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Large Language Models (LLMs) have come a long way in their ability to solve
a wide range of problems. Yet, LLM decision-making still relies primarily on
pattern recognition, which may limit its ability to make sound decisions under
uncertainty. In contrast, human reasoning often makes use of explicit causal
models, allowing humans to explain, hypothesize, and extrapolate to different
domains in uncertain scenarios. In this article, we explore whether human causal
models can be strategically integrated with Large Language Models to improve
planning outcomes under uncertainty for object assembly and troubleshooting
tasks modeled as Partially Observable Markov Decision Processes (POMDPs). Our
contributions consist of two parts: (1) an interactive LLM agent that plans an
action at each time step by solving a POMDP targeted at an object assembly
or troubleshooting task, and (2) a novel hybrid-reasoning framework that uses
confidence scores in both the LLM agent’s output and a human causal model to
make a final decision on the most appropriate action for the current time step to
achieve the task. We demonstrate the efficacy of our approach through detailed
simulations and show a significant improvement in task planning reward across
three different state-of-the-art LLMs when augmenting the baseline LLM planner
with a human causal model.
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1 Introduction

Large language models (LLMs) have demonstrated strong performance across several
domains, reaching and even surpassing human-expert level performance on certain
benchmarks. However, despite recent progress in creating more powerful LLMs, their
causal reasoning abilities are still deficient (Chi et al., 2024; Wu et al., 2024; Yu et al., 2025).
More recently, there has been a paradigm shift in LLM research with the advent of large
reasoning models (LRMs) such as OpenAI-o1, Gemini 2.5-pro, OpenAI-o3, and Deepseek-
v1, which have exhibited better performance than traditional LLMs across several complex
domains. The success of these large reasoning models has been attributed to training
them on high-quality human-annotated step-by-step reasoning data, process or outcome
reward models trained on domain-specific data that score an LLM’s intermediate steps or
final answer, test-time compute scaling, or a combination of these strategies. Although
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these LLMs perform well on coding, mathematical, and STEM
benchmarks that require substantial reasoning, there remain
fundamental differences between LLM reasoning and human
causal reasoning.

Despite recent progress, LLM decision-making still relies
primarily on pattern recognition, while human reasoning often
makes use of explicit causal models (Lake et al., 2017; Sloman,
2005). Causal models allow humans to explain their observations,
hypothesize about imagined scenarios through counterfactual
reasoning, and draw parallels between different domains. This
ability gives humans a strong foundation for decision making under
uncertainty (Glymour, 2001; Krynski and Tenenbaum, 2003, 2007).

If LLMs could be augmented with human-in-the-loop causal
reasoning, better decisions could be made, especially for solving
problems in uncertain scenarios. To this end, we propose a
reasoning framework that combines the extensive knowledge base
and sophisticated pattern recognition afforded by LLMs with a
human’s ability to form causal mental models in order to solve
sequential decision-making problems under uncertainty.

The problem-solving abilities of LLMs have been measured
through a range of different benchmarks, designed to test
various facets of an LLM’s strengths. For example, the GPQA
benchmark Rein et al. (2023) tests reasoning and knowledge of
LLMs on graduate-level science questions, SWE-bench OpenAI
(2024b) assesses coding prowess, while Humanity’s last exam (Phan
et al., 2025) offers a multi-modal benchmark covering a variety
of subject areas. These benchmarks have questions/problems with
verifiable answers. In contrast, in this study, we deal with sequential
decision-making problems that require optimization and planning
under uncertainty. The aforementioned popular benchmarks do
not measure an LLM’s ability to plan under uncertainty in partially
observable settings.

However, recent studies have shown that LLM-based planners
perform well on different robotics tasks, including those in partially
observable settings (Ahn et al., 2022; Huang et al., 2022; Sun et al.,
2024; Ren et al., 2023). This leads us to hypothesize that LLMs
can serve as a planner for high-level sequential decision making
for assembly and troubleshooting under uncertainty. Furthermore,
we propose to augment LLMs with expert causal reasoning models
from humans in a way that allows for tradeoffs between an LLM’s
knowledge and training and a human’s reasoning, and theorize that
it will improve overall cumulative rewards.

In this article, we explore the ability of LLMs to act as
decisi on-making agents under partial observability for solving
object assembly and troubleshooting problems formulated as
partially observable Markov decision processes (POMDPs). We
further investigate whether human mental causal models of
objects integrated with LLMs can improve overall performance.
In the context of object assembly and troubleshooting, improved
performance is interpreted as fully assembling or repairing the
object in as few sequential steps as possible. To that end, in this
study, we seek to answer the following research questions:

• RQ1: Can LLM agents solve POMDPs effectively? We
designed an interactive LLM agent that plans an action by
solving a POMDP targeted at either an object assembly or a
troubleshooting task. We evaluated the agent using state-of-
the-art large language “reasoning” models (o3-mini, o4-mini)
as well as “non-reasoning” models (GPT-4o).

• RQ2: Can LLM agents be integrated with human expert
causal models for trust-based conflict resolution for
improved decision making? To investigate this research
question, we explore whether rewards obtained by solving
the POMDP can be improved by creating a decision-making
framework that weighs an LLM’s decision against a human’s
causal model to make the final call on the action planned at
each time step.

We note that with regards to the second research question, the
focus of this study is not on the construction of the causal model
itself, but on its use for better decision making with LLM agents.
As discussed later in Section 3.3, the human causal models used in
this study are constructed using the approach described in our prior
works (Basu, 2025; Tatlidil et al., 2025).

2 Related work

2.1 LLM agents as planners

There is a growing body of studies on using LLMs as planners.
In SayCan (Ahn et al., 2022), an LLM is used to generate a
high-level plan, while a learned value function determines if it is
feasible to execute the proposed action. ReAct (Yao et al., 2023b)
introduces a framework that allows an LLM agent to alternate
between generating reasoning traces and acting to solve tasks.
Reflexion (Shinn et al., 2023) introduces a method to convert
environmental signals/observations into useful feedback that is
incorporated into an LLM agent’s context, allowing it to learn
from prior mistakes while planning. Inner Monologue (Huang
et al., 2022) demonstrates how LLM agents in robot planning
can leverage feedback from perception and detection modules for
improved task completion. In Zhao et al. (2023), LLMs are used
to build a world model for POMDPs, which is then used by a
Monte Carlo Tree Search (MCTS) based algorithm for planning.
The search is further informed by using LLMs as a policy. Another
framework using LLMs in partially observable robotics domains is
introduced in Sun et al. (2024), which proposes using the LLM as
the policy model as well as for state abstraction. KnowNo (Ren et al.,
2023) is a framework that proposes using conformal prediction
for uncertainty alignment in LLM-based planners in partially
observable tasks.

Our work is similar to these approaches mentioned above in the
sense that we also propose to use LLMs as policy in an embodied
task, similar to Ahn et al. (2022); Huang et al. (2022). Our task is
also in a partially observable setting, similar to Zhao et al. (2023);
Sun et al. (2024); Ren et al. (2023). However, in contrast to prior
studies, we propose using human causal models to serve the dual
purpose of (1) grounding the LLM in the physical world, and
(2) supplementing the LLM with causal reasoning abilities, which
it lacks.

2.2 Reasoning in LLMs

Several prompting strategies, such as Chain of Thoughts (Wei
et al., 2022) and Tree of Thoughts (Yao et al., 2023a) have been
proposed to elicit step-by-step explanations from LLMs before
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outputting the final answer. These strategies, in turn, have been
shown to improve task performance over simple prompting.
Prior work has also leveraged chains of thoughts/reasoning traces
together with reward models to improve output. Training pipelines
often incorporate the use of trained reward models that can signal
to the LLM whether a reasoning trace results in a correct answer
or whether intermediate steps generated are correct or not. These
reward models can provide feedback on the final answer (outcome
supervision) or on intermediate steps (process supervision). REST-
MCTS* (Zhang et al., 2024) proposes a way to evaluate intermediate
steps in process supervision without human labels by using a Monte
Carlo tree search-based approach to infer the probability that a step
eventually leads to the correct answer. The authors of (Lightman
et al., 2024) argue that using process supervision produces better
reward models compared to outcome supervision in mathematical
reasoning tasks.

More recently, large reasoning models (LRMs) such as
the OpenAI-o1 series (OpenAI, 2024c) and Deepseek-R1 (Guo
et al., 2025) have been in the spotlight for dramatically
improved performance over traditional LLMs in reasoning-heavy
benchmarks. They build upon previous prompting techniques
where asking the LLM to break down their answer in a step-by-
step manner was observed to improve accuracy of the final answer.
These models improve upon traditional LLM models by increasing
train-time compute or by increasing test-time compute or both.

Increasing train-time compute requires training LLMs on
reasoning tasks on top of the training that LLMs usually undergo.
The term “reasoning trace” is commonly used in the LLM
community to refer to a sequence of intermediate tokens that
the LLM autoregressively generates prior to the actual answer.
This series of tokens is referred to as a “chain of thought” or a
“reasoning trace”, an anthropomorphization that researchers argue
can be harmful and misleading (Kambhampati et al., 2025). We
use “reasoning trace” to refer to the series of tokens sequentially
generated by LLMs prior to the answer but do not claim that such
traces reflect actual human-like reasoning. Reinforcement learning
has been used to train Deepseek-R1 (Guo et al., 2025) through
a verification-based reward model, which allowed the LLM to
identify reasoning traces that led to a final correct answer without
human annotation.

Inference time scaling allows models to deliberate longer at
inference time by allocating more test-time compute resources.
Parallel scaling involves sampling several reasoning traces in
parallel, and choosing the best one using majority voting, best of
N sampling, or other aggregation techniques. If a domain-specific
pre-trained process reward model is available, it can be used to
score intermediate steps, followed by strategic search (beam search,
lookahead search or Monte Carlo tree search) to find the best
answer (Snell et al., 2025). Sequential scaling involves teaching the
LLM to iteratively refine its own answers by changing its internal
distribution using its previous answer before sampling the next
answer. Hybrid techniques combine both strategically. More details
on inference time scaling here (Zhang et al., 2025).

While large reasoning models show improved performance
on certain causal reasoning benchmarks, they still fall short of
human performance on many other tasks (Yu et al., 2025). In Chi
et al. (2024), the authors argue that LLMs engage in shallow
causal reasoning, which can be attributed to associations learned

in training, but fall short on more complex scenarios. The ability
of LLMs to generalize across tasks was tested in Wu et al. (2024)
through the design of counterfactual task variants. The degradation
in performance of LLMs on counterfactual variants suggests
the strong reliance of current models on learned data, further
highlighting the lack of causal reasoning abilities in LLMs. While
Chi et al. (2024); Wu et al. (2024) do not evaluate LRMs, they shed
light on some of the limitations of the foundational architecture of
LLMs (and LRMs) that prevent them from engaging in true causal
reasoning and instead being reliant on training that leads to lead to
high performance.

Our framework proposes to bridge this causal reasoning gap
by using human-generated causal models to supplement LLMs.
Many cognitive scientists believe that causal models serve as the
infrastructure for human thought (Waldmann, 2017). Humans
build explanatory causal models of the world (Sloman, 2005) and
use these models to reason in hypothetical space, allowing for
intentional causal reasoning for problem solving. LLMs (including
LRMs) use trained verifiers to signal which line of reasoning is
likely to produce the correct answer; hence, any causal reasoning
observed is incidental. We demonstrate that if mental causal
models of objects from people are combined with task-specific
world knowledge of LLMs, it can improve cumulated rewards in
different object-related tasks.

3 Methodology

In this section, we first describe how object assembly and
troubleshooting tasks can be formulated as POMDPs. We then
describe our prompting structure to elicit actions from LLMs
to solve the aforementioned POMDPs. Finally, we describe
our hybrid-reasoning framework, where we maintain a separate
external belief distribution over system states embedded with
human causal graphs, which allows us to (1) ground the LLM
in the problem by checking for hallucinations or repetitions,
and (2) systematically deal with conflicts when the LLM suggests
actions that are not causally relevant according to the human’s
mental model.

3.1 Problem formulation

Object assembly is formulated as the task of sequentially
connecting pairs of parts to assemble an object. The uncertainty
is over part connections, i.e., it is not known a priori which parts
should be connected to each other. The goal is to assemble the
object in as few steps as possible.

Troubleshooting is defined as sequentially inspecting pairwise
part connections (and the parts themselves) to identify the root
cause of a malfunction. The uncertainty is defined over the true
location of the malfunction.

A POMDP is defined by the tuple 〈S, A, �, O, R, T, d〉, where S
represents the state space, A represents the actions an agent can
take, � represents the set of observations the agent can receive from
the environment, O is the observation model, T is the transition
model, R is the reward model, and d is the discount factor. The full
definitions of object assembly and troubleshooting can be found
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in Basu et al. (2025). Our formulations for object assembly and
troubleshooting as POMDPs are taken from Basu et al. (2025). We
provide a brief overview here for completeness.

3.1.1 Object assembly formulated as a POMDP
3.1.1.1 State space (S)

The state represents the state of assembly. Since assembly is
a series of pairwise part connections, the state defines the pairs
that were already tried and whether they could be successfully
connected. The state also tracks if the assembly is in progress.

3.1.1.2 Action space (A)
This is the set of actions that the agent can take to assemble

an object. There are
(n

2
)

actions for an object with n parts,
representative of each pairwise connection that the robot can try
to connect together.

3.1.1.3 Observation space (�)
A positive observation is received if the two parts to be

connected according to the action planned actually connect;
otherwise, a negative observation is received.

3.1.1.4 Transition model (T)
T(s′|s, a) is the probability of moving to a new state if a

particular action is taken. In our case, it is deterministic. On
taking an action, the state transitions to a new state where the
pair of parts corresponding to the action is marked as a tried
combination (and avoided in the future). We assume actions are
always executed without errors. Hence, if an action of connecting
two parts was successful, progress was made toward the final
assembly. If not, then the current assembly structure did not
change, but we obtained information on connections that are not
part of the final assembly.

3.1.1.5 Observation model (O)
O(o′|s′, a) is the probability of making an observation o′ if

an action a caused the state to transition to s′. In our case, it
is deterministic since we assume error-free action execution. We
receive a positive observation if two parts can be connected, and a
negative observation otherwise, with no uncertainty.

3.1.1.6 Reward model (R(s, a))
A reward of −1 is awarded at each step unless an action results

in a transition to a terminal state, in which case a positive reward
of

(n
2
)

is received. The reward function is designed so that the
cumulative reward tells us the number of steps saved in assembly.

3.1.2 Object troubleshooting formulated as a
POMDP
3.1.2.1 State space (S)

The state S represents the state of troubleshooting an object
with an observable malfunction. It represents the object parts or
pairwise part connections that were already inspected/replaced.
It also tracks whether the object has been fixed (i.e., functioning
again) or not.

3.1.2.2 Action space (A)
The Action space consists of the set of actions the agent can

take to troubleshoot the object. There are
(n

2
)

“inspect” actions for
an object with n parts, representative of each pairwise connection
that could be inspected in search of the true error location. There
are also n “replace” actions corresponding to the n object parts that
could be potentially replaced to fix the problem.

3.1.2.3 Observation space (�)
A positive observation is received if an action fixed the

malfunction and a negative observation is received otherwise.

3.1.2.4 Transition model (T)
On taking an action the state transitions to a new state, where

the pair of parts corresponding to the action is marked as tried (and
avoided in the future). Similar to assembly, we assume that actions
are always executed without errors.

3.1.2.5 Observation model (O)
In our case, O is deterministic as we assume error-free

action execution. We receive a positive observation if an
inspection/replacement fixed the malfunction and a negative
observation otherwise, with no uncertainty.

3.1.2.6 Reward model (R(s, a))
A reward of −1 is awarded at each step unless an action resulted

in a transition to a terminal (i.e., repaired) state, in which case
a positive reward of

(n
2
) + n is received. The reward function is

designed so the cumulative reward indicates the number of steps
saved in troubleshooting.

Solving a POMDP involves mapping a belief to an action at each
time step. The belief (B) is necessary to capture the uncertainty
over states introduced through partial observability. It captures
the probability of a state being the “true state” given the history
of actions and observations (h) taken up to that time step (i.e.,
B(h) = Pr(st = strue|h)). The agent executes the action, which
produces an observation from the environment. The action and
observation together are used to perform a Bayesian update on the
belief. The next action is then planned from the new belief.

When using an LLM to solve the POMDPs described above,
we evaluate its ability to (1) serve as the planner, mapping belief
to action, and (2) update its belief based on the history. For both
assembly and troubleshooting, the task is described in the prompt.
The reward structure and goal is mentioned as well. The action
format is given. The history of actions and observations is also
given. At each time step, the LLM needs to consider the history
in the prompt to infer the current belief and plan an action that
is likely to achieve the final goal. We measure the final reward
obtained after termination using the reward models described.

3.2 LLMs for assembly and troubleshooting

In this section we describe how we use LLMs as decision-
making agents that iteratively interact with the environment to
solve object assembly and troubleshooting (described as POMDPs
in the previous section) under uncertainty. The simulation is set up
to assume that the LLM gives its planned instructions to another
agent that is capable of executing the instruction (e.g., a person
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that the LLM agent is assisting or a robot with the requisite
manipulation skills) and reports back with the observation. The
LLM agent uses the observation to update its understanding of the
problem and plan accordingly. A planning loop is set up where, at
each time step until termination, the LLM is called with a prompt
containing the following information:

3.2.1 Task description
Defines the task and the role of the LLM as an interactive

assistive agent. It instructs the LLM on the overall goal of the task,
the reward module, and the information provided to the LLM to
make a decision, such as the history, the object parts, and the
functions of each part. It also specifies the output format.

3.2.2 Parts
The list of parts in the object considered. The LLM is instructed

to limit its answers to the parts present.

3.2.3 Part functions
The functions of each part of the object and the function of the

object as a whole.

3.2.4 Status
The current status of the task (i.e., whether it is completed

or not).

3.2.5 History
The sequence of actions taken, and the corresponding

observations received at each time step up until the current
time stamp.

Each call to the LLM has no memory of previous calls, so at
each time step the history sequence is updated with the current
action/observation pair, and the entire history is passed the next
time the LLM is called. The planning loop is allowed to run for a
maximum of

(n
2
)

steps for assembly, and for a maximum of
(n

2
) + n

steps for troubleshooting for an object with n parts. These values
correspond to the maximum number of pairwise connections for
assembly and all possible error locations for troubleshooting. The
planning template is shown in Figure 1.

3.3 LLMs integrated with a causal model

We now describe our model for augmenting our baseline
LLMs with a human causal mental model for improved decision
making. We make the assumption that the human causal model
of how an object functions serves as an approximate guideline
for how someone would plan under uncertainty for downstream
object-specific tasks such as assembly and troubleshooting. We
propose to combine an LLM’s decision together with a decision-
making paradigm inspired by a human causal model to come to
the final action planned at each time step. We hypothesize that
supplementing our baseline LLM agents with a human causal

model-guided framework will improve overall rewards for both
tasks. The overall methodology is shown in Figure 2.

Our first step is to create a belief distribution over the task-
specific system states that reflects the expert causal model. We
follow a process similar to that described in Basu et al. (2025)
to achieve this. In the assembly task, the uncertainty arises from
the fact that it is not known which parts should be connected to
each other. The belief captures the probability at each time step
of each possible pairwise part connection being present or not in
the final assembly state. In the troubleshooting task, the uncertainty
comes from not knowing which part or pairwise part connections
are causing the observable malfunction. The belief is a probability
distribution defined over all parts and part connections, capturing
the probability that they could be the cause of the malfunction. The
belief state of each POMDP is factored into separate distributions
for state-specific features under an independence assumption. For
assembly, the features include all pairwise part connections, while
for troubleshooting, the features are all pairwise part connections
and all object parts. That is,

B(h) =
∏

att∈F

P(att ∈ TS|h),

where B is the belief, att represents state-specific features, TS is the
true underlying state which is not fully observable, and h represents
the history of actions and observations.

The human causal model (HCM) is a directed graph where
each node is an object part, and each edge denotes a causal link
between the connected nodes. In our previous publications, we
discuss in detail the elicitation of causal models from non-expert
humans (Basu et al., 2025; Tatlidil et al., 2025). In particular, an
object may elicit a range of causal models from different people
depending on context and previous interaction with the object or
some similar object. However, in this study, our causal models were
determined directly by members of our research team, through
expert knowledge found on the internet, and through mutual
consensus. An example of a causal graph representing the human
causal model of a wall lamp is shown in Figure 3.

The HCM is used to bias the belief distribution in a way that
captures the human mental model such that,

B(h, HCM) =
∏

att∈F

P(att ∈ TS|h, HCM)

Let CA represent the event that a state-specific attribute is also
present in the HCM:

P(att ∈ TS|h, HCM) =
P(att ∈ TS|h, CA)P(CA)+
P(att ∈ TS|h, CAc)P(CAc),

where P(att ∈ TS|h, CA) = α and P(att ∈ TS|h, CAc) = 1−α. Here
α represents the probability that an attribute (part/connection)
present in the expert causal model is present in the true assembly
structure we are trying to discover or the contributing cause of the
malfunction we are trying to remedy. It can be set by the user and
implicitly captures our confidence in the human causal model.

The belief B(h, HCM) not only captures human preference over
the state space, but also provides a direct one-to-one mapping
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FIGURE 1

A sample prompt template for the LLM planner. The object parts and functions are for representational purposes and are different from the actual
objects used.

between the belief and the action space due to the way the factoring
was performed over the state space attributes. That is, in assembly,
the belief over a pair of parts captures the probability that the pair is
part of the assembly and also directly tells us that the corresponding
action is to connect the two parts.

We assume that the LLM maintains its own belief distribution
that we do not have access to, as well as its own internal policy
mapping the history we input to an action. That is, LLMa =
LLMπ (Bllm(h)).

Once we obtain LLMa, we try to determine if the action aligns
with the HCM-guided planning framework by first checking for
conflicts. Conflicts arise in two cases:

3.3.1 State space attribute corresponding to
LLMa is not found in belief B(h, HCM)

In this case, the LLM is suggesting actions that have already
been tried before (and hence corresponding object parts have

been filtered out in B(h, HCM)) or the LLM is hallucinating (e.g.,
suggesting an inspection of a part that does not exist in the
object). In such cases, LLMa is not a valid action, so we directly
sample the attribute with the highest probability in B(h, HCM)
and return the corresponding action as the final action: Finala =
Greedyπ (B(h, HCM)).

3.3.2 State space attribute corresponding to
LLMa is present in believe B(h, HCM) but not in the
human causal model HCM

Let’s call this instance LLMatt . The action suggested by the LLM
is a valid action; however, it is not one that is preferred by the expert.
That is, LLMatt is not a feature present in the causal graph obtained
from the expert. In such cases, we first update the probability of
LLMatt in B(h, HCM) to reflect the LLM’s preferences. Initially,

B(LLMatt) = P(LLMatt ∈ TS|h, CAc)

= 1 − α
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FIGURE 2

The overall methodology of supplementing LLM decision-making with human causal models for solving POMDPs.

FIGURE 3

A sample object used in our study and the corresponding ground truth causal model for the object generated by our team.

Let us assume the confidence in the LLM’s answer is β . The
probability of the attribute is updated to have a value that is
the average of the human’s and the LLM’s confidence. That is,
B(LLMatt) = (1 − α + β)/2. Now we sample the attribute
with the highest probability in the updated belief and return
the corresponding action as the final action. Mathematically, we
express this as Finala = Greedyπ (B(h, HCM, LLM)).

The value of β can be directly obtained from the log
probabilities of tokens in the LLM’s answer or set to a predefined

value by the user. If no conflict arose, then the LLM suggested an
action that aligned with the human causal model. In such cases :
Finala = LLMa.

The value of Finala is the action that is executed in
the environment, and together with the observation received,
it is appended to the history h to plan the next step.
The belief maintained (B) is also filtered after the new
action and observation are received, before the next step
is planned.
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4 Experimental results

4.1 Experimental setup

This study builds upon our previous studies published in Basu
et al. (2025), and uses the same task formulation. The data used to
run the experiments—including the object specifications, ground
truth assembly, and troubleshooting conditions of these objects,
and the human causal models—is the same data used in Basu et al.
(2025) and a subset of the data published in our prior study (Tatlidil
et al., 2025). We provide the data used in the Supplemental Material
for better understanding. The experimental setup was done in the
same way as described in Basu et al. (2025), but we give a short
overview here for completeness.

The ground truth assembly plans were chosen through careful
discussion and study of assembly manuals available online. The
planner is tasked with discovering the ground truth assembly
plan in as few steps as possible. For troubleshooting experiments,
we chose one observable malfunction that the planner had to
troubleshoot—for example, for the wall lamp, it was “No light
being produced”, for the bicycle, it was “Back wheel not spinning”.
Troubleshooting manuals were consulted to come up with all
potential causes of the chosen observed malfunction, which served
as the ground truth for troubleshooting experiments. The planner
is tasked with discovering the true cause of the malfunction in as
few steps as possible. For each object, we run the troubleshooting
planner against each ground truth error location and report the
average reward, because the performance of the planner should
reflect whether or not it could effectively troubleshoot a problem,
no matter what the source was.

We use the same data and setup to obtain a fair comparison
to the methodology of Basu et al. (2025) that embeds crowd-
sourced and expert models into the belief state of the assembly
and troubleshooting POMDPs prior to solving them with an
online planning algorithm, POMCP (Silver and Veness, 2010). The
rewards reported in Basu et al. (2025) for solving the POMDPs
without any prior and with expert human causal models as priors
serve as the two baselines to which we compare our LLM-based
planners. We evaluated assembly and troubleshooting for seven
different objects of varying complexity: wall lamp, desk lamp,
flashlight, kerosene lamp, bicycle, sink, and toilet.

4.2 Model selection and hyperparameter
settings

We use the prompting template introduced in Section 3.2 to
test the abilities of different LLM models to solve our assembly and
troubleshooting POMDPs. We use LLM models GPT-4o (OpenAI,
2024a), o3-mini (OpenAI, 2025b) and o4-mini (OpenAI, 2025a).
GPT-4o is a flexible, flagship model from OpenAI that does
not explicitly use reasoning tokens but is a multi-purpose GPT
model with a context window of 128,000. The o3-mini and o4-
mini models have been trained using reinforcement learning to
perform chain-of-thought reasoning and explicitly use reasoning
tokens. They have a larger context window of 200,000 and more
recent knowledge cutoff dates than GPT-4o. For GPT-4o, we set

the temperature parameter to 0.7 in API calls. For o3-mini and
04-mini, the reasoning effort was set to “high” for all experiments.

The value of α, which captures confidence in the human causal
model, is set to 0.9 for all experiments. The value of β , which
captures confidence in the LLM’s answers, is set to 0.7 for o3-mini
and 04-mini. This value can be set by the user. We assumed that
we should assign a confidence to the LLM that is less than what
we assigned to the human causal model; hence, we settled on 0.7.
Experimenting with how different confidences in the human and
LLM answers affect planning performance is left to future study.
For GPT-4o, we could access the log probabilities of the tokens —
hence the probability in the LLM’s answer was directly derived by
taking an average across all token probabilities in its answer.

4.3 Results for assembly task

The average reward values across all objects obtained from
different planners for assembly are shown in Figure 4. A breakdown
of object-wise rewards across different planners is shown in
Figure 5. For each object, the reward for LLM-based planners is
the average reward obtained across 10 runs of the corresponding
planner. It can be seen in Figure 4 that the baseline o3-mini
and o4-mini planners outperform both non-LLM planners. The
GPT-4o baseline planner suffered from inaccurate belief updates,
especially for complex objects like a toilet (see Figure 5), which
resulted in many repeated instructions that incurred penalties. This
caused it to underperform even the POMCP planner, which had
no informative priors and hence is expected to perform the worst.
Our causally augmented LLM planners always outperform their
baseline LLM planner counterparts, with an average improvement
in rewards over the baseline of 305%, 8.2%, and 32% for GPT-4o,
o3-mini, and o4-mini variants, respectively.

4.4 Results for troubleshooting task

The average reward values across all objects obtained from
different planners for troubleshooting are shown in Figure 6. An

FIGURE 4

Average reward (as a % of maximum achievable reward) across all
objects. Higher is better.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1730614
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Basu et al. 10.3389/frai.2025.1730614

FIGURE 5

Heatmap for assembly rewards for objects as % of maximum achievable reward for Baseline LLM and non-LLM planners and their human causal
model (HCM) augmented counterparts. For each LLM model tested, we report the reward obtained by using them directly as planners (model name
on x-axis) and the reward obtained when augmenting them with causal models (“model + HCM” on the x-axis). For non-LLM planners, we report
results from study (Basu et al., 2025), where POMCP was used to solve the POMDPs without any prior (“POMCP”) and then with a human causal
model as prior (“POMCP (HCM prior)”).

FIGURE 6

Average reward (as a % of maximum achievable reward) across all
objects. Higher is better.

object-wise breakdown is shown in the heatmap in Figure 7. The
reward for each object shown in Figure 7 is the average of the
reward obtained from solving for each potential error location of

a particular malfunction. The reward for each error location is
reported as the average reward obtained across 10 runs of the LLM
planners. On average, the baseline LLM planners outperform the
POMCP planner rewards but underperform the POMCP with a
human causal prior. The causal model augmented LLM (LLM +
HCM) planners always outperform their baseline LLM planner
counterparts, with an average improvement in rewards over the
baseline of 57%, 9.6%, and 12% for GPT-4o, o3-mini, and o4-mini
variants, respectively. The LLM + HCM planner also outperforms
POMCP with a causal prior.

4.5 Failure modes in LLMs and how they
were improved with human causal models

While we observe a general trend showing improvement on
adding causal models, we qualitatively examine the explanation
generated by LLMs to gain insights into their failure modes.
In our prompting template, we had asked the LLM to give
a “reasoning” for its decision. It should be clarified that this
rationale that it presents is part of the required output and not
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FIGURE 7

Heatmap for Troubleshooting rewards for objects as % of maximum achievable reward for Baseline LLM and non-LLM planners and their human
causal model (HCM) augmented counterparts. For each LLM model tested we report the reward obtained by using them directly as planners (model
name on x-axis) and the reward obtained when augmenting them with causal models (“model + HCM” on the x-axis). For non-LLM planners, we
report results from study Basu et al. (2025), where POMCP was used to solve the POMDPs without any prior (“POMCP”) and then with a human
causal model as prior (“POMCP (HCM prior)”).

the same as the “reasoning traces” or intermediate series of tokens
it generated prior to giving us the output. The intermediate
“reasoning tokens” for o3-mini and o4-mini are hidden
by OpenAI:

1. Inability to abstract to a particular instance of the object
based on the information provided - We look at the case
of troubleshooting the wall lamp with o3-mini. In Figure 7, it
can be seen that adding the HCM improved the rewards from
56.7% to 90%. In Figure 8, we examine the reasoning of the
LLMs behind those decisions. The reasoning from the LLM (as
shown in green in the logs in the “reasoning” section) is quite
reasonable; however, it assumes the existence of a socket in
the lamp body and hence considers inspecting the connection
between the lightbulb and the lamp body as a plausible step in
troubleshooting. While in general it is extremely common to
have a socket to which we fix our lightbulb, the wall lamp design
we are working with assumes a simplified model where there is

no socket and the lightbulb is expected to be directly connected
to the cord. The function of the “lamp body” is mechanical—it is
to adjust the direction of light. While we mention the parts and
part functions in the prompt, the LLM ignores these definitions
and falls back on its default understanding of a wall lamp to
troubleshoot it.

2. Inability to correctly perform belief updates—Correctly
updating the belief of the world is crucial to efficient planning
in POMDPs and an important step in classical POMDP
planners. The LLM planner, powered by older models such
as GPT-4o, often exhibited behavior that indicated it failed to
correctly update the belief based on the history of actions and
observations taken. This inability often manifests as repeated
instructions despite clear instructions not to repeat anything
that the user has tried before. While this behavior seemed to
have been corrected in o3-mini, we observed it again in o4-mini.
Supplementing with the HCM was helpful in such situations, as
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FIGURE 8

Failure mode example: o3-mini showing inability to abstract. Assumes the presence of a socket (see “reasoning” provided by the LLM on top in green)
without considering the actual part functions provided.

it prevented providing inaccurate instructions, which incurred
penalties and reduced cumulative rewards.

3. Overthinking - inability to follow instructions—We noticed
certain instances where the LLM model “overthinks”, and
essentially comes up with a rationale to bypass user-instructions
given in the prompt. We noticed several instances where o4-
mini explains why it repeats instructions that were strictly
forbidden in the prompt (see Figure 9 where the reasoning
generated by the LLM is highlighted in red). While this can
be useful in certain cases, for the tasks we tested, it incurred
penalties and had the same effect as weaker models that failed
to follow instructions.

5 Discussion and conclusion

In this article, we investigate whether LLMs can serve
as effective interactive planners in object assembly and
troubleshooting under uncertainty, and if augmenting LLMs with
human causal models can improve cumulative rewards obtained.
LLMs are currently divided into two types: non-reasoning models,
which are general-purpose models without explicit reasoning
capabilities, and reasoning LLM models, which have been enabled
with reasoning abilities either at training or at inference time.
With the advent of reasoning LLMs, there is a growing body of
research on improving the general reasoning capabilities of LLMs,

which in turn improves their overall performance across different
tasks. These techniques, however, do not focus on teaching LLMs
to explicitly reason causally. Rather, they depend on teaching
them to identify correct chains of tokens out of the many possible
chains they can generate, through explicit training or external
verifiers. Inspired by human cognition that is characterized by
causal model building to aid planning under uncertainty, we
hypothesize that if human causal models can be used to weigh an
LLM’s decisions, it would allow us to leverage the LLM’s world
knowledge in a causally meaningful manner for both reasoning and
non-reasoning LLMs.

We demonstrated that by maintaining an external probability
distribution over system states, we can improve upon just using
LLMs as policy. In our case, the probability distribution is initially
biased using a causal model and updated at each time step to
reflect the joint preferences of the LLM and human. In case of
conflicts, our hybrid reasoning framework always cedes to human
causal preferences. The way the belief update works, an LLM-
suggested action that is not supported by the causal model will
only be executed if all causally supported actions are exhausted
or if the LLM suggests the same action enough times that the
probability surpasses the confidence given to causal actions. In
future studies, we hope to explore how rewards would be affected
if we gave varying confidence to LLMs and human causal models
depending on the particular task or environmental conditions.
We also hope to explore more nuanced prompting techniques to
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FIGURE 9

o4-mini exhibiting overthinking to bypass prompt instructions, highlighted in red.

improve our baseline LLM results. Moreover, we hope to explore
how human causal models can be used to guide inference time
scaling to improve rewards without explicitly having to maintain
a belief distribution.

Mental causal models share with Causal Bayes Nets (Pearl,
2009) that they represent the causal structure that relates causes to
effects, but they are incomplete and tend to be qualitative (Sloman,
2022). We elicited such qualitative causal models using the only
method that has shown success in empirical evaluation (Tatlidil
et al., 2025). Although we used expert knowledge to build the
causal models in our current study, expertise is not necessary for
this approach to succeed. Tatlidil et al. (2025) shows that causal

models of objects can be obtained from laypeople using multiple
methods, such as by asking counterfactual questions or by simply
asking people to draw causal graphs with minimal instruction. Basu
et al. (2025) shows that even imperfect causal models obtained
from laypeople can be used to improve algorithm performance
on assembly and troubleshooting tasks. Furthermore, Liefgreen
and Lagnado (2023) demonstrates that laypeople can generate
causal models of legal arguments, suggesting that eliciting causal
models is feasible across different domains. To summarize, prior
study suggests that non-experts can generate causal models across
different domains, and their models can be used to improve robot
planning algorithms.
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Given the rapid advancement of LLMs, one may wonder if
keeping humans in the loop will continue to be necessary for
very long. We argue that human involvement will continue to be
essential for tasks that rely on causal knowledge. LLMs are not
able to represent and deliberate on symbolic material, which is
vital for causal learning and reasoning. Indeed, recent literature
suggests that state-of-the-art LLMs continue to struggle with causal
inference and reasoning tasks. Miliani et al. (2025) showed that
LLMs struggle even with a very simple causal reasoning task that
involved determining the cause-and-effect relationship between
two events; they tend to confuse temporal knowledge with causal
knowledge and heavily rely on the linguistic order of events.
Jin et al. (2024) evaluated LLMs’ ability to infer causality from
correlational relationships and found that simply paraphrasing
event descriptions with semantically equivalent descriptions can
reduce the F1 score on this task as much as 0.39. Finally, Saklad et al.
(2025) demonstrated that when LLMs are used to infer causality
from more realistic text involving more than just two variables,
even the best performing model only reaches an F1 score of 0.48.
Moreover, in our current study, we focused on relatively simple
everyday objects that most people have some understanding of
how they work. Combined with the previous study demonstrating
that HCMs for such objects can be elicited using methods that are
easy to implement, we believe our hybrid-reasoning framework will
continue to be more favorable over using LLMs alone until there is
substantial improvement in the ability of LLMs to learn and reason
with causal knowledge.

6 Future work

This study opens up a range of directions for future study.
First, future studies should address several key limitations of this
work. We did not test the framework with different confidence
values in the LLM’s answers. In certain cases, such as in assembly,
it is likely that the causal model is not as helpful because it
represents functional relationships, not structural ones. In such
cases, it probably makes sense to trust the LLM’s answers as much
as the causal model. Moreover, we do not test different ways of
assigning confidence to the LLM’s answers and the human, but
make the assumption that an expert causal model is always to be
trusted more than any LLM. In the future, we want to explore the
effect of different confidence values in the LLM and the human on
the overall reward.

We also do not test the ability of the LLM to generate
causal models. Instead, we try to use the LLM as policy directly.
However, the question that remains unanswered is whether using
the LLM as policy is better than using the LLM to extract
causal models and then using those as priors in POMDPs.
Considering the recent advances in reasoning LLMs, it would make
for an interesting future article to evaluate how accurate LLM-
generated causal models are compared to human-generated ones
using the same extraction technique. We also do not consider
evolving or dynamic causal models where the human-generated
causal model is allowed to evolve with observations from the
environment or information from the LLM. In the future, we
hope to explore the use of evolving causal models for more

flexibility in decision-making than is afforded through the static
causal models that we have explored in this study. We also hope
to explore different prompt-engineering techniques to refine our
prompts to elicit better answers. Moreover, though, our study
shows that LLMs, while powerful, remain fundamentally limited
and need to be buttressed with causal knowledge originating from
human experts.
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