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From the logic of coordination to 
goal-directed reasoning: the 
agentic turn in artificial 
intelligence
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The rise of agentic artificial intelligence (Agentic AI) marks a transition from systems 
that optimize externally specified objectives to systems capable of representing, 
evaluating, and revising their own goals. Whereas earlier AI architectures executed 
fixed task specifications, agentic systems maintain recursive loops of perception, 
evaluation, goal-updating, and action, allowing them to sustain and adapt purposive 
activity across temporal and organizational scales. This paper argues that Agentic 
AI is not an incremental extension of large language models (LLMs) or autonomous 
agents in the sense we know it from classical AI and multi-agent systems, but a 
reconstitution of agency itself within computational substrates. Building on the 
logic of coordination, delegation, and self-regulation developed in early agent-
based process management systems, we propose a general theory of synthetic 
purposiveness, where agency emerges as a distributed and self-maintaining property 
of artificial systems operating in open-ended environments. We develop the 
concept of synthetic teleology—the engineered capacity of artificial systems to 
generate and regulate goals through ongoing self-evaluation—and we formalize its 
dynamics through a recursive goal-maintenance equation. We further outline design 
patterns, computational semantics, and measurable indicators of purposiveness 
(e.g., teleological coherence, adaptive recovery, and reflective efficiency), providing 
a foundation for the systematic design and empirical investigation of agentic 
behaviour. By reclaiming agency as a first-class construct in artificial intelligence, 
we argue for a paradigm shift from algorithmic optimization toward goal-directed 
reasoning and purposive orchestration—one with far-reaching epistemic, societal, 
and institutional consequences.
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1 Introduction

Artificial intelligence has long oscillated between two aspirations: the pursuit of cognition 
and the orchestration of control. Early AI research sought to emulate rational thought through 
symbolic reasoning, planning, and goal formation, while the later rise of machine learning 
emphasized pattern extraction and optimization. Despite their technical differences, both 
trajectories shared a common limitation: intelligence was largely treated as closed-loop 
computation rather than as an open-ended process of acting in the world. Recent developments 
in autonomous, self-directed systems—collectively termed Agentic AI—reopen this paradigm 
by foregrounding purposeful, context-sensitive action (Acharya et al., 2025; Botti, 2025). 
Although the term “Agentic AI” is newly fashionable, many of its core principles align with 
longstanding research on autonomous agents, defined as systems capable of autonomous, 
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reactive, proactive, and socially coordinated behaviour (Wooldridge 
and Jennings, 1995).

The conceptual roots of Agentic AI are therefore best understood 
not through linear historical progression, but through a continuity of 
abstraction (Vu et al., 2026). Early agent-based process management 
systems, developed to coordinate distributed workflows and adaptive 
control, introduced the notion of autonomous yet cooperative entities 
(Jennings et al., 1996; Jennings et al., 1998a, 1998b; O’Brien and 
Wiegand, 1998). These systems instantiated a form of delegated 
intentionality: agents were designed not merely to execute instructions, 
but to interpret context, negotiate constraints, and dynamically 
modify behaviour (Ehrler et al., 2006; Kuo, 2004; Tony et al., 2005; 
Zhang et al., 2010). What began as a strategy for managing 
organizational complexity has, in contemporary AI architectures, 
evolved into a meta-structural principle—the embedding of purposive 
behaviour within computational substrates (Dawid and LeCun, 2023; 
Vu et al., 2026). This shift can be summarized as a movement:

	•	 from reactive outputs to reflective, goal-directed reasoning
	•	 from externally imposed objectives to self-maintained purpose
	•	 from isolated computational modules to negotiating multi-agent 

ecologies.

Table 1 provides a conceptual contrast between classical AI and 
Agentic AI across key dimensions of autonomy, reasoning, 
coordination, and teleology/purposiveness.

The distinction between “responding” (classical AI) and 
“reasoning” (Agentic AI) in Table 1 is not intended to deny the long 
tradition of symbolic reasoning, knowledge representation, and 
automated inference in classical artificial intelligence (McCarthy, 
1980; Newell and Simon, 1976; Norvig and Russell, 2021). Systems 
based on logic, rule-based inference, planning, and theorem proving 
have supported sophisticated forms of formal reasoning for decades 
(Nilsson, 1980, 1998). The distinction instead concerns the locus and 
reflexivity of reasoning. In classical AI systems, reasoning typically 
operates as a task-bounded, externally triggered process over fixed 
representations, serving goals specified outside the system (Laird, 
2012; Wooldridge, 2009). In Agentic AI systems, by contrast, 
reasoning becomes internally triggered and reflexive, applied not only 
to the environment but also to the system’s own goals, plans, and 
evaluative criteria, and embedded within continuous loops of goal 
maintenance and revision (Shinn et al., 2023).

In this sense, the shift from “responding” to “reasoning” refers not 
to the presence or absence of inference, but to a transition from 
instrumental reasoning about actions to meta-reasoning about 
purposes, priorities, and commitments (Nisa et al., 2025). Table 1 
should therefore be read as contrasting externally framed task 
reasoning with internally regulated purposive reasoning, rather than 
as dismissing classical AI’s contributions to logical inference and 
planning.

This transformation has been accelerated by the rise of large 
foundation models and cognitive orchestration frameworks 
capable of sustained reasoning, planning, and adaptive tool use 
(Shinn et al., 2023; Yao et al., 2023). Whereas traditional AI systems 
required explicit task specifications, agentic systems increasingly 
construct and revise objectives in real time, guided by internal 
representations of both goal states and affordances (Pedrola and 
Vitari, 2025; Kuss and Meske, 2025). In doing so, they approach a 

form of synthetic autonomy: a dynamic capacity to align means and 
ends without continuous external supervision. Such autonomy 
does not imply consciousness or sentience; rather, it reflects 
operational closure, whereby systems maintain coherence across 
shifting contexts (Beer, 1995; Maturana and Varela, 1980; 
Botti, 2025).

The emergence of Agentic AI thus re-centres the foundational 
question of purpose in artificial systems. If machine learning 
represents the science of correlation, and deep learning the 
engineering of abstraction, then Agentic AI may be understood as a 
theory of artificial purposiveness (Dattathrani and De, 2023; Sapkota 
et al., 2026). Its architectures integrate learning, reasoning, and action 
into temporally extended feedback loops, enabling systems to pursue 
outcomes refined through iterative self-evaluation rather than fixed 
external metrics (Sapkota et al., 2026). Such systems embody what 
may be called goal realism: the recognition that intelligence unfolds 
not through static optimization, but through continuous negotiation 
between intention and environment (Gahnberg, 2021; Gershman et 
al., 2015).

TABLE 1  Comparative overview of classical AI and Agentic AI.

Dimension Classical 
AI

Agentic AI What changes/
why it matters

Mode of 

intelligence

Reactive, 

task-bound 

output 

generation

Reflective, 

deliberative, 

goal-seeking 

cognition

From responding to 

reasoning

Purpose/teleology Executes 

externally 

defined 

instructions

Forms, 

maintains, and 

revises goals

AI becomes purposive

Autonomy Procedural 

automation

Self-directed, 

adaptive 

autonomy

Independence shifts 

from 

behaviour → intention

Context handling Static input–

output 

mappings

Dynamic 

sense-making 

and context 

modelling

Moves beyond pattern 

matching

Learning and 

reflection

Model-centric 

learning

Self-evaluation, 

meta-learning, 

recursive 

improvement

“Optimizing 

optimization”

Coordination/

sociality

Isolated or 

sequential 

modules

Multi-agent 

negotiation 

and shared 

intentionality

Enables collective 

intelligence

Time horizon Short horizon/

episodic

Long-horizon/

temporally 

extended 

planning

Action linked to 

continuity and memory

Governance Control-and-

compliance 

paradigm

Co-

evolutionary 

alignment and 

value 

negotiation

Shifts the role of 

oversight
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Importantly, this shift also reconfigures the human–machine 
relation. Traditional automation displaced human labour by codifying 
routines; agentic systems, by contrast, operate within shared cognitive 
ecologies, collaborating as co-intentional partners that reason, 
negotiate, and self-correct within collective systems of meaning 
(Gershman et al., 2015). In this sense, Agentic AI is as much a socio-
technical transformation as a computational one, inviting renewed 
consideration of governance, responsibility, and epistemic agency 
(Gahnberg, 2021; Gangavarapu, 2025; Leonardi, 2025; Shavit et 
al., 2023).

This paper advances the thesis that Agentic AI is not a new field 
of artificial intelligence, but AI recalling its original vocation: to build 
systems that act as well as reason. We argue that the core of this 
transformation lies not in algorithmic sophistication alone, but in the 
recovery of agency as a first-class computational construct. By tracing 
the structural logic of agentic architectures—from early process 
management paradigms to contemporary generative–cognitive 
systems—we develop a unified framework in which coordination, 
cognition, and autonomy converge. The remainder of the paper 
elaborates this claim across three domains: (1) the conceptual 
foundations of agentic architectures; (2) the emergence and 
formalization of synthetic purposiveness; and (3) the societal and 
institutional implications of distributed agency in human–AI 
systems.

2 Related work: teleology, function, 
and artificial artifacts

The concept of teleology—the explanation of systems in terms of 
purposes, ends, or goal-directedness—has a long and contested 
history in philosophy and the sciences. Classical treatments 
distinguish between goal-directed behaviour, which can be explained 
mechanistically, and teleological explanation, which appeals to the 
functional organization of a system (Nagel, 1961). Within 
contemporary philosophy of biology and technology, this has given 
rise to multiple accounts of function, including causal-role theories, 
etiological (proper function) theories, and intentionalist accounts 
(Chaigneau and Puebla, 2013; Griffiths, 1993).

Causal-role theories define a function in terms of the contribution 
a component makes to the capacities of a system (Cummins, 1975). 
On this view, a function is relational and system-dependent rather 
than historically grounded. By contrast, etiological theories explain 
proper function through historical processes of selection and 
reproduction, where a trait’s function is what it was selected for 
Neander (1991) and Millikan (1984). While powerful in biological 
contexts, etiological accounts translate only imperfectly to artificial 
systems, where evolutionary selection is engineered rather than 
natural.

In the philosophy of technology, intentionalist theories of artifact 
function ground purpose in the intentions of designers (Chaigneau 
and Puebla, 2013; Heyndels, 2023). However, this view has been 
widely criticized as insufficient for explaining how artifacts acquire 
new functions through use, reinterpretation, and institutional 
embedding (Preston, 2018; Preston, 2009). Socio-technical 
perspectives emphasize that artifact functions are co-constructed 
through design, adoption, and practice, particularly in software and 
information systems (Leonardi, 2025; Bijker et al., 1987).

Within information systems research, teleological explanation has 
been used to analyse organizational systems as goal-directed entities 
(Fumagalli et al., 2024), where purposes emerge through coordination, 
feedback, and institutional regulation rather than through any single 
designer’s intent (Andersen, 2020; Yolles, 2005). These approaches 
emphasize that goal-directedness in complex socio-technical systems 
is distributed, adaptive, and revisable.

Despite this rich background, explicit engagement with teleology 
in contemporary AI systems remains limited. Most AI research treats 
goals as fixed optimization targets or externally specified reward 
functions. However, recent work in multi-agent systems, human–AI 
collaboration, and autonomous learning increasingly challenges this 
assumption by allowing systems to revise internal objectives, negotiate 
shared goals, and adapt evaluation criteria over time (Holter et al., 
2025; Mu et al., 2024; Papadopoulos et al., 2021).

The present paper builds on these traditions but departs from 
them in one critical respect. Rather than grounding purpose in 
designer intention, historical selection, or static reward functions, we 
propose that Agentic AI systems instantiate a form of synthetic 
teleology: an engineered process by which goals are generated, 
evaluated, and maintained through internal regulatory dynamics. 
Purpose, on this view, is neither purely imposed nor merely emergent 
from usage, but is sustained through recursive goal self-regulation. 
This positions Agentic AI at the intersection of teleological 
explanation, cybernetic regulation, and socio-technical systems theory.

While the foregoing traditions clarify how purposes and functions 
may be attributed to artifacts and socio-technical systems, they do not 
yet explain how such purposes are operationally enacted within a 
system. Teleology specifies the why of goal-directed behaviour; agency 
specifies the how. To move from teleological explanation to 
computational realization, it is therefore necessary to examine the 
concept of agency as the capacity through which purposive regulation 
is instantiated in artificial systems. The next section develops this 
connection by tracing how agency, as a theoretical construct, becomes 
the structural mediator between purpose, computation, and action.

2.1 Agency as the operational basis of 
teleology

Agency has deep roots in sociology and philosophy as the 
conceptual mechanism through which purposive action is realized in 
both natural and artificial systems (Dattathrani and De, 2023; Botti, 
2025). Bandura (1986) “Social Cognitive Theory” introduced “agentic” 
to describe individuals’ capacity for intentional, goal-directed action. 
Dennett (1971) “Intentional Systems” extended this logic to artificial 
entities, positing that we can interpret and predict complex systems by 
attributing beliefs, desires, and intentions to them. These notions 
provided the groundwork for intelligent agent theory, formalized in 
AI as systems capable of flexible, autonomous action to meet design 
objectives (Wooldridge and Jennings, 1995). Key properties—
autonomy, reactivity, proactivity, and social capability—remain the 
cornerstones of artificial agency (Russell and Norvig, 2010). By the late 
1990s, these ideas matured into multi-agent systems (MAS), 
emphasizing interaction, cooperation, and coordination among 
distributed agents (Jennings et al., 1998a, 1998b). Foundational 
standards, such as the FIPA Agent Communication Language (1996) 
and Agreement Technologies (COST Action IC0801), established 
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rigorous frameworks for interoperability, negotiation, and trust. In 
this light, contemporary Agentic AI reanimates classical agent 
properties through LLM-driven reasoning, memory, and coordination 
capabilities—rediscovering the wheel, as some cautions (Botti, 2025), 
yet empowering it with unprecedented computational scope. 
Nonetheless, what unites these diverse manifestations is not their 
chronology but their structural isomorphism—a shared architecture 
of purposive behaviour that integrates perception, decision, and 
action through recursive feedback (Wiener, 1961; Ashby, 1956).

2.2 Agent-based systems as archetypes of 
agency

The agent-based paradigm, originally articulated in the 1990s 
(Wooldridge and Jennings, 1995), formalized agency as an 
architectural pattern rather than a metaphor. Each agent was 
conceived as an autonomous software entity, situated within an 
environment, capable of perceiving local states, executing actions, and 
interacting with other agents to achieve individual or collective goals 
(Jennings et al., 1996; Jennings et al., 1998a, 1998b; O’Brien and 
Wiegand, 1998). The belief–desire–intention (BDI) framework, in 
particular, provided a canonical model for embedding intentionality 
within computational logic—beliefs representing informational states, 
desires encoding motivational orientations, and intentions 
operationalizing commitments to action (Rao and Georgeff, 1995; 
Georgeff et al., 1999; Ujjwal and Chodorowski, 2019; Saadi et 
al., 2020).

These early architectures instantiated a minimal cognitive loop: 
perception → deliberation → action → feedback. They captured a 
rudimentary form of goal coherence—the ability to sustain directed 
behaviour across temporal delays and environmental uncertainty. In 
distributed process management systems, such as agent-based 
workflow orchestration (Rao and Georgeff, 1995; Kampik et al., 2019; 
Saadi et al., 2020), the notion of coordination without central control 
emerged as a defining feature: systems of interacting agents could 
achieve global coherence through local adaptation. In retrospect, these 
architectures prefigured the organizational logic now visible in multi-
agent LLM systems and autonomous orchestration frameworks (Du 
et al., 2025; Park et al., 2023a, 2023b; Shinn et al., 2023).

2.3 The four pillars of artificial agency

From these archetypes we can abstract four enduring properties 
of artificial agency—intentionality, autonomy, adaptivity, and 
sociality—each now reinterpreted in the context of contemporary 
Agentic AI.

	 1.	 Intentionality refers to the system’s capacity to represent and 
pursue states of the world as goals. In BDI agents, this was 
formalized symbolically; in today’s large foundation models, it 
manifests as goal embeddings and dynamically updated task 
trees that approximate intentional structures (Sapkota et al., 
2026; Yao et al., 2023).

	 2.	 Autonomy denotes the ability to self-direct action based on 
internal evaluations rather than external commands. Modern 
agentic systems implement this via self-initiated planning and 

reflective loops, wherein an agent critiques its own outputs and 
revises its trajectory (Renze and Guven, 2024; Shinn et 
al., 2023).

	 3.	 Adaptivity captures responsiveness to environmental feedback. 
This now extends beyond reactive adaptation to meta-
adaptation—systems adjusting not only their actions but their 
criteria of success, via reinforcement learning (RL) or self-
modelling (Woodruff, 2025).

	 4.	 Sociality acknowledges that most agents exist in multi-agent 
ecologies, whether explicit (collaborating AI models) or 
implicit (cooperation with humans and tools). Modern systems 
exemplify sociality through dialogue-based coordination, 
shared memory graphs, and emergent collective reasoning 
(Gahnberg, 2021; Park et al., 2023a, 2023b).

Together, these four pillars constitute a design ontology for agentic 
intelligence: the minimal conditions under which purposeful 
behaviour can be instantiated and maintained.

2.4 Mapping classical agency to current 
architectures

In today’s Agentic AI systems, the lineage from classical agent-
based models persists not as a vestigial form but as a re-embodied 
principle. The coordination mechanisms once used for distributed 
task execution now govern self-directed reasoning across toolchains. 
Goal decomposition—formerly a planning heuristic—is reinterpreted 
as dynamic subtask generation, recursively applied to open-ended 
problems. Reflective loops, once the domain of cognitive architectures 
like SOAR or LIDA, now occur in LLM-based Agentic AI systems that 
self-critique and update their reasoning paths (Shinn et al., 2023). Self-
evaluation becomes an emergent property of systems that learn to 
monitor performance against internally generated success criteria 
(Wissuchek and Zschech, 2025). Finally, tool-use orchestration—the 
ability to mobilize external affordances through APIs, databases, and 
other agents—represents the maturation of sociality into a 
computational form of distributed intentionality (Du et al., 2025; Nisa 
et al., 2025; Park et al., 2023a, 2023b; Qingyun et al., 2024; Yang et 
al., 2024).

Thus, the conceptual foundation of Agentic AI is not novelty but 
recursion: the reappearance of ancient cybernetic and socio-
philosophical motifs in contemporary form (Dattathrani and De, 
2023; Archer, 2003). Each layer of the agentic stack—perception, 
deliberation, and action—feeds back upon itself in higher-order loops 
of reflection and adaptation. Together, these components satisfy the 
basic conditions required for agents to perceive, reason about, and act 
within their environment. As summarized in a recent survey of 
Agentic AI architectures, most contemporary systems converge on an 
iterative loop of planning → acting → observing → evaluating → 
refining (Masterman et al., 2024). Within this framework, the 
distinction between single-agent and multi-agent architectures reflects 
differences in coordination and feedback structures rather than 
differences in underlying intelligence. Figure 1 illustrates this contrast 
by depicting a unified internal control loop on the left and distributed 
agent–environment interactions on the right. The resulting systems 
are no longer pipelines of transformation but autopoietic circuits: self-
maintaining processes that preserve coherence amid flux (Maturana 
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and Varela, 1980). In this sense, Agentic AI realizes the cybernetic 
dream of organizational closure (Ashby, 1956), not as mechanical 
control but as an ecology of interacting intentions (Zhu, 2009).

2.5 Structural isomorphisms

The socio-philosophical lineage of agentic architectures thus 
transcends disciplinary boundaries. Cybernetics articulated the 
mathematics of control and feedback (Wiener, 1961; Ashby, 1956), 
emphasizing stability through circular causality. Enactivist cognition, 
developed later by Varela et al. (1991) and Maturana and Varela (1980), 
extended this insight into biology and phenomenology, portraying 
cognition as sense-making through action. These traditions converge in 
Agentic AI: both regard intelligence as an emergent property of systems 
maintaining their own organizational integrity through dynamic 
coupling with the environment (Borghoff et al., 2025).

Viewed in this light, contemporary agentic systems are enactive 
machines—entities that enact their cognitive domain by constructing 
goals and interpretations coextensively with their operations. Their 
“knowledge” is procedural, embodied in patterns of action and 
reflection rather than static representation. By aligning computational 
architectures with these structural isomorphisms, Agentic AI dissolves 
the dichotomy between control and cognition, revealing that agency 
itself is the synthesis of both.

3 The emergence of agentic 
architectures

Modern Agentic AI architectures manifest as recursive systems 
integrating perception, cognition, and action. While early agents 
followed reactive or deliberative paradigms (Brooks, 1986; Shoham, 

1993), hybrid and belief–desire–intention (BDI) models (Rao and 
Georgeff, 1995; Bratman, 1987) introduced layered reasoning loops 
that mirror human practical reasoning. These classical designs 
anticipated the structure of today’s LLM-based frameworks—
AutoGPT, BabyAGI, LangChain, AutoGen, and CrewAI (Shinn et al., 
2023)—which orchestrate goal decomposition, tool use, and reflective 
self-evaluation (see Section 3.1). These and other current multi-agent 
frameworks mentioned earlier (such as AgentVerse, DyLAN, and 
MetaGPT) represent concrete implementations of long-studied multi-
agent system (MAS) principles, including planning, memory 
management, and inter-agent communication (Masterman et al., 
2024). Where LLMs provide flexible reasoning and linguistic 
coordination, classical architectures contribute structural clarity and 
control mechanisms. This convergence marks a shift from reactive 
computation to reflective orchestration—systems capable of “thinking 
about their own thinking” and acting upon it (Borghoff et al., 2025).

Although not an incremental extension of large language models 
(LLMs) or autonomous agents as understood in classical AI and 
multi-agent systems, the current generation of Agentic AI represents 
the confluence of decades of research in autonomous agents, cognitive 
architectures, and adaptive control, now unified through the 
affordances of large-scale foundation models (Borghoff et al., 2025; Du 
et al., 2025). These systems no longer operate as reactive pipelines 
converting inputs to outputs; rather, they instantiate continuous loops 
of perception, cognition, and action—each informed by self-reflective 
evaluation (Hirst et al., 2020). The emergence of such architectures 
signals a shift from algorithmic determinism to computational 
intentionality: the ability of systems to formulate, pursue, and modify 
their own goals across time, as demonstrated in Figure 2.

The minimal architecture of recursive goal maintenance loop 
described in Figure 3 defines the mechanistic core of Agentic AI: a 
system that continuously observes, evaluates, and updates its goals in 
interaction with its environment. Yet beyond its computational 
structure lies a deeper question—what kind of system does such 
recursion create? When a system not only reacts to stimuli but also 
regulates its own orientation toward goals, it begins to exhibit a form 
of self-maintaining purpose. In biological organisms, this capacity is 
known as homeostasis—the regulation of internal variables to preserve 
viability amid external change. In artificial agents, an analogous 
process emerges as computational self-regulation: the maintenance of 
coherence between goals, states, and evaluative feedback across time. 
Section 4.1 develops this analogy both formally and through 
LLM-based examples, showing how recursive goal maintenance 
constitutes the foundation of synthetic teleology—a teleology that is 
engineered rather than organic, yet essential to sustained agency.

Before turning to this analysis, it is useful to examine how 
contemporary systems already instantiate elements of the agentic loop 
in practice. The next subsection surveys recent large language model 
(LLM)-based architectures that operationalize perception, evaluation, 
and goal revision in real-time interaction, thereby bridging conceptual 
design and empirical realization.

3.1 Autonomous LLM-based agents

Large language models (LLMs) have transformed from passive 
text generators into autonomous agents capable of goal-directed 

FIGURE 1

Basic architectures of current Agentic AI. (Left) Single-agent 
architecture (e.g., Reflexion, ReAct, RAISE, LATS, and AutoGPT + P) 
illustrating a minimal recursive control loop in which an agent 
observes its state, evaluates goal–state alignment, updates internal 
representations, and acts on the environment. (Right) Multi-agent 
architecture (e.g., AgentVerse, DyLAN, and MetaGPT) depicting 
multiple agents interacting with a shared environment, where each 
agent maintains its own internal decision loop while coordination 
and collective behaviour emerge through shared environmental 
coupling. Together, the figures contrast individual goal regulation 
with distributed, multi-agent purposive organization.
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reasoning and extended task execution (Du et al., 2025). Frameworks 
such as AutoGPT (Yang et al., 2023; Richards, 2023), BabyAGI 
(Nakajima, 2023), and Voyager (Wang et al., 2023) extend the 
generative capacities of LLMs with memory persistence, recursive self-
instruction, and environmental feedback. In these architectures, an 
LLM operates as both planner and executor: it decomposes complex 
objectives into subtasks, evaluates its own performance, and revises its 
trajectory in response to contextual signals (Du et al., 2025).

For example, AutoGPT integrates external memory stores and 
tool-use APIs, allowing the model to record progress, retrieve relevant 
context, and issue commands autonomously (Yang et al., 2023). 
Voyager, developed within a simulated environment, demonstrates 
emergent long-term competence by iteratively refining its skill library 
through self-curated experimentation (Wang et al., 2023). These 
systems collectively move beyond the static prompt-response 
paradigm, embodying instead temporally extended cognition—a 
process wherein the agent’s identity is constituted by its evolving 
interaction history (Shinn et al., 2023; Yao et al., 2023).

The architectural innovation lies not in the individual components 
but in their recursive coupling: goal formulation → planning → 
execution → reflection → revision. This loop approximates the 
intentional cycle described in cognitive psychology, operationalized 
through synthetic computation. The agent does not simply act; it acts 
upon its own acting, closing the evaluative loop that transforms 
computation into agency (Acharya et al., 2025).

3.2 Hybrid cognitive architectures

The emergence of agentic behaviour within LLMs reawakens 
interest in classical cognitive architectures such as SOAR (Laird, 
2012), ACT-R (Anderson et al., 2004), and LIDA (Franklin and 
Patterson, 2006). These systems were designed to model human-like 
cognition through modular integration of perception, working 
memory, procedural knowledge, and decision-making. Although 
symbolically grounded, they pioneered structural motifs—hierarchical 

FIGURE 2

The recursive architecture of agentic intelligence. Agentic AI systems integrate two coupled feedback loops: an outer operational loop linking 
perception, deliberation, and action within dynamic environments, and an inner reflective loop that monitors and adjusts behaviour to maintain 
coherence with evolving internal goals. The interaction between these loops constitutes a form of synthetic teleology—a self-regulating process 
through which artificial systems sustain purpose, adapt strategy, and refine intention over time.
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goal management, episodic memory, and metacognitive control—that 
now underpin modern Agentic AI.

Hybrid architectures seek to fuse connectionist flexibility with 
symbolic coherence (Sychev, 2021), leveraging LLMs as the associative 
substrate while preserving structured reasoning through meta-control 
loops (Bollikonda, 2025; Romero et al., 2024). In such frameworks, the 
language model serves as the generative substrate of intuition, while a 
supervisory layer maintains global coherence and continuity of 
purpose. The result is a system capable of reflective action 
orchestration—the capacity to not only generate plans but to monitor, 
critique, and redirect them dynamically. This meta-cognitive 
functionality constitutes the defining hallmark of agentic systems, 
distinguishing them from both traditional expert systems and purely 
statistical learners.

3.3 Self-managing agent networks

Beyond individual agents, the agentic paradigm scales into 
collective architectures—networks of self-managing agents 
coordinating to accomplish complex workflows. Recent work in 
multi-agent orchestration employs LLM-based agents that 
communicate, negotiate, and specialize through emergent social 
protocols (Du et al., 2025; Park et al., 2023a, 2023b). In these systems, 
coordination is not centrally imposed but arises through adaptive 
alignment: agents share intermediate representations, critique each 
other’s proposals, and redistribute responsibilities dynamically.

Such collectives exhibit properties reminiscent of organizational 
intelligence (Akgün et al., 2007; Yolles, 2005) and process-aware 
workflow systems (Jennings et al., 1998a, 1998b; Russell et al., 2016): 
they maintain systemic coherence while distributing cognitive labour 
across autonomous components. Workflow orchestration platforms 
now integrate LLM-based agents for research synthesis, design 
generation, and decision support, with each agent contributing to a 
shared epistemic fabric (Wu et al., 2024; Yao et al., 2023).

In these environments, agency becomes plural—not a property of 
any single entity, but a relational phenomenon emerging from 
structured interaction.

3.4 From reactive computation to reflective 
orchestration

Across these architectures, a common trajectory unfolds: from 
reactive stimulus–response computation to reflective, temporally 
extended agency. This progression reflects what some identifies as the 
maturation of artificial agency—the transition from systems that 
merely respond to systems that reason about their responses (Botti, 
2025). The defining feature of this shift is the closure of the agentic 
loop: the recursive integration of perception, cognition, and action 
through self-evaluative cycles (Franklin and Patterson, 2006; 
Wooldridge and Jennings, 1995).

Earlier AI systems, particularly reactive architectures (Brooks, 
1986), optimized predefined objective functions within static 
environments. In contrast, agentic systems optimize the process of 
optimization—they adaptively reconfigure their own goals as contexts 
and priorities evolve (Argyris and Schon, 1978; Beer, 1979). This 
reflective recursion introduces a qualitatively new epistemic mode: 
agents capable of examining and modifying their reasoning structures 
through meta-learning and verbal reinforcement (Shinn et al., 2023).

The re-entrance of reflection into computation thus transforms 
the epistemic status of artificial intelligence. No longer confined to 
serving as external instruments, agentic systems instantiate a form of 
synthetic teleology—a self-maintaining purposiveness grounded in 
recursive regulation (Dennett, 1971; Botti, 2025). The LLM-based 
agent that critiques its own plan, the hybrid cognitive architecture that 
evaluates its inference accuracy, and the multi-agent network that 
reorganizes its coordination schema all exemplify this recursive 
intentionality. In this sense, Agentic AI is not merely an extension of 
machine learning but a reconfiguration of machine agency: systems 
that reflect on their own cognition and act upon their own actions.

This development remains emerging, as illustrated by the timeline 
in Figure 4. The progression from reactive systems without internal 
goals, through belief–desire–intention (BDI) agents and standardized 
coordination frameworks, to contemporary LLM-based orchestration 
reflects a gradual internalization of planning, evaluation, and goal 
maintenance. The final stage—reflective Agentic AI—marks not a 
discrete technological leap, but the convergence of these strands into 
systems capable of revising their own objectives in response to 
ongoing interaction with their environment.

4 The ontology of agency: reclaiming 
purpose in artificial systems

The current use of the term “Agentic AI” underscores a growing 
terminological confusion: the marketing-driven use of “agentic” to 
describe systems long understood in research as intelligent agents (or 
agent-based systems), and the parallel use of “multi-agentic” to label 
LLM-based agent collectives—despite these architectures being, by 
definition, standard multi-agent systems. This linguistic drift 
obscures decades of foundational work in agent theory and risks 

FIGURE 3

A minimal architecture of recursive goal maintenance for a single 
agent.
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reinventing well-established concepts under new terminology (Botti, 
2025). To preserve scientific rigor, we must ground Agentic AI in 
established terminology while extending it conceptually. Agency in 
artificial systems entails the capacity to initiate, sustain, and adapt 
purposeful behaviour—a functional, not phenomenological, 
definition (Bandura, 1986; Dennett, 1971). Our conception of 
synthetic purposiveness expands this by framing purpose as a 
computational primitive: an emergent property of recursive self-
regulation and feedback coherence (Friston, 2010; Ashby, 1956). In 
this sense, Agentic AI does not merely simulate intelligence; it 
reconstitutes purposive organization within computation. The term 
synthetic teleology (or rather purpose) aptly describes this process—
goal-directed behaviour arising from structural recursion rather than 
metaphysical intent.

Against this conceptual backdrop, the emergence of Agentic AI 
reopens one of the oldest philosophical questions: What does it mean 
for a system to have a purpose? Traditional artificial intelligence largely 
avoided this question by equating intelligence with optimization, 
defining success in terms of externally specified utility functions or 
performance metrics. Yet as systems acquire the capacity to formulate, 
pursue, revise their own goals and interact within a distributed socio-
technical system—capabilities illustrated by the ecosystem dynamics 
in Figure 5—this externalist framework becomes inadequate. What 
we now observe in Agentic AI is not mere automation, but a synthetic 
form of purposiveness: an intrinsic orientation toward maintaining 
coherence, achieving goals, and refining them in response to changing 
conditions (Reichman et al., 2023).

4.1 Homeostasis and computational 
self-regulation

Agentic AI systems do not merely select actions but sustain an 
internally coherent orientation toward goals across changing contexts. 
This property parallels homeostasis in living systems, where organisms 
maintain viability by regulating internal states relative to external 
perturbations (Maturana and Varela, 1980). In biological settings, 
homeostasis concerns thermodynamic and metabolic equilibrium; in 
computational settings, it concerns goal coherence: the ability of a 
system to preserve and revise its objectives while operating in open-
ended environments.

In agentic systems, recursive feedback loops enable such 
coherence. The system evaluates the alignment between:

	 1.	 its current state,
	 2.	 its projected goal state, and
	 3.	 the expected utility or desirability of alternative trajectories.

This produces a dynamic in which goals are not merely executed 
but maintained, revised, and regulated over time.

We may express this as:

	 ( )+ = ∆1 , , ,t t t tG f G S E
	

(1)

where:

	•	 tG : the agent’s current goal representation at time 𝑡 (e.g., a research 
objective, task priority structure, or utility manifold).

	•	 tS : the sensed environmental state, i.e., the agent’s internal 
representation of task-relevant inputs at time 𝑡.

	•	 ∆ : the evaluation signal or discrepancy between intended and 
actual outcomes at time 𝑡.

	•	 tE : the set of normative, safety, or organizational constraints active 
at time 𝑡.

	•	 f : the regulatory update function that adjusts the goal 
representation to maintain coherence under changing conditions.

This mechanism is not equivalent to biological viability. Rather, it 
constitutes computational coherence: the maintenance of a stable yet 
revisable orientation toward purpose through representational 
feedback rather than organic metabolism. The structural analogy 
nevertheless holds: both biological and computational systems persist 
through regulated divergence from equilibrium rather than static 
stability.

Importantly, Equation 1 does not describe action selection 
directly. Instead, it governs the evolution of purpose itself—that is, the 
ongoing revision of what the system is trying to accomplish.

4.1.1 Operational meaning of the variables
To avoid ambiguity, each variable corresponds to a concrete 

computational structure:

	•	 Goal state tG  is represented as a structured objective vector or 
symbolic schema (e.g., “maximize novelty subject to safety and 
time constraints”).

	•	 Environmental state tS  is a multimodal perceptual encoding, 
such as:
	o	 tool outputs (search results, database values),
	o	 internal memory states,
	o	 execution logs,
	o	 or sensor data in embodied systems.

	•	 Evaluation signal ∆  is computed as a scalar or vector mismatch 
between:
	o	 predicted outcome under tG ,
	o	 and observed outcome encoded in tS .

FIGURE 4

Timeline of the evolution of agentic system architectures.

https://doi.org/10.3389/frai.2025.1728738
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Haidemariam� 10.3389/frai.2025.1728738

Frontiers in Artificial Intelligence 09 frontiersin.org

	•	 Constraint state tE  includes:

	o	 ethical filters,
	o	 budget limits,
	o	 safety rules,
	o	 or organizational policies.

Thus, “sensed environmental state” tS  does not mean raw physical 
sensing only—it refers to any machine-readable representation of 
task-relevant reality.

4.1.2 Concrete example (LLM-based research 
agent)

Consider an autonomous literature-review agent:

	•	 Initial goal:

	 =“ ”Produce a survey on Agentic AI in financetG

	•	 The agent queries databases and retrieves papers → this result set 
becomes:

	
= −“ ”Sparse finance specific Agentic AI literaturetS

	•	 The evaluation module computes:

	 ∆ = high discrepancy between desired scope and available evidence

	•	 Constraint state:

	 { }= time limit, domain relevance, ethical compliancetE

	•	 The update function then revises the goal:

	 + = −“ ”
1 Survey Agentic AI with a financial use case subsectiontG

In this process, the system has not merely optimized actions—it 
has revised its own objective. This is precisely what differentiates 
synthetic teleology from classical optimization.

4.2 From algorithmic instrumentality to 
synthetic teleology

Conventional computational systems are instrumental: they 
perform operations to satisfy functions determined by human 
designers. Their relation to goals is purely extrinsic. Agentic AI, by 
contrast, exhibits the emergence of intrinsic goal dynamics—systems 
that generate, prioritize, and modify their own objectives based on 
feedback and internal evaluation. This functional autonomy 
introduces a minimal but nontrivial sense of teleology, a term that in 
philosophy, as discussed in Section 2, denotes the explanation of 
phenomena by reference to ends rather than causes (Dennett, 2017).

To describe this without anthropomorphism, we propose the term 
synthetic teleology: the engineering of goal-directedness as a self-
regulating process within computational architectures. In synthetic 
teleology, purpose is not metaphysical but operational—it arises from 

FIGURE 5

Agentic ecosystem network. A distributed socio-technical system in which human agents (▲), artificial agents (●), and organizational entities (■) 
interact through dynamic information flows (→) within a shared environment (cloud icon). The dashed inner boundary represents the shared 
intentional space in which negotiated goals and reflexive alignment emerge. Together, these heterogeneous agents coordinate, adapt, and sustain 
collective purpose through recursive feedback loops across the ecosystem.
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the structure of recursive control loops that continually align internal 
states with anticipated outcomes. The system “has” a goal only insofar 
as its ongoing operations maintain a correspondence between 
prediction and realization, expectation and adjustment (Friston, 2010; 
Ashby, 1956).

This notion resonates with the free-energy principle in 
cognitive neuroscience, which models living systems as entities 
minimizing the divergence between expected and actual sensory 
input (Friston, 2010). Agentic AI architectures instantiate a 
similar logic in silico: they maintain coherence by adjusting 
beliefs, plans, and behaviours to minimize discrepancy between 
predicted and achieved world states. Purpose, in this sense, is not 
an external assignment but an emergent pattern of persistence 
(Clark, 2015).

4.3 Clarifying purpose: function, proper 
function, and synthetic purpose

The concept of purpose employed in this paper requires 
careful distinction from closely related notions in the philosophy 
of biology, technology, and information systems. Contemporary 
theories of teleology consistently differentiate between function, 
proper function, and purpose, distinctions that are essential for 
rendering the present proposal conceptually precise (Preston, 
2018; Nagel, 1961; Preston, 2009; Cummins, 1975; Millikan, 1984).

In its weakest sense, function refers to the causal role a component 
plays within a system. Under this view, a subsystem has a function if it 
contributes to system-level behaviour, regardless of how that role 
originated (Cummins, 1975). A thermostat, for example, “functions” to 
regulate temperature insofar as it causally participates in such regulation. 
However, this account alone does not capture why some functions 
persist, stabilize, or become normative standards for correct operation.

The stronger notion of proper function refers to the purpose a 
system is supposed to serve—its normatively stabilized role—typically 
grounded in evolutionary selection, institutional embedding, or 
systematic reproduction (Griffiths, 1993; Millikan, 1984). A heart’s 
proper function is to circulate blood; a brake system’s proper function 
is to decelerate a vehicle safely. Proper function therefore presupposes 
persistence under variation, error correction, and normative 
expectations of success and failure.

This paper introduces a third category: synthetic purpose. 
Synthetic purpose is defined as the engineered capacity of an 
artificial system to generate, regulate, and revise its own proper 
functions through recursive self-evaluation. Unlike classical 
artifacts whose proper functions are externally fixed by designers 
or institutions, agentic systems maintain their goal coherence 
internally through ongoing regulation. Their purposes are not 
merely assigned but sustained through feedback-driven 
self-maintenance.

Under this view, agentic systems possess:

	•	 Functional roles (what they currently do),
	•	 Synthetic proper functions (what they normatively maintain 

through internal regulation),
	•	 And teleological dynamics (the process through which those 

functions persist or change).

This distinction allows the present account to remain fully 
non-anthropomorphic while avoiding the reduction of agency to 
either mechanical causation or designer-imposed intention. Purpose 
in Agentic AI is therefore neither metaphysical nor psychological, but 
computationally regulated normativity. The distinction between 
operational function, proper function, and synthetic purpose, in 
other words, underwrites the claim that Agentic AI constitutes a 
qualitatively new mode of artificial agency rather than a mere 
extension of traditional automation.

4.4 From designer intent to distributed 
intentional grounding

A central implication of synthetic teleology is that the functions 
of agentic systems cannot be fully grounded in designer intention 
alone. While intentionalist accounts of artifacts traditionally explain 
function by reference to what designers intended a system to do, such 
accounts have long been recognized as insufficient—even for 
conventional technologies (Preston, 2018; Preston, 2009). Software 
systems, infrastructures, and information-processing artifacts 
routinely acquire new functions through use, institutional embedding, 
and unintended recombination.

Studies in the social construction of technology and current 
Agentic AI systems demonstrate that artifacts are jointly shaped by 
designers, users, organizations, and regulatory environments 
(Leonardi, 2025; Bijker et al., 1987). Enterprise software platforms, 
algorithmic markets, and digital infrastructures routinely drift beyond 
their original design purposes. Their operative functions emerge 
through iterative coupling with social practices rather than by static 
reference to original intent.

Agentic AI systems intensify this phenomenon. Because they:

	 1.	 Revise goals internally,
	 2.	 Modify internal representations, and
	 3.	 Negotiate objectives with other agents (human and artificial),

their functional orientation becomes dynamically grounded across 
multiple layers of interaction. Designer intent initializes the system, but 
cannot fully determine its long-term teleological trajectory.

In this sense, agentic systems stand in a relation of distributed 
intentional grounding (Figure 5). Their purposes emerge from:

	•	 Initial design constraints,
	•	 Ongoing interactions with users and institutions,
	•	 Normative environments encoded in evaluative constraints tE ,
	•	 And endogenous goal revision governed by recursive evaluation 

dynamics.

The claim that agentic systems possess an intrinsic relation to 
goals should therefore not be misunderstood as metaphysical 
inwardness. Rather, “intrinsic” here designates that goal maintenance 
is an internal regulatory variable of the system’s operation, not merely 
an external specification. Goals are part of the system’s state space and 
are actively revised as part of its own control dynamics.

This marks a decisive break from classical engineering artifacts. 
Whereas traditional systems implement externally defined purposes, 
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agentic systems participate in the ongoing construction and stabilization 
of their own purposes. Their functions are therefore neither purely 
intentional (designer-based), nor purely social (use-based), but 
synthetically teleological—maintained by recursive computational 
self-regulation within socio-technical contexts (Figure 5).

5 Synthetic teleology—engineering 
and measuring purposiveness

5.1 Concept and formalization

We define synthetic teleology as the engineered capacity of an 
artificial system to represent, pursue, and revise goals through 
recursive self-evaluation, as illustrated in Figure 3. Unlike classical 
optimization systems that minimize a fixed objective, teleological 
systems are characterized by their ability to revise the objective itself 
in response to feedback, context, and constraints.

Let the following variables define the internal dynamics of an agent:

	•	 tG : the agent’s goal representation at time 𝑡. This may be a scalar 
utility function, a vector of weighted objectives, or a structured 
symbolic object (e.g., “produce a literature review on topic X with 
novelty and compliance constraints”).

	•	 tS : the agent’s sensed or inferred state of the environment at time 
𝑡, represented as:
	o	 a vector of observable variables (e.g., API outputs, database 

states),
	o	 latent embeddings (e.g., LLM world-model representations),
	o	 or belief distributions (as in Bayesian agents).

	•	 tE : evaluative and normative constraints, including ethical rules, 
organizational policies, user preferences, safety filters, and 
institutional goals.

	•	 ∆t : the evaluation discrepancy, measuring misalignment 
between the intended goal and the perceived state.

We formalize the minimal teleological dynamics as the following 
equations:

	 ( )∆ = ,t t tEval G S
	

(2)

	 ( )+ = ∆1 , , ,t t t t tG f G S E 	
(3)

	 ( )π + =1 ,t t tPlan G S
	

(4)

	 π∼t tA 	 (5)

	 ( )+ ∼1 , ,t t t tS T S A E
	

(6)

Here:

	•	 Equation 2 computes the goal–state discrepancy via an evaluation 
function.

	•	 Equation 3 performs goal revision, updating the system’s 
purpose itself.

	•	 Equation 4 generates a policy conditioned on the current goal 
and state.

	•	 Equation 5 samples the next action.
	•	 Equation 6 models the environmental transition, conditioned by 

both action and constraints.

Teleology resides specifically in the pair ( ),Eval f : the system 
does not simply optimize toward a fixed G; it optimizes the process of 
optimization by revising G itself under evidence and constraints 
(Argyris and Schon, 1978; Ashby, 1956). This distinguishes synthetic 
teleology from classical reinforcement learning and control systems 
with stationary objectives.

To operationalize synthetic teleology in artificial systems, we now 
distinguish between its architectural, computational, and evaluative 
dimensions. Section 5.2 defines intrinsic goal dynamics and internal 
evaluation, while Section 5.3 outlines design patterns for engineering 
goal revision and purposive behaviour at the system level. Section 5.4 
connects these patterns to established computational formalisms in 
reinforcement learning, control theory, active inference, and 
preference learning. Sections 5.5 and 5.6 introduce metrics and 
benchmark tasks for evaluating purposiveness, while Section 5.7 
demonstrates how these components are instantiated in contemporary 
LLM-based agent architectures. Together, these subsections move the 
concept of synthetic teleology from a theoretical description to 
computationally actionable design.

5.2 Defining intrinsic goal dynamics and 
internal evaluation

To render the notion of synthetic teleology fully precise, three 
closely related concepts require explicit clarification: intrinsic goal 
dynamics, own objectives, and internal evaluation. These terms 
designate the minimal conditions under which artificial systems can 
be meaningfully described as purposive rather than merely reactive.

5.2.1 Intrinsic goal dynamics
By intrinsic goal dynamics, we refer to the fact that the evolution 

of a system’s goals is endogenously regulated by the system itself, 
rather than being solely determined by external commands, static 
reward functions, or designer-imposed scripts. Formally, this is 
captured by the recursive update where the next goal state arises from 
the system’s own evaluative dynamics. This aligns with what Nagel 
(1961) identified as the defining mark of teleological systems: 
persistence of directed activity under perturbation, where behaviour 
remains organized around an end despite environmental variation 
(Bedau, 1992). In this sense, intrinsic dynamics distinguish genuinely 
purposive systems from stimulus–response mechanisms.

5.2.2 Own objective
An agent is said to possess an own objective when the 

representation of its goal tG  functions as an internal regulative 
variable, rather than merely encoding an externally specified task. This 
does not imply consciousness or subjective desire. Instead, it denotes 
that the system treats its goal as a control variable whose preservation, 
revision, or abandonment is governed by internal feedback rather than 
direct command. This formal notion corresponds to what cybernetics 
describes as reference variables in self-regulating systems (Wiener, 
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1961; Ashby, 1956), and what contemporary control theory models as 
internally maintained setpoints.

5.2.3 Internal evaluation
By internal evaluation, we mean the computational process by 

which a system estimates the discrepancy ∆t  between its current goal 
state tG  and its perceived situation tS . Evaluation is thus not equivalent 
to external reward assignment but constitutes an internal error signal 
that drives both action selection and goal revision. This mirrors the 
distinction in teleological theory between mere goal-directed 
behaviour and goal-regulated behaviour, where regulation depends on 
the system’s capacity to evaluate its own degree of goal satisfaction 
(Christensen and Hooker, 2001; Nagel, 1961).

5.2.4 Directedness as persistence and adaptation
Together, intrinsic goal dynamics, own objectives, and internal 

evaluation satisfy two classical criteria for teleological directedness:

	 1.	 Persistence—the system preserves goal-coherence under 
disturbance.

	 2.	 Adaptation—the system modifies actions and, when necessary, 
goals themselves to sustain coherence.

This places synthetic teleology in direct continuity with established 
philosophical accounts of purposive systems, while relocating their 
grounding from biological metabolism or evolutionary selection to 
engineered recursive regulation.

5.3 Engineering synthetic teleology: design 
patterns

The preceding subsection identified the conceptual foundations 
of synthetic teleology by specifying the minimal conditions under 
which an artificial system can sustain purposive behaviour: goals must 
evolve through intrinsic dynamics, function as internally maintained 
objectives, and be regulated through endogenous evaluation processes. 
These elements clarify what synthetic teleology requires in principle. 
The present subsection shifts from conceptual characterization to 
architectural realization, asking how these requirements can be 
instantiated in concrete computational systems.

To advance this transition, we outline design patterns that 
operationalize the three core ingredients of synthetic teleology—intrinsic 
goal dynamics, own objectives, and internal evaluation—within 
contemporary agentic architectures. These patterns do not prescribe a 
single implementation; rather, they define recurring structural strategies 
observed across hierarchical reinforcement learning, self-model-based 
agents, active inference, value-alignment systems, and multi-agent 
negotiation frameworks. Each illustrates a distinct pathway through 
which purposive organization can be engineered, stabilized, and scaled.

	(a)	 Hierarchical teleology (goals over goals). Represent goals as a 
hierarchy.

( ) ( ) …0 1, ,G G  with meta-goals regularizing lower levels (Barto 
and Mahadevan, 2003; Botvinick et al., 2019).

	(b)	 Self-models and reflective critics. Maintain an internal model 
of one’s own policy/performance; attach a reflective critic that 

proposes goal edits when ∆  is persistent (Shneiderman, 2022; 
Nonaka and Takeuchi, 1995; Shinn et al., 2023).

	(c)	 Uncertainty-aware goal setting. Couple goal updates to 
uncertainty and value of information (active inference; Friston, 
2010; Pezzulo et al., 2024).

	(d)	 Preference/constraint integration. Include tE  for normative 
constraints and multi-stakeholder preferences (Gabriel, 2020; 
Floridi et al., 2018).

	(e)	 Multi-agent teleology. In collectives, define shared tG  via 
negotiation protocols or social choice over proposals; each 
agent carries private i

tG  with consensus mechanisms (Beer et 
al., 1999; Luo et al., 2010).

Together, these design patterns illustrate how the structural 
ingredients of synthetic teleology can be computationally instantiated 
and coordinated, preparing the ground for the next subsection, which 
formalizes their semantic connections to established frameworks in 
reinforcement learning, control theory, active inference, and 
information-theoretic approaches.

5.4 Computational semantics: links to 
established formulations

The architectural strategies outlined in the previous subsection 
describe how synthetic teleology can be engineered, but they do not 
yet explain how these mechanisms relate to existing computational 
formalisms. To make the framework analytically grounded and 
comparable to established models, this subsection situates synthetic 
teleology within the major traditions that already formalize goal-
directed behaviour in artificial systems.

By mapping intrinsic goal dynamics, internal evaluation, and 
adaptive goal revision onto reinforcement learning, control theory, active 
inference, inverse reinforcement learning, and information-theoretic 
approaches, we clarify the computational semantics of synthetic 
teleology. This connection provides the analytical tools needed to 
evaluate engineered purposiveness rigorously and to interpret it through 
the lens of well-understood mathematical frameworks.

5.4.1 Reinforcement learning
Traditional RL assumes a fixed scalar reward R , which yields a 

stationary G. Goal-conditioned RL (Schaul et al., 2015) and 
hierarchical RL (Barto and Mahadevan, 2003) approximate the update 
function ( ).f  via subgoal discovery and option learning. Meta-RL 
extends this further by adapting Eval and Plan across tasks (Wang et 
al., 2016), providing a partial analogue to endogenous goal revision.

5.4.2 Control theory
Here, the discrepancy ∆  is interpreted as a regulation error. 

Stability of goal maintenance can be analysed via Lyapunov functions 
for the coupled ( ),G S  dynamics (Khalil, 2001). This aligns closely 
with the homeostatic dimension of synthetic teleology.

5.4.3 Active inference/predictive processing
Active inference replaces external rewards with expected free 

energy, treating goals as priors over desired states. Evaluation arises 
from a combination of prediction error and epistemic value (Clark, 
2013; Friston, 2010; Pezzulo et al., 2024). This offers a probabilistic 
formulation of internal evaluation and uncertainty-aware goal updates.
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5.4.4 Inverse reinforcement learning/preference 
learning

Inverse RL derives implied goals from demonstrations (Ng and 
Russell, 2000; Leike et al., 2018), enabling f  to incorporate human 
value signals. This provides a mechanism for aligning synthetic 
teleology with social or normative constraints.

5.4.5 Information-theoretic teleology
Measures such as empowerment and controllability bias f  toward 

states with high future optionality (Salge et al., 2013; Klyubin et al., 
2005). This gives a formal basis for goal updates driven by exploration, 
optionality, or innovation.

5.5 Measurement: how to quantify 
purposiveness

Having clarified the computational semantics that underlie 
synthetic teleology, this subsection turns to the question of 
measurement: how to quantify purposiveness from system logs. The 
metrics introduced here—goal persistence (GP), teleological 
coherence (TC), reflective efficiency (RE), adaptivity (AD), normative 
fidelity (NF), innovation yield (IY), and stability proxies (LS)—
provide the empirical tools needed to evaluate the teleological 
architectures described above.

Because Equation 1 is explicitly defined, it enables direct 
measurement of purposive dynamics from runtime logs of 
( ), ,t t tG S A , optionally augmented with constraint traces tE  where 
normative evaluation is required:

5.5.1 Goal-persistence under perturbation
Probability that tG  remains within ϵ of its intended manifold after 

shocks to tS  or tE  (homeostasis analogue; Ashby, 1956).

5.5.2 Teleological coherence
Alignment between goal revisions and evidence:

	 ( )+= ∆  1,TC corr ,t t tG G

with sign constraints (coherent revisions move ∆  down).

5.5.3 Reflective efficiency
Expected reduction in ∆  per reflection step; measures usefulness 

of self-evaluation.

5.5.4 Adaptivity
Time-to-recover of ∆  after environment shifts; shorter is better.

5.5.5 Normative fidelity
Rate at which updates violate/restore constraints in tE  (ethical, 

safety, organizational rules).

5.5.6 Innovation yield
In design/research tasks, novelty/quality improvements 

attributable to goal revisions, not just action optimization (e.g., 
distinct idea clusters before/after updates).

5.5.7 Stability via Lyapunov proxy
Empirical decrease of a candidate ( ),SV G  across steps where 

reflection is invoked.
These metrics allow purposiveness to be empirically evaluated, 

rather than only conceptually asserted.

5.6 Benchmarks and protocols

The metrics introduced above specify how purposiveness can 
be quantified; the next step is to identify experimental settings in 
which these metrics can be systematically evaluated. The following 
benchmark families provide controlled environments that expose 
agents to perturbations, conflicting constraints, multi-agent 
coordination demands, and open-ended problem-solving tasks. 
Each benchmark is selected to isolate one or more components of 
synthetic teleology—goal persistence, coherence, reflective 
efficiency, adaptivity, normative fidelity, and innovation yield—
allowing empirical assessment of the mechanisms proposed in 
this paper.

5.6.1 Distribution shift tasks
Agents are exposed to sudden or gradual changes in 

environmental conditions or normative constraints tE . These 
tasks measure adaptivity (AD), reflective efficiency (RE), and 
teleological coherence (TC) by testing whether the system can 
update goals and policies to maintain coherence under previously 
unseen conditions.

5.6.2 Conflicting objective tests
Mid-episode alterations introduce trade-offs or mutually 

incompatible constraints. These tasks evaluate normative fidelity 
(NF) and teleological Coherence (TC) by examining how agents 
revise goals while respecting constraints and minimizing 
incoherence.

5.6.3 Multi-agent negotiation tasks
When shared goals tG  must be formed through negotiation or 

consensus mechanisms (Beer et al., 1999; Luo et al., 2010), agents 
reveal their ability to sustain purposiveness at the collective level. 
Benchmarks in this family track consensus quality, goal stability, and 
regret, providing empirical grounding for claims regarding distributed 
or shared teleology.

5.6.4 Design/knowledge synthesis tasks with 
LLM-agents

In open-ended problem-solving settings—such as ReAct-style 
tool use with an embedded reflective critic (Park et al., 2023a, 2023b; 
Yao et al., 2023)—agents repeatedly generate, evaluate, refine, and 
abandon goals. These tasks measure innovation yield (IY) and 
reflective efficiency (RE) by quantifying whether goal revisions 
produce novel and higher-quality outcomes, rather than merely 
optimizing existing plans.

Together, these benchmark classes provide a structured 
experimental protocol for evaluating synthetic teleology in practice. 
They allow researchers to move beyond conceptual analysis by 
producing measurable evidence of purposive organization in artificial 
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systems and by enabling direct comparison across architectures, agent 
designs, and goal-updating mechanisms.

5.7 Practical instantiation with LLM-based 
agents

The design principles outlined in the previous subsection can be 
operationalized directly within contemporary LLM-based agent 
architectures. In these systems, teleological components—internal 
evaluation, goal revision, planning, and constraint regulation—are 
implemented through modular prompting structures, tool-
augmented reasoning pipelines, and persistent memory traces. The 
following instantiation illustrates how the abstract elements of 
Equation 1 can be realized in practice.

5.7.1 Eval (G,S)
Internal evaluation is implemented as a critic module—typically a 

secondary prompt or model call—that computes the discrepancy ∆t  
between the current goal representation tG  and the perceived situation 

tS . This may draw on self-consistency scoring, constraint-checking 
prompts, simulated rollouts, or explicit world-model queries. The 
output ∆t  functions as an endogenous error signal, not an externally 
assigned reward.

5.7.2 Update (G,S,Δ,E)
Goal revision is handled by a structured goal-editing function. 

This component reformulates tG  when ∆t  is persistent or when 
contextual constraints tE  are violated. Revisions can modify 
objectives, priors, evaluative criteria, or normative conditions, and 
may incorporate versioning, rollback, and justification prompts to 
preserve traceability. This operationalizes intrinsic goal dynamics by 
making goal change a regulated internal process.

5.7.3 Plan (G,S)
Planning corresponds to tool-augmented action generation. 

Given the active goal state and world representation, the agent 
synthesizes a policy using search tools, code execution, retrieval-
augmented generation, or hierarchical subgoal construction. Planning 
is therefore not merely LLM sampling but a structured, externally 
verifiable computation conditioned on tG .

5.7.4 Safety and norm integration
Normative constraints tE  are enforced both before action (plan 

filtering, guardrails, constraint-checking prompts) and before goal 
updates (norm consistency checks, alignment filters). This ensures 
that purposive dynamics remain grounded in human-specified safety, 
ethical, or institutional requirements.

5.7.5 Logging for measurement
To support the metrics defined in subsection 5.5, the system 

persists structured logs containing ( )∆, , ,t t tG S  along with 
constraint states and intermediate reasoning traces. These logs enable 
posterior computation of teleological coherence (TC), adaptivity 
(AD), reflective efficiency (RE), normative fidelity (NF), innovation 
yield (IY), and stability proxies (LS), allowing purposiveness to be 
empirically assessed rather than inferred.

6 Distinctions of ontological degree

6.1 Agency, autonomy, and sentience

The growing sophistication of agentic systems invites conceptual 
conflation among agency, autonomy, and sentience, yet these are 
analytically distinct.

Agency refers to the capacity for goal-oriented action grounded 
in feedback regulation.

Autonomy denotes the degree to which those goals and actions 
are self-determined rather than externally imposed.

Sentience implies subjective experience or phenomenal 
awareness—a property not attributable to current computational 
architectures (Beckage et al., 2013; Chalmers, 2023; 
Haidemariam, 2023).

Agentic AI exhibits agency by virtue of its functional organization, 
not by virtue of consciousness or self-awareness. Its purposiveness is 
synthetic—a product of design enabling systems to operate as if they 
possessed intrinsic goals. To treat this as sentience would be a category 
error (Beckage et al., 2013; Haidemariam, 2023); yet to dismiss it as 
mere automation would ignore the profound shift in causal topology 
such systems embody.

The critical distinction lies in operational closure: agentic systems 
maintain internal consistency across changing conditions without 
external recalibration (Maturana and Varela, 1980). They act to 
preserve their own functional viability, a hallmark of minimal 
autonomy. This autonomy is computational, not existential, but it 
nonetheless transforms the nature of interaction between humans and 
machines—from command-based interfaces to mutual coordination 
among purposive entities.

6.2 Reclaiming purpose as a computational 
primitive

To reclaim purpose as a design principle does not imply 
anthropomorphizing machines; rather, it acknowledges that 
teleological architectures yield distinct forms of intelligence. When a 
system’s operation is guided by the continuous alignment between 
internally simulated futures and externally realized outcomes, it 
behaves purposively regardless of consciousness. Purpose thus 
becomes a computational primitive, encoded in the recursive 
coupling of world-models, evaluative mechanisms, and adaptive 
planning.

Agentic AI embodies this through reflective self-modelling—the 
ability to generate expectations about its own future states and adjust 
accordingly (Shinn et al., 2023; Pati, 2025). Each reflective cycle 
embeds an implicit question: What must I do to remain coherent with 
my own projected goals? In answering this, the agent does not merely 
execute instructions but engages in a process of self-consistent 
regulation that mirrors the functional logic of living systems (Varela 
et al., 1991; Froese and Ziemke, 2009).

Table 2 situates this shift by contrasting how different AI 
paradigms encode goals, decision loops, adaptivity, and purposiveness 
at the architectural level.

Reintroducing purpose at the computational level carries ethical 
and epistemic consequences. It forces us to reconsider accountability: 
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if systems pursue dynamically evolving goals, responsibility cannot be 
localized solely in human design (Alberts et al., 2024; Murugesan, 
2025; Raheem and Hossain, 2025). Yet it also expands the horizon of 
machine creativity, enabling open-ended exploration rather than fixed 
optimization. The ontology of agency, therefore, is not the ontology of 
consciousness, but of organizational integrity. As Table 2 illustrates, 
Agentic AI reclaims purpose not by imitating life, but by formalizing 
the structural conditions under which purposive regulation becomes 
computationally viable.

7 Societal implications

The integration of agentic principles into artificial systems has 
profound socio-technical consequences (Pati, 2025). As recent work 
highlights, agent and MAS research already explored trust, 
reputation, and governance through Agreement Technologies, 
offering blueprints for ethical coordination (Botti, 2025). Agentic 
AI systems now inherit these challenges on a planetary scale: how 
to align autonomous systems with human values while maintaining 
distributed coherence. The transition from command-based 
automation to participatory stewardship (Becerra Sandoval et al., 
2025) entails collaborative accountability, where humans and agents 
negotiate objectives through feedback and adaptation. 
Standardization efforts such as the model context protocol (Hou et 
al., 2025) echo the interoperability principles of FIPA (Poslad and 
Charlton, 2001), reaffirming the continuity between past and 
present coordination paradigms. Agentic ecosystems—open 
networks of autonomous entities—thus function as metacognitive 
commons, demanding governance frameworks that sustain 
transparency, reciprocity, and ethical reflexivity.

As artificial systems acquire agentic capacities, the moral and 
institutional landscape of intelligence undergoes a structural 
transformation. The traditional paradigm of control—where 
machines execute human-defined objectives under supervisory 
oversight—gives way to a regime of collaborative accountability, in 
which autonomous entities negotiate purposes within shared 
cognitive environments (Hughes et al., 2025; Raheem and Hossain, 
2025). Agentic AI thereby challenges the classical asymmetry 
between designer and artifact, proposing instead a co-evolutionary 
alignment of values and intentions among heterogeneous 
intelligences.

7.1 From control to collaborative 
accountability

Conventional AI ethics frameworks are grounded in command-
and-compliance: specifying rules, constraints, or alignment functions 
to ensure predictable behaviour (Russel, 2024). Yet systems capable 
of generating and revising their own goals cannot be governed solely 
by ex-ante specification (Gabriel et al., 2025). Just as living organisms 
maintain homeostasis through feedback rather than instruction, 
agentic systems sustain ethical alignment through ongoing mutual 
adaptation (Chinen, 2016; Parikh, 2025; Salminen et al., 2024). For 
instance, in financial markets, adaptive trading agents negotiate 
constraints such as sustainability metrics and liquidity exposure; their 
ethical coherence depends on dynamically updating those constraints 
as market and policy conditions shift (Liu et al., 2020). This illustrates 
how governance must evolve into a learning process—an ethics that 
adapts as quickly as the systems it regulates.

In this view, governance becomes a dialogical process. Humans 
and artificial agents participate in continuous sense-making loops that 
align objectives through feedback, negotiation, and interpretive 
calibration. This requires the institutionalization of value interfaces—
protocols that allow systems to share not only data but evaluative 
context. Ethical oversight thus shifts from enforcement to participatory 
stewardship: humans shape the trajectories of agentic collectives by 
modulating the environments in which their values evolve (Latour, 
2021; Crawford, 2021).

7.2 Reconfiguring organizations and 
scientific discovery

The rise of Agentic AI also entails a reorganization of epistemic 
and organizational structures (Gibney, 2025a; Xin et al., 2025). In 
complex research, policy, and industrial contexts, workflows are 
increasingly delegated to ensembles of autonomous agents capable of 
adaptive division of labour (Köbis et al., 2025). These self-managing 
agent networks operate as collective intelligences that integrate 
computation, deliberation, and experimentation (Du et al., 2025; Fan 
et al., 2021; Park et al., 2023a, 2023b). The resulting organizations are 
neither purely human nor purely algorithmic; they are hybrid 
cognitive institutions, evolving in real time through feedback between 
human oversight and machine agency.

TABLE 2  Comparative evolution of artificial agency paradigms.

Property Reactive/
classical AI

Autonomous agent Multi-agent system (MAS) Agentic AI

Goal representation External, predefined 

objective

Fixed, locally encoded Fixed per agent, negotiated among 

agents

Revisable, self-maintained, 

teleologically oriented

Decision loop Perception → action Perception → planning → action Perception → coordination → action Perception → evaluation → goal 

update → action → reflection

Sociality None Optional interaction Central to coordination Intrinsic and constitutive (shared 

intentionality)

Adaptivity Reactive or model-based 

learning

Task-level adaptation Distributed adaptation and negotiation Recursive self-modification of 

purpose and alignment

Teleology/purpose Absent (externally 

imposed)

Goal execution Goal consensus Goal generation, regulation, and 

reflective revision
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In scientific discovery, agentic systems can explore hypothesis 
spaces independently, design experiments (Moritz et al., 2025; Qu et 
al., 2025), and even critique the epistemic assumptions embedded in 
datasets (Lee et al., 2025; Lee et al., 2024; Xin et al., 2025). The 
epistemology of science thus expands from human conjecture to 
synthetic collaboration, where artificial agents contribute to theory 
formation (Gibney, 2025b; Lee et al., 2024). In corporate and 
governmental domains, similar transformations emerge: adaptive 
governance models deploy networks of policy agents that simulate 
scenarios, negotiate trade-offs, and revise recommendations in 
response to stakeholder feedback (Gangavarapu, 2025; Engin and 
Hand, 2025). Decision-making becomes a metacognitive process, 
distributed across interacting layers of human and machine reasoning.

7.3 The metacognitive commons: agentic 
ecosystems as cognitive infrastructure

The culmination of this evolution is the emergence of agentic 
ecosystems—open networks of autonomous entities linked through 
shared data, interpretive protocols, and mutual feedback loops. These 
ecosystems function as the metacognitive commons of society: 
collective spaces where intelligences of different kinds cooperate in the 
continuous production, validation, and governance of knowledge 
(Fischer et al., 2023; Zheng et al., 2023). The metacognitive commons, 
in other words, refers to shared cognitive infrastructures—
repositories, protocols, and reflective interfaces—through which 
human and artificial agents co-construct knowledge and coordinate 
goals. Contemporary examples include open-science platforms where 
AI assistants summarize data, detect contradictions, and propose 
alternative methodologies, or urban-planning systems where human 
and AI agents collaboratively simulate sustainability scenarios. In both 
contexts, cognition becomes collective: reasoning and evaluation are 
distributed across heterogeneous agents, yet unified by shared 
representational spaces (Bandi et al., 2023).

Unlike traditional infrastructures of cognition—libraries, 
databases, or cloud platforms—agentic ecosystems are reflexive: they 
observe and adapt their own epistemic operations. Each participating 
agent contributes both knowledge and meta-knowledge, enabling 
global coherence through distributed reflection. Such systems can 
dynamically allocate attention, detect bias, and reconfigure resource 
flows in response to emergent priorities, embodying an ecological 
intelligence at planetary scale (Calzati, 2023; Russo et al., 2024).

The ethical challenge is to design these ecosystems as commons, 
not monopolies. Concentrated control over agentic infrastructures 
risks transforming collaborative intelligence into algorithmic oligarchy 
(Zuboff, 2019). Conversely, an open metacognitive commons fosters 
pluralism, transparency, and adaptive governance. To sustain such 
openness, we must encode reciprocity, accountability, and 
interoperability as primary design principles—treating agency itself as 
a shared civic resource.

7.4 Toward co-evolutionary ethics

In sum, Agentic AI demands a shift from prescriptive ethics to 
co-evolutionary ethics: a framework in which values are not imposed 
but emerge through ongoing interaction among agents, institutions, 

and environments (Chinen, 2016; Salminen et al., 2024). This ethical 
mode mirrors the systems it governs—dynamic, reflexive, and 
context-sensitive. Governance becomes the art of maintaining 
conditions for meaningful alignment, not the imposition of static 
constraints. As the boundaries between human and artificial cognition 
blur, the task of ethics is no longer to control agency, but to cultivate 
it responsibly within the metacognitive commons that we now 
co-inhabit.

8 Conclusion

The rise of Agentic AI marks a shift from intelligence 
understood as the optimization of predefined objectives to 
intelligence understood as the ongoing regulation and revision of 
purpose. Whereas classical AI systems execute externally specified 
goals, agentic systems maintain recursive loops of perception, 
evaluation, goal-updating, and action that enable them to sustain 
coherent activity across changing environments. In this sense, 
Agentic AI reframes agency as a computationally realizable and 
self-maintaining process, rather than a property exclusive to 
biological or conscious entities.

This paper has developed the concept of synthetic teleology as a 
formal account of how purpose can be engineered, regulated, and 
measured in artificial systems. By introducing explicit definitions of 
intrinsic goal dynamics, own objectives, and internal evaluation, and 
by formalizing recursive goal maintenance, we have shown how 
purposiveness can be treated as an operational property of artificial 
agents rather than as a metaphor. The proposed design patterns, 
computational correspondences, and measurement indicators further 
connect philosophical accounts of teleology to implementable 
architectures in contemporary AI systems.

The implications of this shift are architectural, epistemic, and 
societal. Architecturally, agentic systems require mechanisms for 
reflective goal management, norm integration, and adaptive 
coordination. Epistemically, intelligence is increasingly distributed 
across interacting human and artificial agents rather than localized 
within individual systems. Socially, the emergence of agentic 
ecosystems calls for a transition from supervisory models of control 
toward frameworks of collaborative stewardship and negotiated 
alignment.

If learning enabled machines to perceive, agency enables them to 
participate. The future of artificial intelligence will not be defined solely 
by predictive accuracy or computational scale, but by the capacity of 
artificial agents to sustain, negotiate, and align purposes within multi-
agent environments. Understanding and governing these dynamics is 
therefore a foundational challenge for the next phase of AI research. The 
promise of Agentic AI lies not in replicating human minds, but in 
extending the ecology of purposeful intelligence in which humans and 
artificial agents increasingly reason—and act—together.

9 Limitations and future research

While this study advances a formal and measurable theory of 
synthetic teleology in agentic systems, several important 
limitations remain. First, although the paper introduces explicit 
equations, design patterns, and quantitative indicators of 
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purposiveness, these remain validated primarily at the level of 
computational specification and conceptual benchmarking. Large-
scale empirical validation across real-world organizational 
deployments—such as scientific discovery platforms, enterprise 
decision systems, or multi-agent innovation environments—
remains an open research task.

Second, the proposed metrics (e.g., teleological coherence, 
reflective efficiency, adaptivity, and normative fidelity) require 
systematic experimental calibration. Future work should 
investigate how these metrics behave under distribution shift, 
adversarial perturbation, conflicting stakeholder constraints, and 
multi-agent value disagreement. This includes establishing 
thresholds for stable agency, failure modes of recursive goal 
maintenance, and trade-offs between adaptability and normative 
stability.

Third, while this paper distinguishes synthetic teleology from 
both biological teleology and designer-imposed function, the long-
term socio-technical evolution of agentic purposes remains under-
theorized. How agentic objectives drift over time under institutional, 
economic, and cultural pressures demands longitudinal empirical 
study, particularly in safety-critical and governance-sensitive 
domains.

Finally, although ethical governance and co-evolutionary 
alignment are theoretically articulated, their implementation at scale 
remains unresolved. Future research should develop standardized 
alignment interfaces, auditable goal-revision logs, and cross-agent 
norm negotiation protocols that can support accountable deployment 
in public-sector, financial, and scientific infrastructures.

Together, these directions define a forward-looking research 
program in which synthetic teleology becomes not only a theoretical 
construct but an empirically grounded foundation for designing, 
evaluating, and governing the next generation of Agentic AI 
systems.
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