denote the spatial height, width, and number of
channels, respectively, the SRA module computes a refined
representation by capturing intra-feature dependencies via
attention mechanisms. The overall architecture is illustrated in
Figure 2. The process consists of four key steps: feature projection,

frontiersin.org
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The overall architecture of self-relation attention.

attention map computation, relation-guided aggregation, and
residual enhancement.

To establish the relational attention, the input feature map F
is first projected into three distinct embedding spaces using three
parallel convolutional layers, yielding the Q, K, V. Computed via
scaled dot-product attention as shown in Equations 1, 2:

Q,K, V = Conv(F) (1)

T
Ky 2)

Ja

To further refine the attended features, F,yy, is passed through

Fay = softmax(

a convolutional block followed by a non-linear activation.
Simultaneously, a parallel residual path is applied directly to
the input feature F. Both outputs are finally combined via
element-wise addition:

Four = o (Conv(F)) + Conv(Fay) (3)
Here, o denotes the SiLU activation function, defined as
o (x) = x - sigmoid(x) (4)

The use of SiLU improves gradient flow and model expressiveness
compared to conventional ReLU or LeakyReLU functions. Its
continuous differentiability mitigates sharp saturation effects,
facilitating smoother optimization. The residual connection
ensures the preservation of original low-level features, while
the attention branch brings in semantically enriched context
information. This dual-path design balances feature stabilization
and contextual refinement, which is vital for handling camouflage-
induced feature similarities.

3.3 Low-high mix fusion

To effectively integrate global semantic context and local
structural details, we propose the Low-High Mix Fusion (LHMF)
module, as illustrated in Figure 3. The LHMF module is designed
to fuse the low-frequency global features derived from the original
image with the high-frequency local features extracted via the
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Laplacian transformation. This design enables the network to
maintain semantic coherence at the object level while enhancing
boundary localization.

Given two feature maps extracted from the same input
image, one from the original image and one from its Laplacian-
transformed version, the LHMF module performs a cross-attention
fusion to capture both coarse contextual representations and fine-
grained structural cues. The global features emphasize semantic
content and object-level understanding, while the local features
focus on boundary sharpness and fine texture, which are often
suppressed or missing in conventional CNN backbones when
processing camouflage targets. The cross-attention mechanism
adaptively weights local features based on global semantic
relevance, suppressing boundary noise unrelated to target objects.

Let F; denote the global feature map extracted from the
original image and Fj represent the local feature map derived
from the Laplacian-transformed image. Both feature maps are
passed through a linear projection and reshaped into sequences for
attention computation:

Fj = Reshape(LN(Fy)) € R*€, F; = Reshape(LN(Fy,)) € RS*¢
()
The core of the LHMF module lies in the cross-attention
mechanism, where the global features serve as the query to attend
over the local feature space. Using global features as queries
prioritizes boundary integration that aligns with semantic context,
avoiding spurious edge distractions. This is formulated as:

Q, K,V = Linear(F) (6)
K
Vi

The attention output is then projected back to the original feature

Ffused = softmax( WVh (7)

dimension and reshaped to the spatial dimension H x W x C before
being fused with the global feature through a residual connection:

Four = Li”eurn(Ffused) + Ffused (8)

The residual connection preserves baseline semantic information
while augmenting it with boundary-refined features. This
ensures robustness against attention misalignment in noisy
camouflage scenarios.
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3.4 Loss function

In our framework, the loss function is designed to effectively
supervise both the COD task and the auxiliary reconstruction task.
For the main segmentation objective, we adopt a hybrid supervision
strategy commonly used in binary image segmentation tasks such
as salient object detection and COD. Specifically, we employ a
combination of binary cross-entropy loss and intersection-over-
union loss following the practices in previous work. This composite
loss, denoted as COD, serves as the principal training objective:

Leop = Liu (P, G) + Lgck (P, G) 9

The IoU loss optimizes structural consistency between predictions
and ground truth, while BCE ensures pixel-wise discriminability.

To progressively fuse multi-level residual frequency
representations during decoding, we impose lateral supervision on
the intermediate decoder outputs. Each decoder stage outputs a
binary prediction map P;(i = 1,2, 3, 4), with the last one P4 serving
as the final prediction. This strategy ensures that each decoder layer
receives effective gradient feedback, promoting better semantic
alignment and contour preservation across scales.

In addition to the main segmentation loss, we introduce an
auxiliary image reconstruction task to enhance the fusion between
residual frequency features and contextual representations learned
from separate encoders. For this task, we select three levels of
frequency-enhanced features, Ry, R, R3, from the LHME, as well
as the final contextual representation from the transformer-based
encoder. These features are passed through a decoder structure to
reconstruct the original input image. The decoder uses transposed
convolutions and skip connections to upsample features to the
input resolution.

Although this regression objective does not directly contribute
to the COD task, it enables the model to implicitly learn
correspondences between residual frequency and contextual cues.
By reconstructing fine-grained image structures, the network gains
a stronger understanding of texture and boundary information,
both of which are crucial for identifying camouflaged regions. The
reconstruction loss is defined using the mean squared error:

N

Lyec = %Z

i=1

2
(10)

fi_li‘
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where I; denotes the reconstructed image and I; is the ground truth
input image.

Finally, the overall loss function used to train the network is
defined as:

4

1
Liotal = Z FLCOD + ALrec

i=1

€3))

where A is a balancing weight that controls the contribution
This
supervision strategy effectively enhances the network’s ability

of the auxiliary reconstruction loss. comprehensive
to localize camouflaged objects while simultaneously enforcing

representational consistency across encoders.

4 Experiments
4.1 Dataset

We conduct comprehensive experiments on three publicly
available benchmark datasets: CAMO, COD10K, and NC4K, to
validate the effectiveness and generalization ability of our proposed
method in diverse camouflage scenarios. The CAMO dataset
contains a total of 2,500 images, equally divided into 1250
camouflage images and 1250 non-camouflage images. Among the
camouflage images, 1,000 images are used for training, and 250
images are reserved for testing. The COD10K dataset is one of
the largest camouflage object detection datasets, comprising 5,066
camouflage images. These are split into 3040 training images and
2026 testing images, covering a wide range of object categories
and backgrounds, which increases the diversity and complexity of
the detection task. The NC4K dataset contains 4121 camouflage
images, which are exclusively used for testing purposes to assess
the model’s performance in a more challenging and unseen
setting. These datasets differ not only in size but also in image
characteristics, such as background clutter, object scale, and scene
diversity, which makes them ideal benchmarks for evaluating
robustness and generalization. In the training phase, we jointly use
the 3040 training images from COD10K and the 1,000 camouflage
images from CAMO to train our model. This combination allows
the model to benefit from the rich variations in object appearance
and background context, thereby improving its robustness. During
the testing phase, we evaluate the trained model on the respective
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test sets of CAMO, CODI10K, and NC4K. This setup enables us
to systematically test both in-domain performance and out-of-
distribution generalization capability.

4.2 Implementation details

In the training phase, all input images are uniformly resized to
384 x 384. The training is performed with a batch size of 8 using
the SGD optimizer, and the initial learning rate is set to 1e-4, with a
momentum coefficient of 0.9 and weight decay of 5e-4. To facilitate
effective optimization, the learning rate is scheduled to increase
linearly during the first 20 epochs, followed by a cosine annealing
decay strategy.

4.3 Evaluation metrics

To thoroughly evaluate the performance of our model, we
adopt four widely recognized quantitative metrics: Structure
Measure (S,,) Fan et al. (2017): This metric quantifies the structural
similarity between the predicted saliency map and the ground truth
mask. It focuses on preserving the spatial layout and structural
consistency of the predicted camouflage region, especially in terms
of object contours and global shape coherence. Adaptive E-measure
(aE) Fan et al. (2018): This metric combines both global statistics
and local pixel-level matching to evaluate the precision and recall in
an adaptive manner. By dynamically adjusting the weights based on
image content, it provides a more reliable assessment of detection
quality across different scenes. Weighted F-measure (Fg) Margolin
et al. (2014): Unlike the standard F-measure, the weighted version
assigns greater importance to hard-to-detect regions, such as object
boundaries or regions with low contrast, making it especially
suitable for camouflage object detection tasks. Mean Absolute Error
(MAE) Perazzi et al. (2012): This pixel-wise error metric directly
measures the average absolute difference between the predicted
saliency map and the ground truth, offering a straightforward yet
effective way to capture overall prediction bias and quality.

4.4 Comparison with state-of-the-arts

We compare a series of state-of-the-art (SOTA) methods,
which can be categorized into the following groups: Direct
recognition methods, which identify camouflaged objects by
directly leveraging semantic information from the input image.
Representative methods include FPNet (Song et al., 2023), UJSC
(Li et al, 2021), and FSPNet (Huang et al, 2023). Boundary-
guided methods, which enhance the recognition of camouflaged
objects by employing attention mechanisms to better perceive
object boundaries. Examples of this category include BGNet
(Sun et al., 2022), EAMNet (Sun et al., 2023), and EANet (Liu
et al, 2024). Depth-guided methods, which achieve COD by
integrating depth information into the model. Notable approaches
include RISNet (Wang et al,, 2024) and DaCOD (Wang et al,
2023). Frequency-domain based methods, which utilize various
frequency-domain features to boost the detection of camouflaged
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objects. Representative models include FDNet (Zhong et al., 2022),
CamoFA (Le et al., 2025), and FEDER (He et al., 2023). The
comparative experimental results are presented in Table 1.

4.5 Ablation studies

4.5.1 Effect of SRA and LHMF

Table 2 provides a detailed analysis of the contributions
made by the two key modules proposed in our framework: the
LHMF module and the SRA module. As shown in the table,
the removal of the LHMF module leads to a noticeable drop
in performance. This is primarily because the LHMF module
introduces Laplacian boundary information, which effectively
enhances the representation of object edges and improves the
saliency prediction of camouflaged objects. Without this module,
the model loses its ability to perceive boundary-aware features,
resulting in blurred predictions. Consequently, performance
decreases to 0.811, 0.826, and 0.832 on the CAMO, CODI10K,
and NC4K datasets, respectively. Similarly, when the SRA module
is removed, a consistent degradation in performance is also
observed. The SRA module is designed to selectively focus on
key information embedded within both global and local features,
enabling accurate identification of camouflaged targets in complex
scenes. Its absence impairs the model’s capacity to integrate
multi-scale information and differentiate targets from cluttered
backgrounds. As a result, the performance drops to 0.841, 0.861,
and 0.876 on CAMO, CODI10K, and NC4K, respectively. These
results clearly demonstrate that both the LHMF and SRA modules
play indispensable roles in boosting the overall performance of our
framework. The visualization of the ablation studies is shown in
Figure 4.

4.5.2 Effect of SRA in each stage

Table 3 presents the performance impact caused by the absence
of the SRA module at different stages of the network, thereby
verifying the necessity and effectiveness of SRA in each phase.
In stage 1, removing the SRA module from the shallow feature
extraction layers significantly weakens the model’s ability to capture
fine-grained local details, such as edges and textures, which
are crucial for identifying camouflaged targets. As a result, the
performance drops by 0.011, 0.009, and 0.011 on the CAMO,
CODI10K, and NC4K datasets, respectively. In stage 2, the SRA
module is expected to model the relationships between local
and global features during mid-level semantic fusion. When it is
omitted at this stage, the model struggles to distinguish foreground
targets from complex backgrounds, leading to weaker saliency
activation and insufficient structural coherence. Under this setting,
performance decreases by 0.013, 0.017, and 0.006 across the three
datasets. In stage 3, the absence of the SRA module in the deep
semantic modeling layers hampers the model’s ability to maintain
semantic consistency and understand the global contour of objects.
This is particularly detrimental in cases involving large-scale or
heavily occluded targets. Consequently, the performance further
declines by 0.026, 0.019, and 0.013 on CAMO, CODI10K, and
NC4K, respectively.
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TABLE 1 Comparison of SeCoCR with 19 state-of-the-art models on three COD benchmark datasets for four standard assessment metrics, with the best
results highlighted in bold.

Methods Publications CAMO COD10K NC4K

Sm Eg ;’5’ M Eg) ;‘; M Sm Eg) ;; M
Direct detection methods
UJSC; Liet al. (2021) CVPR2021 0.800 | 0.853 | 0728 | 0.073 | 0.809 & 0891 | 0.684 | 0.035 | 0.842 | 0907 | 0.771 0.047
PFNet; Yang et al. (2021) CVPR2021 0.782 | 0.855 | 0.695 | 0.085 | 0.800 | 0.868 | 0.660 | 0.040 | 0.829 | 0.894 | 0.745 | 0.053
SLSR; Ly et al. (2021) CVPR2021 0.787 | 0.855 | 0.696 | 0.080 | 0.804 | 0.882 | 0.673 | 0037 | 0.840 | 0902 | 0766 0.048
PreyNet; Zhang et al. (2022) | ACM MM2022 0.784 | 0.859 | 0794 | 0.086 | 0.817 | 0850 | 0.666 = 0.036 | 0.839 | 088 | 0746 0.052
SINetV?2; Fan et al. (2021) TPAMI2022 0.820 | 0.875 | 0743 | 0.070 | 0.815 & 0.863 | 0.680 0037 | 0.847 | 0.898 | 0770  0.048
FPNet; Song et al. (2023) CVPR2022 0.844 | 0903 | 0778 | 0.062 | 0.837 | 0897 | 0731 | 0.030 | 0.834 | 0895 | 0750 0.052
SegMaR; Jia et al. (2022) CVPR2022 0.815 | 0.872 | 0742 | 0071 | 0.833 0895 | 0.724 | 0.033 | 0.841 | 0905 | 0.781 0.046
ZoomNet; Pang et al. (2022) | CVPR2022 0.820 | 0.883 | 0752 | 0.066 | 0.838 | 0.893 | 0729 | 0.029 | 0.853 | 0907 | 0784 | 0.043
FSPNet; Huang et al. (2023) | CVPR2023 0.856 | 0919 | 0799 | 0.050 | 0.851 | 0900 | 0735 | 0.026 | 0.879 | 0923 | 0816  0.035
Edge-assisted detection methods
BSA-Net; Zhu et al. (2022) AAAI2022 0.794 | 0.866 | 0717 | 0.079 | 0.818 & 0.894 | 0.699 | 0.034 | 0.841 | 0906 | 0.771 0.048
BGNet; Sun et al. (2022) IJCAI2022 0.812 | 0876 | 0749 | 0.073 | 0831 | 0902 | 0722 | 0.033 | 0851 | 0911 | 0788 | 0.044
MGL; Zhai et al. (2022) TIP2022 0.782 | 0.847 | 0.695 | 0.085 | 0.814 & 0865 | 0.666 0035 | 0.833 | 0893 | 0739 0053
EAMNet; Sun et al. (2023) ICME2023 0.831 | 0.890 | 0.763 | 0.064 | 0.839 | 0907 | 0.733 | 0.029 | 0.862 & 0916 | 0.801 0.040
EANet; Liu et al. (2024) ICASSP2024 0.841 | 0918 | 0793 | 0051 | 0.825 | 0910 | 0709 | 0.029 | 0.860 | 0922 | 0798 | 0.039
Depth-aware detection methods
RISNet; Wang et al. (2024) CVPR2024 0.870 | 0922 | 0.827 | 0.050 | 0.873 | 0931 | 0.799 @ 0.025 | 0.882 | 0925 | 0.834 | 0.037
DaCOD; Wang et al. (2023) | ACM MM2023 0.855 | 0911 | 0796 | 0.051 | 0.840 | 0908 | 0729 | 0.028 | 0.874 | 0923 | 0814 0035
Frequency-assisted detection methods
FDNet; Zhong et al. (2022) CVPR2022 0.844 = 0903 | 0778 | 0.062 | 0.837 | 0.897 | 0731 | 0030 | 0.834 | 0895 | 0750  0.052
FEDER; He et al. (2023) CVPR2023 0.807 | 0.876 | 0737 | 0.069 | 0.823 | 0901 | 0715 | 0032 | 0.846 | 0912 | 0788 | 0.045
CamoFA; Le et al. (2025) WACV2025 0.863 | 0927 | 0790 | 0.055 | 0.864 | 0911 | 0740 | 0.025 | 0.872 | 0923 | 0.801 0.037
Ours - 0.871 | 0929 | 0816 | 0.048 | 0.875 0.928 | 0773 | 0.023 | 0.882 | 0.935 | 0.845  0.032

TABLE 2 Effect of SRA and LHMF.

Base SRA LHMF COD10K

M Sm Ej )
v 0.771 0.834 0.683 0.085 0.814 0.797 0.671 0.071 0.808 0.871 0.723 0.058
v v 0.811 0.885 0.742 0.061 0.826 0.858 0.723 0.060 0.832 0.886 0.803 0.046
v v 0.841 0.904 0.797 0.054 0.861 0.901 0.754 0.035 0.876 0.919 0.833 0.037
v v v 0.871 0.929 0.816 0.048 0.875 0.928 0.773 0.023 0.882 0.935 0.845 0.032

The best results are highlighted in bold.

4.6 Visualization analysis

To visually evaluate the performance of our proposed
SeCoCR, we compare it against six representative state-of-the-
art methods, including two open-source frequency-domain-based
approaches: FDNet and FEDER. The qualitative comparison
results are illustrated in Figure 5. As shown in the figure,
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SeCoCR consistently produces accurate and detailed segmentation
results across a wide range of challenging scenarios, including
small camouflaged objects, large-scale camouflaged regions, finely
textured camouflaged targets, and images containing multiple
camouflaged instances. These qualitative results highlight the
robustness, accuracy, and superior generalization ability of SeCoCR
across diverse camouflage scenarios.
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FIGURE 4

The visualization effect of attention maps in SRA and LHMF ablation studies (w/LHMF, w/SRA denoted with LHMF and with SRA).

TABLE 3 Effect of SRA in each stage.

Stagel Stage2 Stage3 COD10K
E(‘; F/‘g’ M
v 0.845 0.915 0.804 0.053 0.856 0.924 0.766 0.027 0.869 0.933 0.835 0.035
v 0.858 0.920 0.807 0.053 0.858 0.920 0.768 0.025 0.876 0.932 0.836 0.037
v v 0.860 0.926 0.806 0.051 0.864 0.923 0.765 0.025 0.873 0.931 0.838 0.034
v v v 0.871 0.929 0.816 0.048 0.875 0.928 0.773 0.023 0.882 0.935 0.845 0.032

The best results are highlighted in bold.

4.7 Parameters and FLOPs analysis

As shown in Table 4, our model has higher computational cost
and parameter count compared to recent COD architectures. This
is due to the increased complexity caused by the additional CNN
branches we introduced. This branch explicitly models local texture
and fine-grained edge information through the extracted Laplace
transform, complementing the global semantic representation of
the backbone network, enabling the network to have stronger
discriminative ability when dealing with small structures and
low contrast areas of disguised targets. Although FLOPs and
parameter count are slightly higher than methods such as FEDER,
FDNet, FPNet, and FSPNet, the overall scale is still within an
acceptable range and will not cause significant inference latency on
mainstream GPUs.

Frontiersin Artificial Intelligence

5 Conclusion

This paper proposes a Laplacian-guided dual-branch network
that enhances COD by extracting boundary information through
Laplacian transformation. The framework incorporates two novel
modules: Self-Relation Attention (SRA) and Low-High Mix Fusion
(LHM Fusion). The SRA module filters out global and local
noise to strengthen the representation of both local and global
features. The LHM Fusion module integrates local information
from the Laplacian-transformed image with global information
from the original image, thereby improving localization and
boundary detection accuracy of camouflaged objects. Furthermore,
a multi-scale fusion strategy is adopted to strengthen the
model’s robustness and improve fine-grained prediction accuracy.
Extensive quantitative experiments demonstrate the robustness of
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Image

Ours DaCOD

FIGURE 5

Qualitative comparison between our method and state-of-the-art methods. Compared with depth-aware methods (third column), frequency-based
methods (fourth and fifth columns), direct localization methods, and edge-based methods, our method (third column) can segment complete

disguised objects in highly disguised scenes.

FEDER

FPNet FSPNet BGNet ZoomNet

TABLE 4 Parameters and FLOPs analysis of our proposed method and
multiple COD methods.

Flops(M) 37.37 56.50 47.9 49.6 62.73

Param(G) 23.98 63.22 56.4 58.2 66.99

the proposed method, which significantly outperforms existing
frequency-domain-based approaches. In addition, comprehensive
ablation studies verify the critical role of each proposed module at
various stages of the network.

6 Limitations and future work

Although our method achieves

among frequency-domain-based approaches, it still has the

superior performance
following limitations. Due to the introduction of additional modal
information and the use of an extra network for feature extraction,
our method requires additional computational resources to
capture high-frequency boundary information. In future work, we
will explore a single-branch, end-to-end approach based on the
Laplacian transform to construct a new network for camouflaged
object recognition.
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