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Graph-enhanced multimodal
fusion of vascular biomarkers and
deep features for diabetic
retinopathy detection
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Diabetic retinopathy (DR) detection can be performed through both deep
retinal representations and vascular biomarkers. This proposed work suggests a
multimodal framework that combines deep features with vascular descriptors in
transformer fusion architecture. Fundus images are preprocessed using CLAHE,
Canny edge detection, Top-hat transformation, and U-Net vessel segmentation.
Then, the images are passed through a convolutional block attention module
(CBAM)-fused enhanced MobileNetV3 backbone for deep spatial feature
extraction. In parallel, the segmented vasculature is skeletonized to create
a vascular graph, and the descriptors are computed using fractal dimension
analysis (FDA), artery-to-vein ratio (AVR), and gray level co-occurrence matrix
(GLCM) texture. A graph neural network (GNN) then generates a global topology-
aware embedding using all that information. The different modalities are
integrated using a transformer-based cross-modal fusion, where the feature
vectors from MobileNet and GNN-based vascular embeddings interact using
multi-head cross-attention. The fused representation is then given to a Softmax
classifier for DR prediction. The model demonstrates superior performance
compared to traditional deep learning baselines, achieving an accuracy of 93.8%,
a precision of 92.1%, a recall of 92.8%, and an AUC-ROC of 0.96 for the DR
prediction in the Messidor-2 dataset. The proposed approach also achieves
above 98% accuracy for Eyepacs and APTOS 2019 datasets for DR detection. The
findings demonstrate that the proposed system provides a reliable framework
compared with the existing state-of-the-art methods.

KEYWORDS

contrast limited adaptive histogram equalization (CLAHE), Convolutional Neural
Networks (CNNs), deep learning, MobileNetV3, retinal images

1 Introduction

Diabetic Retinopathy (DR) is a microvascular complication of diabetes and affects
the retinal vasculature. This also alters the retinal characteristics, like microaneurysms
and hemorrhages, which are important biomarkers for early-stage detection. Therefore,
quantifiable retinal features and vascular patterns are observable in fundus images.
Artificial intelligence (AI) and deep learning approaches have significantly enhanced
automated screening and diagnosis, and also led to accurate DR detection (Aljohani
and Aburasain, 2024). The retinal characteristics also work as an effective biomarker for
systemic pathologies like hypertension, diabetes, and cardiovascular disease(CVD) (Poplin
et al., 2018; Tkram et al., 2006). Based on the retinal vascular alterations, it is possible to
forecast these diseases and enable interventions on time. This resulted in incorporating Al
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and deep learning algorithms for machine-based analysis that
improved the efficacy and accuracy of retinal image-based diagnosis
(French et al.,, 2022). Yet, it is time-consuming, subject to inter-
observer variation, and not feasible in large-scale screening.

Despite the improvement in medical technology, traditional
diagnostic methods are still mainly invasive, costly, and unavailable
to some countries (Chang et al,, 2020). Sophisticated medical
facilities and professional expertise are needed for established
methods such as coronary angiography, echocardiography, and
cardiac MRI, thus restricting their applicability. Consequently,
researchers have been driven to create new alternatives that exploit
low-cost and noninvasive strategies for detecting early disease (Rim
etal., 2021).

Deep learning allows for automatic feature extraction and
classification, lowering the reliance on manual interpretation.
Convolutional Neural Networks (CNNs) have proved enormously
successful in detecting and classifying abnormalities on medical
images, from tumor detection in radiology to retinal pathology
detection in ophthalmology (Kermany et al., 2018).

In this proposed work, to improve classification accuracy,
various image preprocessing methods, such as contrast limited
adaptive histogram equalization (CLAHE), Canny edge detection,
Top-hat transformation, and U-Net for vessel segmentation, are
employed. A vascular graph is created from the segmented and
then skeletonized images. Then gray-level co-occurrence matrix
(GLCM) is used for regional feature extraction. GLCM offers
texture-based features that assist in distinguishing normal and
abnormal retinal patterns. Further, the fractal dimension analysis
(FDA) is integrated to measure vascular complexity and structural
abnormalities for the early detection of DR. Artery-to-vein ratio
(AVR) is also an important biomarker to indicate DR severity.
A graph neural network(GNN) embeds the vascular graph with
other feature descriptors like GLCM, FDA, and AVR to create the
graph-embedded features.

The segmented images are also given as input to a lightweight
CNN model, MobileNetV3, which is optimized for high efficiency
and low computational overhead, as the basis for an efficient and
scalable automated DR detection. In contrast to traditional CNN
models that require heavy computational resources, MobileNetV3
uses depth-wise separable convolutions, which greatly minimize
the number of parameters without compromising accuracy.
MobileNetV3 is highly suitable for real-time applications like
mobile health systems and telemedicine platforms. Components
like squeeze-and-excitation(SE), block attention mechanism, and
dilated convolutions are also added to enhance it further in
the proposed work. The SE attention mechanism recalibrates
the feature maps dynamically, and hence the model focuses on
critical vascular areas (Tseng et al., 2023). The dilated convolutions
enhance the receptive field, which helps the model to detect
the fine-grained vascular patterns, which are highly useful for
identifying early disease. The transformer-based cross-modal
fusion used in the proposed system helps in the fusion of deep
features from MobileNetV3 and graph-embedded features. The
contributions of the proposed work are listed as follows:

e Preprocessing techniques: CLAHE, Canny, and Top-hat
transformation help in enhanced visibility of vessels.
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e Vessel segmentation: U-Net helps in vessel segmentation,
thereby boosting overall accuracy while extracting global and
local features.

e Local features extraction: GLCM, FDA, and AVR calibration
help in extracting local features.

e Global features extraction: MobileNetV3 and SE block
attention mechanism enhance feature selection by
dynamically recalibrating channel-wise feature responses,
ensuring the model focuses on critical vascular regions such
as microaneurysms, vessel narrowing, and tortuosity, which
are the key indicators of DR.

e Dilated convolutions: Increases receptive field without
elevating computational expense, allowing for the
identification of fine retinal vascular abnormalities, including
subtle vessel deformity and capillary dropout, that are
frequently linked to DR prediction.

e Convolutional block attention(CBAM) Module: Helps in
enhancing vessel structures, suppressing noise.

e Graph-based embedding: GNN helps in graph-enhanced
feature embedding and also preserves the information about
the vascular junctions and branches.

e Cross-modal fusion: The deep features from MobileNetV3
and graph-embedded features are fused using a transformer-

based cross-modal fusion technique.

In the existing literature, several studies exist that focus
on graph-based learning, multimodal fusion, and attention
mechanisms for DR detection. But most of the existing models use
only feature-level fusion across CNN streams and not physiological
structures. Also, the graph-based approaches mostly rely on
handcrafted descriptors, without vascular biomarkers. Most of
the existing works treat the modalities as independent channels,
without any standardized method for cross-modal interactions.

The proposed framework helps in addressing these gaps.
(i) This work proposes a vascular biomarker graph in which
nodes encode the descriptors, and edges model the anatomical
relationships. This representation helps in capturing the disease-
relevant dependencies that are not seen in other conventional
attention-based fusion models. (ii) A graph-enhanced multimodal
fusion module is proposed that uses a relation-aware fusion
mechanism. Thus, the model learns complementary interactions
between learned deep features and structured biomarker
information, which is better than the existing hybrid pipelines.
The proposed system also uses vascular biomarkers FDA, and
the arteriolar-to-venular ratio (AVR) that captures the earlier
microvascular changes due to DR. The transformer-based
cross-modal fusion module has better interaction modeling that
improves the robustness.

Section 2 discusses other existing works in the literature.
Section 3 outlines the methodology, wherein preprocessing
improves vascular structures before feeding them into a
MobileNetV3-based model with dilated convolutions and SE
attention. It also explains the proposed integrated methodology
used for DR detection. Section 4 reports experimental results on
the different datasets (Herrerot, 2022), providing metrics such
as accuracy, precision, recall, and AUC-ROC scores. Section 5
concludes the findings.
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2 Related works

(Gulshan et al., 2016) constructed a deep learning model for
diagnosing DR based on retinal fundus images. The system had
high specificity and sensitivity, demonstrating the viability of CNNs
in automating diagnosis. The work of Gulshan et al. emphasizes
the benefits of non-invasive imaging methods for high-volume
screening. Limitations lie in the need for large annotated datasets
and computation for training and deployment. Solutions to these
might make it more viable in low-resource settings.

Das and Pumrin (2024) investigated the application of
MobileNet in the classification of retinal images to diagnose
DR. MobileNets thin model supports low-cost computation,
which is useful for low-resource environments. Data preprocessing
methods, such as resizing and augmentation, were demonstrated
in the study to significantly enhance model performance. The
study, however, did not conduct an exhaustive examination of the
effects of varying preprocessing approaches on prediction accuracy,
leaving it for future studies to further improve these techniques.

He et al. (2015) presented the ResNet architecture that
overcomes the problem of vanishing gradients in deep networks
using residual connections. Litjens et al. (2017) used CNN-based
architectures as a building block for processing challenging medical
images such as retinal scans. Zhang et al. (2019) suggested the
use of attention mechanisms with deep learning frameworks.
The application of attention mechanisms improves the diagnostic
performance and interpretability. Liu et al. (2024) proposed an
adversarial learning-based framework for the segmentation that
leads to better feature representation and edge detection. The
model was good for noisy and complicated datasets. Huang et al.
(2023) explored the contrastive learning methods to classify retinal
images. It lowers the dependency on expert-annotated examples.
Aljohani and Aburasain (2024) suggested a hybrid glaucoma
detection system with Random Forest and CNNs (ResNet50, VGG-
16) for glaucoma detection. Ting et al. (2017) considered the effects

TABLE 1 Summary of the DR Detection methods in literature.

10.3389/frai.2025.1731633

of automated deep learning models on early disease identification,
workflow performance, and diagnostic accuracy.

Shipra et al. (2024) used explainable AI (XAI) in medical
imaging. The work used Grad-CAM and SHAP values to visualize
outputs that also helped the clinicians to understand and believe
Al-derived predictions. The incorporation of XAI into CNN
models enhanced confidence in automated diagnostic systems.
Nonetheless, there were issues raised in terms of balancing
explainability and predictive performance, as a few interpretable
models had a slightly lower accuracy compared to their black-
box variants. Future research should investigate how to improve
interpretability without losing classification accuracy, perhaps
through hybrid AI-human decision-making systems.

Ronneberger et al. (2015) proposed the U-Net architecture,
which has been well used in medical image segmentation,
including retinal vessel extraction. The experiment proved that
skip connections and upsampling policies of U-Net were better at
maintaining spatial details than standard CNNs, leading to better
segmentation accuracy. The model’s capability of performing well
on small datasets was especially useful in medical applications.
Nevertheless, the experiment showed a reliance on the quality of the
datasets and domain-specific fine-tuning. Table 1 gives a detailed
review of some of the existing works.

The transformer architectures have recently enhanced
multimodal learning approaches. Shamshad et al. (2023) in their
survey have highlighted the ability to model the cross-modal
interactions better than CNNs. Zhou et al. (2023) introduced a
transformer-based model that processes radiographs, text, and
laboratory data using intra- and inter-modal attention, which
performed better than image-only pipelines. Warner et al. (2024)
examined multimodal machine learning in clinical biomedicine,
indicating the fusion and alignment problems that actually
motivate for graph-aware and transformer-based models. Dong
et al. (2025) proposed a multimodal transformer system that
combines fundus images with clinical data for DR diagnosis,

1 Pratt et al., 2016 DR Classification EyePACS Variable quality CNN + data Robust Retinal images,
augmentation classification, CNN
Gulshan et al., 2016 DR Detection EyePACS, High-resolution Inception-V3 CNN High sensitivity DR, deep learning,
Messidor-2 fundus images screening
Voets et al., 2019 Cross-domain DR | EyePACS, Mixed clinical Comparative CNN Performance Domain adaptation
performance Messidor analysis drop in domain
shift
Lam et al,, 2018 DR Lesion Messidor Good quality Transfer learning Enhanced Transfer learning
Detection images (ResNet) microaneurysm
detection
Lietal, 2019 DR Grading DDR Dataset Clinical dataset Attention-based CNN Attention maps DR grading
Fang and Qiao, Early DR DIARETDBI1 Medium-quality Hybrid DL + Improved early Hybrid ML
2022 Detection handcrafted features lesion detection
Dixit and Jha, 2025 DR Staging APTOS, Messidor | High-quality EfficientNet classifier Lightweight EfficientNet
image model
Keel et al., 2019 DR Screening Primary dataset Low and variable DL-based clinical Real-world Screening system
real-world images screening system clinical workflows
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showing the importance of cross-attention compared to retinal and
systemic features to improve the performance.

Haq et al. (2024) reviewed the DR detection models, indicating
the vision transformers’ good performance. Bhoopalan et al. (2025)
proposed a task-optimized vision transformer (TOViT) for DR
detection. Mutawa et al. (2024) designed a CNN-based DR staging
model with CLAHE and discrete wavelet transform to pre-process
the images. Senapati et al. (2024) reviewed CNNs, hybrid, and
transformer-based methods, which support the use of transformer-
based multimodal fusion for DR detection. The deep learning-
based models have displayed potential in classifying retinal disease
(Gulshan et al., 2016; Kermany et al., 2018), they tend to be based
on large annotated images and are less interpretable (Wang et al.,
20205 Litjens et al., 2017). General models such as EfficientNet
and ResNet need domain-level fine-tuning (He et al., 2015),
while attention-based algorithms are computationally expensive.
To overcome such limitations, the proposed method promotes
contrast with CLAHE (Zuiderveld, 1994) and obtains clinically
meaningful biomarkers, such as AVR (Seidelmann et al., 2016),
FDA, and GLCM-based texture features (Haralick et al., 1973),
while maintaining physiological relevance.

3 Proposed methodology

The goal of the proposed system is to enable an integrated
system for the efficient and interpretable diagnosis of DR detection
by analyzing retinal fundus images. The system, illustrated in
Figure 1, is designed around deep learning and traditional image
processing techniques to capture both macro-level and micro-
level features in retinal vasculature. Initially, the system acquires
high-resolution retinal images, which are subjected to a series
of preprocessing steps aimed at enhancing visual quality and
suppressing noise. The use of CLAHE and Canny edge detection
helps in improving the vessel contrast and delineation.

After preprocessing, the U-Net creates a segmented image that’s
passed into an enhanced MobileNetV3 network. To complement
the learned representations, handcrafted features are extracted
from the same preprocessed and segmented images. These include
GLCM descriptors that capture vascular texture properties and
FDA, which quantifies the complexity of vessel branching. The AVR
is also computed, and a vascular embedding is created using GNN.
Then this is fused with deep features from MobileNetV3, using
transformer-based cross-modal fusion that enhances the model’s
interpretability and robustness.

3.1 Dataset

Each of the DR tests in the Messidor-2 dataset consists of
two macula-centered eye fundus images, one for each eye. The
dataset only contained photos that were macula-centered. There are
874 examinations (1748 pictures) in Messidor-2. The excess black
background has been removed from this preprocessed version of
the Messidor-2 dataset, which is accessible at Messidor-2. The
MESSIDOR-2 DR grades are the source of the DR grades (https://
www.kaggle.com/datasets/mariaherrerot/messidor2preprocess).
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Blindness detection was separated into groups for training,
validation, and testing in the APTOS 2019 dataset. The Asia
Pacific Tele-Ophthalmology Society 2019 Blindness Detection
(APTOS 2019 BD) collection contains 3662 samples collected from
numerous individuals in rural India. The Aravind Eye Hospital in
India organized the dataset. The fundus images were collected from
a number of locations and conditions over a long period of time.
The samples were then analyzed and categorized by a group of
trained medical experts using the International Clinical DR Disease
Severity Scale (ICDRSS) as a reference. According to the scale
system, the APTOS 2019 BD samples are divided into five groups:
proliferative DR, mild DR, moderate DR, severe DR, and no DR
(https://www.kaggle.com/datasets/mariaherrerot/aptos2019).

The International Clinical Diabetic Retinopathy (ICDR)
grading scale, which divides retinal fundus pictures into five DR
severity categories, is used in the EyePACS dataset. A healthy
retina with no discernible microaneurysms or lesions is represented
by class 0 (No DR). Only microaneurysms, which manifest as
tiny red spots on the retina, are seen in Class 1 (Mild DR).
Microaneurysms are included in Class 2 (moderate DR), which
also includes moderate vascular anomalies or other hemorrhages.
Intra-retinal microvascular abnormalities (IRMA) and multiple
hemorrhages are characteristics of class 3 (severe DR); however,
proliferative DR is not present. The most advanced stage, known
as Class 4 (Proliferative DR), is characterized by neovascularization
and vitreous or preretinal hemorrhages, increasing the risk of visual
loss (https://www.kaggle.com/competitions/diabetic-retinopathy-
detection). In the experiments, a five-fold cross-validation is used.

To further support vessel segmentation and feature validation,
an additional publicly available dataset, the retina blood vessel
dataset (Wagih, 2023), is incorporated. These datasets provide a
broader spectrum of retinal characteristics and enhance model
generalization  (https://www.kaggle.com/datasets/abdallahwagih/
retina-blood-vessel).

3.2 Preprocessing techniques

Preprocessing improves image quality and emphasizes
diagnostically relevant structures. This study employs a series of
transformations to highlight blood vessels, reduce image noise, and

extract spatial texture information.

3.2.1 Vessel visibility enhancement using CLAHE
CLAHE improves local contrast by equalizing intensity values

in small image tiles, avoiding over-enhancement and preserving

fine details as in Figure 2. The transformation is computed using:

_ CDF(x) — CDFpyip

T() =~ epr X L=1) 1)

where:
CDF(x) is the cumulative histogram value at intensity x,

CDFpin is the minimum histogram value in the tile,
M is the number of pixels per tile,

L is the maximum pixel intensity.
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FIGURE 1
Overview of the proposed multi-modal framework with preprocessing pipeline, deep-features, graph-embedded features, and transformer-based
cross-modal fusion.
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FIGURE 2
Illustration of vessel visibility enhancement in retinal fundus images
using CLAHE.

3.2.2 Highlighting vessel boundaries using Canny
algorithm

The Canny algorithm identifies edges by detecting gradients
and applying non-maximum suppression. The steps include
Gaussian smoothing and gradient estimation as in Figure 3:

_ 24y

e 202 (2)

Gy) = 202

G=,/Gi+G} (3

where G and G, are the gradients in the x— and y— directions.

3.2.3 Morphological vessel enhancement
(Top-hat transform)

The Top-hat transform isolates small, bright objects such as
vessels. The mathematical formula is given as:

Ttop-hat(l) =I1—-(IoB) (4)

where o denotes morphological opening.

3.2.4 U-Net for segmentation

The combination of preprocessing techniques leads to:

e Enhanced visibility of fine vascular patterns.

e Suppression of imaging artifacts and irrelevant background.

e Improved feature extraction by the deep learning backbone.
These effects collectively improve the system’s diagnostic

accuracy, specificity, and generalizability for real-world screening
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FIGURE 3
Result of Canny edge detection and highlighting vessel boundaries
in retinal fundus images.

applications in DR detection. Here, the U-Net is used for
segmentation purposes before extracting the features using
MobileNet and handcrafted features.
noisy background and improves accuracy and interpretability

It also removes the

(Ronneberger et al., 2015). The segmented vasculature is then
converted into a skeleton representing the branching topology.
Here, the nodes represent the anatomical points, the edges
represent the vessel segments, and the attributes are the features.
The graph representation helps to preserve the local and
global properties.

3.3 Feature extraction blocks

The feature extraction blocks used help in the extraction
of both the semantic features and fine-grained statistical cues
from retinal images. After preprocessing, the segmented image
from the U-Net is given to the MobileNetV3, which helps in
capturing vessel tortuosity, branching, and lesion features. An SE
attention block with the dilated convolution layer improves the
focus on relevant areas within the image. Simultaneously, the
segmented image is skeletonized into a vascular graph, and the
features are extracted using GLCM and FDA. GLCM extracts the
second-order texture information, such as contrast, correlation,
and homogeneity, and FDA computes the complexity and self-
similarity of the vascular structures. AVR, which is a vital biomarker
used in the proposed approach, is also computed. The features are
embedded in a graph-based representation using GNN, along with
the topology information about the junctions and branches. The
deep feature and the graph-embedded features are then fused using

frontiersin.org
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a transform-based cross-modal fusion, which is then passed to a
classification head that performs the final prediction.

This proposed approach has both the strength of deep features
and handcrafted features that improve the sensitivity even to subtle
vascular variations.

3.4 Enhanced MobileNetV3

The enhanced MobileNetV3 extracts the deep features
regarding microaneurysms, hemorrhages, exudates, and vessel
abnormalities, which are the primary indicators of DR.

3.4.1 Dilated convolution

Pooling is typically performed after a primary convolution
operation to reduce dimensionality and strengthen the local
features. Pooling also enhances the receptive field, and more global
features can be extracted. However, the fine-grained information
is lost in the feature maps, which can reduce image recognition
accuracy. Without pooling, the receptive field may still be too
limited, as it would prevent the extraction of larger spatial
relations. With pooling being included, the receptive field of
the convolutional kernel is larger, allowing for broader feature
extraction. To overcome the disadvantage of pooling, dilated
convolution was introduced as shown in Figure 4. This technique
modifies the convolution process by introducing gaps (or dilation)
among kernel elements, increasing the receptive field without
losing the resolution of the feature maps. Unlike pooling, dilated
convolution doesn’t alter the sizes of input and output feature
maps; therefore, no spatial information is lost.

Dilated convolution has several advantages. One, through
the addition of a dilation rate, the receptive field is widened
without sacrificing resolution, with the relative spatial relation
between pixels remaining intact. Two, through the addition of
more dilated convolutions with varied rates, multiscale contextual

10.3389/frai.2025.1731633

features are obtained. Three, computational cost is relieved because
the receptive field is widened without new parameters added (Yu
and Koltun, 2015). Algebraically, dilated convolution is written as:

)=y flp+d-hq+d-j) ghj) (5)

where:

e p,q are the horizontal and vertical coordinates in the
feature map.

h, j are the coordinates in the convolution kernel.

f represents the feature map values.

g represents the convolution kernel values.

d is the dilation rate, determining the spacing between
kernel elements.

3.4.2 Squeeze-and-Excitation block (SE)
attention mechanism

The SE block improves the performance of MobileNetV3 by
adaptively recalibrating channel-wise feature responses. SE blocks,
as in Figure 5, enhance the informative ones while suppressing
less relevant channels. This helps in detecting the vascular
abnormalities in retinal images, like vessel narrowing, tortuosity,
and microaneurysms, better.

The squeeze and excitation step compresses the spatial features
(of size H x W) in each channel using Global Average Pooling
(GAP) (Jin et al,, 2022), resulting in single descriptor per channel:

1
H x

M=

Zc = Xc(i>j) (6)

w

i=1 j=1

Here, X.(i,7) is the activation at pixel (4, ) in channel c.
The channel-wise descriptors are given to a bottleneck
consisting of two fully connected (FC) layers with non-linear

1-dilated 3x3 convolution

2-dilated 3x3 convolution

Original Enhanced
Retinal Image

Concated Feauture
Map

3-dilated 3x3 c;

nvolution

I . l e

FIGURE 4
Dilated convolution used in MobileNetV3.
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FIGURE 5
Squeeze-and-Excitation Block used in MobileNetV3.
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activations (ReLU and sigmoid) that result in a learned attention
weight for each channel:

s=o(W,y-8(W; -2)) (7)

Where:

e Wj and W, are the weight matrices,
e § is the ReLU activation function,
e o is the sigmoid activation function where output is in the

range [0, 1].
The original feature maps are then scaled by the

learned weights.
Xc =5 Xc (8)

where s; is the learned attention weight, and X, is the original
feature map.

The dilated convolutions capture the multiscale spatial context
without affecting the resolution. The global average pooling used
in SE blocks aggregates global channel-wise statistics. This ensures
that high-level contextual cues are significantly enhanced without
compromising spatial details. This highlights the diagnostic
features and suppresses the noisy channels.

The MobileNetV3 used in this framework has dilated
convolutions and SE-block attention mechanisms. The use of SE
blocks enhances feature selection. The non-linear(NL) functions,
such as Hard-Swish (HS) and ReLU activation functions, enhance
the efficiency. CBAM helps in focusing better on relevant features.
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3.5 Vascular graph construction

The U-Net model segments the vessel structures, and the
binary vessel map was obtained using morphological thinning.
Bifurcation points and crossovers are identified using connectivity
analysis. Each location, based on proper retinal vasculature, is
a node, and the edges represent vessel continuity. Artery-vein
(A/V) classification is identified using discriminative descriptors,
local intensity statistics, and vessel width. GLCM-based texture
descriptors are computed along each segment, and a lightweight
classifier assists this identification. Each node is encoded with
FDA, AVR, and GLCM-derived texture measures. Vessel segments
belonging to the same branch are assigned a consistent A/V
label, which is later used to augment the node attributes and
other features. The graph was then processed using a GNN to
create a global embedding summarizing morphology, topology,
and descriptors.

The preprocessed retinal fundus image is defined as

I:QCR> >R, )

where Q is the retinal image domain. After vessel segmentation, the
vessel set is obtained as:

S = {x € Q:vessel(x) = 1}. (10)

The operator Skel(-) produces a reduced skeleton
structure using:

K = Skel(S) C €, 11)

which preserves the vascular topology.
For each skeleton pixel p € K, 8-connected neighborhood is
defined as

Np)={geK:lp—qlle =1} (12)
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Nodes V are indicated as

\%4
V()]

{p € K:|N(p)| =1 (endpoints) or

v

3 (junctions)}. (13)

The edges E are the maximal simple paths in K between two
nodes, and all intermediate pixels have a degree [N (p)| = 2.
The retinal vasculature is represented as a graph as:

G =(V.p), (14)

where the nodes are the endpoints/junctions, and edges are the
vessel segments.
Let A € {0, 1}IV1*IV represent the adjacency matrix with

1 if(i,j) € E,

0 otherwise,

Aj= (15)

and D = diag(d;) be the degree matrix with d; = Zj Ajj. The
normalized adjacency is defined as:

A=A+1,  D=diag ZAif , (16)

J

This is used in graph neural network (GNN) processing (Kipf
and Welling, 2017).

Also, deep retinal features are extracted using a MobileNet
backbone enhanced with CBAM. To integrate the information from
deep features and vascular-graph embeddings, a transformer-based
cross-modal fusion was used. The MobileNet-CBAM feature vector
and the GNN-derived vascular embedding are different modalities,
and multi-head cross-attention helps in modeling the interactions.
The final representation has both structural vascular biomarkers
and appearance-based cues. This final fused feature vector is given
to a Softmax classification layer to predict DR severity.

3.6 GLCM and FDA

Gray-Level Co-occurrence Matrix (GLCM) texture descriptors
are calculated as:

Contrast = Z(i —j)zG(i,j), (17)
ij
2= )G — 1) GG, j)
Correlation = Z’] o d / , (18)
Gidj
Energy = ZG(i,j)z, (19)
ij
. G(i, f)
Homogeneity = _ (20)
geneity IXJ: T+ 1i—Jl

where G(3, /) is the normalized GLCM, and p;, o; are the mean and
standard deviation of row i. The RGB histogram is calculated as:

H.(i)) =Y 8((x,y) — 1), ce(RGB) 1)
Xy
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where § is the Kronecker delta, and I.(x, y) is the pixel intensity at
(x, y) for channel c. GLCM captures the texture patterns regarding
microaneurysms and hemorrhages effectively. Here, FDA is a
non-invasive biomarker capturing retinal abnormalities. The box-
counting technique is used to compute the fractal dimension in
FDA as:

log N(¢)

FD = 1i N
20 Tog(1/€)

(22)
where N(¢) is the number of boxes of size € used to cover the vessel’s
structure, regaining the vascular branching’s complexity.

3.7 AVR calibration

The vessel caliber is computed using the arteries and veins
identified in the zone of 0.5-1.0 optical disc diameters from the
disc margin. The central retinal arteriolar equivalent (CRAE) and
central retinal venular equivalent (CRVE) are estimated using the
Parr-Hubbard formulas:

CRAE = \/(0.37 -D?+1.01-D3), (23)

CRVE = \/(0.72 d? +091-d3), (24)

where Dy, D; are the highest arteriolar diameters, and d,, d, are the
highest venular diameters. A lower AVR reflects narrower arterioles
associated with significantly increased risk (Ikram et al., 2006;
French et al,, 2022). The formula for computing the AVR is given
as:

CRAE
AVR = ——.
CRVE

(25)

Canny edge detection enhances the accuracy of delineating
vessel boundaries, especially in low-contrast or noisy fundus
images, by finding the edges accurately. Hence, a more reliable
segmentation of arterioles and venules is possible, which results
in accurate CRAE/CRVE calculation (Seidelmann et al., 2016;
McGeechan et al., 2008).

The AVR is a crucial retinal biomarker for DR detection.
Dilated convolution modules in the architecture expand the
receptive field without losing spatial resolution, thereby capturing
multiscale vessel structures like fine capillaries and larger branches
needed for robust vessel segmentation and AVR estimation. The
inclusion of Frangi filters helps identify broken or small arterioles.
DR results in lower AVR values, due to venular widening (Islam
et al., 2009; Ashraf et al., 2021). The arteriolar narrowing is seen in
regions of retinal non-perfusion and increased DR severity. Wider
retinal venules predict the progression of DR over time (Liu et
al,, 2022). AVR is a helpful quantitative indicator of microvascular
alterations in DR. Fused with other features, it is more effective
(Quellec et al., 2017).

frontiersin.org


https://doi.org/10.3389/frai.2025.1731633
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Deepsahith et al.

3.8 Graph neural network (GNN) encoder

The vascular graph G = (V,E) is embedded with regional
features, such as GLCM descriptors, and global vascular biomarkers
such as AVR, and FDA features (Kipf and Welling, 2017).

Let X € RIVIX4x denote the node feature matrix, where each
node feature vector x; includes:

xi = [ci» g g™ ti] (26)

gnt

,&"" GLCM contrast/entropy, and t;

with ¢; the vessel caliber, gi"
the artery/vein label.
Each GNN layer embeds the node information across

Vessel connections:
~ 1 __ 1
HO = x, HHD = & (D*EAD*EH(“ W“’) , 27

where A is the adjacency with self-loops, D the degree matrix, W)

trainable parameters, and o (-) a non-linearity.
Along with the local encoding, this model also incorporates the
global vascular biomarkers:

s = [AVR, Dp, g7, 3], (28)

where AVR is the arteriovenous ratio in the optic disc annulus, Dgp

con gt are mean

the fractal dimension of the vascular tree, and g
GLCM descriptors computed over the vasculature.
After L GNN layers, the node embeddings {ht(-L)} iev are pooled

to form a graph-level representation:
zg=p({nP:ievy) I s,

where p(-) is an attention pooling, and || denotes aggregation with
the handcrafted global biomarker vector s.

Thus, the final embedding zg has both the vascular structural
information acquired using GNN and clinically interpretable global
biomarkers (AVR, FDA, and GLCM).

3.9 Transformer-based cross-modal fusion

To aggregate all the descriptors, a cross-modal fusion is done
using a transformer encoder (Lu et al., 2019).

® Zimg € R%me: fundus image embedding from MobileNet.

e zg € R9: vascular graph embedding from the GNN encoder.

e s € R%: handcrafted vascular descriptors (AVR, fractal
dimension, GLCM features).

All features are projected into a manifold of dimension d:

tg = Pgzg, tstat = PstatS, (29)

limg = PimgZimg>

where Pimg, Pg, andPg, are the trainable projection matrices.
The input token sequence is constructed as

Ty = [tc]s; timg; tg; tstat] € ]R4Xd> (30)

where ¢ is a learnable classification token.
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Each transformer block uses multi-head self-attention (MHSA)
succeeded by feed-forward layers:

KT
MHSA(T) = Concatg_l<soﬁmax(Qh h ) Vh> wo,  (31)

Jan

where Q) = TW]?, Ky, = TW,f, Vv, = TW]Y.
After B transformer layers, the fused representation is obtained
from the classification token:

B
lfused = tils)' (32)

3.10 Prediction

DR is predicted using the classifier as in :
y= softmax(Wc trused + bc) . (33)

This architecture enables joint reasoning across image-level
features, vascular topology, and handcrafted descriptors, improving
robustness and interpretability.

4 Experimental results and analysis

The datasets used in the experiments, such as APTOS 2019,
EyePACS, and Messidor-2, have different grading protocols,
image quality, and image acquisition techniques. Class-balanced
augmentation is used to manage the imbalancing problem.
Messidor-2, APTOS2019, and EyePACS use different DR grading
schemes, and therefore, the labels were standardized to a unified
5-class International Clinical Diabetic Retinopathy (ICDR) scale to
ensure consistency. To handle dataset heterogeneity, preprocessing
and normalization techniques are applied to three datasets. The
preprocessing pipeline, which includes CLAHE, Canny edge
detection, and Top-Hat filtering, is applied to all datasets. The
parameter values can be adjusted to handle the variations in
illumination, resolution, and image quality across datasets. Here,
all experiments employ 5-fold cross-validation for all experiments,
with patient-level splitting applied for Messidor-2 and EyePACS.
All images from a single patient stay in the same folder, which
prevents cross-patient data leakage. For APTOS2019, stratified
5-fold image-level splitting is used while maintaining class balance.

4.1 Dataset preprocessing and
augmentation

To guarantee high-quality input data, CLAHE was utilized
for contrast improvement to highlight fine retinal blood vessel
pathology. Canny edge detection was used for accurate vessel
segmentation, and morphological Top-hat filtering was employed
to improve the measured vessel morphology. GLCM texture
features were also used to determine spatial relationships among
The FDA was utilized to estimate
vascular complexity to provide a more quantitative measure of

retinal microstructures.

structural pathology.
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Table 2 shows a comparison of three retinal image datasets.
Messidor-2, being the main dataset used in this work, had the
accuracy (93.8%), followed by EyePACS (98.2%) and APTOS
2019 (99.2%).

4.2 Model training and optimization

Training was carried out with categorical cross-entropy loss
and Adam optimizer with the initial learning rate of 0.0001, which
was reduced step-by-step using the ReduceLROnPlateau scheduler
to avoid overfitting. Early stopping criterion tracked validation loss
and stopped the training process if performance was satisfactory,
avoiding repeated computation for the best convergence.

To test every component’s contribution, several test runs
were undertaken with and without notable enhancements like SE
attention, dilated convolutions, and upgraded preprocessing. How
each such component added performance is illuminated by the
ablation studies (described in Section 4.5).

4.3 Performance metrics and evaluation

To empirically assess the performance of the aforementioned
model, a set of evaluation performance measures was used, such
as accuracy, precision, recall, specificity, F1-score, and AUC-ROC.
Accuracy is one of the main measures of whether the model
classifies DR classes correctly, but classification evaluation cannot
be described at all by it, and a set of these measures is more crucial
to obtaining the balance of false positives as well as false negatives.
The hyperparameters used are given in Table 3.

TABLE 2 Accuracy obtained by the proposed model on different datasets.

Dataset Classes Images Accuracy
Messidor-2 5 1,748 93.8%
EyePACS 5 88,700 98.2%
APTOS 2019 5 3,662 99.2%

TABLE 3 Hyperparameters used in the proposed model.

Parameter Setting

10.3389/frai.2025.1731633

Accuracy computes the number of true positives divided by all
cases labeled DR, which decreases the number of false-positives as
illustrated in Figure 6.

Table 4 presents the performance metrics of the proposed
model, achieving 93.8% accuracy, ensuring reliable classification.
The recall of 92.8 indicates strong detection of DR cases, while the
specificity of 94.2% minimizes false positives. The AUC-ROC of
0.96 highlights its excellent discriminatory power, confirming the
model’s effectiveness in automated DR detection.

4.3.1 Output visualizations and explainability
using grad-CAM heatmap

As depicted in Figure 7, the figure depicts the visualization of
outputs after preprocessing, after applying FDA and GLCM.

Gradient-weighted class activation mapping (Grad-CAM) was
used to visualize the key retinal regions impacting the predictions
to improve the interpretability of the suggested deep learning
model. Grad-CAM generates class-discriminative heat maps that
highlight the geographical regions that have the most effects on
model confidence, providing insights into the convolutional layers’
decision-making process.

The model mainly targets areas of high vascular complexity
and optic disk boundaries. These highlighted regions are clinically
relevant, as microvascular irregularities in these regions are

Performance Metrics and Evaluation

100
98 1
-
g
g
<]
[v]
w
Accuracy Precision Recall Specificity F1-Score AUC-ROC
Metrics
FIGURE 6

Performance analysis of the proposed model using different metrics
on Messidor-2 dataset.

Batch size 32
Epochs 100
L TABLE 4 Performance analysis of the proposed model for Messidor-2

Optimizer Adam using different metrics.
Initial learning rate 1x107*

Metric Value (%)
Weight decay 1x107°

Accuracy 93.8
Hidden dimension of transformer | 256

Precision 92.1
Attention heads 4

Recall 92.8
Adam By, B> 0.9, 0.999

Specificity 94.2
Hardware NVIDIA RTX 3090 GPU (24 GB), 64 GB

RAM F1-Score 92.4

Framework PyTorch 2.1.0 with CUDA 12.2 AUC-ROC 0.96
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FIGURE 7
Visualization of outputs obtained during preprocessing, FDA, and GLCM

strongly correlated with DR. The use of Grad-CAM ensures that the
model’s predictions align with clinically interpretable biomarkers,
thereby enhancing trustworthiness for potential integration into
real-world diagnostic systems.

DR is an eye disease, and therefore, models are typically
interpreted through heat maps. The Grad-CAM heat map provides
a pixel-level visualization of the regions that influence the decision
of the model. The green, orange, and yellow regions indicate the
areas of close attention. The yellow color indicates the areas that
strongly contribute to the DR class. These regions coincide with
hemorrhages, microaneurysms, exudates, and areas of vascular
leakage. In addition, purple/blue represents areas (outer retinal
periphery in which fewer lesions are visible) with less influence
on the prediction. The color distribution in Figure 8 indicates that
the proposed model always attends to the regions rich in lesions,
which makes predictions driven by clinically important retinal
features. The green zones indicate the boundaries of the vessel, the
perivascular regions, and the first lesions.

4.4 Comparative analysis with baseline
models

For comparison purposes, the performance of the proposed
model was also compared to the existing models in the literature,

Frontiersin Artificial Intelligence

including MobileNetV3 without SE augmentation, ResNet50,
EfficientNet-B0O, DenseNet-121, and Vision Transformer. The
suggested model surpassed all the rest, with 93.8% accuracy and
0.96 AUC-ROC as illustrated in Figure 9, proving that SE is effective
in recalibrating features and dilated convolutions help increase the
detection of vessel pathology. Table 5 depicts that the extraction
of the vessel segmentation masks by the proposed approach is
good when applying it on the retina blood vessel dataset and
analyzing the performance before applying it on Messidor-2. The
AVR annulus map with arteries and veins identified is given in
Figure 10.

4.5 Ablation study

Ablation experiments play an important role in estimating the
contribution of different elements in deep learning models. In this
work, the impact of the SE-Block attention mechanism, dilated
convolutions, and preprocessing techniques on the accuracy of
the proposed MobileNetV3-based retinal image classifier for DR
detection is thoroughly analyzed. This analysis is achieved by the
stepwise addition or elimination of significant components through
an ablation study.

e Baseline Model (MobileNetV3 Only) There is no fine-
grained vessel detection, and as a result has moderate accuracy.
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FIGURE 8
Grad-cam heatmaps obtained using the proposed model.

No DR 0448 No DR
Mild -0.110 Mild
Moderate 0.596 Moderate
Severe -0.374 Severe
Proliferative -0.352 Proliferative

9863 No DR -0.506
-1.930 Mild -0.017
-0.944 Moderate 0.732
-3.223 Severe -0.381
-3.138 Proliferative

-0.181

Comparison of Model Performance

100.0
Models
MobileNetVv3
ResNet-50
EfficientNet-BO
DenseNet-121
VT
Proposed Model

97.5 1

95.0 1
93.8

=1
—
==
=
=R
=

92.5 1

Score (%)

87.5

85.0

82.5

Precision

Accuracy

FIGURE 9
Comparative analysis with different existing models for Messidor-2.

Metrics

Recall F1-Score AUC-ROC

+ SE-Block Attention It has improved feature representation
and thereby enhances sensitivity.

+ SE-Block + Dilated Convolutions Expands the receptive
field, and there is better detection of fine detailed patterns.

+ SE-Block + Dilated Convolutions + CBAM Improves the
vessel visibility for mild abnormalities.

GLCM Helps in capturing statistical and structural details.
FDA Helps in measuring the irregularity in retinal structures.
AVR The decreased AVR value helps in flagging the high-risk
patients by identifying the DR severity.

Proposed full model Combines all enhancements, achieving
the highest accuracy, proving that each added feature
significantly contributes to overall performance.
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Table 6 shows the results of the ablation experiment. Baseline
MobileNetV3-alone model achieves 86.5% accuracy, but has low
sensitivity to fine vascular pathology. The SE-Block attention
mechanism improves the accuracy to 88.3%. Dilated convolutions
boost the accuracy to 88.8% by capturing the fine retinal
details. Preprocessing techniques such as CLAHE and edge
detection significantly enhance vessel visibility, particularly in
mild DR cases, boosting contrast and structural definition.
Stepwise performance improvement is evidence of the necessity
for combining spatial attention, multiscale feature extraction, and
advanced preprocessing techniques to reach peak classification
accuracy. AVR boosts the accuracy to 93%. The entire model
achieves 93.8% accuracy, indicating the overall effect of feature
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extraction and classification improvement. These results verify the
necessity of a hybrid domain-specific and deep learning technique
for medical image analysis. Also, cross-domain experiments, as in
Table 7, are conducted to analyze the effect of domain shift due
to variations in illumination, resolutions, and grading. Therefore,
the results show the competitive performance across datasets and
its ability to perform well in real-world environments. The present
work focuses on publicly available datasets, but the methodology
can be extended to suit naturally to hospital-based environments,
which is a crucial direction for future validation.

10.3389/frai.2025.1731633

A five-fold cross-validation is performed on all three datasets.
Table 8 shows the results and their 95% confidence intervals,
indicating stability across folds. A paired t-test conducted on
the 5 folds resulted in a statistically significant performance
improvement when compared to the best baseline vision
transformer, as p < 0.05. The proposed model also achieves

TABLE 6 Ablation study of the proposed model using Messidor-2 dataset.

} R o . Configuration Acc. Sens. Spec. AUC F1
The results in Table 7 indicate the generalization capability
across datasets that have different imaging characteristics. The MogllleNetV.’) baseline 865 81.0 oL5 0910 | 813
. B . . mode!
results of Messidor-2 show some variation because of domain
shift, and the model has high accuracy and AUC even after +SE 88.3 83.8 9L1 0926 | 821
the transfer to APTOS 2019 and EyePACS, featuring robustness. + CBAM 88.7 84.1 91.4 0919 | 825
These results indicate the suitability for deployment even in . .
. + Dilated Convolution 88.8 86.3 91.5 0.920 82.6
heterogeneous environments.
+ SE + CBAM 91.2 90.6 93.0 0.935 87.1
+ SE + Dilated 91.0 90.8 91.8 0.933 87.9
TABLE 5 Performance analysis of vessel segmentation masks extraction Convolution
by CLAHE + Canny + Top-hat + U-Net on retina blood vessel dataset. + CBAM + Dilated 91.4 91.0 9.1 0.937 88.4
Convolution
Metric Value
+ SE + CBAM + 91.8 91.1 92,5 0.941 88.9
Accuracy (%) 95.85 Dilated Convolution
Sensitivity (%) 92.12 (above) + CLAHE 91.2 91.1 93.9 0.935 89.6
Specificity (%) 90.92 + Canny 91.5 91.4 92.3 0.920 90.2
Precision (%) 91.45 + U-Net 91.7 91.5 91.6 0.923 90.6
F1-Score (%) 93.27 + GLCM 92.0 92.1 92.1 0.929 90.6
Dice Coefficient 0.873 + FDA 92.1 92.3 92.6 0.924 91.1
ToU 0.872 + AVR 93.0 92.9 92.8 0937 | 925
AUC 0.937 Full proposed model 93.8 94.2 94.2 0.960 92.4
Original with 0D & Measurement Points: 5.png Segmented Arteries (Red) and Veins (Blue) Overlay
FIGURE 10

Arteries and veins for AVR biomarker.
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greater than 98% accuracy on APTOS and EyePACS, with the
best performance of 93.8% on Messidor-2, indicating robustness.
Also, the baseline models were trained with the same preprocessing
pipeline, data splits, and configuration, and the experiments are
done and reported in Table 9. It indicates that the proposed
work performs better than the standard CNN and transformer-
based architectures for all datasets. These results also indicate
the advantages of combining deep representations with vascular
morphology and other descriptors.

TABLE 7 Cross-domain evaluation of the proposed model.

Training Testing Accuracy Precision AUC
dataset Dataset (%) (%)

Messidor-2 EyePACS 98.2 97.8 0.98
APTOS2019 | Messidor-2 935 92.0 0.95
EyePACS Messidor-2 93.5 92.1 0.95
Messidor-2 APTOS 2019 98.0 97.5 0.98

TABLE 8 Five-fold cross-validation performance of the proposed model.

Dataset Accuracy Precision Recall (%) AUC
(%) (%)

Messidor- 93.8+0.7 92.1£0.5 928+ 0.6 0.960 £ 0.008

2

APTOS 992405 98.8 + 0.4 99.0+ 0.4 0.990 = 0.004

2019

EyePACS 982 +0.4 97.3+£0.3 97.5+0.4 0.982 £ 0.005

TABLE 9 Comparison with baseline models under identical conditions.

Model Messidor-2  APTOS Acc  EyePACS
Acc (%) (VA Acc (%)
EfficientNet-BO 92.3 97.2 97.1
ResNet50 92.3 96.54 96.0
ViT-Base 92.7 97.3 97.1
Proposed model 93.8 99.2 98.2

TABLE 10 Comparison with the state-of-the-art models for DR detection.

10.3389/frai.2025.1731633

4.6 State-of-the-art

In medical image analysis, deep learning has been a significant
advancement, especially in retinal imaging, where it allows for
automated evaluation of ocular disease like DR. Because of the
Messidor dataset’s high-resolution and detailed retinal images, this
work has investigated the utilization of retinal fundus photos.

As summarized in Table 10, the proposed approach is
compared to the state-of-the-art models using Messidor-
2, EyePACS, and APTOS-2019 datasets for DR detection.
Performance metrics, such as accuracy, sensitivity, specificity, and
AUGC, are used for comparison. The proposed method achieves
good performance for all the datasets. The existing methods, such
as ConvNeXt, EfficientNet, and vision transformer variants, are
used for the comparison. The proposed approach achieves the best
performance when compared to other existing works. There will
be challenges due to poor illumination, demographic bias, and the
presence of artifacts. In the proposed work, CLAHE eliminates
poor illumination by improving the local contrast. Canny +
Top-hat suppresses artifacts and highlights the vessel and lesions.
GLCM and FDA quantify vascular complexity and are robust to
noise. MobileNetV3 also learns discriminative features, eliminating
demographic/device bias while enhancing generalization. AVR
helps in normalizing vessel caliber, eliminating the demographic
bias due to age, sex, and ethnicity. SE and CBAM adaptively re-
weight spatial regions, eliminating the artifacts and only focusing
on lesions. Dilated convolutions magnify the receptive field,
maintaining good resolution, thus helping MobileNetV3 to capture
information under poor illumination and varying image quality.

4.7 Limitations

There is a relatively high computational cost involved both
during training and inference. This will slightly affect the
deployment on low-resource systems or edge devices without
hardware acceleration. Also, scalability requires more optimization
strategies such as model compression. The proposed work also
needs further evaluation on multi-center and handheld screening
devices to verify its deployment to real-world scenarios. The

Dataset Model used Acc. (%) Sens. (%) Spec. (%) AUC References
Messidor-2 Proposed 93.8 94.2 94.2 0.96 This work

DR-ConvNeXt 83.6 74.0 94.6 — Song and Wu, 2025

DRStageNet — — — 0.96 Men et al., 2023

Swin Transformer var. — — — 0.95 Yao et al., 2022; Saadna et al., 2025
EyePACS Proposed 98.2 98.1 98.2 0.98 This work

EfficientNet — — — 0.90 Chetoui and Akhloufi, 2020; Yi et al.,

2021

ViT / Swin — — — 0.98 Huang et al,, 2024; Yang et al., 2024
APTOS 2019 | Proposed 99.2 99.1 99.3 0.99 This work

GPMKLE-Net — — — 0.98 Zhou et al., 2023

ConvNeXt — — — 0.90 Song and Wu, 2025; Nadeem et al., 2022
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experiments on hospital-based data will also be done as future
work, as it requires some more steps regarding domain adaptation.

5 Conclusion

This study suggests a novel and effective deep learning
framework for DR prediction from retinal fundus images. The
proposed architecture gathers local features from retinal fundus
images using MobileNetV3, incorporating SE attention blocks
and dilated convolutions to better capture fine-grained vascular
features indicative of ocular disease such as DR prediction.
Through comprehensive experiments and ablation studies, it is
demonstrated that the inclusion of preprocessing techniques such
as CLAHE-based contrast enhancement, Canny edge detection,
and Top-hat transformation and segmentation using U-Net
improves the performance. Also, the regional features captured
using GLCM, the global biomarker features captured using
AVR, and the FDA contribute significantly to improving model
sensitivity, specificity, and overall robustness. The features are
embedded in a graph-based representation using GNN that
preserves vascular topology. The transformer-based cross-modal
fusion integrates the multi-modal features so effectively. The
model achieved an AUC-ROC of 0.96 on the Messidor dataset—
outperforming conventional risk scoring systems and previously
published deep learning benchmarks. Moreover, the model ensures
feasibility for real-time screening in both hospital and remote
settings. The AVR biomarker individually helps in DR detection
after being fused with MobileNet, GLCM, and FDA features.

In future, it is aimed to expand the model’s utility through
multi-modal learning by integrating retinal image data with
electronic health records, demographic information, and lifestyle
factors to improve DR detection. Additionally, prospective
validation in real-world clinical environments will be explored in
collaboration with healthcare institutions to assess its diagnostic
impact, usability, and integration into clinical workflows.
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