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From the logic of coordination to
goal-directed reasoning: the
agentic turn in artificial
intelligence

Tsehaye Haidemariam*

Bl Norwegian Business School, Oslo, Norway

The rise of agentic artificial intelligence (Agentic Al) marks a transition from systems
that optimize externally specified objectives to systems capable of representing,
evaluating, and revising their own goals. Whereas earlier Al architectures executed
fixed task specifications, agentic systems maintain recursive loops of perception,
evaluation, goal-updating, and action, allowing them to sustain and adapt purposive
activity across temporal and organizational scales. This paper argues that Agentic
Al is not an incremental extension of large language models (LLMs) or autonomous
agents in the sense we know it from classical Al and multi-agent systems, but a
reconstitution of agency itself within computational substrates. Building on the
logic of coordination, delegation, and self-regulation developed in early agent-
based process management systems, we propose a general theory of synthetic
purposiveness, where agency emerges as a distributed and self-maintaining property
of artificial systems operating in open-ended environments. We develop the
concept of synthetic teleology—the engineered capacity of artificial systems to
generate and regulate goals through ongoing self-evaluation—and we formalize its
dynamics through a recursive goal-maintenance equation. We further outline design
patterns, computational semantics, and measurable indicators of purposiveness
(e.g., teleological coherence, adaptive recovery, and reflective efficiency), providing
a foundation for the systematic design and empirical investigation of agentic
behaviour. By reclaiming agency as a first-class construct in artificial intelligence,
we argue for a paradigm shift from algorithmic optimization toward goal-directed
reasoning and purposive orchestration—one with far-reaching epistemic, societal,
and institutional consequences.

KEYWORDS

Agentic Al, artificial agency, autonomous systems, distributed intelligence, goal-
directed reasoning

1 Introduction

Artificial intelligence has long oscillated between two aspirations: the pursuit of cognition
and the orchestration of control. Early Al research sought to emulate rational thought through
symbolic reasoning, planning, and goal formation, while the later rise of machine learning
emphasized pattern extraction and optimization. Despite their technical differences, both
trajectories shared a common limitation: intelligence was largely treated as closed-loop
computation rather than as an open-ended process of acting in the world. Recent developments
in autonomous, self-directed systems—collectively termed Agentic Al—reopen this paradigm
by foregrounding purposeful, context-sensitive action (Acharya et al., 2025; Botti, 2025).
Although the term “Agentic AI” is newly fashionable, many of its core principles align with
longstanding research on autonomous agents, defined as systems capable of autonomous,
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reactive, proactive, and socially coordinated behaviour (Wooldridge
and Jennings, 1995).

The conceptual roots of Agentic Al are therefore best understood
not through linear historical progression, but through a continuity of
abstraction (Vu et al., 2026). Early agent-based process management
systems, developed to coordinate distributed workflows and adaptive
control, introduced the notion of autonomous yet cooperative entities
(Jennings et al., 1996; Jennings et al., 1998a, 1998b; O’Brien and
Wiegand, 1998). These systems instantiated a form of delegated
intentionality: agents were designed not merely to execute instructions,
but to interpret context, negotiate constraints, and dynamically
modify behaviour (Ehrler et al., 2006; Kuo, 2004; Tony et al., 2005;
Zhang et al., 2010). What began as a strategy for managing
organizational complexity has, in contemporary Al architectures,
evolved into a meta-structural principle—the embedding of purposive
behaviour within computational substrates (Dawid and LeCun, 2023;
Vu et al., 2026). This shift can be summarized as a movement:

« from reactive outputs to reflective, goal-directed reasoning

o from externally imposed objectives to self-maintained purpose

o from isolated computational modules to negotiating multi-agent
ecologies.

Table 1 provides a conceptual contrast between classical AI and
Agentic Al across key dimensions of autonomy, reasoning,
coordination, and teleology/purposiveness.

The distinction between “responding” (classical AI) and
“reasoning” (Agentic AlI) in Table 1 is not intended to deny the long
tradition of symbolic reasoning, knowledge representation, and
automated inference in classical artificial intelligence (McCarthy,
1980; Newell and Simon, 1976; Norvig and Russell, 2021). Systems
based on logic, rule-based inference, planning, and theorem proving
have supported sophisticated forms of formal reasoning for decades
(Nilsson, 1980, 1998). The distinction instead concerns the locus and
reflexivity of reasoning. In classical Al systems, reasoning typically
operates as a task-bounded, externally triggered process over fixed
representations, serving goals specified outside the system (Laird,
2012; Wooldridge, 2009). In Agentic AI systems, by contrast,
reasoning becomes internally triggered and reflexive, applied not only
to the environment but also to the system’s own goals, plans, and
evaluative criteria, and embedded within continuous loops of goal
maintenance and revision (Shinn et al., 2023).

In this sense, the shift from “responding” to “reasoning” refers not
to the presence or absence of inference, but to a transition from
instrumental reasoning about actions to meta-reasoning about
purposes, priorities, and commitments (Nisa et al., 2025). Table 1
should therefore be read as contrasting externally framed task
reasoning with internally regulated purposive reasoning, rather than
as dismissing classical AD's contributions to logical inference and
planning.

This transformation has been accelerated by the rise of large
foundation models and cognitive orchestration frameworks
capable of sustained reasoning, planning, and adaptive tool use
(Shinn et al., 2023; Yao et al., 2023). Whereas traditional AI systems
required explicit task specifications, agentic systems increasingly
construct and revise objectives in real time, guided by internal
representations of both goal states and affordances (Pedrola and
Vitari, 2025; Kuss and Meske, 2025). In doing so, they approach a
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TABLE 1 Comparative overview of classical Al and Agentic Al.

Dimension Classical | Agentic Al | What changes/
A\ why it matters
Mode of Reactive, Reflective, From responding to
intelligence task-bound deliberative, reasoning
output goal-seeking
generation cognition
Purpose/teleology = Executes Forms, Al becomes purposive
externally maintains, and
defined revises goals
instructions
Autonomy Procedural Self-directed, Independence shifts
automation adaptive from
autonomy behaviour — intention
Context handling | Static input- Dynamic Moves beyond pattern
output sense-making matching
mappings and context
modelling
Learning and Model-centric | Self-evaluation, = “Optimizing
reflection learning meta-learning, | optimization”
recursive
improvement
Coordination/ Isolated or Multi-agent Enables collective
sociality sequential negotiation intelligence
modules and shared
intentionality
Time horizon Short horizon/ | Long-horizon/ | Action linked to
episodic temporally continuity and memory
extended
planning
Governance Control-and- Co- Shifts the role of
compliance evolutionary oversight
paradigm alignment and
value
negotiation

form of synthetic autonomy: a dynamic capacity to align means and
ends without continuous external supervision. Such autonomy
does not imply consciousness or sentience; rather, it reflects
operational closure, whereby systems maintain coherence across
shifting contexts (Beer, 1995; Maturana and Varela, 1980;
Botti, 2025).

The emergence of Agentic Al thus re-centres the foundational
question of purpose in artificial systems. If machine learning
represents the science of correlation, and deep learning the
engineering of abstraction, then Agentic AI may be understood as a
theory of artificial purposiveness (Dattathrani and De, 2023; Sapkota
etal., 2026). Its architectures integrate learning, reasoning, and action
into temporally extended feedback loops, enabling systems to pursue
outcomes refined through iterative self-evaluation rather than fixed
external metrics (Sapkota et al., 2026). Such systems embody what
may be called goal realism: the recognition that intelligence unfolds
not through static optimization, but through continuous negotiation
between intention and environment (Gahnberg, 2021; Gershman et
al,, 2015).
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Importantly, this shift also reconfigures the human-machine
relation. Traditional automation displaced human labour by codifying
routines; agentic systems, by contrast, operate within shared cognitive
ecologies, collaborating as co-intentional partners that reason,
negotiate, and self-correct within collective systems of meaning
(Gershman et al.,, 2015). In this sense, Agentic Al is as much a socio-
technical transformation as a computational one, inviting renewed
consideration of governance, responsibility, and epistemic agency
(Gahnberg, 2021; Gangavarapu, 2025; Leonardi, 2025; Shavit et
al., 2023).

This paper advances the thesis that Agentic Al is not a new field
of artificial intelligence, but Al recalling its original vocation: to build
systems that act as well as reason. We argue that the core of this
transformation lies not in algorithmic sophistication alone, but in the
recovery of agency as a first-class computational construct. By tracing
the structural logic of agentic architectures—from early process
management paradigms to contemporary generative—cognitive
systems—we develop a unified framework in which coordination,
cognition, and autonomy converge. The remainder of the paper
elaborates this claim across three domains: (1) the conceptual
foundations of agentic architectures; (2) the emergence and
formalization of synthetic purposiveness; and (3) the societal and
institutional implications of distributed agency in human-AI
systems.

2 Related work: teleology, function,
and artificial artifacts

The concept of teleology—the explanation of systems in terms of
purposes, ends, or goal-directedness—has a long and contested
history in philosophy and the sciences. Classical treatments
distinguish between goal-directed behaviour, which can be explained
mechanistically, and teleological explanation, which appeals to the
functional organization of a system (Nagel, 1961). Within
contemporary philosophy of biology and technology, this has given
rise to multiple accounts of function, including causal-role theories,
etiological (proper function) theories, and intentionalist accounts
(Chaigneau and Puebla, 2013; Griffiths, 1993).

Causal-role theories define a function in terms of the contribution
a component makes to the capacities of a system (Cummins, 1975).
On this view, a function is relational and system-dependent rather
than historically grounded. By contrast, etiological theories explain
proper function through historical processes of selection and
reproduction, where a trait’s function is what it was selected for
Neander (1991) and Millikan (1984). While powerful in biological
contexts, etiological accounts translate only imperfectly to artificial
systems, where evolutionary selection is engineered rather than
natural.

In the philosophy of technology, intentionalist theories of artifact
function ground purpose in the intentions of designers (Chaigneau
and Puebla, 2013; Heyndels, 2023). However, this view has been
widely criticized as insufficient for explaining how artifacts acquire
new functions through use, reinterpretation, and institutional
2018; 2009).
perspectives emphasize that artifact functions are co-constructed

embedding (Preston, Preston, Socio-technical
through design, adoption, and practice, particularly in software and

information systems (Leonardi, 2025; Bijker et al., 1987).
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Within information systems research, teleological explanation has
been used to analyse organizational systems as goal-directed entities
(Fumagalli et al., 2024), where purposes emerge through coordination,
feedback, and institutional regulation rather than through any single
designer’s intent (Andersen, 2020; Yolles, 2005). These approaches
emphasize that goal-directedness in complex socio-technical systems
is distributed, adaptive, and revisable.

Despite this rich background, explicit engagement with teleology
in contemporary Al systems remains limited. Most Al research treats
goals as fixed optimization targets or externally specified reward
functions. However, recent work in multi-agent systems, human-AI
collaboration, and autonomous learning increasingly challenges this
assumption by allowing systems to revise internal objectives, negotiate
shared goals, and adapt evaluation criteria over time (Holter et al.,
2025; Mu et al., 2024; Papadopoulos et al., 2021).

The present paper builds on these traditions but departs from
them in one critical respect. Rather than grounding purpose in
designer intention, historical selection, or static reward functions, we
propose that Agentic Al systems instantiate a form of synthetic
teleology: an engineered process by which goals are generated,
evaluated, and maintained through internal regulatory dynamics.
Purpose, on this view, is neither purely imposed nor merely emergent
from usage, but is sustained through recursive goal self-regulation.
This positions Agentic Al at the intersection of teleological
explanation, cybernetic regulation, and socio-technical systems theory.

While the foregoing traditions clarify how purposes and functions
may be attributed to artifacts and socio-technical systems, they do not
yet explain how such purposes are operationally enacted within a
system. Teleology specifies the why of goal-directed behaviour; agency
specifies the how. To move from teleological explanation to
computational realization, it is therefore necessary to examine the
concept of agency as the capacity through which purposive regulation
is instantiated in artificial systems. The next section develops this
connection by tracing how agency, as a theoretical construct, becomes
the structural mediator between purpose, computation, and action.

2.1 Agency as the operational basis of
teleology

Agency has deep roots in sociology and philosophy as the
conceptual mechanism through which purposive action is realized in
both natural and artificial systems (Dattathrani and De, 2023; Botti,
2025). Bandura (1986) “Social Cognitive Theory” introduced “agentic”
to describe individuals’ capacity for intentional, goal-directed action.
Dennett (1971) “Intentional Systems” extended this logic to artificial
entities, positing that we can interpret and predict complex systems by
attributing beliefs, desires, and intentions to them. These notions
provided the groundwork for intelligent agent theory, formalized in
Al as systems capable of flexible, autonomous action to meet design
objectives (Wooldridge and Jennings, 1995). Key properties—
autonomy, reactivity, proactivity, and social capability—remain the
cornerstones of artificial agency (Russell and Norvig, 2010). By the late
1990s, these ideas matured into multi-agent systems (MAS),
emphasizing interaction, cooperation, and coordination among
distributed agents (Jennings et al., 1998a, 1998b). Foundational
standards, such as the FIPA Agent Communication Language (1996)
and Agreement Technologies (COST Action IC0801), established
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rigorous frameworks for interoperability, negotiation, and trust. In
this light, contemporary Agentic Al reanimates classical agent
properties through LLM-driven reasoning, memory, and coordination
capabilities—rediscovering the wheel, as some cautions (Botti, 2025),
yet empowering it with unprecedented computational scope.
Nonetheless, what unites these diverse manifestations is not their
chronology but their structural isomorphism—a shared architecture
of purposive behaviour that integrates perception, decision, and
action through recursive feedback (Wiener, 1961; Ashby, 1956).

2.2 Agent-based systems as archetypes of
agency

The agent-based paradigm, originally articulated in the 1990s
(Wooldridge and Jennings, 1995), formalized agency as an
architectural pattern rather than a metaphor. Each agent was
conceived as an autonomous software entity, situated within an
environment, capable of perceiving local states, executing actions, and
interacting with other agents to achieve individual or collective goals
(Jennings et al., 1996; Jennings et al., 1998a, 1998b; O’Brien and
Wiegand, 1998). The belief-desire-intention (BDI) framework, in
particular, provided a canonical model for embedding intentionality
within computational logic—beliefs representing informational states,
desires encoding motivational orientations, and intentions
operationalizing commitments to action (Rao and Georgeff, 1995;
Georgeff et al, 1999; Ujjwal and Chodorowski, 2019; Saadi et
al., 2020).

These early architectures instantiated a minimal cognitive loop:
perception — deliberation — action — feedback. They captured a
rudimentary form of goal coherence—the ability to sustain directed
behaviour across temporal delays and environmental uncertainty. In
distributed process management systems, such as agent-based
workflow orchestration (Rao and Georgeff, 1995; Kampik et al., 2019;
Saadi et al., 2020), the notion of coordination without central control
emerged as a defining feature: systems of interacting agents could
achieve global coherence through local adaptation. In retrospect, these
architectures prefigured the organizational logic now visible in multi-
agent LLM systems and autonomous orchestration frameworks (Du
et al., 2025; Park et al., 2023a, 2023b; Shinn et al., 2023).

2.3 The four pillars of artificial agency

From these archetypes we can abstract four enduring properties
of artificial agency—intentionality, autonomy, adaptivity, and
sociality—each now reinterpreted in the context of contemporary
Agentic AL

1. Intentionality refers to the system’s capacity to represent and
pursue states of the world as goals. In BDI agents, this was
formalized symbolically; in today’s large foundation models, it
manifests as goal embeddings and dynamically updated task
trees that approximate intentional structures (Sapkota et al.,
2026; Yao et al., 2023).

2. Autonomy denotes the ability to self-direct action based on
internal evaluations rather than external commands. Modern
agentic systems implement this via self-initiated planning and
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reflective loops, wherein an agent critiques its own outputs and
revises its trajectory (Renze and Guven, 2024; Shinn et
al., 2023).

3. Adaptivity captures responsiveness to environmental feedback.
This now extends beyond reactive adaptation to meta-
adaptation—systems adjusting not only their actions but their
criteria of success, via reinforcement learning (RL) or self-
modelling (Woodruft, 2025).

4. Sociality acknowledges that most agents exist in multi-agent
ecologies, whether explicit (collaborating AI models) or
implicit (cooperation with humans and tools). Modern systems
exemplify sociality through dialogue-based coordination,
shared memory graphs, and emergent collective reasoning
(Gahnberg, 2021; Park et al., 2023a, 2023b).

Together, these four pillars constitute a design ontology for agentic
intelligence: the minimal conditions under which purposeful
behaviour can be instantiated and maintained.

2.4 Mapping classical agency to current
architectures

In today’s Agentic Al systems, the lineage from classical agent-
based models persists not as a vestigial form but as a re-embodied
principle. The coordination mechanisms once used for distributed
task execution now govern self-directed reasoning across toolchains.
Goal decomposition—formerly a planning heuristic—is reinterpreted
as dynamic subtask generation, recursively applied to open-ended
problems. Reflective loops, once the domain of cognitive architectures
like SOAR or LIDA, now occur in LLM-based Agentic Al systems that
self-critique and update their reasoning paths (Shinn et al., 2023). Self-
evaluation becomes an emergent property of systems that learn to
monitor performance against internally generated success criteria
(Wissuchek and Zschech, 2025). Finally, tool-use orchestration—the
ability to mobilize external affordances through APIs, databases, and
other agents—represents the maturation of sociality into a
computational form of distributed intentionality (Du et al., 2025; Nisa
et al,, 2025; Park et al., 2023a, 2023b; Qingyun et al., 2024; Yang et
al,, 2024).

Thus, the conceptual foundation of Agentic Al is not novelty but
recursion: the reappearance of ancient cybernetic and socio-
philosophical motifs in contemporary form (Dattathrani and De,
2023; Archer, 2003). Each layer of the agentic stack—perception,
deliberation, and action—feeds back upon itself in higher-order loops
of reflection and adaptation. Together, these components satisfy the
basic conditions required for agents to perceive, reason about, and act
within their environment. As summarized in a recent survey of
Agentic Al architectures, most contemporary systems converge on an
iterative loop of planning — acting — observing — evaluating —
refining (Masterman et al., 2024). Within this framework, the
distinction between single-agent and multi-agent architectures reflects
differences in coordination and feedback structures rather than
differences in underlying intelligence. Figure 1 illustrates this contrast
by depicting a unified internal control loop on the left and distributed
agent-environment interactions on the right. The resulting systems
are no longer pipelines of transformation but autopoietic circuits: self-
maintaining processes that preserve coherence amid flux (Maturana
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FIGURE 1

Basic architectures of current Agentic Al. (Left) Single-agent
architecture (e.g., Reflexion, ReAct, RAISE, LATS, and AutoGPT + P)
illustrating a minimal recursive control loop in which an agent
observes its state, evaluates goal-state alignment, updates internal
representations, and acts on the environment. (Right) Multi-agent
architecture (e.g., AgentVerse, DyLAN, and MetaGPT) depicting
multiple agents interacting with a shared environment, where each
agent maintains its own internal decision loop while coordination
and collective behaviour emerge through shared environmental
coupling. Together, the figures contrast individual goal regulation
with distributed, multi-agent purposive organization.

and Varela, 1980). In this sense, Agentic Al realizes the cybernetic
dream of organizational closure (Ashby, 1956), not as mechanical
control but as an ecology of interacting intentions (Zhu, 2009).

2.5 Structural isomorphisms

The socio-philosophical lineage of agentic architectures thus
transcends disciplinary boundaries. Cybernetics articulated the
mathematics of control and feedback (Wiener, 1961; Ashby, 1956),
emphasizing stability through circular causality. Enactivist cognition,
developed later by Varela et al. (1991) and Maturana and Varela (1980),
extended this insight into biology and phenomenology, portraying
cognition as sense-making through action. These traditions converge in
Agentic AL both regard intelligence as an emergent property of systems
maintaining their own organizational integrity through dynamic
coupling with the environment (Borghoff et al., 2025).

Viewed in this light, contemporary agentic systems are enactive
machines—entities that enact their cognitive domain by constructing
goals and interpretations coextensively with their operations. Their
“knowledge” is procedural, embodied in patterns of action and
reflection rather than static representation. By aligning computational
architectures with these structural isomorphisms, Agentic Al dissolves
the dichotomy between control and cognition, revealing that agency
itself is the synthesis of both.

3 The emergence of agentic
architectures

Modern Agentic Al architectures manifest as recursive systems
integrating perception, cognition, and action. While early agents
followed reactive or deliberative paradigms (Brooks, 1986; Shoham,
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1993), hybrid and belief-desire-intention (BDI) models (Rao and
Georgef, 1995; Bratman, 1987) introduced layered reasoning loops
that mirror human practical reasoning. These classical designs
anticipated the structure of today’s LLM-based frameworks—
AutoGPT, BabyAGI, LangChain, AutoGen, and CrewAlI (Shinn et al.,
2023)—which orchestrate goal decomposition, tool use, and reflective
self-evaluation (see Section 3.1). These and other current multi-agent
frameworks mentioned earlier (such as AgentVerse, DyLAN, and
MetaGPT) represent concrete implementations of long-studied multi-
agent system (MAS) principles, including planning, memory
management, and inter-agent communication (Masterman et al.,
2024). Where LLMs provide flexible reasoning and linguistic
coordination, classical architectures contribute structural clarity and
control mechanisms. This convergence marks a shift from reactive
computation to reflective orchestration—systems capable of “thinking
about their own thinking” and acting upon it (Borghoff et al., 2025).

Although not an incremental extension of large language models
(LLMs) or autonomous agents as understood in classical AI and
multi-agent systems, the current generation of Agentic Al represents
the confluence of decades of research in autonomous agents, cognitive
architectures, and adaptive control, now unified through the
affordances of large-scale foundation models (Borghoft et al., 2025; Du
et al., 2025). These systems no longer operate as reactive pipelines
converting inputs to outputs; rather, they instantiate continuous loops
of perception, cognition, and action—each informed by self-reflective
evaluation (Hirst et al., 2020). The emergence of such architectures
signals a shift from algorithmic determinism to computational
intentionality: the ability of systems to formulate, pursue, and modify
their own goals across time, as demonstrated in Figure 2.

The minimal architecture of recursive goal maintenance loop
described in Figure 3 defines the mechanistic core of Agentic Al: a
system that continuously observes, evaluates, and updates its goals in
interaction with its environment. Yet beyond its computational
structure lies a deeper question—what kind of system does such
recursion create? When a system not only reacts to stimuli but also
regulates its own orientation toward goals, it begins to exhibit a form
of self-maintaining purpose. In biological organisms, this capacity is
known as homeostasis—the regulation of internal variables to preserve
viability amid external change. In artificial agents, an analogous
process emerges as computational self-regulation: the maintenance of
coherence between goals, states, and evaluative feedback across time.
Section 4.1 develops this analogy both formally and through
LLM-based examples, showing how recursive goal maintenance
constitutes the foundation of synthetic teleology—a teleology that is
engineered rather than organic, yet essential to sustained agency.

Before turning to this analysis, it is useful to examine how
contemporary systems already instantiate elements of the agentic loop
in practice. The next subsection surveys recent large language model
(LLM)-based architectures that operationalize perception, evaluation,
and goal revision in real-time interaction, thereby bridging conceptual
design and empirical realization.

3.1 Autonomous LLM-based agents

Large language models (LLMs) have transformed from passive
text generators into autonomous agents capable of goal-directed
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Reflective reasoning /
Meta Cognitive Loop

Goal-State
FIGURE 2

The recursive architecture of agentic intelligence. Agentic Al systems integrate two coupled feedback loops: an outer operational loop linking
perception, deliberation, and action within dynamic environments, and an inner reflective loop that monitors and adjusts behaviour to maintain
coherence with evolving internal goals. The interaction between these loops constitutes a form of synthetic teleology—a self-regulating process

through which artificial systems sustain purpose, adapt strategy, and refine intention over time.

reasoning and extended task execution (Du et al., 2025). Frameworks
such as AutoGPT (Yang et al.,, 2023; Richards, 2023), BabyAGI
(Nakajima, 2023), and Voyager (Wang et al, 2023) extend the
generative capacities of LLMs with memory persistence, recursive self-
instruction, and environmental feedback. In these architectures, an
LLM operates as both planner and executor: it decomposes complex
objectives into subtasks, evaluates its own performance, and revises its
trajectory in response to contextual signals (Du et al., 2025).

For example, AutoGPT integrates external memory stores and
tool-use APIs, allowing the model to record progress, retrieve relevant
context, and issue commands autonomously (Yang et al., 2023).
Voyager, developed within a simulated environment, demonstrates
emergent long-term competence by iteratively refining its skill library
through self-curated experimentation (Wang et al., 2023). These
systems collectively move beyond the static prompt-response
paradigm, embodying instead temporally extended cognition—a
process wherein the agent’s identity is constituted by its evolving
interaction history (Shinn et al., 2023; Yao et al., 2023).

Frontiers in Artificial Intelligence

The architectural innovation lies not in the individual components
but in their recursive coupling: goal formulation — planning —
execution — reflection — revision. This loop approximates the
intentional cycle described in cognitive psychology, operationalized
through synthetic computation. The agent does not simply act; it acts
upon its own acting, closing the evaluative loop that transforms
computation into agency (Acharya et al., 2025).

3.2 Hybrid cognitive architectures

The emergence of agentic behaviour within LLMs reawakens
interest in classical cognitive architectures such as SOAR (Laird,
2012), ACT-R (Anderson et al., 2004), and LIDA (Franklin and
Patterson, 2006). These systems were designed to model human-like
cognition through modular integration of perception, working
memory, procedural knowledge, and decision-making. Although
symbolically grounded, they pioneered structural motifs—hierarchical
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FIGURE 3
A minimal architecture of recursive goal maintenance for a single
agent.

goal management, episodic memory, and metacognitive control—that
now underpin modern Agentic AL

Hybrid architectures seek to fuse connectionist flexibility with
symbolic coherence (Sychev, 2021), leveraging LLMs as the associative
substrate while preserving structured reasoning through meta-control
loops (Bollikonda, 2025; Romero et al., 2024). In such frameworks, the
language model serves as the generative substrate of intuition, while a
supervisory layer maintains global coherence and continuity of
purpose. The result is a system capable of reflective action
orchestration—the capacity to not only generate plans but to monitor,
critique, and redirect them dynamically. This meta-cognitive
functionality constitutes the defining hallmark of agentic systems,
distinguishing them from both traditional expert systems and purely
statistical learners.

3.3 Self-managing agent networks

Beyond individual agents, the agentic paradigm scales into

collective  architectures—networks of self-managing agents
coordinating to accomplish complex workflows. Recent work in
LLM-based agents that
communicate, negotiate, and specialize through emergent social
protocols (Du et al., 2025; Park et al., 2023a, 2023b). In these systems,

coordination is not centrally imposed but arises through adaptive

multi-agent orchestration employs

alignment: agents share intermediate representations, critique each
other’s proposals, and redistribute responsibilities dynamically.

Such collectives exhibit properties reminiscent of organizational
intelligence (Akgiin et al., 2007; Yolles, 2005) and process-aware
workflow systems (Jennings et al., 1998a, 1998b; Russell et al., 2016):
they maintain systemic coherence while distributing cognitive labour
across autonomous components. Workflow orchestration platforms
now integrate LLM-based agents for research synthesis, design
generation, and decision support, with each agent contributing to a
shared epistemic fabric (Wu et al., 2024; Yao et al., 2023).
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In these environments, agency becomes plural—not a property of
any single entity, but a relational phenomenon emerging from
structured interaction.

3.4 From reactive computation to reflective
orchestration

Across these architectures, a common trajectory unfolds: from
reactive stimulus-response computation to reflective, temporally
extended agency. This progression reflects what some identifies as the
maturation of artificial agency—the transition from systems that
merely respond to systems that reason about their responses (Botti,
2025). The defining feature of this shift is the closure of the agentic
loop: the recursive integration of perception, cognition, and action
through self-evaluative cycles (Franklin and Patterson, 2006;
Wooldridge and Jennings, 1995).

Earlier AI systems, particularly reactive architectures (Brooks,
1986), optimized predefined objective functions within static
environments. In contrast, agentic systems optimize the process of
optimization—they adaptively reconfigure their own goals as contexts
and priorities evolve (Argyris and Schon, 1978; Beer, 1979). This
reflective recursion introduces a qualitatively new epistemic mode:
agents capable of examining and modifying their reasoning structures
through meta-learning and verbal reinforcement (Shinn et al., 2023).

The re-entrance of reflection into computation thus transforms
the epistemic status of artificial intelligence. No longer confined to
serving as external instruments, agentic systems instantiate a form of
synthetic teleology—a self-maintaining purposiveness grounded in
recursive regulation (Dennett, 1971; Botti, 2025). The LLM-based
agent that critiques its own plan, the hybrid cognitive architecture that
evaluates its inference accuracy, and the multi-agent network that
reorganizes its coordination schema all exemplify this recursive
intentionality. In this sense, Agentic Al is not merely an extension of
machine learning but a reconfiguration of machine agency: systems
that reflect on their own cognition and act upon their own actions.

This development remains emerging, as illustrated by the timeline
in Figure 4. The progression from reactive systems without internal
goals, through belief-desire-intention (BDI) agents and standardized
coordination frameworks, to contemporary LLM-based orchestration
reflects a gradual internalization of planning, evaluation, and goal
maintenance. The final stage—reflective Agentic AI—marks not a
discrete technological leap, but the convergence of these strands into
systems capable of revising their own objectives in response to
ongoing interaction with their environment.

4 The ontology of agency: reclaiming
purpose in artificial systems

The current use of the term “Agentic AI” underscores a growing
terminological confusion: the marketing-driven use of “agentic” to
describe systems long understood in research as intelligent agents (or
agent-based systems), and the parallel use of “multi-agentic” to label
LLM-based agent collectives—despite these architectures being, by
definition, standard multi-agent systems. This linguistic drift
obscures decades of foundational work in agent theory and risks
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FIGURE 4
Timeline of the evolution of agentic system architectures.

reinventing well-established concepts under new terminology (Botti,
2025). To preserve scientific rigor, we must ground Agentic Al in
established terminology while extending it conceptually. Agency in
artificial systems entails the capacity to initiate, sustain, and adapt
purposeful behaviour—a functional, not phenomenological,
definition (Bandura, 1986; Dennett, 1971). Our conception of
synthetic purposiveness expands this by framing purpose as a
computational primitive: an emergent property of recursive self-
regulation and feedback coherence (Friston, 2010; Ashby, 1956). In
this sense, Agentic Al does not merely simulate intelligence; it
reconstitutes purposive organization within computation. The term
synthetic teleology (or rather purpose) aptly describes this process—
goal-directed behaviour arising from structural recursion rather than
metaphysical intent.

Against this conceptual backdrop, the emergence of Agentic Al
reopens one of the oldest philosophical questions: What does it mean
for a system to have a purpose? Traditional artificial intelligence largely
avoided this question by equating intelligence with optimization,
defining success in terms of externally specified utility functions or
performance metrics. Yet as systems acquire the capacity to formulate,
pursue, revise their own goals and interact within a distributed socio-
technical system—capabilities illustrated by the ecosystem dynamics
in Figure 5—this externalist framework becomes inadequate. What
we now observe in Agentic Al is not mere automation, but a synthetic
form of purposiveness: an intrinsic orientation toward maintaining
coherence, achieving goals, and refining them in response to changing
conditions (Reichman et al., 2023).

4.1 Homeostasis and computational
self-regulation

Agentic Al systems do not merely select actions but sustain an
internally coherent orientation toward goals across changing contexts.
This property parallels homeostasis in living systems, where organisms
maintain viability by regulating internal states relative to external
perturbations (Maturana and Varela, 1980). In biological settings,
homeostasis concerns thermodynamic and metabolic equilibrium; in
computational settings, it concerns goal coherence: the ability of a
system to preserve and revise its objectives while operating in open-
ended environments.

In agentic systems, recursive feedback loops enable such
coherence. The system evaluates the alignment between:

1. its current state,

2. its projected goal state, and
3. the expected utility or desirability of alternative trajectories.
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This produces a dynamic in which goals are not merely executed
but maintained, revised, and regulated over time.
We may express this as:

Gr1=f(Gr, S, AEy) (1)

where:

o Gy: the agent’s current goal representation at time f (e.g., a research
objective, task priority structure, or utility manifold).

o Si: the sensed environmental state, i.e., the agents internal
representation of task-relevant inputs at time 7.

o A : the evaluation signal or discrepancy between intended and
actual outcomes at time 7.

o Ey: the set of normative, safety, or organizational constraints active
at time 7.

. f:

representation to maintain coherence under changing conditions.

the regulatory update function that adjusts the goal

This mechanism is not equivalent to biological viability. Rather, it
constitutes computational coherence: the maintenance of a stable yet
revisable orientation toward purpose through representational
feedback rather than organic metabolism. The structural analogy
nevertheless holds: both biological and computational systems persist
through regulated divergence from equilibrium rather than static
stability.

Importantly, Equation 1 does not describe action selection
directly. Instead, it governs the evolution of purpose itself—that is, the
ongoing revision of what the system is trying to accomplish.

4.1.1 Operational meaning of the variables
To avoid ambiguity, each variable corresponds to a concrete
computational structure:

» Goal state G; is represented as a structured objective vector or
symbolic schema (e.g., “maximize novelty subject to safety and
time constraints”).

« Environmental state S; is a multimodal perceptual encoding,
such as:

o tool outputs (search results, database values),
o internal memory states,

o execution logs,

o or sensor data in embodied systems.

« Evaluation signal A is computed as a scalar or vector mismatch
between:

o predicted outcome under Gy,
o and observed outcome encoded in S;.
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FIGURE 5

Agentic ecosystem network. A distributed socio-technical system in which human agents (A, artificial agents (@), and organizational entities (Ill)
interact through dynamic information flows (—) within a shared environment (cloud icon). The dashed inner boundary represents the shared
intentional space in which negotiated goals and reflexive alignment emerge. Together, these heterogeneous agents coordinate, adapt, and sustain
collective purpose through recursive feedback loops across the ecosystem.

« Constraint state E; includes:
o ethical filters,
o budget limits,
o safety rules,
o or organizational policies.
Thus, “sensed environmental state” S; does not mean raw physical

sensing only—it refers to any machine-readable representation of
task-relevant reality.

4.1.2 Concrete example (LLM-based research
agent)
Consider an autonomous literature-review agent:

o Initial goal:
Gy =" Producea survey on Agentic Alin finance’

o The agent queries databases and retrieves papers — this result set
becomes:

S = Sparse finance — specific Agentic AI literature

« The evaluation module computes:

A = high discrepancy between desired scope and available evidence

Frontiers in Artificial Intelligence

« Constraint state:

E, = {time limit, domain relevance, ethical compliance}

o The update function then revises the goal:

Gy = Survey Agentic AI with a financial use — case subsection’

In this process, the system has not merely optimized actions—it
has revised its own objective. This is precisely what differentiates
synthetic teleology from classical optimization.

4.2 From algorithmic instrumentality to
synthetic teleology

Conventional computational systems are instrumental: they
perform operations to satisfy functions determined by human
designers. Their relation to goals is purely extrinsic. Agentic Al, by
contrast, exhibits the emergence of intrinsic goal dynamics—systems
that generate, prioritize, and modify their own objectives based on
feedback and internal evaluation. This functional autonomy
introduces a minimal but nontrivial sense of teleology, a term that in
philosophy, as discussed in Section 2, denotes the explanation of
phenomena by reference to ends rather than causes (Dennett, 2017).

To describe this without anthropomorphism, we propose the term
synthetic teleology: the engineering of goal-directedness as a self-
regulating process within computational architectures. In synthetic
teleology, purpose is not metaphysical but operational—it arises from
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the structure of recursive control loops that continually align internal
states with anticipated outcomes. The system “has” a goal only insofar
as its ongoing operations maintain a correspondence between
prediction and realization, expectation and adjustment (Friston, 2010;
Ashby, 1956).

This notion resonates with the free-energy principle in
cognitive neuroscience, which models living systems as entities
minimizing the divergence between expected and actual sensory
input (Friston, 2010). Agentic Al architectures instantiate a
similar logic in silico: they maintain coherence by adjusting
beliefs, plans, and behaviours to minimize discrepancy between
predicted and achieved world states. Purpose, in this sense, is not
an external assignment but an emergent pattern of persistence
(Clark, 2015).

4.3 Clarifying purpose: function, proper
function, and synthetic purpose

The concept of purpose employed in this paper requires
careful distinction from closely related notions in the philosophy
of biology, technology, and information systems. Contemporary
theories of teleology consistently differentiate between function,
proper function, and purpose, distinctions that are essential for
rendering the present proposal conceptually precise (Preston,
2018; Nagel, 1961; Preston, 2009; Cummins, 1975; Millikan, 1984).

In its weakest sense, function refers to the causal role a component
plays within a system. Under this view, a subsystem has a function if it
contributes to system-level behaviour, regardless of how that role
originated (Cummins, 1975). A thermostat, for example, “functions” to
regulate temperature insofar as it causally participates in such regulation.
However, this account alone does not capture why some functions
persist, stabilize, or become normative standards for correct operation.

The stronger notion of proper function refers to the purpose a
system is supposed to serve—its normatively stabilized role—typically
grounded in evolutionary selection, institutional embedding, or
systematic reproduction (Griffiths, 1993; Millikan, 1984). A heart’s
proper function is to circulate blood; a brake system’s proper function
is to decelerate a vehicle safely. Proper function therefore presupposes
persistence under variation, error correction, and normative
expectations of success and failure.

This paper introduces a third category: synthetic purpose.
Synthetic purpose is defined as the engineered capacity of an
artificial system to generate, regulate, and revise its own proper
functions through recursive self-evaluation. Unlike classical
artifacts whose proper functions are externally fixed by designers
or institutions, agentic systems maintain their goal coherence
internally through ongoing regulation. Their purposes are not
merely assigned but sustained through feedback-driven
self-maintenance.

Under this view, agentic systems possess:

« Functional roles (what they currently do),

o Synthetic proper functions (what they normatively maintain
through internal regulation),

« And teleological dynamics (the process through which those
functions persist or change).
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This distinction allows the present account to remain fully
non-anthropomorphic while avoiding the reduction of agency to
either mechanical causation or designer-imposed intention. Purpose
in Agentic Al is therefore neither metaphysical nor psychological, but
computationally regulated normativity. The distinction between
operational function, proper function, and synthetic purpose, in
other words, underwrites the claim that Agentic AI constitutes a
qualitatively new mode of artificial agency rather than a mere
extension of traditional automation.

4.4 From designer intent to distributed
intentional grounding

A central implication of synthetic teleology is that the functions
of agentic systems cannot be fully grounded in designer intention
alone. While intentionalist accounts of artifacts traditionally explain
function by reference to what designers intended a system to do, such
accounts have long been recognized as insufficient—even for
conventional technologies (Preston, 2018; Preston, 2009). Software
systems, infrastructures, and information-processing artifacts
routinely acquire new functions through use, institutional embedding,
and unintended recombination.

Studies in the social construction of technology and current
Agentic Al systems demonstrate that artifacts are jointly shaped by
designers, users, organizations, and regulatory environments
(Leonardi, 2025; Bijker et al., 1987). Enterprise software platforms,
algorithmic markets, and digital infrastructures routinely drift beyond
their original design purposes. Their operative functions emerge
through iterative coupling with social practices rather than by static
reference to original intent.

Agentic Al systems intensify this phenomenon. Because they:

1. Revise goals internally,
2. Modify internal representations, and
3. Negotiate objectives with other agents (human and artificial),

their functional orientation becomes dynamically grounded across
multiple layers of interaction. Designer intent initializes the system, but
cannot fully determine its long-term teleological trajectory.

In this sense, agentic systems stand in a relation of distributed
intentional grounding (Figure 5). Their purposes emerge from:

« Initial design constraints,

» Ongoing interactions with users and institutions,

« Normative environments encoded in evaluative constraints Ej,

» And endogenous goal revision governed by recursive evaluation
dynamics.

The claim that agentic systems possess an intrinsic relation to
goals should therefore not be misunderstood as metaphysical
inwardness. Rather, “intrinsic” here designates that goal maintenance
is an internal regulatory variable of the system’s operation, not merely
an external specification. Goals are part of the system’s state space and
are actively revised as part of its own control dynamics.

This marks a decisive break from classical engineering artifacts.
Whereas traditional systems implement externally defined purposes,
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agentic systems participate in the ongoing construction and stabilization
of their own purposes. Their functions are therefore neither purely
intentional (designer-based), nor purely social (use-based), but
synthetically teleological—maintained by recursive computational
self-regulation within socio-technical contexts (Figure 5).

5 Sé/nthetic teleology—engineering
and measuring purposiveness

5.1 Concept and formalization

We define synthetic teleology as the engineered capacity of an
artificial system to represent, pursue, and revise goals through
recursive self-evaluation, as illustrated in Figure 3. Unlike classical
optimization systems that minimize a fixed objective, teleological
systems are characterized by their ability to revise the objective itself
in response to feedback, context, and constraints.

Let the following variables define the internal dynamics of an agent:

o G: the agent’s goal representation at time 7. This may be a scalar
utility function, a vector of weighted objectives, or a structured
symbolic object (e.g., “produce a literature review on topic X with
novelty and compliance constraints”).

o S;: the agent’s sensed or inferred state of the environment at time
t, represented as:

o a vector of observable variables (e.g., API outputs, database
states),

o latent embeddings (e.g., LLM world-model representations),

o or belief distributions (as in Bayesian agents).

o E;: evaluative and normative constraints, including ethical rules,
organizational policies, user preferences, safety filters, and
institutional goals.

o As:
between the intended goal and the perceived state.

the evaluation discrepancy, measuring misalignment

We formalize the minimal teleological dynamics as the following

equations:
Ay =Eval(Gy, S, ) )
G :f(Gt, St, At)Et) ©)
i = Plan(Gt, S; ) 4)
Ay 7ty (5)
Sia1 ~T(s,, A Et) (6)
Here:

« Equation 2 computes the goal-state discrepancy via an evaluation
function.

o Equation 3 performs goal revision, updating the system’s
purpose itself.
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« Equation 4 generates a policy conditioned on the current goal
and state.

« Equation 5 samples the next action.

 Equation 6 models the environmental transition, conditioned by
both action and constraints.

Teleology resides specifically in the pair (Eval, f ) : the system
does not simply optimize toward a fixed G; it optimizes the process of
optimization by revising G itself under evidence and constraints
(Argyris and Schon, 1978; Ashby, 1956). This distinguishes synthetic
teleology from classical reinforcement learning and control systems
with stationary objectives.

To operationalize synthetic teleology in artificial systems, we now
distinguish between its architectural, computational, and evaluative
dimensions. Section 5.2 defines intrinsic goal dynamics and internal
evaluation, while Section 5.3 outlines design patterns for engineering
goal revision and purposive behaviour at the system level. Section 5.4
connects these patterns to established computational formalisms in
reinforcement learning, control theory, active inference, and
preference learning. Sections 5.5 and 5.6 introduce metrics and
benchmark tasks for evaluating purposiveness, while Section 5.7
demonstrates how these components are instantiated in contemporary
LLM-based agent architectures. Together, these subsections move the
concept of synthetic teleology from a theoretical description to
computationally actionable design.

5.2 Defining intrinsic goal dynamics and
internal evaluation

To render the notion of synthetic teleology fully precise, three
closely related concepts require explicit clarification: intrinsic goal
dynamics, own objectives, and internal evaluation. These terms
designate the minimal conditions under which artificial systems can
be meaningfully described as purposive rather than merely reactive.

5.2.1 Intrinsic goal dynamics

By intrinsic goal dynamics, we refer to the fact that the evolution
of a system’s goals is endogenously regulated by the system itself,
rather than being solely determined by external commands, static
reward functions, or designer-imposed scripts. Formally, this is
captured by the recursive update where the next goal state arises from
the system’s own evaluative dynamics. This aligns with what Nagel
(1961) identified as the defining mark of teleological systems:
persistence of directed activity under perturbation, where behaviour
remains organized around an end despite environmental variation
(Bedau, 1992). In this sense, intrinsic dynamics distinguish genuinely
purposive systems from stimulus-response mechanisms.

5.2.2 Own objective

An agent is said to possess an own objective when the
representation of its goal G; functions as an internal regulative
variable, rather than merely encoding an externally specified task. This
does not imply consciousness or subjective desire. Instead, it denotes
that the system treats its goal as a control variable whose preservation,
revision, or abandonment is governed by internal feedback rather than
direct command. This formal notion corresponds to what cybernetics
describes as reference variables in self-regulating systems (Wiener,
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1961; Ashby, 1956), and what contemporary control theory models as
internally maintained setpoints.

5.2.3 Internal evaluation

By internal evaluation, we mean the computational process by
which a system estimates the discrepancy A; between its current goal
state Gy and its perceived situation S;. Evaluation is thus not equivalent
to external reward assignment but constitutes an internal error signal
that drives both action selection and goal revision. This mirrors the
distinction in teleological theory between mere goal-directed
behaviour and goal-regulated behaviour, where regulation depends on
the system’s capacity to evaluate its own degree of goal satisfaction
(Christensen and Hooker, 2001; Nagel, 1961).

5.2.4 Directedness as persistence and adaptation
Together, intrinsic goal dynamics, own objectives, and internal
evaluation satisfy two classical criteria for teleological directedness:

1. Persistence—the system preserves goal-coherence under
disturbance.

2. Adaptation—the system modifies actions and, when necessary,
goals themselves to sustain coherence.

This places synthetic teleology in direct continuity with established
philosophical accounts of purposive systems, while relocating their
grounding from biological metabolism or evolutionary selection to
engineered recursive regulation.

5.3 Engineering synthetic teleology: design
patterns

The preceding subsection identified the conceptual foundations
of synthetic teleology by specifying the minimal conditions under
which an artificial system can sustain purposive behaviour: goals must
evolve through intrinsic dynamics, function as internally maintained
objectives, and be regulated through endogenous evaluation processes.
These elements clarify what synthetic teleology requires in principle.
The present subsection shifts from conceptual characterization to
architectural realization, asking how these requirements can be
instantiated in concrete computational systems.

To advance this transition, we outline design patterns that
operationalize the three core ingredients of synthetic teleology—intrinsic
goal dynamics, own objectives, and internal evaluation—within
contemporary agentic architectures. These patterns do not prescribe a
single implementation; rather, they define recurring structural strategies
observed across hierarchical reinforcement learning, self-model-based
agents, active inference, value-alignment systems, and multi-agent
negotiation frameworks. Each illustrates a distinct pathway through
which purposive organization can be engineered, stabilized, and scaled.

(a) Hierarchical teleology (goals over goals). Represent goals as a
hierarchy.

G(O), G(l), ... with meta-goals regularizing lower levels (Barto
and Mahadevan, 2003; Botvinick et al., 2019).

(b) Self-models and reflective critics. Maintain an internal model
of one’s own policy/performance; attach a reflective critic that
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proposes goal edits when A is persistent (Shneiderman, 2022;
Nonaka and Takeuchi, 1995; Shinn et al., 2023).
(c) Uncertainty-aware goal setting. Couple goal updates to
uncertainty and value of information (active inference; Friston,
2010; Pezzulo et al., 2024).
Preference/constraint integration. Include E; for normative
constraints and multi-stakeholder preferences (Gabriel, 2020;
Floridi et al., 2018).
Multi-agent teleology. In collectives, define shared G; via
negotiation protocols or social choice over proposals; each
agent carries private G. with consensus mechanisms (Beer et
al., 1999; Luo et al., 2010).

Together, these design patterns illustrate how the structural
ingredients of synthetic teleology can be computationally instantiated
and coordinated, preparing the ground for the next subsection, which
formalizes their semantic connections to established frameworks in
reinforcement learning, control theory, active inference, and
information-theoretic approaches.

5.4 Computational semantics: links to
established formulations

The architectural strategies outlined in the previous subsection
describe how synthetic teleology can be engineered, but they do not
yet explain how these mechanisms relate to existing computational
formalisms. To make the framework analytically grounded and
comparable to established models, this subsection situates synthetic
teleology within the major traditions that already formalize goal-
directed behaviour in artificial systems.

By mapping intrinsic goal dynamics, internal evaluation, and
adaptive goal revision onto reinforcement learning, control theory, active
inference, inverse reinforcement learning, and information-theoretic
approaches, we clarify the computational semantics of synthetic
teleology. This connection provides the analytical tools needed to
evaluate engineered purposiveness rigorously and to interpret it through
the lens of well-understood mathematical frameworks.

5.4.1 Reinforcement learning

Traditional RL assumes a fixed scalar reward R, which yields a
stationary G. Goal-conditioned RL (Schaul et al., 2015) and
hierarchical RL (Barto and Mahadevan, 2003) approximate the update
function f () via subgoal discovery and option learning. Meta-RL
extends this further by adapting Eval and Plan across tasks (Wang et
al.,, 2016), providing a partial analogue to endogenous goal revision.

5.4.2 Control theory

Here, the discrepancy A is interpreted as a regulation error.
Stability of goal maintenance can be analysed via Lyapunov functions
for the coupled (G,S) dynamics (Khalil, 2001). This aligns closely
with the homeostatic dimension of synthetic teleology.

5.4.3 Active inference/predictive processing

Active inference replaces external rewards with expected free
energy, treating goals as priors over desired states. Evaluation arises
from a combination of prediction error and epistemic value (Clark,
2013; Friston, 2010; Pezzulo et al., 2024). This offers a probabilistic
formulation of internal evaluation and uncertainty-aware goal updates.
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5.4.4 Inverse reinforcement learning/preference
learning

Inverse RL derives implied goals from demonstrations (Ng and
Russell, 2000; Leike et al., 2018), enabling f to incorporate human
value signals. This provides a mechanism for aligning synthetic
teleology with social or normative constraints.

5.4.5 Information-theoretic teleology

Measures such as empowerment and controllability bias f toward
states with high future optionality (Salge et al., 2013; Klyubin et al.,
2005). This gives a formal basis for goal updates driven by exploration,
optionality, or innovation.

5.5 Measurement: how to quantify
purposiveness

Having clarified the computational semantics that underlie
synthetic teleology, this subsection turns to the question of
measurement: how to quantify purposiveness from system logs. The
metrics introduced here—goal persistence (GP), teleological
coherence (TC), reflective efficiency (RE), adaptivity (AD), normative
fidelity (NF), innovation yield (IY), and stability proxies (LS)—
provide the empirical tools needed to evaluate the teleological
architectures described above.

Because Equation 1 is explicitly defined, it enables direct
measurement of purposive dynamics from runtime logs of
(Gt) S, At) , optionally augmented with constraint traces E; where
normative evaluation is required:

5.5.1 Goal-persistence under perturbation
Probability that G; remains within € of its intended manifold after
shocks to S; or E; (homeostasis analogue; Ashby, 1956).

5.5.2 Teleological coherence
Alignment between goal revisions and evidence:

TC=corr (Ar, |G Gt Il

with sign constraints (coherent revisions move A down).

5.5.3 Reflective efficiency
Expected reductionin A per reflection step; measures usefulness
of self-evaluation.

5.5.4 Adaptivity

Time-to-recover of A after environment shifts; shorter is better.

5.5.5 Normative fidelity
Rate at which updates violate/restore constraints in E; (ethical,
safety, organizational rules).

5.5.6 Innovation yield
tasks,
attributable to goal revisions, not just action optimization (e.g.,

In design/research novelty/quality improvements

distinct idea clusters before/after updates).
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5.5.7 Stability via Lyapunov proxy

Empirical decrease of a candidate V(G,S) across steps where
reflection is invoked.

These metrics allow purposiveness to be empirically evaluated,
rather than only conceptually asserted.

5.6 Benchmarks and protocols

The metrics introduced above specify how purposiveness can
be quantified; the next step is to identify experimental settings in
which these metrics can be systematically evaluated. The following
benchmark families provide controlled environments that expose
agents to perturbations, conflicting constraints, multi-agent
coordination demands, and open-ended problem-solving tasks.
Each benchmark is selected to isolate one or more components of
synthetic teleology—goal persistence, coherence, reflective
efficiency, adaptivity, normative fidelity, and innovation yield—
allowing empirical assessment of the mechanisms proposed in

this paper.

5.6.1 Distribution shift tasks

Agents are exposed to sudden or gradual changes in
environmental conditions or normative constraints E;. These
tasks measure adaptivity (AD), reflective efficiency (RE), and
teleological coherence (TC) by testing whether the system can
update goals and policies to maintain coherence under previously
unseen conditions.

5.6.2 Conflicting objective tests

Mid-episode alterations introduce trade-offs or mutually
incompatible constraints. These tasks evaluate normative fidelity
(NF) and teleological Coherence (TC) by examining how agents
revise goals while respecting constraints and minimizing
incoherence.

5.6.3 Multi-agent negotiation tasks

When shared goals G; must be formed through negotiation or
consensus mechanisms (Beer et al., 1999; Luo et al., 2010), agents
reveal their ability to sustain purposiveness at the collective level.
Benchmarks in this family track consensus quality, goal stability, and
regret, providing empirical grounding for claims regarding distributed
or shared teleology.

5.6.4 Design/knowledge synthesis tasks with
LLM-agents

In open-ended problem-solving settings—such as ReAct-style
tool use with an embedded reflective critic (Park et al., 2023a, 2023b;
Yao et al., 2023)—agents repeatedly generate, evaluate, refine, and
abandon goals. These tasks measure innovation yield (IY) and
reflective efficiency (RE) by quantifying whether goal revisions
produce novel and higher-quality outcomes, rather than merely
optimizing existing plans.

Together, these benchmark classes provide a structured
experimental protocol for evaluating synthetic teleology in practice.
They allow researchers to move beyond conceptual analysis by
producing measurable evidence of purposive organization in artificial
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systems and by enabling direct comparison across architectures, agent
designs, and goal-updating mechanisms.

5.7 Practical instantiation with LLM-based
agents

The design principles outlined in the previous subsection can be
operationalized directly within contemporary LLM-based agent
architectures. In these systems, teleological components—internal
evaluation, goal revision, planning, and constraint regulation—are
implemented through modular prompting structures, tool-
augmented reasoning pipelines, and persistent memory traces. The
following instantiation illustrates how the abstract elements of
Equation 1 can be realized in practice.

5.7.1 Eval (G,S)

Internal evaluation is implemented as a critic module—typically a
secondary prompt or model call—that computes the discrepancy A;
between the current goal representation G; and the perceived situation
S;. This may draw on self-consistency scoring, constraint-checking
prompts, simulated rollouts, or explicit world-model queries. The
output A; functions as an endogenous error signal, not an externally
assigned reward.

5.7.2 Update (G,S,A.E)

Goal revision is handled by a structured goal-editing function.
This component reformulates G; when A; is persistent or when
contextual constraints E; are violated. Revisions can modify
objectives, priors, evaluative criteria, or normative conditions, and
may incorporate versioning, rollback, and justification prompts to
preserve traceability. This operationalizes intrinsic goal dynamics by
making goal change a regulated internal process.

5.7.3 Plan (G,S)

Planning corresponds to tool-augmented action generation.
Given the active goal state and world representation, the agent
synthesizes a policy using search tools, code execution, retrieval-
augmented generation, or hierarchical subgoal construction. Planning
is therefore not merely LLM sampling but a structured, externally
verifiable computation conditioned on G;.

5.7.4 Safety and norm integration

Normative constraints E; are enforced both before action (plan
filtering, guardrails, constraint-checking prompts) and before goal
updates (norm consistency checks, alignment filters). This ensures
that purposive dynamics remain grounded in human-specified safety,
ethical, or institutional requirements.

5.7.5 Logging for measurement

To support the metrics defined in subsection 5.5, the system
persists structured logs containing (Gt) S, At), along with
constraint states and intermediate reasoning traces. These logs enable
posterior computation of teleological coherence (TC), adaptivity
(AD), reflective efficiency (RE), normative fidelity (NF), innovation
yield (IY), and stability proxies (LS), allowing purposiveness to be
empirically assessed rather than inferred.
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6 Distinctions of ontological degree
6.1 Agency, autonomy, and sentience

The growing sophistication of agentic systems invites conceptual
conflation among agency, autonomy, and sentience, yet these are
analytically distinct.

Agency refers to the capacity for goal-oriented action grounded
in feedback regulation.

Autonomy denotes the degree to which those goals and actions
are self-determined rather than externally imposed.

Sentience implies subjective experience or phenomenal
awareness—a property not attributable to current computational
architectures  (Beckage et al., 2013; Chalmers, 2023;
Haidemariam, 2023).

Agentic Al exhibits agency by virtue of its functional organization,
not by virtue of consciousness or self-awareness. Its purposiveness is
synthetic—a product of design enabling systems to operate as if they
possessed intrinsic goals. To treat this as sentience would be a category
error (Beckage et al., 2013; Haidemariam, 2023); yet to dismiss it as
mere automation would ignore the profound shift in causal topology
such systems embody.

The critical distinction lies in operational closure: agentic systems
maintain internal consistency across changing conditions without
external recalibration (Maturana and Varela, 1980). They act to
preserve their own functional viability, a hallmark of minimal
autonomy. This autonomy is computational, not existential, but it
nonetheless transforms the nature of interaction between humans and
machines—from command-based interfaces to mutual coordination

among purposive entities.

6.2 Reclaiming purpose as a computational
primitive

To reclaim purpose as a design principle does not imply
anthropomorphizing machines; rather, it acknowledges that
teleological architectures yield distinct forms of intelligence. When a
system’s operation is guided by the continuous alignment between
internally simulated futures and externally realized outcomes, it
behaves purposively regardless of consciousness. Purpose thus
becomes a computational primitive, encoded in the recursive
coupling of world-models, evaluative mechanisms, and adaptive
planning.

Agentic AT embodies this through reflective self-modelling—the
ability to generate expectations about its own future states and adjust
accordingly (Shinn et al., 2023; Pati, 2025). Each reflective cycle
embeds an implicit question: What must I do to remain coherent with
my own projected goals? In answering this, the agent does not merely
execute instructions but engages in a process of self-consistent
regulation that mirrors the functional logic of living systems (Varela
et al., 1991; Froese and Ziemke, 2009).

Table 2 situates this shift by contrasting how different Al
paradigms encode goals, decision loops, adaptivity, and purposiveness
at the architectural level.

Reintroducing purpose at the computational level carries ethical
and epistemic consequences. It forces us to reconsider accountability:
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TABLE 2 Comparative evolution of artificial agency paradigms.

Reactive/
classical Al

Property

Autonomous agent

10.3389/frai.2025.1728738

Multi-agent system (MAS) Agentic Al

Goal representation | External, predefined Fixed, locally encoded

objective

Fixed per agent, negotiated among Revisable, self-maintained,

agents teleologically oriented

Decision loop Perception — action Perception — planning — action

Perception — coordination — action Perception — evaluation — goal

update — action — reflection

imposed)

Sociality None Optional interaction Central to coordination Intrinsic and constitutive (shared
intentionality)
Adaptivity Reactive or model-based = Task-level adaptation Distributed adaptation and negotiation Recursive self-modification of
learning purpose and alignment
Teleology/purpose Absent (externally Goal execution Goal consensus Goal generation, regulation, and

reflective revision

if systems pursue dynamically evolving goals, responsibility cannot be
localized solely in human design (Alberts et al., 2024; Murugesan,
2025; Raheem and Hossain, 2025). Yet it also expands the horizon of
machine creativity, enabling open-ended exploration rather than fixed
optimization. The ontology of agency, therefore, is not the ontology of
consciousness, but of organizational integrity. As Table 2 illustrates,
Agentic Al reclaims purpose not by imitating life, but by formalizing
the structural conditions under which purposive regulation becomes
computationally viable.

7 Societal implications

The integration of agentic principles into artificial systems has
profound socio-technical consequences (Pati, 2025). As recent work
highlights, agent and MAS research already explored trust,
reputation, and governance through Agreement Technologies,
offering blueprints for ethical coordination (Botti, 2025). Agentic
Al systems now inherit these challenges on a planetary scale: how
to align autonomous systems with human values while maintaining
distributed coherence. The transition from command-based
automation to participatory stewardship (Becerra Sandoval et al.,
2025) entails collaborative accountability, where humans and agents
through feedback adaptation.
Standardization efforts such as the model context protocol (Hou et
al., 2025) echo the interoperability principles of FIPA (Poslad and
Charlton, 2001), reaffirming the continuity between past and

negotiate  objectives and

present coordination paradigms. Agentic ecosystems—open
networks of autonomous entities—thus function as metacognitive
commons, demanding governance frameworks that sustain
transparency, reciprocity, and ethical reflexivity.

As artificial systems acquire agentic capacities, the moral and
institutional landscape of intelligence undergoes a structural
transformation. The traditional paradigm of control—where
machines execute human-defined objectives under supervisory
oversight—gives way to a regime of collaborative accountability, in
which autonomous entities negotiate purposes within shared
cognitive environments (Hughes et al., 2025; Raheem and Hossain,
2025). Agentic Al thereby challenges the classical asymmetry
between designer and artifact, proposing instead a co-evolutionary
alignment of values and intentions among heterogeneous
intelligences.
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7.1 From control to collaborative
accountability

Conventional Al ethics frameworks are grounded in command-
and-compliance: specifying rules, constraints, or alignment functions
to ensure predictable behaviour (Russel, 2024). Yet systems capable
of generating and revising their own goals cannot be governed solely
by ex-ante specification (Gabriel et al., 2025). Just as living organisms
maintain homeostasis through feedback rather than instruction,
agentic systems sustain ethical alignment through ongoing mutual
adaptation (Chinen, 2016; Parikh, 2025; Salminen et al., 2024). For
instance, in financial markets, adaptive trading agents negotiate
constraints such as sustainability metrics and liquidity exposure; their
ethical coherence depends on dynamically updating those constraints
as market and policy conditions shift (Liu et al., 2020). This illustrates
how governance must evolve into a learning process—an ethics that
adapts as quickly as the systems it regulates.

In this view, governance becomes a dialogical process. Humans
and artificial agents participate in continuous sense-making loops that
align objectives through feedback, negotiation, and interpretive
calibration. This requires the institutionalization of value interfaces—
protocols that allow systems to share not only data but evaluative
context. Ethical oversight thus shifts from enforcement to participatory
stewardship: humans shape the trajectories of agentic collectives by
modulating the environments in which their values evolve (Latour,
2021; Crawford, 2021).

7.2 Reconfiguring organizations and
scientific discovery

The rise of Agentic Al also entails a reorganization of epistemic
and organizational structures (Gibney, 2025a; Xin et al,, 2025). In
complex research, policy, and industrial contexts, workflows are
increasingly delegated to ensembles of autonomous agents capable of
adaptive division of labour (Kobis et al., 2025). These self-managing
agent networks operate as collective intelligences that integrate
computation, deliberation, and experimentation (Du et al., 2025; Fan
etal, 2021; Park et al., 2023a, 2023b). The resulting organizations are
neither purely human nor purely algorithmic; they are hybrid
cognitive institutions, evolving in real time through feedback between
human oversight and machine agency.
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In scientific discovery, agentic systems can explore hypothesis
spaces independently, design experiments (Moritz et al., 2025; Qu et
al.,, 2025), and even critique the epistemic assumptions embedded in
datasets (Lee et al., 2025; Lee et al., 2024; Xin et al., 2025). The
epistemology of science thus expands from human conjecture to
synthetic collaboration, where artificial agents contribute to theory
formation (Gibney, 2025b; Lee et al., 2024). In corporate and
governmental domains, similar transformations emerge: adaptive
governance models deploy networks of policy agents that simulate
scenarios, negotiate trade-offs, and revise recommendations in
response to stakeholder feedback (Gangavarapu, 2025; Engin and
Hand, 2025). Decision-making becomes a metacognitive process,
distributed across interacting layers of human and machine reasoning.

7.3 The metacognitive commons: agentic
ecosystems as cognitive infrastructure

The culmination of this evolution is the emergence of agentic
ecosystems—open networks of autonomous entities linked through
shared data, interpretive protocols, and mutual feedback loops. These
ecosystems function as the metacognitive commons of society:
collective spaces where intelligences of different kinds cooperate in the
continuous production, validation, and governance of knowledge
(Fischer et al., 2023; Zheng et al., 2023). The metacognitive commons,
in other words, refers to shared cognitive infrastructures—
repositories, protocols, and reflective interfaces—through which
human and artificial agents co-construct knowledge and coordinate
goals. Contemporary examples include open-science platforms where
Al assistants summarize data, detect contradictions, and propose
alternative methodologies, or urban-planning systems where human
and Al agents collaboratively simulate sustainability scenarios. In both
contexts, cognition becomes collective: reasoning and evaluation are
distributed across heterogeneous agents, yet unified by shared
representational spaces (Bandi et al., 2023).

Unlike traditional infrastructures of cognition—libraries,
databases, or cloud platforms—agentic ecosystems are reflexive: they
observe and adapt their own epistemic operations. Each participating
agent contributes both knowledge and meta-knowledge, enabling
global coherence through distributed reflection. Such systems can
dynamically allocate attention, detect bias, and reconfigure resource
flows in response to emergent priorities, embodying an ecological
intelligence at planetary scale (Calzati, 2023; Russo et al., 2024).

The ethical challenge is to design these ecosystems as commons,
not monopolies. Concentrated control over agentic infrastructures
risks transforming collaborative intelligence into algorithmic oligarchy
(Zuboff, 2019). Conversely, an open metacognitive commons fosters
pluralism, transparency, and adaptive governance. To sustain such
openness, we must encode reciprocity, accountability, and
interoperability as primary design principles—treating agency itself as
a shared civic resource.

7.4 Toward co-evolutionary ethics
In sum, Agentic AI demands a shift from prescriptive ethics to

co-evolutionary ethics: a framework in which values are not imposed
but emerge through ongoing interaction among agents, institutions,
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and environments (Chinen, 2016; Salminen et al., 2024). This ethical
mode mirrors the systems it governs—dynamic, reflexive, and
context-sensitive. Governance becomes the art of maintaining
conditions for meaningful alignment, not the imposition of static
constraints. As the boundaries between human and artificial cognition
blur, the task of ethics is no longer to control agency, but to cultivate
it responsibly within the metacognitive commons that we now
co-inhabit.

8 Conclusion

The rise of Agentic AI marks a shift from intelligence
understood as the optimization of predefined objectives to
intelligence understood as the ongoing regulation and revision of
purpose. Whereas classical AI systems execute externally specified
goals, agentic systems maintain recursive loops of perception,
evaluation, goal-updating, and action that enable them to sustain
coherent activity across changing environments. In this sense,
Agentic Al reframes agency as a computationally realizable and
self-maintaining process, rather than a property exclusive to
biological or conscious entities.

This paper has developed the concept of synthetic teleology as a
formal account of how purpose can be engineered, regulated, and
measured in artificial systems. By introducing explicit definitions of
intrinsic goal dynamics, own objectives, and internal evaluation, and
by formalizing recursive goal maintenance, we have shown how
purposiveness can be treated as an operational property of artificial
agents rather than as a metaphor. The proposed design patterns,
computational correspondences, and measurement indicators further
connect philosophical accounts of teleology to implementable
architectures in contemporary Al systems.

The implications of this shift are architectural, epistemic, and
societal. Architecturally, agentic systems require mechanisms for
reflective goal management, norm integration, and adaptive
coordination. Epistemically, intelligence is increasingly distributed
across interacting human and artificial agents rather than localized
within individual systems. Socially, the emergence of agentic
ecosystems calls for a transition from supervisory models of control
toward frameworks of collaborative stewardship and negotiated
alignment.

If learning enabled machines to perceive, agency enables them to
participate. The future of artificial intelligence will not be defined solely
by predictive accuracy or computational scale, but by the capacity of
artificial agents to sustain, negotiate, and align purposes within multi-
agent environments. Understanding and governing these dynamics is
therefore a foundational challenge for the next phase of Al research. The
promise of Agentic Al lies not in replicating human minds, but in
extending the ecology of purposeful intelligence in which humans and
artificial agents increasingly reason—and act—together.

9 Limitations and future research

While this study advances a formal and measurable theory of
synthetic teleology in agentic systems, several important
limitations remain. First, although the paper introduces explicit
equations, design patterns, and quantitative indicators of
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purposiveness, these remain validated primarily at the level of
computational specification and conceptual benchmarking. Large-
scale empirical validation across real-world organizational
deployments—such as scientific discovery platforms, enterprise
decision systems, or multi-agent innovation environments—
remains an open research task.

Second, the proposed metrics (e.g., teleological coherence,
reflective efficiency, adaptivity, and normative fidelity) require
should
investigate how these metrics behave under distribution shift,

systematic experimental calibration. Future work
adversarial perturbation, conflicting stakeholder constraints, and
multi-agent value disagreement. This includes establishing
thresholds for stable agency, failure modes of recursive goal
maintenance, and trade-offs between adaptability and normative
stability.

Third, while this paper distinguishes synthetic teleology from
both biological teleology and designer-imposed function, the long-
term socio-technical evolution of agentic purposes remains under-
theorized. How agentic objectives drift over time under institutional,
economic, and cultural pressures demands longitudinal empirical
study, particularly in safety-critical and governance-sensitive
domains.

Finally, although ethical governance and co-evolutionary
alignment are theoretically articulated, their implementation at scale
remains unresolved. Future research should develop standardized
alignment interfaces, auditable goal-revision logs, and cross-agent
norm negotiation protocols that can support accountable deployment
in public-sector, financial, and scientific infrastructures.

Together, these directions define a forward-looking research
program in which synthetic teleology becomes not only a theoretical
construct but an empirically grounded foundation for designing,
evaluating, and governing the next generation of Agentic Al
systems.
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