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A deterministic large language
model (LLM) framework for safe,
protocol-adherent clinical
decision support: application in
hemodialysis anemia
management (AnemiaCare HDs)

Jose Arriola-Montenegro, Charat Thongprayoon,
Benjamin Bizer, Jing Miao, Karina Ordaya-Gonzales,
lasmina M. Craici and Wisit Cheungpasitporn*

Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester,
MN, United States

Background: Large language models (LLMs) show promise for clinical decision
support but often deviate from evidence-based protocols, raising safety and
regulatory concerns. Anemia management in hemodialysis patients requires
strict adherence to erythropoiesis-stimulating agent (ESA) and intravenous
(IV) iron dosing rules, making it a high-risk use case for uncontrolled model
behavior. To address this gap, we developed AnemiaCare HD, a deterministic
LLM framework engineered to deliver transparent, reproducible, and protocol-
adherent clinical recommendations.

Methods: AnemiaCare HD was evaluated using 600 simulated hemodialysis
anemia scenarios derived from a standardized institutional protocol. The model
required six fixed clinical inputs (hemoglobin, hemoglobin rate of change, trend
direction, transferrin saturation, ferritin, and current ESA dose). Phase 1 tested
a loosely structured prompt. Phase 2 implemented deterministic prompt logic
incorporating ESA kinetics, iron dosing rules, mandatory timing safeguards, and
embedded safety alerts. Two independent nephrologists assessed protocol
adherence.

Results: In Phase 1, only 96 of 300 cases (32%) aligned with protocol
recommendations, with common errors in ESA titration, iron dosing, and
timing violations. In Phase 1, loosely structured prompting produced variable
outputs, with only 96 of 300 simulated cases (32%) fully protocol-adherent
and frequent unsafe recommendations. In contrast, deterministic prompting in
Phase 2 resulted in 100% adherence across all 300 cases, eliminating protocol
deviations, unsafe iron dosing, and timing violations (p < 0.001). In Phase 2,
deterministic encoding achieved full protocol adherence (300/300, 100%),
eliminating unsafe or premature recommendations (p < 0.001 vs. Phase 1) and
consistently generating structured, rationale-based outputs.

Conclusion: Deterministic LLM engineering enables safe, fully protocol-
compliant clinical decision support in high-risk therapeutic domains.
AnemiaCare HD demonstrates the viability of regulatory-aligned, auditable LLM
frameworks for clinical use, although real-world integration and prospective
validation remain necessary next steps.
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Introduction

Anemia is among the most common and clinically significant
complications of end-stage kidney disease (ESKD). With the global
burden of ESKD projected to rise to nearly six million people by 2030,
anemia represents a major challenge, affecting roughly half of these
patients (Liyanage et al., 2015; Kovesdy et al., 2023). Among those
receiving hemodialysis, anemia most often develops because of
reduced erythropoietin (EPO) production, disruptions in iron
metabolism associated with chronic inflammation, blood loss, and
oxidative stress (Fishbane and Spinowitz, 2018; Astor et al., 2002;
Ifudu et al., 1996; Escandell-Montero et al., 2014; Babitt and Lin, 2012;
Ku et al., 2023). Hemoglobin (Hb), the key protein responsible for
oxygen transport, depends on both EPO stimulation of red blood cell
precursors and adequate iron availability for its synthesis (Fishbane
and Spinowitz, 2018; Cavill, 2002). When these mechanisms are
impaired, Hb levels decline, leading to fatigue, diminished quality of
life, higher cardiovascular risk, and increased mortality (Fishbane and
Spinowitz, 2018; Barany et al., 1993; Foley et al., 1996; Lefebvre et al.,
2006; Locatelli et al., 2004).

The introduction of recombinant human EPO transformed
anemia management by reducing the need for transfusions and
improving patient outcomes (Barbieri et al., 2016a; Bazeley and Wish,
2019; Ifudu et al., 1995; Driieke and Parfrey, 2012; Auewmii, 2012).
Equally important, the use of intravenous (IV) iron has become a
cornerstone of therapy, as ongoing iron supplementation is critical to
sustain erythropoiesis and optimize the effectiveness of ESAs (Driieke
and Parfrey, 2012; Anewmii, 2012; Anumas et al., 2023; Macdougall et
al., 2019; Babitt et al., 2021). Together, these therapies provide the
foundation of anemia care in hemodialysis. However, despite their
central role, achieving the correct balance between ESAs and IV iron
remains complex and time-consuming for clinicians (Ifudu et al.,
1995; Anumas et al., 2023; Besarab et al., 2000; Coyne, 2006; Charytan
et al., 2015; Besarab, 2006; Hung and Tarng, 2014). Hb levels in
dialysis patients frequently fluctuate above and below the target range,
a phenomenon known as Hb cycling (Jorg et al., 2023; Collins et al.,
2005; van der Putten et al., 2009; Thanakitcharu and Jirajan, 2016;
Plappert et al., 2024). This instability often arises when ESA doses are
adjusted too frequently or applied too rigidly, without accounting for
patient variability or the delayed pharmacodynamic effect of each dose
(Escandell-Montero et al., 2014). As a result, Hb levels swing between
under- and over-correction, creating cycles that are difficult to
stabilize in routine practice. Hb cycling has been linked to adverse
outcomes and substantially increases the cost of anemia management,
underscoring the need for safer and more consistent treatment
strategies (Fishbane and Berns, 2007; Collins et al., 2012; Boudville et
al., 2009; Swaminathan et al., 2015).

Machine learning models have been explored to improve dosing
precision (Escandell-Montero et al., 2014; Barbieri et al., 2016a,b;
Gaweda et al., 2008; Tuck et al., 2017; Barbieri et al., 2015; Kang et al.,
2024; Ohara et al., 2021; Yun et al., 2021; Yang et al., 2023), but most
focus narrowly on ESA adjustment, lack interpretability, or fail to ensure
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full compliance with established protocols (Barbieri et al., 2015, 2016a).
However, while several prior Al and machine-learning approaches have
incorporated both ESA and iron management, including the Anemia
Control Model (ACM) (Garbelli et al., 2024a,b; Gandjour et al., 2025),
which integrates iron dosing algorithms and has been deployed
internationally, the majority of these systems emphasize dose
optimization and predictive control rather than transparent, rule-based
protocol enforcement. Existing models often function as black-box
optimizers, providing limited visibility into the rationale behind dosing
decisions and offering variable adherence to institution-specific safety
constraints. In contrast, the present framework was designed to ensure
complete protocol fidelity through deterministic rule encoding and
explicit safety guardrails while maintaining clinician-facing natural-
language justification. Recently, large language models (LLMs) have
emerged as adaptable clinical reasoning tools; however, general-purpose
LLMs are prone to hallucinations, inconsistent recommendations, and
unsafe deviations from dosing thresholds, limiting their suitability in
high-risk therapeutic domains such as dialysis anemia management
(Ohara et al., 2021; Yun et al., 2021; Yang et al., 2023).

To address this gap, we developed AnemiaCare HD, a
deterministic LLM framework engineered to deliver safe, reproducible,
and protocol-adherent anemia management recommendations for
hemodialysis patients. The system incorporates explicit ESA and IV
iron dosing rules, pharmacodynamic timing safeguards, and
integrated safety checks to ensure full alignment with institutional
protocols. We evaluated its performance across 600 simulated anemia
scenarios derived from a standardized protocol. This work
demonstrates, for the first time, that deterministic prompt design can
achieve complete fidelity to a complex clinical protocol in a high-risk
therapeutic domain, overcoming a major barrier to safe deployment
of LLM-based clinical decision support.

Methods
Study design and setting

AnemiaCare HD was evaluated in two phases using 600 simulated
anemia management cases. All cases were based on institutional
anemia protocols and designed to represent a wide range of scenarios,
including both common and edge cases (e.g, Hb<9g/dL,
Hb > 12.5 g/dL, iron deficiency, and ferritin >1,200 ng/mL). No real
patient data were used, ensuring the study remained entirely
simulation-based. All protocol rules applied in the simulation were
directly referenced to the institutional anemia management algorithm
used in clinical practice, including ESA titration increments, timing
safeguards, and dual-parameter iron dosing criteria. The full rule set
is provided in Table 1 to support transparency and reproducibility.

To construct the 600 simulated scenarios, we used a stratified
sampling approach designed to cover the full decision space of the
institutional protocol rather than relying on random generation.
Hemoglobin values were sampled across predefined strata (5.0-8.9,
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TABLE 1 Institutional anemia protocol rules encoded into AnemiaCare
HD.

Clinical Protocol Model action Safety note
scenario rule (deterministic triggered
applied response)
Hb <9 g/dL Increase ESAby = Generates ESA 1 (+10 Monitor for
with slow +10 mcg mcg) rapid drop
decline
Hb>12.5g/dL | Hold ESA Output: discontinue “Hb>125g/
ESA—review with dL — hold ESA”
nephrology
TSAT < 20%, IV iron loading | Output: initiate loading | “Reassess
ferritin < 200 mg x 5 protocol ferritin post-
200 ng/mL course”
TSAT 20-29%, | 100 mgIViron | Output: continue “Stop if ferritin
ferritin 200- weekly maintenance dose > 800 ng/mIL”
800 ng/mL
Ferritin > Stop IV iron Output: discontinue “Iron overload
1,200 ng/mL iron immediately risk”
Hbrise >1.0g/ = ESA hold x Output: hold ESA; “Rapid Hb rise
dL in 2 weeks 2 weeks — resume reduced dose alert”
restart —25%
dose

ESA, rythropoiesis-stimulating agent; ferritin, Iron storage protein concentration in serum
(ng/mL); Hb, hemoglobin (g/dL); IV, intravenous; mg, milligrams; ng/mL, nanograms per
milliliter; TSAT, transferrin saturation (%). This table summarizes the institutional anemia
protocol example rules encoded into AnemiaCare HD. Each rule includes the clinical trigger,
the deterministic model response, and the safety note generated. These ensure full
transparency, reproducibility, and auditability.

9.0-10.7, 10.8-12.5, and >12.5 g/dL), with balanced representation of
increasing and decreasing trends and varying rates of change (—2.0 to
+2.0 g/dL/week). Iron indices were similarly stratified across TSAT
<20%, 20-29%, 30-35, and >35% and ferritin <200, 200-800,
801-1,200, and >1,200 ng/mL categories. ESA doses ranged from 0 to
200 mcg/week, reflecting clinically observed dosing distributions.
Approximately one-third of cases incorporated edge or conflict
scenarios that challenge protocol boundaries (e.g., ferritin >1,200 ng/
mL with TSAT <15%, rapid Hb rise despite low ESA dose), ensuring
evaluation under clinically difficult conditions. This structured
sampling strategy prevented overrepresentation of straightforward cases
and enabled stress testing of protocol logic and deterministic
rule execution.

In addition, edge and conflict scenarios were intentionally
oversampled to ensure robust evaluation of safety mechanisms.
Approximately one-third of all simulated cases involved protocol
boundary conditions or discordant indices, such as Hb > 12.5 g/dL,
ferritin >1,200 ng/mL, TSAT <15% with markedly elevated ferritin, or
rapid Hb increases despite low ESA dosing. These high-risk
combinations were selected because they require activation of protocol
safety rules, including ESA holds, iron discontinuation, and clinician
review. Their inclusion allowed systematic assessment of whether
deterministic rule encoding and output constraints reliably prevented
unsafe recommendations under challenging clinical conditions.

o Phase 1: baseline testing with a loosely defined natural
language prompt.
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o Phase 2: testing with a fully deterministic prompt incorporating
explicit ESA and iron rules, timing safeguards, and
safety checks.

Model architecture

AnemiaCare HD was developed on a GPT-based framework
that was deliberately constrained to behave deterministically. To
support reproducibility, the deterministic version of AnemiaCare
HD was executed using a fixed model configuration that included
documented model versioning, zero-temperature sampling
(temperature = 0.0), disabled nucleus sampling (top-p = 1.0), and a
fully constrained output template. The system prompt and input
sequence were identical across all 300 Phase II cases, and output
generation occurred within a single platform release. All prompts,
model settings, and outputs were archived to enable independent
verification. In addition, the model required six mandatory clinical
inputs provided in a fixed order, and no recommendations were
generated if any input was missing or ambiguous, ensuring
deterministic behavior. To guarantee reproducibility, the model
operated within an 8,000-character limit and required six
mandatory clinical inputs, collected in strict sequence:

1 Hb (g/dL)

2 Rate of Hb change (g/dL/week, over 2—-4 weeks)
3 Direction of Hb trend (increasing or decreasing)
4 Transferrin saturation (TSAT, %)

5 Ferritin (ng/mL)

6 Current weekly Aranesp dose (mcg)

The model did not generate recommendations unless all six values
were provided, eliminating errors from incomplete or ambiguous data.

Output generation was constrained through a fixed, rule-based
template that required the model to populate predefined fields,
including ESA recommendation, iron therapy status, timing interval,
and safety notes. Free-text generation outside these fields was
blocked, and each clinical trigger could map only to a limited set of
allowable outputs defined by the institutional protocol (e.g., “increase
ESA by +10 mcg” “hold ESA,” “discontinue iron”). If the model
attempted to produce text outside the permitted structure or suggest
a dose or timing change not supported by protocol logic, the system
defaulted to a standardized safety message requesting clinician
review. This template-based constraint ensured consistency,
prevented uncontrolled generative outputs, and operationalized
deterministic behavior across all Phase II cases.

Each input variable was required to fall within predefined
physiologic and protocol-based ranges (e.g., Hb 5-15 g/dL, TSAT
0-60%, ferritin 50-2000 ng/mL, rate of Hb change —2.0 to +2.0 g/dL/
week, and ESA dose 0-200 mcg/week). The model verified
completeness and plausibility of all inputs before generating a
recommendation. If any value was missing, outside the allowable
range, or internally inconsistent, AnemiaCare HD did not produce a
therapeutic output and instead issued a standardized request for
clarification or clinician review. This rule-based input validation
ensured that deterministic behavior was preserved and prevented
unsafe dosing logic from being triggered by erroneous data.
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Protocol encoding in simulation

ESA dose adjustment
ESA recommendations were determined by Hb level and rate of
Hb change. Rules included:

o Hb < 9.0 g/dL: ESA increases for gradual Hb declines; provider
notification for rapid drops (>0.5 g/dL/week); discontinuation
with nephrology review if Hb rose >1.0 g/dL/week.

o Hb 9.0-10.7 g/dL: small ESA increases for slow declines; ESA
holds for rises >0.6 g/dL/week.

o Hb 10.8-12.0 g/dL: ESA reductions or holds; discontinuation if

Hb exceeded 12.5 g/dL.

Safety rules: adjustments were limited to once every 2 weeks, and

dose changes followed exact increments (e.g., 10 mcg).

Temporary ESA holds were required if Hb rose >1.0 g/dL in any
2-week period, with reinitiation at a 25-50% reduced dose once Hb
returned to target.

Intravenous iron therapy
Iron therapy rules required simultaneous assessment of TSAT
and ferritin:

o TSAT < 20% and ferritin < 200 ng/mL: IV iron loading
(200 mg x 5 treatments).

o TSAT 20-29% and ferritin 200-800 ng/mL: 100 mg IV

iron weekly.

Ferritin 801-1,200 ng/mL with TSAT 20-35%: 100 mg IV iron

every 4 weeks, discontinued if TSAT > 35%.

Ferritin > 1,200 ng/mL: immediate discontinuation of IV iron.

Cumulative iron exposure was tracked throughout, and IV iron
was automatically withheld if ferritin exceeded 1,200 ng/mL.

Within the simulation environment, AnemiaCare HD maintained
an internal record of cumulative iron administration and regimen
status (e.g., initiation and completion of loading courses), allowing the
system to apply protocol rules governing iron discontinuation and
withholding when ferritin exceeded defined thresholds. Because the
institutional protocol bases iron decisions primarily on ferritin and
TSAT rather than the timing of the most recent iron dose, recent iron
administration was accounted for indirectly through iron indices and
cumulative tracking rather than as a separate input variable.

Prompt refinement phases

o Phase 1 (baseline): a loosely defined natural language prompt was
applied to 300 simulated cases. The model produced free-text
recommendations, which were then evaluated against
institutional protocol rules.

o Phase 2 (deterministic): The prompt was redesigned with six

major upgrades (Figure 1):

1 Granular kinetics-driven ESA dosing
2 Full iron management algorithm
3 Timing safeguards

Frontiers in Artificial Intelligence

10.3389/frai.2025.1728320

Key Upgrades Achieved in Final Prompt Version

Granular Kinetics-Driven
1 ESA Dosing 4
Based on hemogolobin rate of change,
with rounding, maximum caps,
and safety holds fully encoded

Integrated Safety and
Monitoring Layer

Alerts for rapid hemoglobin rise,
ferritin celling breaches, and
cumulative iron overload tracking

Full Iron Management
2 Algorithm 5
Dual-parameter (TSAT and ferritin)
matrix logic dictating load,
maintenance, and hold phases

Data-Complete

Dialogue Flow

Six mandatory questions asked in
sequence; no progression without
clarification of key values

Timing Safeguards

3 Two-week minimum intervals between 6
ESA changes unless urgent, with
bulit-in lab monitoring schedules

Audit-Ready Output
Structure

Rigid documentation template
ensuring standardization and
regulatory compatibility

FIGURE 1
Key upgrades implemented in the deterministic version of
AnemiaCare HD.

4 Integrated safety and monitoring layer
5 Data-complete dialogue flow
6 Audit-ready output structure

This refinement created a deterministic system that generated
reproducible, protocol-adherent outputs in all simulated scenarios
(Table 1).

Output review and classification

All outputs were independently reviewed by two board-certified
nephrologists with expertise in dialysis anemia management. Two
board-certified nephrologists independently reviewed all outputs
while blinded to phase assignment. Output files did not include phase
identifiers. Although blinding was maintained procedurally, the
structured format of Phase II outputs may have allowed reviewers to
infer phase membership, which represents a potential limitation. Each
recommendation was classified as:

1 Protocol-adherent—matched institutional guidelines exactly,

2 Protocol deviation—incorrect ESA or iron recommendation,

3 Unsafe recommendation—potentially harmful (e.g., iron
dosing with ferritin > 1,200 ng/mL),

4 Timing violation—adjustments recommended sooner than
2 weeks after a prior change.

Discrepancies between reviewers were resolved by consensus to
ensure classification accuracy (Figure 2).

Outcomes and statistical analysis

The primary outcome was protocol adherence, defined as the
proportion of simulated cases with recommendations exactly
matching institutional anemia management rules. Protocol adherence
was defined as an exact match between the model-generated
recommendation and the institutional anemia protocol, including
ESA dose adjustment, iron therapy decision, and timing safeguards.
Recommendations that were clinically reasonable but deviated in dose
magnitude or timing were classified as protocol deviations rather than
partially adherent. Secondary outcomes included the frequency of
protocol deviations, unsafe recommendations, and timing violations.
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FIGURE 2

Structured Model
Inputs Outputs
J— —
Hemoglobin (g/dL) ESA Recommendation
Rate of Hemoglobin
Change (g/dL/week) AnemiaCare HD Core
Engine IV Iron Recommendation
Transferrin Saturation
Deterministic LLM Framework
= ESA & Iron Protocol Encoding —
Ferritin (ng/mL) Safety & Timing Guardrails
Structured Output Generator Safety Report & Rationale
Clinician Feedback loop
Current ESA Dose
(ng/week)
Hemoglobin Trend Physician Review and
(increasing / decreasing) Feedback Validation
—

The deterministic architecture ensures protocol adherence through structured inputs, rule-
based logic, and validated output integrated with clinician oversight

Deterministic LLM architecture of AnemiaCare HD. Structured clinical inputs are processed by a protocol-encoded deterministic LLM that incorporates
ESA and IV iron dosing logic, safety guardrails, and feedback validation. The framework outputs protocol-adherent therapeutic recommendations,
safety rationale, and clinician-reviewed validation steps, ensuring transparent, reproducible, and rule-based decision support.

Adherence rates were compared between phases using a two-sided
Fisher’s exact test, which was selected due to the categorical nature of
the data and the presence of small sample sizes and zero cell counts in
several outcome categories, making it the most appropriate statistical
approach for proportional comparisons in this setting. A two-sided
p-value <0.05 was considered statistically significant.

This study used exclusively simulated scenarios derived from
institutional anemia management protocols and did not involve
human participants or identifiable patient data. Therefore, Institutional
Review Board review was not required. The work was conducted in
accordance with institutional and international ethical guidelines for
research that does not involve human subjects. The final, interactive,
optimized build of AnemiaCare HD used in this study is publicly
accessible’ to support full transparency, reproducibility, and
independent evaluation.

Results

In Phase 1, when evaluated with a loosely structured prompt,
AnemiaCare HD produced variable outputs. Out of 300 simulated
cases, only 96 (32%) were fully protocol-adherent. The majority
showed errors that reflected the limitations of free-text prompting.
The most common problem was incorrect ESA titration, where
recommended dose changes did not align with protocol thresholds.
These errors risked both under-treatment and overshooting of
Hb levels.

1 https://chatgpt.com/g/g-680c1a00c1388191be652b9548a9b732-

anemiacare-hd-high-fidelity-version
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Unsafe recommendations were also common. In several cases, the
model advised continuing ESA despite Hb levels above 12.5 g/dL,
where discontinuation is required, or suggested IV iron for patients
with ferritin greater than 1,200 ng/mL, raising concern for iron
overload. Timing violations were also identified, with ESA adjustments
sometimes recommended earlier than the two-week minimum. Such
premature changes could worsen Hb cycling and add further
instability to anemia control. Taken together, these findings
highlighted the risks of applying a flexible, general-purpose prompt
without strict safeguards.

In Phase 2, after deterministic rules and safety checks were
embedded, performance improved dramatically. All 300 simulated
scenarios were managed in full compliance with institutional
protocols, corresponding to 100% adherence. Every output provided
a structured recommendation that included ESA and iron dosing, a
rationale linked to protocol thresholds, and built-in safety notes.

Example input—output pair

Inputs
Hb 8.7 g/dL, declining 0.3 g/dL/week, TSAT 18%, ferritin 150 ng/
mL, ESA 40 mcg/week.

Deterministic output
Increase ESA by +10 mcg and initiate IV iron loading
(200 mg x 5).

Safety annotation

‘Monitor for rapid Hb drop; reassess ferritin after completion of
loading course’ This example illustrates how the model applies
protocol rules and generates structured safety guidance within the
constrained template.
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All error categories observed in Phase 1 were eliminated. ESA
adjustments followed protocol-defined increments and intervals
without deviations. Unsafe recommendations were avoided entirely:
ESA was consistently withheld when Hb exceeded the limit, and iron
was stopped when ferritin was too high. Safety alerts for rapid Hb rise
and cumulative iron exposure triggered reliably, ensuring proper
handling of edge cases.

The improvement from Phase 1 to Phase 2 was highly significant
(32% vs. 100%, p < 0.001, Fisher’s exact test). The transition from
Phase 1 to Phase 2 marked more than a numerical improvement. It
fundamentally changed the system from producing variable,
sometimes hazardous outputs to generating reliable, reproducible, and
clinically safe recommendations. By encoding explicit ESA kinetics,
dual-parameter iron algorithms, timing safeguards, and mandatory
safety checks, AnemiaCare HD demonstrated complete fidelity to a
complex anemia management protocol—something that general-
purpose LLMs have not achieved.

Inter-rater agreement for classification was high (Cohen’s
k=0.92), indicating strong consistency between reviewers in
identifying protocol adherence, deviations, unsafe reccommendations,
and timing violations. Discrepancies were resolved by consensus.

Discussion

This study demonstrates that a deterministic large language model
can achieve complete fidelity to a complex institutional anemia
protocol in simulated hemodialysis scenarios. Unlike general-purpose
systems, AnemiaCare HD was intentionally designed to merge clinical
precision with automation, integrating ESA dosing, IV iron
recommendations, and safety safeguards in alignment with Hb trends.
To our knowledge, this represents the first LLM framework to deliver
an end-to-end, protocol-based approach to anemia management
in dialysis.

In Phase 1, loosely defined prompting produced variable and at
times unsafe outputs, highlighting the inherent risks of using
unconstrained, general-purpose LLMs for medical decision-making.
In contrast, after embedding explicit ESA and iron algorithms, timing
safeguards, and proactive safety checks in Phase 2, AnemiaCare HD
achieved complete adherence, providing consistent, transparent, and
This
minimizes hallucination risks by restricting model behavior to fully

reproducible recommendations. deterministic structure
rule-bound clinical pathways, ensuring that outputs cannot deviate
outside protocol logic. This aligns with current FDA “Good Machine
Learning Practice” (GMLP) principles (Pollard et al., 2022), which
emphasize reproducibility, explainability, and traceability as essential
characteristics for clinical AI systems. This direct comparison
underscores how deterministic prompt engineering can transform a
model from generating plausible but unreliable suggestions into one
that provides stable, clinically actionable guidance. While the
deterministic rule encoding in the present study could theoretically
be implemented using a classical rule engine, the use of an LLM
provides several additional functions that are not easily achieved with
traditional systems. These include the ability to generate structured,
clinician-facing explanations that mirror real-world documentation,
support natural-language interaction to ensure data completeness and
reduce input ambiguity, and produce audit-ready narrative outputs
that facilitate transparency and regulatory review. Furthermore, the
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LLM architecture allows scalable extension to additional clinical
domains without requiring complete system reprogramming, offering
a flexible platform for future cross-domain reasoning once
appropriately validated. In this proof-of-concept phase, the LLM
therefore serves as both a deterministic inference mechanism and a
communication layer, enabling transparent justification of
recommendations while maintaining strict rule adherence. This
explainability and traceability component is increasingly emphasized
in regulatory guidance for clinical AI systems, where human-
understandable justification is required for safe deployment.

The decision to restrict model inputs to a single decision time
point reflects the structure of the underlying institutional protocol,
which bases ESA and iron adjustments on the most recent laboratory
values and dosing history. This design enabled focused evaluation of
deterministic rule enforcement and safety behavior without the
additional complexity introduced by longitudinal response modeling.
As such, the current framework does not attempt to predict future
hemoglobin trajectories or account for patient-specific variability in
ESA responsiveness, which require time-series data and physiologic
modeling to capture accurately.

We acknowledge that the current framework does not incorporate
the timing of recent iron administration as a user-provided input. Iron
exposure was instead represented through cumulative dosing logic
and protocol-based thresholds using ferritin and TSAT. While this
approach aligns with the structure of the institutional anemia protocol
used for simulation, it does not capture the full physiologic dynamics
of iron handling. Future iterations will incorporate time-resolved iron
exposure and dosing schedules to support more physiologic modeling
and predictive applications. In addition, this work should be
interpreted as a method-development and process-validation study
aimed at determining whether deterministic prompt engineering can
fully

simulation environment.

eliminate  unsafe  variability in a  controlled

The framework was intentionally not designed to optimize
hemoglobin trajectories or demonstrate clinical effectiveness, but
rather to establish whether an LLM-based system could reliably
enforce complex dosing and safety rules without deviation—a
foundational requirement before real-world deployment. As such, the
present findings demonstrate technical feasibility and protocol fidelity
in a simulated setting, but they do not yet address clinical effectiveness,
workflow integration, or patient outcomes. Because adherence
categories were rule-based, automated validation could have been
performed, and the reliance on nephrologist review added limited
incremental expertise. Additionally, the study did not assess
longitudinal hemoglobin outcomes or treatment efficiency through
retrospective simulation, representing an important limitation.
Accordingly, the findings should not be interpreted as evidence that
the model improves clinical decision-making or patient outcomes.
Real-world implementation will require addressing several practical
barriers, including integration within electronic health-record
workflows, reliable extraction of structured laboratory and dosing
data, clinician acceptance, and ongoing safety monitoring. Regulatory
requirements for auditability and update governance will also need to
be met to ensure safe deployment in clinical environments.

Over the past several decades, various Al and machine learning
techniques, including fuzzy logic, support vector machines, Bayesian
networks, and reinforcement learning, have been applied to optimize
anemia management in ESKD (Escandell-Montero et al., 2014;
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Gaweda et al., 2008; Barbieri et al., 2015; Yun et al., 2021; Bellazzi,
1993; Gaweda et al., 2003; Martinez-Martinez et al., 2014). These
models demonstrated promise in theoretical work, but their clinical
translation has often been constrained by the difficulty of modeling
the longitudinal, nonlinear dynamics of Hb and by reliance on
narrow input variables that overlook the complexity of dialysis care.
However, the ACM represents a significant exception. ACM has been
integrated into a dialysis-centered electronic medical record system
and deployed internationally, with documented improvements in
hemoglobin control, ESA utilization efficiency, and hospitalization
rates (Garbelli et al., 2024a,b; Gandjour et al., 2025). These outcomes
demonstrate that algorithmic anemia management can achieve
meaningful clinical translation when implemented within a
structured and well-controlled environment. The limitation we
intended to highlight pertains not to deployment feasibility but rather
to the challenges many existing systems face with transparency,
protocol-specific reproducibility, and interpretability. Most prior
models operate as predictive or optimization engines with limited
visibility into the dosing rationale, which may hinder clinician trust
and regulatory acceptability. In contrast, the deterministic framework
developed in the present study was designed to provide fully
traceable, rule-based reasoning with explicit safety guardrails,
offering a complementary pathway toward responsible clinical
decision support integration. AnemiaCare HD addresses these
shortcomings by incorporating both ESA kinetics and iron-
metabolism dynamics into a deterministic framework, producing
recommendations that are accurate, interpretable, and fully
protocol-adherent.

The importance of integrating ESA kinetics into Al-based models
has been previously demonstrated by McCarthy et al., who used a
highly parameterized physiologic model of erythropoiesis to predict
ESA response. That model succeeded in maintaining Hb levels within
the target range while reducing ESA utilization, underscoring the
value of physiologic modeling for individualized dosing (McCarthy et
al., 2014). Similarly, AnemiaCare HD builds on this concept by
translating established physiologic principles into a rule-driven,
transparent LLM framework suitable for bedside implementation.
Furthermore, regarding therapy, incorporating iron-metabolism
dynamics, based on TSAT, ferritin, and cumulative iron exposure, has
also been shown to enhance predictive accuracy in AI-driven anemia
management (Inoue et al., 2025).

Hb cycling remains one of the most persistent challenges in
anemia management, driven by variable ESA responsiveness and
overly frequent dose modifications (Jorg et al., 2023; Collins et al.,
2005; Thanakitcharu and Jirajan, 2016). By enforcing strict timing
rules and embedding dual-parameter iron algorithms, AnemiaCare
HD effectively prevented recommendations that would exacerbate this
variability. This observation aligns with findings from Kang et al.
(2024), who demonstrated that predictive accuracy in anemia
management improves when models use a limited set of clinically
meaningful variables, defined by expert knowledge, rather than
relying on large, indiscriminate datasets.

The significance of these findings is twofold. First, deterministic
prompt engineering can faithfully encode complex clinical rules into
reproducible, transparent outputs, an essential foundation for building
trust in Al-based clinical decision support. Second, the complete
elimination of protocol deviations, including inappropriate ESA use
above target Hb thresholds, unsafe iron dosing, and premature
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adjustments, demonstrates how rule-based design can directly
overcome the safety barriers that currently limit LLM use in medicine.

Together, these insights suggest that deterministic LLM
frameworks guided by essential, physiology-based variables may help
stabilize Hb levels, improve safety, and reduce treatment variability in
dialysis care. While the present findings demonstrate that
deterministic prompt engineering can fully eliminate protocol
deviations in a controlled simulation environment, this framework
does not yet address the broader clinical challenges of renal anemia
ESA
operational constraints, and longitudinal Hb variability. Established

management, including heterogeneous responsiveness,
ML-based anemia control systems, such as ACM (Garbelli et al.,
2024a,b; Gandjour et al., 2025) and physiologic response models,
focus on prediction and dose optimization and have demonstrated
improvements in hemoglobin stability and treatment efficiency. In
contrast, AnemiaCare HD was intentionally designed to prioritize
transparency, traceability, and rule fidelity, addressing key barriers to
clinical adoption and regulatory acceptance. As such, the current
framework should be viewed as a foundational safety layer that could
complement predictive or optimization-oriented approaches rather
than replace them. Future work will compare deterministic LLM
performance with established ML-based systems and evaluate whether
integrating physiologic modeling or predictive elements can enhance
clinical effectiveness.

There are limitations to acknowledge. All test scenarios were
simulated rather than derived from real-world patients, so external
validation in clinical settings remains essential. Additionally, the
current system was based on a single institutional protocol; thus, its
adaptability to other dialysis centers, practice environments, and
guideline frameworks warrants further evaluation. In addition, we
acknowledge that despite anonymization and randomization
procedures, the structured and templated format of Phase II outputs
may have allowed reviewers to infer phase assignment based on
stylistic cues. Although the high inter-rater agreement suggests
consistent application of protocol rules, future evaluations would
benefit from masking stylistic features by presenting only standardized
dosing outputs or parameter-level recommendations in a uniform
format, randomly mixed across conditions.

Despite these limitations, this study provides compelling proof-
of-concept evidence that deterministic LLMs can move beyond
flexible text generation to deliver reliable, auditable, and protocol-
compliant clinical decision support. Future work should focus on
integrating AnemiaCare HD into electronic health-record platforms,
refining its dosing algorithms using real-world patient data, and
conducting prospective validation trials to confirm its safety,
scalability, and clinical impact. The deterministic LLM framework
developed in AnemiaCare HD demonstrates that reproducibility and
safety can coexist within Al-driven clinical decision support. This
blueprint can be extended to other guideline-intensive domains such
as hypertension, mineral-bone disorder, and transplant
immunosuppression, providing a transparent, auditable pathway
toward regulatory-grade AI deployment.

A translational gap remains between deterministic performance
in simulated cases and meaningful clinical impact. Real-world anemia
management involves patient heterogeneity, comorbidities, provider
preferences, and operational constraints that cannot be fully captured
in simulated protocols. Future work will therefore require multi-center
external validation, prospective evaluation embedded within dialysis
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workflows, and assessment of clinician acceptance, usability, and
safety monitoring mechanisms. These steps will be essential to
determine whether deterministic LLM systems can enhance clinical
decision-making, reduce hemoglobin cycling, or improve treatment
efficiency in practice.

Conclusion

AnemiaCare HD demonstrates that deterministic LLMs can
achieve full adherence to complex anemia management protocols by
embedding explicit clinical rules, safety safeguards, and physiologic
logic. This proof-of-concept highlights their potential to deliver
reliable, interpretable, and protocol-compliant decision support in
hemodialysis anemia care. By constraining generative flexibility and
mandating protocol-coded reasoning, deterministic LLMs such as
AnemiaCare HD offer a safer paradigm that may better satisfy
regulatory expectations for Al-driven clinical decision support. Future
validation in real-world settings is warranted to confirm safety,
scalability, and clinical impact. Successful real-world implementation
will depend on workflow integration, external validation across
diverse practice settings, and alignment with regulatory expectations
for transparency and safety.
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