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Introduction: This study presents a modified version of Particle Swarm
Optimization (PSO) using an all-optical computational update mechanism. The
primary innovation and objective of this collaboration aimed to leverage the
inherent properties of coherent optical systems, including specialized complex-
domain computation and nonlinear light-matter interactions, to enhance the
exploration and exploitation of the search space process for particles.
Methods: To assess the performance of the developed model, it was compared
with traditional PSO to solve the CEC benchmark functions. Furthermore, it was
applied to enhance the detection of dyslexia using the eye-tracking dataset
(ETDD).
Results: The comparison between OPSO and other techniques established its
high ability to enhance the detection of dyslexia over traditional techniques.
Discussion: The use of an all-optical computational update mechanism
demonstrated enhanced performance in both benchmark optimization
problems and dyslexia detection tasks.
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1 Introduction

Artificial intelligence (AI), particularly modern deep learning (DL), has transformed
an extraordinary range of application domains over the past decade. Breakthroughs
in computer vision, natural-language processing (NLP), speech recognition, and
reinforcement learning have moved the performance of automated systems beyond
human-level on benchmark tasks such as ImageNet image classification (LeCun et al.,
2015), conversational language modeling (Brown et al., 2020), and board-game playing
(Silver et al., 2018). In health and life sciences, deep neural networks already match
or surpass specialist clinicians in skin cancer recognition (Esteva et al., 2017), chest-X-
ray triage (Rajpurkar et al., 2017), and diabetic retinopathy screening (Gulshan et al.,
2016). These successes illustrate the general ability of AI methods to learn complex,
high-dimensional patterns from raw or minimally processed data, providing objective,
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reproducible, and scalable decision support in settings where
conventional analyses remain labor-intensive or inconsistent
(Topol, 2019).

A rapidly growing subfield applies AI to neuro-cognitive
assessment. Automated analysis of speech, handwriting, and
physiological signals has begun to aid the early detection of
neurodevelopmental and neurodegenerative disorders such as
autism spectrum disorder, hyperactivity disorder, Parkinson’s
disease, and Alzheimer’s disease (Probol and Mieskes, 2024; Nafisah
et al., 2025; Gallo-Aristizabal et al., 2025). Within this field, reading
disabilities, and dyslexia in particular, represent a compelling target
for AI-based diagnostics.

Dyslexia is a specific learning disability of neurobiological
origin that impairs reading and language processing skills. It affects
an estimated 5%–10% of the population worldwide ( 7% of children,
accounting for up to 80% of learning disorders). It is characterized
by persistent difficulties in word recognition, decoding, and reading
fluency despite adequate intelligence and education (Tiwari et al.,
2025; Toki, 2024). Early identification is critical: timely evidence-
based intervention can exploit neural plasticity to improve literacy
outcomes and mitigate long-term academic and socio-emotional
consequences (El Hmimdi et al., 2024). However, conventional
diagnostic procedures rely on standardized reading batteries
and clinician observation—methods that are time-consuming,
subjective, and often unavailable in many educational settings,
leading to delayed or inaccurate diagnoses (Snowling, 2013).

Eye-tracking provides a non-invasive, real-time record of
visual attention during reading, capturing spatiotemporal gaze
trajectories at millisecond resolution. Dyslexic readers consistently
produce more frequent and longer fixations, shorter saccades,
and an increased number of regressions relative to typically
developing peers (Yin et al., 2025). Because these metrics
directly reflect underlying cognitive processing demands, eye-
movement data furnish a rich, quantitative substrate for automated
dyslexia detection.

Machine-learning (ML) approaches leveraging handcrafted
eye-movement features have achieved promising performance.
Jothi Prabha and Bhargavi (2022) and El Hmimdi et al. (2024)
extracted 168 temporal, spatial, and frequency descriptors, applied
recursive feature elimination (RFE), and trained a support-
vector machine (SVM) that reached 95.6% accuracy. Comparable
results have been reported with principal-component analysis and
SVM (Nerušil et al., 2021), evolutionary optimization plus SVM
(Jothi Prabha and Bhargavi, 2022), k-nearest neighbors and random
forests, provided that irrelevant or redundant variables are pruned
(Prabha and Bhargavi, 2020). Nonetheless, performance varies with
dataset size and reading paradigm, occasionally dropping to ∼80%
accuracy on smaller or more heterogeneous samples, underscoring
challenges of generalization.

DL methods aim to circumvent manual feature engineering
by learning hierarchical representations directly from raw gaze
sequences. Nerušil et al. (2021) proposed a convolutional neural
network (CNN) that ingests (x, y) time-series and implicitly
captures fixation–saccade dynamics. The recently released
ETDD70 dataset—70 Czech children, 35 with dyslexia—enabled
(Sedmidubsky et al., 2024) to obtain ∼90% accuracy with a CNN,
while Gomolka et al. (2024) achieved 97.7% using a long short-
term memory (LSTM) network. Transformer architectures with
multi-head attention have pushed reported accuracies even higher

(∼99%) in tightly controlled experiments (Priyasri and Devi,
2025). Conversely, when trained on a large and diverse corpus of
> 4,000 reading traces, a CNN delivered more modest but still
encouraging precision and recall of 77%–80% (El Hmimdi et al.,
2024), highlighting persistent risks of overfitting and data-shift.

With the advantages achieved by the previous studies,
they still have limitations. This motivated us to develop an
alternative AI technique that improves the performance of
particle swarm optimization (PSO) (Kennedy and Eberhart,
1995). This modification was conducted using the optical
computing mechanism (OCM) (Zuo et al., 2019; Lu and
Saleh, 1990). In general, OCM depends on photonics that
improve and accelerate the computation of complex matrix-
vector multiplication. Therefore, the OCM has advantages over
electronics, such as high computation speed and parallelism
(Kitayama et al., 2019). The increasing complexity of data
manipulation techniques and the size of data lead to an increase
in demand for highly integrated, scalable optical hardware that is
ultracompact and consumes less energy. Therefore, the advantages
of ultracompact size lead to the establishment of large, compact
computing units. This is considered the main component in
optical-artificial-intelligence computers (Feldmann et al., 2021;
Kues et al., 2017). This inspired us to simulate the operation of an
optical computing mechanism and integrate it with a metaheuristic
(MH) technique named PSO. The primary reason for using PSO
rather than other MH methods is its broad applicability across
diverse applications and its role as the basis for many other
MH techniques.

The developed model, named optical PSO (OPSO), begins by
generating a set of solutions. Then, it computes the fitness value
and determines the best personal and global best values. Next,
we simulated the processing of particle-state information through
an optical device by encoding the input and performing complex
mixing and nonlinearity. The encoding of the input is formulated
by computing the optical of the input vector (i.e., current particle,
best personal, and global best particle) based on the magnitude and
2π-scaled. The input signal is applied to a coherent linear system
using the complex weight matrix, thereby emulating the physical
diffraction and interference. Next, a nonlinear saturation of light
in a nonlinear crystal is simulated. Thereafter, the optical output
is referred to as the optical delta, which is computed as the real
part of the nonlinear saturation. Then, the adaptively mixed delta
is computed, which depends on the combination of the optical
and classical PSO terms using a decaying mixing ratio. Finally, the
particle’s velocity is updated using the adaptively mixed delta, and
a new particle is generated based on the updated velocity. First,
the stop conditions are checked to determine whether they are
met; then the best solution is used as the output. To assess the
performance of the developed model, we applied it to the CEC2019
benchmark functions and used it as a feature selection method to
enhance the detection of Dyslexia.

The main contributions of this study can be summarized as
follows:

• Implement the optical computing of photons and use it to
enhance the performance of PSO.

• Develop an alternative dyslexia detection technique based on
the proposed OPSO.
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• Assess the applicability of proposed OPSO by using CEC2019
benchmark and different tasks of dyslexia data.

The rest of this study is organized as follows: In Section 2,
related work of PSO variants is introduced. In Section 3, the
background of traditional Particle Swarm Optimization (PSO) is
presented. Section 4 presents the steps of the developed Optical
OPSO. Section 5 introduces the experimental results of the
proposed model to handle global optimization problems. Whereas
Section 6 shows the results of the proposed OPSO to detect dyslexia.
The conclusion and future works are given in Section 7.

2 Literature review of PSO variants

A recent study on PSO introduced a wide range of variants
that adjust the learning strategy, swarm topology, and hybridization
mechanisms to improve the balance between exploration and
exploitation, increase robustness, and better adapt to specific
problem types (Chauhan et al., 2025). Several PSO variants have
been developed to automatically adjust the inertia weight, learning
factors, or velocity limits to control the search process (Shami
et al., 2022), providing parameter control and the bare bones of
PSO. ECLPSO and ACLPSO, for example, use adaptive learning
probabilities, perturbation-based exploitation, and dimension-
wise parameter adaptation to enhance both exploration and
convergence compared with the original CLPSO (Lin et al., 2019;
Yu and Qiao, 2021). A bare-bones PSO (BBPSO) remains an
important minimalist variant that removes velocities and samples
positions from probability distributions. It has been extended
with deep memory and scale-matrix adaptation to achieve higher
precision while maintaining diversity (Song et al., 2021; Sun et al.,
2023).

For Learning-Strategy PSO (CLPSO Family; Lin et al.,
2019; Liang et al., 2006), one powerful variation supports
each particle to learn from the personal-best positions of
several peers rather than depending on a single global or
local best. Comprehensive learning PSO (CLPSO) enables every
particle to learn. This broader information sharing supports
diversity and lowers early convergence. Following this concept,
ECLPSO, ACLPSO, and CLPSO-OPR introduce adaptive learning
probabilities, perturbation operators, and recombination rules
in subsequent iterations to more effectively balance broad-area
exploration with focused local search (Liang et al., 2006). Recent
polls emphasize these learning-oriented PSOs as a significant
current trend because they alter how information is shared within
the swarm rather than merely tweaking parameter settings (Liang
et al., 2006; Chen et al., 2024).

In multiswarm and cooperative PSO, dynamic multi-swarm
PSO (DMS-PSO) divides the population into several small sub-
swarms that are often regrouped, giving each sub-swarm local
autonomy while allowing periodic information exchange to avoid
local optima (Zhao et al., 2008). Later research combined DMS-
PSO with local search or harmony search to enhance local
accuracy and large-scale performance, especially on multimodal
benchmarks (Zhao et al., 2011). Many surveys highlight these
multi-swarm and collaborative systems as successful in difficult

terrain, as they preserve diversity without completely sacrificing
convergence speed.

Increasingly, hybrid PSO studies combine BBPSO or classic
PSO with problem-specific techniques, including local search,
adaptive mutation, and mutual-information-based assessment
(Grazioso et al., 2025). For example, a basic PSO with mutual-
information-guided feature selection introduces adaptive flip
mutation and leader-update rules, enabling efficient dimensionality
reduction and competitive classification performance on
benchmark datasets. Deep memory BBPSO (DMBBPSO)
introduces a unique memory topology and pruning method that
allows particles to leverage extensive historical information while
eliminating obsolete data, thereby supporting both extensive
exploration and high-precision local search (Grazioso et al., 2025).
These PSO variants are summarized in Table 1.

3 Background of particle swarm
optimization

The particle swarm optimization (PSO) algorithm is considered
one of the most popular and efficient metaheuristic techniques.
In general, PSO simulates the behavior of particles in nature
during the food search. This includes the communication between
populations and how they explore the search space.

To achieve the process of finding the food, the position and
velocity of each particle are updated. The first step in PSO is to
generate the initial value for the velocity and position of a set of
N particles. Then, the fitness value for each particle is computed,
and the best personal particle (Xpi) and the global best particle (Xg)
are determined. The next process is to update the velocity of each
particle (vi) using Equation 1.

vi(t+1) = w×vi(t)+c1rand(Xpi−Xi(t))+c2rand(Xg−Xi(t)) (1)

Where c1 and c2 refer to the weight coefficient of the best
local and global positions, respectively. w is the inertia coefficient,
which controls the influence of the previous velocity on the updated
velocity. The next step after updating the velocity is updating the
particle’s position. Xi as in Equation 2.

Xi(t + 1) = Xi(t) + vi(t + 1) (2)

The process of updating the position is repeated until the
stop conditions are reached. Algorithm 1 shows the steps of the
PSO algorithm.

4 Optical particle swarm optimization

The proposed optical Particle Swarm Optimization (OPSO)
algorithm is introduced in this section. The proposed OPSO
embeds the mathematical properties of all-optical mechanisms
within the standard PSO algorithm. This mechanism aims to
leverage the inherent properties of coherent optical systems—
specifically complex-domain computation and nonlinear light-
matter interactions to enhance the search process for particles.
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TABLE 1 Variants of the PSO algorithm.

Variant Main update Advantages Limitations

BBPSO (2003) (Sun et al.,
2023)

Removes velocity; updates positions via
Gaussian sampling.

Simple structure; improved accuracy and
efficiency compared with standard PSO.

Prone to premature convergence;
sensitive to sampling distribution.

SMA-BBPSO (2010s) (Sun
et al., 2023)

Introduces scale-matrix adaptation and
heavy-tailed sampling (e.g.,
t-distribution).

Greater diversity; better escape from local optima. More parameters; scale-matrix tuning
depends on the problem.

PBBPSO (2010s) (Sun et al.,
2023)

Adds pair-wise interaction rules for
cooperative position updates.

Supports swarm diversity; slows overly fast
convergence.

Higher communication cost; limited
benefit on simpler problems.

DMBBPSO (2023) (Sun et al.,
2023)

Uses deep memory topology and
pruning of outdated historical data.

High-precision local search with strong global
exploration.

Complex memory management; risk of
retaining misleading history.

CLPSO (2006) (Liang et al.,
2006)

Dimension-wise learning from multiple
particles’ personal bests.

High diversity; strong results on multimodal
functions.

Higher computational load; slower on
unimodal tasks.

ECLPSO (pre-2021) (Yu and
Qiao, 2021)

Adds perturbation-based exploitation
and adaptive learning probabilities.

Better exploitation and improved convergence
over CLPSO.

Extra parameters; still underperforms
on some complex landscapes.

ACLPSO (2021) (Yu and
Qiao, 2021)

Adaptive velocity limits, inertia weights,
learning factors, and probabilities.

Enhanced global search ability; robust
convergence on benchmarks.

Increased complexity; performance
sensitive to adaptation rules.

CLPSO-OPR (2020s) (Chen
et al., 2024)

Integrates optimal particle
recombination into CLPSO.

Enhanced exploration reduces premature
convergence.

The recombination step may increase
computation and need tuning.

DMS-PSO (2008, 2011) (Zhao
et al., 2008, 2011)

Uses many small sub-swarms with
dynamic regrouping; hybrid-friendly.

Effective for multimodal and large-scale problems. More parameters increase
computational cost.

MI-BBPSO (2021) (Song
et al., 2021)

Uses mutual-information evaluation
with adaptive flip mutation.

Produces compact feature sets; competitive
classification accuracy.

Tailored to feature selection; it depends
on the classifier and MI estimates.

1: Set the initial value of the number of solutions
N, the number of iterations tmax and dimension D.

2: Initialize a set of population solutions (Xi),
velocity (Vi), C1,C2 and w.

3: while t < tmax do
4: Compute the fitness value for each particle.
5: Determie the global best solution (Xgbest) and

the personal best solution (Xbi)
6: Update the velocity of each solution using

Equation (V1).
7: Update the position of each solution using

Equation (V2).

8: Return Xg.

Algorithm 1. Particle swarm optimization.

4.1 Mathematical formulation of the
optical update mechanism

The main step is to update the optical delta (�opt), which
represents the processing of particle-state information through a
compact optical computing device. This is conducted through a
set of steps, including complex input encoding, handling missing
values and Nonlinearity, and a hybrid velocity update. The details
of each step are provided in the following sections.

4.1.1 Complex input encoding
The encoding process is conducted through three steps named

normalizing, combining, and mapping the key state vectors of
particle i—its current position (xi), personal best (pbesti), and

global best (gbest)—into a complex-valued optical input vector
(Optin). This mapping depends on the magnitude of the real input
vector for amplitude and a 2π-scaled, noise-injected version for the
phase (φ):

Optin = Amp × ei×φ = |Inr| × ei×2×π(Inr+rn) (3)

Furthermore, an adaptive Optical Noise (optin) is linearly
annealed over the iterations to balance initial exploration with later
convergence. This results from maintaining the orthogonal storage
of the search history, which influences the trajectory without
directly altering the magnitude.

4.1.2 Complex mixing and non-linearity
The next step is to transform the optical input using the process

of a coherent linear system, followed by a non-linear medium:
For the linear optical mixing, the complex weight matrix

(Wopt), which is derived from a random unitary matrix, is applied
to the input. This process is defined as

z = Wopt × Optin (4)

In general, Equation 4 represents the physical diffraction and
interference that performs a matrix-vector multiplication. We used
this process to support particles stuck at a local point.

In the non-linear saturation, the resulting vector is passed
through a non-linear saturation function, formulating the physical
saturation of light in a non-linear crystal:

znl =
z

(1 + α × |z|2)
(5)
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The real part of the saturated output is then scaled by
an annealing factor to generate the final �opt . The non-linear
saturation system acts as a soft-limiting regularizer. In the context
of optimization, it suppresses extreme velocity updates while
allowing smaller, precise adjustments to pass through linearly. This
is crucial for fine-tuning the solution as the swarm approaches the
global optimum.

4.2 Hybrid velocity update

The final update maintains stability by adaptively combining
the optical result with the classical PSO steps. The Classical Delta
(�C) is the standard cognitive and social contribution:

�C = C1 × r1 × (Pb − X) + C2 × r2 × (Pg − X) (6)

The next process is to determine the movement direction
through computing the combined delta (�Co) using an adaptive
mixing ratio (Mβ ), which shifts the emphasis from the optical
update (exploration) to the classical update (exploitation). This
process is defined in Equation 7.

�Co = Mβ × �opt + (1 − Mβ ) × �C (7)

Thereafter, �Co is used to update the velocity and position,
incorporating a decreasing inertia weight (winertia) and constriction
factor (χ) to ensure convergence. This process is achieved using the
following formula:

Vn = χ × (winertia × Vi + �Co), (8)

where winertia decreased from 0.7 to 0.3, and χ is updated as follows:

χ = 2
|2 − φ −

√
φ2 − 4φ|

, φ = 2.05 (9)

Where φ is a constant value that represents the stability
parameter.

Finally, the position is updated using the new velocity value
defined in Equation 10.

Xi = Xi + Vn (10)

The algorithm also includes boundary absorption and an
occasional reseeding mechanism (with p = 0.03) to maintain
swarm diversity. The steps of the proposed OPSO are given in
Algorithm 2.

5 Experimental series 1: global
optimization

This section presents an ablation study to evaluate the
individual contributions of the components within the OPSO
algorithm by comparing its performance against the standard PSO
on the CEC2019 benchmark functions. The global experimental
settings were configured to 1,000 iterations with a population
size of 100. The comparative analysis reveals clear advantages of

1: Adaptive Parameter Annealing (Inertia Weight
winertia), Mixing Ratio (Mβ), and Constriction
Factor (χ).

2: Set iteration t = 1.
3: while t < tmax do

Input Encoding:

4: The particle’s current position (x), personal
best (pbest), and global best (gbest) are
concatenated and normalized to form a real-valued
vector (Inr).

5: Convert Inr into a complex input (Optin) using
Equation 3. Mixing and non-linearity:

6: Complex input (Optin) is transformed by
complex-valued mixing matrix Wopt as in Equation
4.

7: Apply nonlinear saturation function on z as
defined in Equation 5.

8: Scaling: The real part of the non-linear output
(znl) is extracted and scaled by a decaying optical
scale factor to yield the final �opt.

Hybrid movement and position update:

9: Compute classical Delta (�C) as defined in
Equation 6.

10: The two movement vectors are adaptively blended
using the current mix beta (Mβ) ratio to create
the combined delta (�Co) as defined in Equation
7.

11: Update velocity based on �Co as defined in
Equation 8.

12: Update position X using Equation 10.
13: Compute fitness value and determine Xg and

personal best XXp.
14: Update t = t+ 1.

15: Return Xg.

Algorithm 2. Steps of optical PSO.

the proposed OPSO method in optimization accuracy as listed in
Table 2.

Across all benchmark functions, especially in F1 and F2, the
OPSO algorithm performed, on average, better than classical PSO
in terms of fitness. This suggests that, due to the properties of
CEC2019 functions, OPSO more effectively explores the search
space and converges more consistently toward diverse optima
across different tests.

To examine the stability of the solutions, the standard deviation
merit was used. OPSO across numerous functions yielded less
variability in fitness results than PSO, indicating that the runs
belonged to a consistent type of stability. This is an important
factor to consider in practical applications, where the algorithm’s
performance must remain stable. This also indicated that the
enhancements of the proposed method mitigate the random
stochastic disturbances commonly encountered by traditional PSO.
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TABLE 2 Results of the ablation study of OPSO.

Fitness Std Min Max Time

Func. OPSO PSO OPSO PSO OPSO PSO OPSO PSO OPSO PSO

F1 4.51E+07 8.66E+10 3.62E+07 8.86E+10 3.52E+06 1.53E+10 1.45E+08 4.29E+11 2.41E+01 2.34E+01

F2 17.343 6037.922 0.000 1591.923 17.343 1520.793 17.343 8535.809 1.619 1.177

F3 12.702 12.702 0.000 0.000 12.702 12.702 12.702 12.702 1.789 1.331

F4 48.136 223.305 19.694 232.919 17.912 7.960 79.615 945.137 1.388 1.203

F5 1.255 1.833 0.119 0.356 1.098 1.308 1.586 2.793 1.391 1.189

F6 7.792 4.863 1.266 2.057 4.636 1.731 9.650 9.938 8.678 8.447

F7 96.028 105.722 60.651 70.962 0.254 10.379 211.521 273.208 1.369 1.178

F8 4.788 4.914 0.674 0.598 3.480 3.703 6.010 5.997 1.368 1.179

F9 2.390 2.415 0.019 0.381 2.349 2.339 2.420 4.397 1.307 1.127

F10 18.807 19.344 4.900 3.592 0.000 0.000 20.344 20.138 1.393 1.206

Bold values indicate the best performance compared to the other values.

The analysis of the minimum and maximum fitness values
confirmed that OPSO kept the ranges between the best and
worst results narrower for most functions. With PSO, there was
greater variation, especially on problems where the function to
be minimized was complex and the search space was high-
dimensional. This supports the conclusion that OPSO strikes
a better balance between exploration and exploitation and
maintains the swarm’s diversity, thereby reducing the occurrence
of suboptimal solutions in difficult environments.

In terms of computational efficiency, OPSO exhibited
performance similar to that of PSO. Although the optimization
ability of OPSO is enhanced, this does not entail a significant
additional computational burden. Thus, OPSO is suitable for
large-scale problems and for applications where time is of the
essence and efficiency and accuracy are equally important.

The convergence curves, as presented in Figure 1, indicate that
OPSO reaches lower fitness values faster than PSO in most cases,
especially on complicated test functions.

To summarize, these results demonstrate the effectiveness of
OPSO as a warm-intelligence algorithm. The proposed method
showed good accuracy, greater solution stability, and consistent
convergence across the CEC2019 benchmarks.

6 Experimental series 2: dyslexia
detection

6.1 Description of dyslexia dataset

To assess the performance of the proposed model, a public Eye-
Tracking Dyslexia Dataset (ETDD70) (Sedmidubsky et al., 2024)
is used. This dataset was collected from 70 Czech children (9–
10 years, 50% dyslexic). Furthermore, the dataset contains three
tasks of Czech reading named meaningful text (T1), pseudo-text
(T4), and syllable reading (T5), administered under controlled
conditions. Each task has two types of information: (1) images and
(2) tabular data. Therefore, D1, D2, and D3 are images of T1, T4,
and T5, respectively. Whereas D4, D5, and D6 are the tabular of T1,
T4, and T5, respectively.

The noise-robust i2mc algorithm has been used to record
and process eye movements (Hessels et al., 2017). The saccade
amplitude and fixation duration are treated as tabular features
collected from each participant and task. Meanwhile, the visual
features (FixIma) are 2D images obtained using overlaying-colored
ellipses that represent fixation location, size, and duration. In
general, the tabular features for T1, T4, and T5 are 450, 34, and
34 features, respectively. These features are extracted from eye-
tracking metrics, including fixation counts, saccade amplitudes,
and durations. For the visual modality, FixIma images were
generated for each task and resized to 224 × 224 pixels for input
to the SwinV2 model.

6.2 Performance metrics

The performance of OPSO is computed using the following
measures.

• Accuracy:

Accuracy = TP + TN
TP + TN + FP + FN

(11)

• Sensitivity:

Sensitivity = TP
TP + FN

(12)

Where TP and TN denote true positives and true negatives; FP
and FN refer to false positives and false negatives, respectively.

Furthermore, the fitness value is used to evaluate the ability of
the algorithm to balance between the classification error and the
ratio of the selected features.

Moreover, the results of the proposed OPSO are compared
with those of traditional PSO, Ant Colony Optimization (ACO)
(Kashef and Nezamabadi-pour, 2015), Mountaineering team-based
optimization (MTBO) (Faridmehr et al., 2023), Chaos Game
Optimization (CGO) (Dahou et al., 2023), Differential Evolution
(DE) (Wang et al., 2022), Success-History based Adaptive
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FIGURE 1

Convergence curves of OPSO and PSO for benchmark functions.

DE (LASHDE) (Tanabe and Fukunaga, 2014), and Arithmetic
Optimization Algorithm (AOA) (Abualigah et al., 2021). The
parameters of these algorithms are determined as in the original
implementation. Following Sedmidubsky et al. (2024), we used

the training and testing sets generated via 5-fold cross-validation,
with folds divided by subject (i.e., 14 subjects in the testing
fold). For the parameters of OPSO, such as Adaptive Parameter
Annealing (Inertia Weight winertia ∈ [0.7 − 0.3]), Mixing
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TABLE 3 Value of accuracy and sensitivity for each algorithm.

OPSO PSO MTBO DE ACO CGO LSHADE AOA

Mean of accuracy

D1 0.9237 0.7857 0.7286 0.7000 0.7000 0.7571 0.8143 0.7429

D2 0.9591 0.7286 0.7000 0.6571 0.6000 0.7143 0.7286 0.7286

D3 0.9229 0.8429 0.8000 0.8000 0.8000 0.8000 0.8143 0.8000

D4 0.9357 0.8690 0.8333 0.8095 0.8214 0.8333 0.9286 0.9286

D5 0.9214 0.9000 0.8000 0.8000 0.8000 0.8857 0.7857 0.8000

D6 0.9214 0.9143 0.8286 0.8143 0.7857 0.9000 0.9000 0.8429

STD of accuracy

D1 0.0247 0.0082 0.0165 0.0000 0.0082 0.0660 0.0383 0.0495

D2 0.0308 0.0330 0.1016 0.0660 0.0459 0.0308 0.0473 0.1028

D3 0.0165 0.0308 0.0082 0.0000 0.0082 0.0000 0.0082 0.0082

D4 0.0275 0.0257 0.0137 0.0000 0.0137 0.0069 0.0710 0.0770

D5 0.0742 0.0957 0.0495 0.0000 0.0000 0.0742 0.0710 0.0708

D6 0.0884 0.0555 0.0412 0.0165 0.0000 0.0571 0.0825 0.0247

Mean of sensitivity

D1 0.9483 0.9143 0.7714 0.7143 0.8857 0.8857 0.8857 0.8000

D2 0.9429 0.8571 0.8000 0.8000 0.8000 0.8000 0.8857 0.8286

D3 0.9800 1.0000 0.9429 0.9429 0.9714 0.9429 0.9714 0.9714

D4 0.9833 1.0000 0.9524 0.9048 0.9762 0.9524 0.9143 0.9143

D5 0.9686 0.9429 0.7143 0.7143 0.7143 1.0000 0.8000 0.7714

D6 0.9546 0.9714 0.8571 0.8286 0.9143 0.9714 1.0000 0.8857

STD of sensitivity

D1 0.0000 0.0825 0.0330 0.0000 0.1155 0.1320 0.0921 0.0495

D2 0.0165 0.0781 0.0921 0.0451 0.0766 0.0165 0.1090 0.1170

D3 0.0000 0.0330 0.0165 0.0000 0.0000 0.0000 0.0165 0.0165

D4 0.0000 0.0275 0.0275 0.0000 0.0137 0.0000 0.0781 0.0946

D5 0.0000 0.1485 0.0165 0.0000 0.0165 0.1650 0.1090 0.0495

D6 0.0165 0.0660 0.0165 0.0000 0.0825 0.0660 0.1096 0.0433

Bold values indicate the best performance compared to the other values.

Ratio [Mβ = 0.9 × (1 − t/tmax)], and reseeding mechanism
(with p = 0.03).

6.3 Results and discussion

A comparison of the developed OPSO algorithm and others is
given in Tables 3–5 and Figure 2. In general, Table 3 and Figures 2, 3
show the average accuracy and sensitivity of the algorithms among
the datasets. From this table, it is evident that the OPSO algorithm
demonstrated a significant superiority in mean accuracy, achieving
the highest value in four of the six datasets (D1, D2, D3, and D4).
The highest accuracy was achieved by OPSO in D2, with a value
of 0.9591. However, the LSHADE algorithm achieved the highest
accuracy in D5 (0.9286), while PSO and OPSO were equal in D6
(0.9143). Notably, the DE, ACO, MTBO, and CGO algorithms

tended to achieve lower mean accuracy across datasets than the
other algorithms.

Moreover, the standard deviations of the DE and ACO
algorithms are consistent across some datasets. For example, DE
achieved a value of 0.0000 on three datasets (i.e., D3, D4, and D5)
and the ACO algorithm in D1 and D3, indicating consistent results
across experiments. Conversely, the OPSO algorithm exhibits
higher variability in performance on D5 (0.0742) and D6 (0.0884),
indicating lower stability on these datasets despite its high accuracy.
Furthermore, the PSO, CGO, and LSHADE algorithms achieved
outstanding performance, with sensitivity reaching an optimal
value of 1.00 for PSO in D4, CGO in D5, and LSHADE in D6. As
with accuracy, the OPSO and DE algorithms show the highest levels
of consistency in sensitivity, with OPSO achieving a value of 0.0000
in D1, D3, and D4, and DE achieving the same value in D3, D4, and
D5. Conversely, the ACO, CGO, and LSHADE algorithms show
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TABLE 4 Value of AUC, and F1-score for each algorithm.

OPSO PSO MTBO DE ACO CGO LSHADE AOA

Mean of sensitivity

D1 0.9483 0.9143 0.7714 0.7143 0.8857 0.8857 0.8857 0.8000

D2 0.9429 0.8571 0.8000 0.8000 0.8000 0.8000 0.8857 0.8286

D3 0.9800 1.0000 0.9429 0.9429 0.9714 0.9429 0.9714 0.9714

D4 0.9833 1.0000 0.9524 0.9048 0.9762 0.9524 0.9143 0.9143

D5 0.9686 0.9429 0.7143 0.7143 0.7143 1.0000 0.8000 0.7714

D6 0.9546 0.9714 0.8571 0.8286 0.9143 0.9714 1.0000 0.8857

STD of sensitivity

D1 0.0000 0.0825 0.0330 0.0000 0.1155 0.1320 0.0921 0.0495

D2 0.0165 0.0781 0.0921 0.0451 0.0766 0.0165 0.1090 0.1170

D3 0.0000 0.0330 0.0165 0.0000 0.0000 0.0000 0.0165 0.0165

D4 0.0000 0.0275 0.0275 0.0000 0.0137 0.0000 0.0781 0.0946

D5 0.0000 0.1485 0.0165 0.0000 0.0165 0.1650 0.1090 0.0495

D6 0.0165 0.0660 0.0165 0.0000 0.0825 0.0660 0.1096 0.0433

Mean of AUC

D1 0.9523 0.8367 0.7895 0.8401 0.8071 0.7255 0.7238 0.8354

D2 0.9591 0.8133 0.7867 0.7432 0.5224 0.6173 0.5680 0.8133

D3 0.9557 0.9194 0.9000 0.8844 0.8418 0.8847 0.8847 0.8857

D4 0.9630 0.9328 0.9167 0.9036 0.8682 0.9039 0.9872 0.9530

D5 0.9414 0.7929 0.7548 0.7779 0.6714 0.7582 0.7371 0.8180

D6 0.9663 0.9122 0.8711 0.8677 0.7847 0.8531 0.8490 0.8687

STD OF AUC

D1 0.0000 0.0473 0.0077 0.0076 0.0350 0.0076 0.0077 0.0558

D2 0.0082 0.0297 0.0715 0.0824 0.1917 0.0824 0.0715 0.0885

D3 0.0082 0.0281 0.0000 0.0024 0.0377 0.0024 0.0000 0.0317

D4 0.0069 0.0234 0.0000 0.0020 0.0314 0.0020 0.0000 0.0264

D5 0.0000 0.0399 0.0024 0.0124 0.1290 0.0124 0.0024 0.0824

D6 0.0082 0.0393 0.0068 0.0078 0.0761 0.0078 0.0068 0.0446

Mean of F1-Score

D1 0.9151 0.8114 0.7375 0.6925 0.6899 0.7886 0.7682 0.7201

D2 0.9598 0.7639 0.7345 0.7112 0.6509 0.7317 0.7840 0.7025

D3 0.9241 0.8707 0.8321 0.8321 0.8264 0.8290 0.8340 0.8288

D4 0.9367 0.8923 0.8601 0.8323 0.8325 0.8575 0.9450 0.9013

D5 0.9208 0.9045 0.8786 0.8786 0.8786 0.8967 0.8110 0.8505

D6 0.9343 0.9198 0.8317 0.8160 0.7931 0.9046 0.8513 0.8234

STD of F1-Score

D1 0.0000 0.0285 0.0230 0.0000 0.0044 0.1112 0.0778 0.0526

D2 0.0089 0.0406 0.0303 0.0523 0.0000 0.0167 0.1171 0.1664

D3 0.0067 0.0270 0.0085 0.0000 0.0099 0.0000 0.0087 0.0085

D4 0.0056 0.0225 0.0145 0.0000 0.0169 0.0064 0.0072 0.0145

D5 0.0000 0.0567 0.0111 0.0000 0.0000 0.0312 0.0775 0.0376

D6 0.0107 0.0477 0.0344 0.0132 0.0000 0.0492 0.0773 0.0247

Bold values indicate the best performance compared to the other values.
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TABLE 5 Fitness value metrics for each algorithm.

OPSO PSO MTBO DE ACO CGO LSHADE AOA

Mean of fitness

D1 0.1722 0.3392 0.3297 0.3750 0.3791 0.1851 0.2066 0.2883

D2 0.1637 0.1412 0.3053 0.3624 0.3661 0.1677 0.1849 0.2547

D3 0.1123 0.3236 0.2270 0.2728 0.2762 0.1120 0.1383 0.1892

D4 0.0938 0.3007 0.1974 0.2466 0.2500 0.0936 0.0587 0.0605

D5 0.0530 0.2362 0.1398 0.2132 0.2338 0.0443 0.0626 0.0943

D6 0.0542 0.2190 0.2025 0.2642 0.2681 0.0378 0.0507 0.1259

STD of fitness

D1 0.0031 0.0481 0.0023 0.0013 0.0004 0.0302 0.0428 0.0083

D2 0.0148 0.0149 0.0150 0.0012 0.0005 0.0149 0.0298 0.0084

D3 0.0084 0.0205 0.0024 0.0010 0.0004 0.0076 0.0279 0.0082

D4 0.0085 0.0172 0.0026 0.0068 0.0064 0.0065 0.0430 0.0567

D5 0.0035 0.0245 0.0147 0.0078 0.0151 0.0258 0.0350 0.0825

D6 0.0097 0.0164 0.0027 0.0077 0.0074 0.0100 0.0153 0.1195

Minimum of fitness

D1 0.1292 0.3363 0.3276 0.3738 0.3787 0.1548 0.1676 0.2828

D2 0.1549 0.1295 0.2916 0.3612 0.3655 0.1548 0.1677 0.2455

D3 0.0907 0.3142 0.2244 0.2718 0.2758 0.1033 0.1163 0.1799

D4 0.0757 0.2921 0.1948 0.2421 0.2460 0.0862 0.0179 0.0042

D5 0.0267 0.2333 0.1267 0.2085 0.2249 0.0272 0.0240 0.0118

D6 0.0401 0.2091 0.2002 0.2595 0.2636 0.0274 0.0310 0.0094

Worst of fitness

D1 0.2195 0.3422 0.3321 0.3762 0.3795 0.2071 0.2455 0.2975

D2 0.1809 0.1576 0.3182 0.3634 0.3665 0.1806 0.2194 0.2604

D3 0.1296 0.3296 0.2289 0.2736 0.2766 0.1164 0.1685 0.1942

D4 0.1084 0.3075 0.1997 0.2542 0.2573 0.0975 0.0775 0.0646

D5 0.0729 0.2400 0.1529 0.2221 0.2512 0.0722 0.0768 0.1036

D6 0.0688 0.2281 0.2053 0.2729 0.2765 0.0452 0.0701 0.1367

Bold values indicate the best performance compared to the other values.

significant variability across some datasets, such as ACO in D1
(0.1155) and CGO in D5 (0.1650), indicating that their sensitivity
results are less stable.

Table 4 and Figures 4, 5 show the average of AUC and F1-
score for each algorithm. From these results, it is clear that the
OPSO algorithm leads, achieving the highest mean AUC across
all six datasets (D1 to D6). Its values ranged from 0.9414 to
0.9663, demonstrating its superior discriminative ability. However,
the CGO and LSHADE algorithms recorded the lowest mean
AUC values across most datasets. For example, in D1, CGO,
and LSHADE achieved the lowest values (0.7255 and 0.7238,
respectively), indicating weaker discriminative ability than OPSO.

The STD AUC of the algorithms shows that the OPSO
algorithm is consistent, recording the lowest STD across three
datasets (D1, D5, and D6), with values of 0.0000 in D1 and
D5. LSHADE also achieved the lowest STD across D1, D3,

and D4, including a value of 0.0000 in D3 and D4. However,
PSO and ACO algorithms record the highest STD values in
most cases, especially ACO in D2 (0.1917), indicating significant
variability and instability in their discrimination performance
across experiments.

Based on the average F1 score, the OPSO performs best overall,
achieving the highest mean F1 score across three datasets (D1,
D2, and D3), indicating an effective balance between precision
and recall. Whereas LSHADE demonstrates strong competition,
achieving the highest F1-score in D4 and D6. CGO also achieved
the highest value in D5 (0.8967). From the STD of F1-Score, it
can be noticed that the DE algorithm showed high consistency,
achieving a value of 0.0000 across three datasets (D3, D4, and D5),
demonstrating the stability of its results in achieving taxonomic
balance. ACO also achieved a value of 0.0000 in D3, D5, and D6.
However, CGO, LSHADE, and AOA recorded the highest variance
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FIGURE 2

Average of accuracy obtained using OPSO and other algorithms.

FIGURE 3

Average of sensitivity obtained using OPSO and other algorithms.

FIGURE 4

Average of AUC obtained using OPSO and other algorithms.

FIGURE 5

Average of F1 score obtained using OPSO and other algorithms.
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FIGURE 6

Performance metrics based on fitness value: (a) Mean, (b) Minimum, and (c) Maximum of fitness value.

values in some cases, with CGO in D1 (0.1112), LSHADE in D2
(0.1171), and AOA in D6 (0.0376).

To further analyze the performance of the developed model,
Table 5 and Figure 6 show the metrics of fitness value for each
algorithm. From these results, it is clear that the CGO algorithm
clearly outperforms the algorithm in achieving the lowest mean
fitness across most datasets (D2, D3, D4, D5, and D6), indicating
its high effectiveness in minimizing fitness across trials. On dataset
D1, PSO achieved the lowest mean (0.1722). Furthermore, the DE

and ACO algorithms frequently recorded the highest mean fitness
values, meaning their solutions were lower on average than those of
other algorithms.

The ACO algorithm shows the highest consistency, recording
the lowest STD of fitness value across three datasets (D1, D2, and
D3). MTBO also recorded the lowest deviation in D4 and D5. Very
low STD (such as 0.0004 for ACO) indicates that the algorithm
produces solutions of similar quality each time the experiment is
run. In some cases, AOA, PSO, and LSHADE algorithms record
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TABLE 6 Mean Rank obtained using the Friedman test for each algorithm over the performance metrics.

OPSO PSO MTBO DE ACO CGO LSHADE AOA P-value

Accuracy 8 6.33 3.16 2.16 2 4.5 5.33 4.5 3.72E-05

Sensitivity 7 6.91 2.5 1.58 4.08 4.75 5.41 3.75 2.35E-04

AUC 7.8 6.25 4.5 4 1.5 3.08 3.08 5.75 1.38E-04

F1-score 7.83 6.5 4.25 2.75 1.66 4.66 5.33 3 1.16E-04

Mean fitness 2.33 6.16 5.16 6.5 7.5 1.83 2.66 3.83 4.36E-05

Min fitness 2.5 6.16 5.16 6.5 7.5 2.66 2.83 2.66 1.07E-04

Worst fitness 2.5 6 5.16 6.5 7.66 1.5 3 3.66 3.05E-05

the highest STD of fitness values, indicating that the quality of their
solutions varies more with the initial conditions of the experiment.

Based on the minimum fitness value, the CGO algorithm
outperforms in finding the best solutions (lowest minimum fitness
values) in most datasets (D2, D3, D4, D5, D6). Interestingly, the
AOA algorithm achieved the lowest absolute value in D4 (0.0042)
and D6 (0.0094). According to the worst fitness value, the CGO
algorithm continues to outperform, achieving the lowest worst-fit
values across four datasets (D2, D3, D4, D5). This reinforces the
idea that CGO rarely produces solutions of very poor quality. On
D6, LSHADE achieved the lowest value (0.0103).

To further assess the results obtained using the proposed
model, we used a nonparametric test named the Friedman test at
a confidence interval 95%. Table 6 shows the mean rank obtained
using the Friedman test. From these values of mean rank, we can
observe that the highest mean rank is achieved using OPSO in
terms of accuracy, sensitivity, AUC, and F1-score. The PSO is the
second-best algorithm in these metrics. However, the CGO has
the lowest mean rank and the worst fitness value, followed by the
proposed OPSO algorithm.

Figures 7, 8 show the post-hoc comparison between the
proposed model and others using the Nemenyi test. From these
figures, we observe a significant difference in accuracy between the
proposed model (group 1) and MTBO (group 3), DE (group 4),
and ACO (group 5). In terms of sensitivity, there is a significant
difference between the proposed model and MTBO (group 3) and
DE (group 4). The results of the post-hoc test using Fitness value
indicate there is a significant difference between the proposed
model and ACO (group 5). The results of the AUC indicate a
significant difference between OPSO (group 1) and ACO (group 5),
CGO (group 6), and LSHADE (group 7). Finally, the post-hoc test
for F1-score indicates a significant difference between OPSO and
DE (group 4), ACO (group 5), and AOA (group 8).

6.4 Ablation study

In this section, we presented a comparison between the
developed model and other studies that used the same ETDD70
dataset. This comparison is presented in Table 7, and we use
the accuracy metric because it is common across studies.
From the results given in Table 7, it is clear that (Nguyen
et al., 2025) reports accuracy values that vary from 73% to
80.6% for different classifier techniques such as CatBoost,
LR, TabPFN, and LLMs. Whereas the classifiers (e.g., SVM,

Random Forest, k-NN, and Gradient Boosting) used in
Sedmidubsky et al. (2024) nearly have an accuracy of 90%,
as well as the accuracy given in Svaricek et al. (2025) using
INSIGHT is 86.65%. The average accuracy obtained using
CatBoost and XGBoost in Nora (2025) is 80%. Finally, the
developed OPSO has the highest accuracy value, which is
94.3%, and this indicates its superiority over all previously
reported techniques.

Finally, this study presented Optical PSO (OPSO), an advanced
form of PSO that draws on optical computing principles, used here
to select key features for detecting dyslexia from the ETDD70 eye-
tracking dataset of 70 Czech children (50 with dyslexia). OPSO
delivered better results across six datasets (D1–D6) from different
reading tasks, with average accuracy, sensitivity, AUC, and F1-
score. These outperformed PSO, ACO, DE, and other methods, as
shown by the Friedman test rankings. The findings enable reliable
early detection of dyslexia through eye-movement signs such as
prolonged fixations and backward jumps. Moreover, there is no one
algorithm, including OPSO, that can reach high accuracy among
the tested datasets (D1-D6). This aligned with the no-free-lunch
theory (NLF), which states that no single algorithm can solve
all optimization problems (e.g., feature selection) with the same
performance. Furthermore, the proposed model has the following
effects on Children with Dyslexia as follows:

• OPSO has sensitivity (up to 98.33%) and AUC (over
0.94), reducing missed cases, which is supported during
key brain development years (ages 9–10 in this data),
helping to curb lasting issues in reading, school success, and
emotional well-being.

• Simple eye-tracking paired with OPSO analysis (94.3% average
accuracy) takes over from biased expert judgments, making
widespread checks possible in places short on resources,
like schools.

• Proposed detection model custom plans that target dyslexia
signs (long fixations, regressions), offering tailored reading
help and possibly easing the burden of dyslexia, which
accounts for 80% of learning problems.

• Dyslexia—a brain-based condition affecting 5%–10% of kids
and up to 80% of learning troubles—OPSO marks a real step
forward in hands-off detection using ETDD70 eye data. It
hits 92%–96% accuracy, 94%–98% sensitivity, and leads in
AUC/F1 scores against AI models like SVM/RF (90%), nailing
dyslexic eye patterns in reading.
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FIGURE 7

Post-hoc test: (a) Accuracy, (b) Sensitivity, and (c) Mean of fitness
value. Groups 1 to 8 represent OPSO, PSO, MTBO, DE, ACO, CGO,
LSHADE, and AOA, respectively.

Moreover, there are major benefits for dyslexia care as
follows:

• High sensitivity avoids overlooking kids at ages when the brain
is most flexible (9–10 years), letting proven treatments build

FIGURE 8

Post-hoc test: (a) AUC, (b) F1 score. Groups 1 to 8 represent OPSO,
PSO, MTBO, DE, ACO, CGO, LSHADE, and AOA respectively.

reading skills and dodge emotional setbacks, far better than
old guesswork methods.

• Eye-tracking with OPSO brings checks to underfunded
schools, shortening waits that widen school gaps for
dyslexic kids.

From the previous discussion, it can be observed that the OPSO
applies to the management of dyslexia. However, the proposed
model still has some limitations, such as time complexity, that need
to be reduced. Moreover, the selection of parameters of OPSO.

7 Conclusion and future works

In this study, we presented a modified optimization model
by developing the Optical Particle Swarm Optimization (OPSO)
algorithm. The proposed algorithm relies on incorporating an
optical-based updating mechanism. To evaluate the performance of
the proposed model, two experiments were conducted. In the first
experiment, the main objective is to compare the proposed OPSO

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1731997
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mahmoud et al. 10.3389/frai.2025.1731997

TABLE 7 Comparison between OPSO and other studies using the ETDD70
dataset.

References Model used Accuracy

Nguyen et al. (2025) CatBoost 73%

LR 78%

TabPFN 69%

Large Language Models
(LLMs)

80.6%

Sedmidubsky et al. (2024) SVM, Random Forest, k-NN,
Gradient Boosting

90%

Svaricek et al. (2025) INSIGHT 86.65%

Nora (2025) CatBoost and XGBoost 80%

Our proposed OPSO 94.30%

and traditional PSO for handling global optimization functions.
From this experiment, we demonstrated the superiority of OPSO,
which achieved the smallest fitness value and converged faster than
PSO. Moreover, the second experiment assessed the applicability
of the developed OPSO model for detecting dyslexia. The results of
OPSO have been compared with other well-known feature selection
techniques. The results illustrated the high ability of the OPSO
to reduce the number of features and increase the prediction
performance. Finally, the results of the two experiments indicate
that OPSO not only enhanced optimization accuracy and strong
stability compared to the standard PSO algorithm but also possesses
superior discriminative ability in dyslexia detection.

Based on the promising results, the proposed OPSO can be
applied in future works in different applications. For example,
apply it to enhance Autism detection and other disability diseases.
Moreover, the use of the optical mechanism integrated into OPSO
to solve other optimization problems outside the medical field
could also be explored.
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