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Background: Large language models (LLMs) show promise for clinical decision 
support but often deviate from evidence-based protocols, raising safety and 
regulatory concerns. Anemia management in hemodialysis patients requires 
strict adherence to erythropoiesis-stimulating agent (ESA) and intravenous 
(IV) iron dosing rules, making it a high-risk use case for uncontrolled model 
behavior. To address this gap, we developed AnemiaCare HD, a deterministic 
LLM framework engineered to deliver transparent, reproducible, and protocol-
adherent clinical recommendations.
Methods: AnemiaCare HD was evaluated using 600 simulated hemodialysis 
anemia scenarios derived from a standardized institutional protocol. The model 
required six fixed clinical inputs (hemoglobin, hemoglobin rate of change, trend 
direction, transferrin saturation, ferritin, and current ESA dose). Phase 1 tested 
a loosely structured prompt. Phase 2 implemented deterministic prompt logic 
incorporating ESA kinetics, iron dosing rules, mandatory timing safeguards, and 
embedded safety alerts. Two independent nephrologists assessed protocol 
adherence.
Results: In Phase 1, only 96 of 300 cases (32%) aligned with protocol 
recommendations, with common errors in ESA titration, iron dosing, and 
timing violations. In Phase 1, loosely structured prompting produced variable 
outputs, with only 96 of 300 simulated cases (32%) fully protocol-adherent 
and frequent unsafe recommendations. In contrast, deterministic prompting in 
Phase 2 resulted in 100% adherence across all 300 cases, eliminating protocol 
deviations, unsafe iron dosing, and timing violations (p < 0.001). In Phase 2, 
deterministic encoding achieved full protocol adherence (300/300, 100%), 
eliminating unsafe or premature recommendations (p < 0.001 vs. Phase 1) and 
consistently generating structured, rationale-based outputs.
Conclusion: Deterministic LLM engineering enables safe, fully protocol-
compliant clinical decision support in high-risk therapeutic domains. 
AnemiaCare HD demonstrates the viability of regulatory-aligned, auditable LLM 
frameworks for clinical use, although real-world integration and prospective 
validation remain necessary next steps.
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Introduction

Anemia is among the most common and clinically significant 
complications of end-stage kidney disease (ESKD). With the global 
burden of ESKD projected to rise to nearly six million people by 2030, 
anemia represents a major challenge, affecting roughly half of these 
patients (Liyanage et al., 2015; Kovesdy et al., 2023). Among those 
receiving hemodialysis, anemia most often develops because of 
reduced erythropoietin (EPO) production, disruptions in iron 
metabolism associated with chronic inflammation, blood loss, and 
oxidative stress (Fishbane and Spinowitz, 2018; Astor et al., 2002; 
Ifudu et al., 1996; Escandell-Montero et al., 2014; Babitt and Lin, 2012; 
Ku et al., 2023). Hemoglobin (Hb), the key protein responsible for 
oxygen transport, depends on both EPO stimulation of red blood cell 
precursors and adequate iron availability for its synthesis (Fishbane 
and Spinowitz, 2018; Cavill, 2002). When these mechanisms are 
impaired, Hb levels decline, leading to fatigue, diminished quality of 
life, higher cardiovascular risk, and increased mortality (Fishbane and 
Spinowitz, 2018; Bárány et al., 1993; Foley et al., 1996; Lefebvre et al., 
2006; Locatelli et al., 2004).

The introduction of recombinant human EPO transformed 
anemia management by reducing the need for transfusions and 
improving patient outcomes (Barbieri et al., 2016a; Bazeley and Wish, 
2019; Ifudu et al., 1995; Drüeke and Parfrey, 2012; Анемії, 2012). 
Equally important, the use of intravenous (IV) iron has become a 
cornerstone of therapy, as ongoing iron supplementation is critical to 
sustain erythropoiesis and optimize the effectiveness of ESAs (Drüeke 
and Parfrey, 2012; Анемії, 2012; Anumas et al., 2023; Macdougall et 
al., 2019; Babitt et al., 2021). Together, these therapies provide the 
foundation of anemia care in hemodialysis. However, despite their 
central role, achieving the correct balance between ESAs and IV iron 
remains complex and time-consuming for clinicians (Ifudu et al., 
1995; Anumas et al., 2023; Besarab et al., 2000; Coyne, 2006; Charytan 
et al., 2015; Besarab, 2006; Hung and Tarng, 2014). Hb levels in 
dialysis patients frequently fluctuate above and below the target range, 
a phenomenon known as Hb cycling (Jörg et al., 2023; Collins et al., 
2005; van der Putten et al., 2009; Thanakitcharu and Jirajan, 2016; 
Plappert et al., 2024). This instability often arises when ESA doses are 
adjusted too frequently or applied too rigidly, without accounting for 
patient variability or the delayed pharmacodynamic effect of each dose 
(Escandell-Montero et al., 2014). As a result, Hb levels swing between 
under- and over-correction, creating cycles that are difficult to 
stabilize in routine practice. Hb cycling has been linked to adverse 
outcomes and substantially increases the cost of anemia management, 
underscoring the need for safer and more consistent treatment 
strategies (Fishbane and Berns, 2007; Collins et al., 2012; Boudville et 
al., 2009; Swaminathan et al., 2015).

Machine learning models have been explored to improve dosing 
precision (Escandell-Montero et al., 2014; Barbieri et al., 2016a,b; 
Gaweda et al., 2008; Tuck et al., 2017; Barbieri et al., 2015; Kang et al., 
2024; Ohara et al., 2021; Yun et al., 2021; Yang et al., 2023), but most 
focus narrowly on ESA adjustment, lack interpretability, or fail to ensure 

full compliance with established protocols (Barbieri et al., 2015, 2016a). 
However, while several prior AI and machine-learning approaches have 
incorporated both ESA and iron management, including the Anemia 
Control Model (ACM) (Garbelli et al., 2024a,b; Gandjour et al., 2025), 
which integrates iron dosing algorithms and has been deployed 
internationally, the majority of these systems emphasize dose 
optimization and predictive control rather than transparent, rule-based 
protocol enforcement. Existing models often function as black-box 
optimizers, providing limited visibility into the rationale behind dosing 
decisions and offering variable adherence to institution-specific safety 
constraints. In contrast, the present framework was designed to ensure 
complete protocol fidelity through deterministic rule encoding and 
explicit safety guardrails while maintaining clinician-facing natural-
language justification. Recently, large language models (LLMs) have 
emerged as adaptable clinical reasoning tools; however, general-purpose 
LLMs are prone to hallucinations, inconsistent recommendations, and 
unsafe deviations from dosing thresholds, limiting their suitability in 
high-risk therapeutic domains such as dialysis anemia management 
(Ohara et al., 2021; Yun et al., 2021; Yang et al., 2023).

To address this gap, we developed AnemiaCare HD, a 
deterministic LLM framework engineered to deliver safe, reproducible, 
and protocol-adherent anemia management recommendations for 
hemodialysis patients. The system incorporates explicit ESA and IV 
iron dosing rules, pharmacodynamic timing safeguards, and 
integrated safety checks to ensure full alignment with institutional 
protocols. We evaluated its performance across 600 simulated anemia 
scenarios derived from a standardized protocol. This work 
demonstrates, for the first time, that deterministic prompt design can 
achieve complete fidelity to a complex clinical protocol in a high-risk 
therapeutic domain, overcoming a major barrier to safe deployment 
of LLM-based clinical decision support.

Methods

Study design and setting

AnemiaCare HD was evaluated in two phases using 600 simulated 
anemia management cases. All cases were based on institutional 
anemia protocols and designed to represent a wide range of scenarios, 
including both common and edge cases (e.g., Hb < 9 g/dL, 
Hb > 12.5 g/dL, iron deficiency, and ferritin >1,200 ng/mL). No real 
patient data were used, ensuring the study remained entirely 
simulation-based. All protocol rules applied in the simulation were 
directly referenced to the institutional anemia management algorithm 
used in clinical practice, including ESA titration increments, timing 
safeguards, and dual-parameter iron dosing criteria. The full rule set 
is provided in Table 1 to support transparency and reproducibility.

To construct the 600 simulated scenarios, we used a stratified 
sampling approach designed to cover the full decision space of the 
institutional protocol rather than relying on random generation. 
Hemoglobin values were sampled across predefined strata (5.0–8.9, 
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9.0–10.7, 10.8–12.5, and >12.5 g/dL), with balanced representation of 
increasing and decreasing trends and varying rates of change (−2.0 to 
+2.0 g/dL/week). Iron indices were similarly stratified across TSAT 
<20%, 20–29%, 30–35, and >35% and ferritin <200, 200–800, 
801–1,200, and >1,200 ng/mL categories. ESA doses ranged from 0 to 
200 mcg/week, reflecting clinically observed dosing distributions. 
Approximately one-third of cases incorporated edge or conflict 
scenarios that challenge protocol boundaries (e.g., ferritin >1,200 ng/
mL with TSAT <15%, rapid Hb rise despite low ESA dose), ensuring 
evaluation under clinically difficult conditions. This structured 
sampling strategy prevented overrepresentation of straightforward cases 
and enabled stress testing of protocol logic and deterministic 
rule execution.

In addition, edge and conflict scenarios were intentionally 
oversampled to ensure robust evaluation of safety mechanisms. 
Approximately one-third of all simulated cases involved protocol 
boundary conditions or discordant indices, such as Hb > 12.5 g/dL, 
ferritin >1,200 ng/mL, TSAT <15% with markedly elevated ferritin, or 
rapid Hb increases despite low ESA dosing. These high-risk 
combinations were selected because they require activation of protocol 
safety rules, including ESA holds, iron discontinuation, and clinician 
review. Their inclusion allowed systematic assessment of whether 
deterministic rule encoding and output constraints reliably prevented 
unsafe recommendations under challenging clinical conditions.

	•	 Phase 1: baseline testing with a loosely defined natural 
language prompt.

	•	 Phase 2: testing with a fully deterministic prompt incorporating 
explicit ESA and iron rules, timing safeguards, and 
safety checks.

Model architecture

AnemiaCare HD was developed on a GPT-based framework 
that was deliberately constrained to behave deterministically. To 
support reproducibility, the deterministic version of AnemiaCare 
HD was executed using a fixed model configuration that included 
documented model versioning, zero-temperature sampling 
(temperature = 0.0), disabled nucleus sampling (top-p = 1.0), and a 
fully constrained output template. The system prompt and input 
sequence were identical across all 300 Phase II cases, and output 
generation occurred within a single platform release. All prompts, 
model settings, and outputs were archived to enable independent 
verification. In addition, the model required six mandatory clinical 
inputs provided in a fixed order, and no recommendations were 
generated if any input was missing or ambiguous, ensuring 
deterministic behavior. To guarantee reproducibility, the model 
operated within an 8,000-character limit and required six 
mandatory clinical inputs, collected in strict sequence:

	 1	 Hb (g/dL)
	 2	 Rate of Hb change (g/dL/week, over 2–4 weeks)
	 3	 Direction of Hb trend (increasing or decreasing)
	 4	 Transferrin saturation (TSAT, %)
	 5	 Ferritin (ng/mL)
	 6	 Current weekly Aranesp dose (mcg)

The model did not generate recommendations unless all six values 
were provided, eliminating errors from incomplete or ambiguous data.

Output generation was constrained through a fixed, rule-based 
template that required the model to populate predefined fields, 
including ESA recommendation, iron therapy status, timing interval, 
and safety notes. Free-text generation outside these fields was 
blocked, and each clinical trigger could map only to a limited set of 
allowable outputs defined by the institutional protocol (e.g., “increase 
ESA by +10 mcg,” “hold ESA,” “discontinue iron”). If the model 
attempted to produce text outside the permitted structure or suggest 
a dose or timing change not supported by protocol logic, the system 
defaulted to a standardized safety message requesting clinician 
review. This template-based constraint ensured consistency, 
prevented uncontrolled generative outputs, and operationalized 
deterministic behavior across all Phase II cases.

Each input variable was required to fall within predefined 
physiologic and protocol-based ranges (e.g., Hb 5–15 g/dL, TSAT 
0–60%, ferritin 50–2000 ng/mL, rate of Hb change −2.0 to +2.0 g/dL/
week, and ESA dose 0–200 mcg/week). The model verified 
completeness and plausibility of all inputs before generating a 
recommendation. If any value was missing, outside the allowable 
range, or internally inconsistent, AnemiaCare HD did not produce a 
therapeutic output and instead issued a standardized request for 
clarification or clinician review. This rule-based input validation 
ensured that deterministic behavior was preserved and prevented 
unsafe dosing logic from being triggered by erroneous data.

TABLE 1  Institutional anemia protocol rules encoded into AnemiaCare 
HD.

Clinical 
scenario

Protocol 
rule 
applied

Model action 
(deterministic 
response)

Safety note 
triggered

Hb < 9 g/dL 

with slow 

decline

Increase ESA by 

+10 mcg

Generates ESA ↑ (+10 

mcg)

Monitor for 

rapid drop

Hb > 12.5 g/dL Hold ESA Output: discontinue 

ESA—review with 

nephrology

“Hb > 12.5 g/

dL → hold ESA”

TSAT < 20%, 

ferritin < 

200 ng/mL

IV iron loading 

200 mg × 5

Output: initiate loading 

protocol

“Reassess 

ferritin post-

course”

TSAT 20–29%, 

ferritin 200–

800 ng/mL

100 mg IV iron 

weekly

Output: continue 

maintenance dose

“Stop if ferritin 

> 800 ng/mL”

Ferritin > 

1,200 ng/mL

Stop IV iron Output: discontinue 

iron immediately

“Iron overload 

risk”

Hb rise > 1.0 g/

dL in 2 weeks

ESA hold × 

2 weeks → 

restart −25% 

dose

Output: hold ESA; 

resume reduced dose

“Rapid Hb rise 

alert”

ESA, rythropoiesis-stimulating agent; ferritin, Iron storage protein concentration in serum 
(ng/mL); Hb, hemoglobin (g/dL); IV, intravenous; mg, milligrams; ng/mL, nanograms per 
milliliter; TSAT, transferrin saturation (%). This table summarizes the institutional anemia 
protocol example rules encoded into AnemiaCare HD. Each rule includes the clinical trigger, 
the deterministic model response, and the safety note generated. These ensure full 
transparency, reproducibility, and auditability.
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Protocol encoding in simulation

ESA dose adjustment
ESA recommendations were determined by Hb level and rate of 

Hb change. Rules included:

	•	 Hb < 9.0 g/dL: ESA increases for gradual Hb declines; provider 
notification for rapid drops (>0.5 g/dL/week); discontinuation 
with nephrology review if Hb rose >1.0 g/dL/week.

	•	 Hb 9.0–10.7 g/dL: small ESA increases for slow declines; ESA 
holds for rises ≥0.6 g/dL/week.

	•	 Hb 10.8–12.0 g/dL: ESA reductions or holds; discontinuation if 
Hb exceeded 12.5 g/dL.

	•	 Safety rules: adjustments were limited to once every 2 weeks, and 
dose changes followed exact increments (e.g., 10 mcg).

Temporary ESA holds were required if Hb rose >1.0 g/dL in any 
2-week period, with reinitiation at a 25–50% reduced dose once Hb 
returned to target.

Intravenous iron therapy
Iron therapy rules required simultaneous assessment of TSAT 

and ferritin:

	•	 TSAT < 20% and ferritin < 200 ng/mL: IV iron loading 
(200 mg × 5 treatments).

	•	 TSAT 20–29% and ferritin 200–800 ng/mL: 100 mg IV 
iron weekly.

	•	 Ferritin 801–1,200 ng/mL with TSAT 20–35%: 100 mg IV iron 
every 4 weeks, discontinued if TSAT > 35%.

	•	 Ferritin > 1,200 ng/mL: immediate discontinuation of IV iron.

Cumulative iron exposure was tracked throughout, and IV iron 
was automatically withheld if ferritin exceeded 1,200 ng/mL.

Within the simulation environment, AnemiaCare HD maintained 
an internal record of cumulative iron administration and regimen 
status (e.g., initiation and completion of loading courses), allowing the 
system to apply protocol rules governing iron discontinuation and 
withholding when ferritin exceeded defined thresholds. Because the 
institutional protocol bases iron decisions primarily on ferritin and 
TSAT rather than the timing of the most recent iron dose, recent iron 
administration was accounted for indirectly through iron indices and 
cumulative tracking rather than as a separate input variable.

Prompt refinement phases

	•	 Phase 1 (baseline): a loosely defined natural language prompt was 
applied to 300 simulated cases. The model produced free-text 
recommendations, which were then evaluated against 
institutional protocol rules.

	•	 Phase 2 (deterministic): The prompt was redesigned with six 
major upgrades (Figure 1):

	 1	 Granular kinetics-driven ESA dosing
	 2	 Full iron management algorithm
	 3	 Timing safeguards

	 4	 Integrated safety and monitoring layer
	 5	 Data-complete dialogue flow
	 6	 Audit-ready output structure

This refinement created a deterministic system that generated 
reproducible, protocol-adherent outputs in all simulated scenarios 
(Table 1).

Output review and classification

All outputs were independently reviewed by two board-certified 
nephrologists with expertise in dialysis anemia management. Two 
board-certified nephrologists independently reviewed all outputs 
while blinded to phase assignment. Output files did not include phase 
identifiers. Although blinding was maintained procedurally, the 
structured format of Phase II outputs may have allowed reviewers to 
infer phase membership, which represents a potential limitation. Each 
recommendation was classified as:

	 1	 Protocol-adherent—matched institutional guidelines exactly,
	 2	 Protocol deviation—incorrect ESA or iron recommendation,
	 3	 Unsafe recommendation—potentially harmful (e.g., iron 

dosing with ferritin > 1,200 ng/mL),
	 4	 Timing violation—adjustments recommended sooner than 

2 weeks after a prior change.

Discrepancies between reviewers were resolved by consensus to 
ensure classification accuracy (Figure 2).

Outcomes and statistical analysis

The primary outcome was protocol adherence, defined as the 
proportion of simulated cases with recommendations exactly 
matching institutional anemia management rules. Protocol adherence 
was defined as an exact match between the model-generated 
recommendation and the institutional anemia protocol, including 
ESA dose adjustment, iron therapy decision, and timing safeguards. 
Recommendations that were clinically reasonable but deviated in dose 
magnitude or timing were classified as protocol deviations rather than 
partially adherent. Secondary outcomes included the frequency of 
protocol deviations, unsafe recommendations, and timing violations.

FIGURE 1

Key upgrades implemented in the deterministic version of 
AnemiaCare HD.
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Adherence rates were compared between phases using a two-sided 
Fisher’s exact test, which was selected due to the categorical nature of 
the data and the presence of small sample sizes and zero cell counts in 
several outcome categories, making it the most appropriate statistical 
approach for proportional comparisons in this setting. A two-sided 
p-value <0.05 was considered statistically significant.

This study used exclusively simulated scenarios derived from 
institutional anemia management protocols and did not involve 
human participants or identifiable patient data. Therefore, Institutional 
Review Board review was not required. The work was conducted in 
accordance with institutional and international ethical guidelines for 
research that does not involve human subjects. The final, interactive, 
optimized build of AnemiaCare HD used in this study is publicly 
accessible1 to support full transparency, reproducibility, and 
independent evaluation.

Results

In Phase 1, when evaluated with a loosely structured prompt, 
AnemiaCare HD produced variable outputs. Out of 300 simulated 
cases, only 96 (32%) were fully protocol-adherent. The majority 
showed errors that reflected the limitations of free-text prompting. 
The most common problem was incorrect ESA titration, where 
recommended dose changes did not align with protocol thresholds. 
These errors risked both under-treatment and overshooting of 
Hb levels.

1  https://chatgpt.com/g/g-680c1a00c1388191be652b9548a9b732- 

anemiacare-hd-high-fidelity-version

Unsafe recommendations were also common. In several cases, the 
model advised continuing ESA despite Hb levels above 12.5 g/dL, 
where discontinuation is required, or suggested IV iron for patients 
with ferritin greater than 1,200 ng/mL, raising concern for iron 
overload. Timing violations were also identified, with ESA adjustments 
sometimes recommended earlier than the two-week minimum. Such 
premature changes could worsen Hb cycling and add further 
instability to anemia control. Taken together, these findings 
highlighted the risks of applying a flexible, general-purpose prompt 
without strict safeguards.

In Phase 2, after deterministic rules and safety checks were 
embedded, performance improved dramatically. All 300 simulated 
scenarios were managed in full compliance with institutional 
protocols, corresponding to 100% adherence. Every output provided 
a structured recommendation that included ESA and iron dosing, a 
rationale linked to protocol thresholds, and built-in safety notes.

Example input–output pair

Inputs
Hb 8.7 g/dL, declining 0.3 g/dL/week, TSAT 18%, ferritin 150 ng/

mL, ESA 40 mcg/week.

Deterministic output
Increase ESA by +10 mcg and initiate IV iron loading 

(200 mg × 5).

Safety annotation
‘Monitor for rapid Hb drop; reassess ferritin after completion of 

loading course.’ This example illustrates how the model applies 
protocol rules and generates structured safety guidance within the 
constrained template.

FIGURE 2

Deterministic LLM architecture of AnemiaCare HD. Structured clinical inputs are processed by a protocol-encoded deterministic LLM that incorporates 
ESA and IV iron dosing logic, safety guardrails, and feedback validation. The framework outputs protocol-adherent therapeutic recommendations, 
safety rationale, and clinician-reviewed validation steps, ensuring transparent, reproducible, and rule-based decision support.
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All error categories observed in Phase 1 were eliminated. ESA 
adjustments followed protocol-defined increments and intervals 
without deviations. Unsafe recommendations were avoided entirely: 
ESA was consistently withheld when Hb exceeded the limit, and iron 
was stopped when ferritin was too high. Safety alerts for rapid Hb rise 
and cumulative iron exposure triggered reliably, ensuring proper 
handling of edge cases.

The improvement from Phase 1 to Phase 2 was highly significant 
(32% vs. 100%, p < 0.001, Fisher’s exact test). The transition from 
Phase 1 to Phase 2 marked more than a numerical improvement. It 
fundamentally changed the system from producing variable, 
sometimes hazardous outputs to generating reliable, reproducible, and 
clinically safe recommendations. By encoding explicit ESA kinetics, 
dual-parameter iron algorithms, timing safeguards, and mandatory 
safety checks, AnemiaCare HD demonstrated complete fidelity to a 
complex anemia management protocol—something that general-
purpose LLMs have not achieved.

Inter-rater agreement for classification was high (Cohen’s 
κ = 0.92), indicating strong consistency between reviewers in 
identifying protocol adherence, deviations, unsafe recommendations, 
and timing violations. Discrepancies were resolved by consensus.

Discussion

This study demonstrates that a deterministic large language model 
can achieve complete fidelity to a complex institutional anemia 
protocol in simulated hemodialysis scenarios. Unlike general-purpose 
systems, AnemiaCare HD was intentionally designed to merge clinical 
precision with automation, integrating ESA dosing, IV iron 
recommendations, and safety safeguards in alignment with Hb trends. 
To our knowledge, this represents the first LLM framework to deliver 
an end-to-end, protocol-based approach to anemia management 
in dialysis.

In Phase 1, loosely defined prompting produced variable and at 
times unsafe outputs, highlighting the inherent risks of using 
unconstrained, general-purpose LLMs for medical decision-making. 
In contrast, after embedding explicit ESA and iron algorithms, timing 
safeguards, and proactive safety checks in Phase 2, AnemiaCare HD 
achieved complete adherence, providing consistent, transparent, and 
reproducible recommendations. This deterministic structure 
minimizes hallucination risks by restricting model behavior to fully 
rule-bound clinical pathways, ensuring that outputs cannot deviate 
outside protocol logic. This aligns with current FDA “Good Machine 
Learning Practice” (GMLP) principles (Pollard et al., 2022), which 
emphasize reproducibility, explainability, and traceability as essential 
characteristics for clinical AI systems. This direct comparison 
underscores how deterministic prompt engineering can transform a 
model from generating plausible but unreliable suggestions into one 
that provides stable, clinically actionable guidance. While the 
deterministic rule encoding in the present study could theoretically 
be implemented using a classical rule engine, the use of an LLM 
provides several additional functions that are not easily achieved with 
traditional systems. These include the ability to generate structured, 
clinician-facing explanations that mirror real-world documentation, 
support natural-language interaction to ensure data completeness and 
reduce input ambiguity, and produce audit-ready narrative outputs 
that facilitate transparency and regulatory review. Furthermore, the 

LLM architecture allows scalable extension to additional clinical 
domains without requiring complete system reprogramming, offering 
a flexible platform for future cross-domain reasoning once 
appropriately validated. In this proof-of-concept phase, the LLM 
therefore serves as both a deterministic inference mechanism and a 
communication layer, enabling transparent justification of 
recommendations while maintaining strict rule adherence. This 
explainability and traceability component is increasingly emphasized 
in regulatory guidance for clinical AI systems, where human-
understandable justification is required for safe deployment.

The decision to restrict model inputs to a single decision time 
point reflects the structure of the underlying institutional protocol, 
which bases ESA and iron adjustments on the most recent laboratory 
values and dosing history. This design enabled focused evaluation of 
deterministic rule enforcement and safety behavior without the 
additional complexity introduced by longitudinal response modeling. 
As such, the current framework does not attempt to predict future 
hemoglobin trajectories or account for patient-specific variability in 
ESA responsiveness, which require time-series data and physiologic 
modeling to capture accurately.

We acknowledge that the current framework does not incorporate 
the timing of recent iron administration as a user-provided input. Iron 
exposure was instead represented through cumulative dosing logic 
and protocol-based thresholds using ferritin and TSAT. While this 
approach aligns with the structure of the institutional anemia protocol 
used for simulation, it does not capture the full physiologic dynamics 
of iron handling. Future iterations will incorporate time-resolved iron 
exposure and dosing schedules to support more physiologic modeling 
and predictive applications. In addition, this work should be 
interpreted as a method-development and process-validation study 
aimed at determining whether deterministic prompt engineering can 
fully eliminate unsafe variability in a controlled 
simulation environment.

The framework was intentionally not designed to optimize 
hemoglobin trajectories or demonstrate clinical effectiveness, but 
rather to establish whether an LLM-based system could reliably 
enforce complex dosing and safety rules without deviation—a 
foundational requirement before real-world deployment. As such, the 
present findings demonstrate technical feasibility and protocol fidelity 
in a simulated setting, but they do not yet address clinical effectiveness, 
workflow integration, or patient outcomes. Because adherence 
categories were rule-based, automated validation could have been 
performed, and the reliance on nephrologist review added limited 
incremental expertise. Additionally, the study did not assess 
longitudinal hemoglobin outcomes or treatment efficiency through 
retrospective simulation, representing an important limitation. 
Accordingly, the findings should not be interpreted as evidence that 
the model improves clinical decision-making or patient outcomes. 
Real-world implementation will require addressing several practical 
barriers, including integration within electronic health-record 
workflows, reliable extraction of structured laboratory and dosing 
data, clinician acceptance, and ongoing safety monitoring. Regulatory 
requirements for auditability and update governance will also need to 
be met to ensure safe deployment in clinical environments.

Over the past several decades, various AI and machine learning 
techniques, including fuzzy logic, support vector machines, Bayesian 
networks, and reinforcement learning, have been applied to optimize 
anemia management in ESKD (Escandell-Montero et al., 2014; 
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Gaweda et al., 2008; Barbieri et al., 2015; Yun et al., 2021; Bellazzi, 
1993; Gaweda et al., 2003; Martínez-Martínez et al., 2014). These 
models demonstrated promise in theoretical work, but their clinical 
translation has often been constrained by the difficulty of modeling 
the longitudinal, nonlinear dynamics of Hb and by reliance on 
narrow input variables that overlook the complexity of dialysis care. 
However, the ACM represents a significant exception. ACM has been 
integrated into a dialysis-centered electronic medical record system 
and deployed internationally, with documented improvements in 
hemoglobin control, ESA utilization efficiency, and hospitalization 
rates (Garbelli et al., 2024a,b; Gandjour et al., 2025). These outcomes 
demonstrate that algorithmic anemia management can achieve 
meaningful clinical translation when implemented within a 
structured and well-controlled environment. The limitation we 
intended to highlight pertains not to deployment feasibility but rather 
to the challenges many existing systems face with transparency, 
protocol-specific reproducibility, and interpretability. Most prior 
models operate as predictive or optimization engines with limited 
visibility into the dosing rationale, which may hinder clinician trust 
and regulatory acceptability. In contrast, the deterministic framework 
developed in the present study was designed to provide fully 
traceable, rule-based reasoning with explicit safety guardrails, 
offering a complementary pathway toward responsible clinical 
decision support integration. AnemiaCare HD addresses these 
shortcomings by incorporating both ESA kinetics and iron-
metabolism dynamics into a deterministic framework, producing 
recommendations that are accurate, interpretable, and fully 
protocol-adherent.

The importance of integrating ESA kinetics into AI-based models 
has been previously demonstrated by McCarthy et al., who used a 
highly parameterized physiologic model of erythropoiesis to predict 
ESA response. That model succeeded in maintaining Hb levels within 
the target range while reducing ESA utilization, underscoring the 
value of physiologic modeling for individualized dosing (McCarthy et 
al., 2014). Similarly, AnemiaCare HD builds on this concept by 
translating established physiologic principles into a rule-driven, 
transparent LLM framework suitable for bedside implementation. 
Furthermore, regarding therapy, incorporating iron-metabolism 
dynamics, based on TSAT, ferritin, and cumulative iron exposure, has 
also been shown to enhance predictive accuracy in AI-driven anemia 
management (Inoue et al., 2025).

Hb cycling remains one of the most persistent challenges in 
anemia management, driven by variable ESA responsiveness and 
overly frequent dose modifications (Jörg et al., 2023; Collins et al., 
2005; Thanakitcharu and Jirajan, 2016). By enforcing strict timing 
rules and embedding dual-parameter iron algorithms, AnemiaCare 
HD effectively prevented recommendations that would exacerbate this 
variability. This observation aligns with findings from Kang et al. 
(2024), who demonstrated that predictive accuracy in anemia 
management improves when models use a limited set of clinically 
meaningful variables, defined by expert knowledge, rather than 
relying on large, indiscriminate datasets.

The significance of these findings is twofold. First, deterministic 
prompt engineering can faithfully encode complex clinical rules into 
reproducible, transparent outputs, an essential foundation for building 
trust in AI-based clinical decision support. Second, the complete 
elimination of protocol deviations, including inappropriate ESA use 
above target Hb thresholds, unsafe iron dosing, and premature 

adjustments, demonstrates how rule-based design can directly 
overcome the safety barriers that currently limit LLM use in medicine.

Together, these insights suggest that deterministic LLM 
frameworks guided by essential, physiology-based variables may help 
stabilize Hb levels, improve safety, and reduce treatment variability in 
dialysis care. While the present findings demonstrate that 
deterministic prompt engineering can fully eliminate protocol 
deviations in a controlled simulation environment, this framework 
does not yet address the broader clinical challenges of renal anemia 
management, including heterogeneous ESA responsiveness, 
operational constraints, and longitudinal Hb variability. Established 
ML-based anemia control systems, such as ACM (Garbelli et al., 
2024a,b; Gandjour et al., 2025) and physiologic response models, 
focus on prediction and dose optimization and have demonstrated 
improvements in hemoglobin stability and treatment efficiency. In 
contrast, AnemiaCare HD was intentionally designed to prioritize 
transparency, traceability, and rule fidelity, addressing key barriers to 
clinical adoption and regulatory acceptance. As such, the current 
framework should be viewed as a foundational safety layer that could 
complement predictive or optimization-oriented approaches rather 
than replace them. Future work will compare deterministic LLM 
performance with established ML-based systems and evaluate whether 
integrating physiologic modeling or predictive elements can enhance 
clinical effectiveness.

There are limitations to acknowledge. All test scenarios were 
simulated rather than derived from real-world patients, so external 
validation in clinical settings remains essential. Additionally, the 
current system was based on a single institutional protocol; thus, its 
adaptability to other dialysis centers, practice environments, and 
guideline frameworks warrants further evaluation. In addition, we 
acknowledge that despite anonymization and randomization 
procedures, the structured and templated format of Phase II outputs 
may have allowed reviewers to infer phase assignment based on 
stylistic cues. Although the high inter-rater agreement suggests 
consistent application of protocol rules, future evaluations would 
benefit from masking stylistic features by presenting only standardized 
dosing outputs or parameter-level recommendations in a uniform 
format, randomly mixed across conditions.

Despite these limitations, this study provides compelling proof-
of-concept evidence that deterministic LLMs can move beyond 
flexible text generation to deliver reliable, auditable, and protocol-
compliant clinical decision support. Future work should focus on 
integrating AnemiaCare HD into electronic health-record platforms, 
refining its dosing algorithms using real-world patient data, and 
conducting prospective validation trials to confirm its safety, 
scalability, and clinical impact. The deterministic LLM framework 
developed in AnemiaCare HD demonstrates that reproducibility and 
safety can coexist within AI-driven clinical decision support. This 
blueprint can be extended to other guideline-intensive domains such 
as hypertension, mineral-bone disorder, and transplant 
immunosuppression, providing a transparent, auditable pathway 
toward regulatory-grade AI deployment.

A translational gap remains between deterministic performance 
in simulated cases and meaningful clinical impact. Real-world anemia 
management involves patient heterogeneity, comorbidities, provider 
preferences, and operational constraints that cannot be fully captured 
in simulated protocols. Future work will therefore require multi-center 
external validation, prospective evaluation embedded within dialysis 
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workflows, and assessment of clinician acceptance, usability, and 
safety monitoring mechanisms. These steps will be essential to 
determine whether deterministic LLM systems can enhance clinical 
decision-making, reduce hemoglobin cycling, or improve treatment 
efficiency in practice.

Conclusion

AnemiaCare HD demonstrates that deterministic LLMs can 
achieve full adherence to complex anemia management protocols by 
embedding explicit clinical rules, safety safeguards, and physiologic 
logic. This proof-of-concept highlights their potential to deliver 
reliable, interpretable, and protocol-compliant decision support in 
hemodialysis anemia care. By constraining generative flexibility and 
mandating protocol-coded reasoning, deterministic LLMs such as 
AnemiaCare HD offer a safer paradigm that may better satisfy 
regulatory expectations for AI-driven clinical decision support. Future 
validation in real-world settings is warranted to confirm safety, 
scalability, and clinical impact. Successful real-world implementation 
will depend on workflow integration, external validation across 
diverse practice settings, and alignment with regulatory expectations 
for transparency and safety.
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