

OPEN ACCESS

EDITED BY

Ivan Šoša,
University of Rijeka, Croatia

REVIEWED BY

Željko Jovanović,
University of Rijeka, Croatia

*CORRESPONDENCE

Nam Vu
✉ Nam.Vu@cranfield.ac.uk

RECEIVED 17 October 2025

REVISED 01 December 2025

ACCEPTED 10 December 2025

PUBLISHED 12 January 2026

CITATION

He Y, Giangan A, Vu N and Watters C (2026) Positive sentiments in early academic literature on DeepSeek: a cross-disciplinary mini review. *Front. Artif. Intell.* 8:1725853. doi: 10.3389/frai.2025.1725853

COPYRIGHT

© 2026 He, Giangan, Vu and Watters. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Positive sentiments in early academic literature on DeepSeek: a cross-disciplinary mini review

Yuxing He¹, Angie Giangan², Nam Vu^{3*} and Casey Watters¹

¹Faculty of Law, Bond University, Robina, QLD, Australia, ²Independent researcher, Robina, QLD, Australia, ³Centre for Logistics, Procurement and Supply Chain Management, Cranfield School of Management, Cranfield University, Cranfield, United Kingdom

DeepSeek is a free and self-hostable large language model (LLM) that recently became the most downloaded app across 156 countries. As early academic literature on ChatGPT was predominantly critical of the model, this mini-review is interested in examining how DeepSeek is being evaluated across academic disciplines. The review analyzes available articles with DeepSeek in the title, abstract, or keywords, using the VADER sentiment analysis library. Due to limitations in comparing sentiment across languages, we excluded Chinese literature in our selection. We found that Computer Science, Engineering, and Medicine are the most prominent fields studying DeepSeek, showing an overall positive sentiment. Notably, Computer Science had the highest mean sentiment and the most positive articles. Other fields of interest included Mathematics, Business, and Environmental Science. While there is substantial academic interest in DeepSeek's practicality and performance, discussions on its political or ethical implications are limited in academic literature. In contrast to ChatGPT, where all early literature carried a negative sentiment, DeepSeek literature is mainly positive. This study enhances our understanding of DeepSeek's reception in the scientific community and suggests that further research could explore regional perspectives.

KEYWORDS

artificial intelligence, censorship, Chinese AI, deep learning, DeepSeek, large language models (LLM), natural language processing (NLP), neural networks

1 Introduction

Founded in 2023, DeepSeek is a Chinese-developed AI chatbot that has emerged as a major competitor to ChatGPT. Functionally, DeepSeek mirrors many of ChatGPT's core capabilities. It offers direct responses to user queries and can retrieve real-time information from the internet. However, it was not until January 2025, following the release of its R1 reasoning model, that the company gained global fame. DeepSeek ranked first in the most downloaded app across over 156 countries, exceeding ChatGPT for the first time (Field, 2025).

Since 2023, DeepSeek has released a series of generative AI models that have continually improved in both capabilities and performance. The progressive launch of its models, which include:

- DeepSeek Coder, an open-source coding model released in November 2023
- DeepSeek LLM, a general-purpose model released in December 2023
- DeepSeek – V2, an efficiency-focused general-purpose model released in May 2024
- DeepSeek –Coder-V2, designed for complex coding tasks and released in July 2024
- DeepSeek-V3 adopted a mixture-of-experts architecture to handle complex tasks and improve accuracy, and was released in December 2024

- DeepSee-R1, an improvement on the V3 model focused on advanced reasoning, was released in January 2025
- Janus – Pro – 7B, a model focusing on understanding and generating images, released in January 2025; and
- DeepSeek -R1-0528, an updated version of R1 integrating agentic AI, was released in May 2025.

DeepSeek focuses on developing open source LLMs, which means, according to a working definition put forth by the Open Source Initiative, that it grants users the freedom to use the AI for any purpose without seeking permission, to study how the system works and inspects its components, to modify the AI including changing the output and to share the AI for others to use (Williams and O'Donnell, 2024; Open Source Initiative O. S. I, 2024; Bansemer and Miller, 2025). This self-hosting capacity offers significant privacy advantages, especially for institutional users, developers, and enterprises seeking greater control over data governance and customization. Although the model cannot be considered fully open source since its training data have not been made entirely available, the data weights are downloadable. They can, therefore, be run locally, allowing users to protect their own data (Gibney and Pachocki, 2025) something important as companies increasingly rely on data in decision making and disclosure (Wan and Watters, 2021; Abdullah et al., 2025).

The emergence of open AI sources, such as DeepSeek, represents a pivotal shift in the AI ecosystem. By making powerful LLMs and coding agents openly accessible, DeepSeek lowers the barriers to entry for individuals, academic institutions, and smaller companies that may not have the resources to train models from scratch. This democratization of advanced AI technologies fosters a more inclusive innovation environment, encouraging global participation in AI development beyond the confines of a few dominant tech firms (Sapkota et al., 2025). This transparency cultivates deeper understanding and accelerates collective learning.

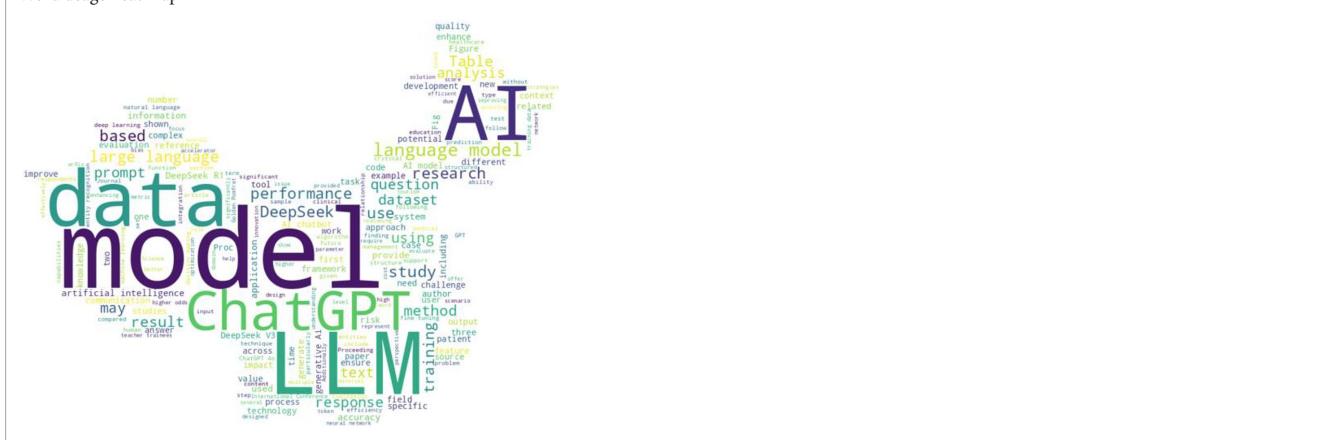
While much of the public discourse has focused on the general user experience or industry use of AI (Yang et al., 2025), this study explicitly examines how DeepSeek is being evaluated within academic disciplines. There is a significant body of literature on using LLMs to determine sentiment (Kiziltepe et al., 2025; Mouthami et al., 2025; Shah et al., 2025; Muhammad and Rospocher, 2025), and a growing body of literature examines public sentiment towards LLM models (Demirel et al., 2025; Islam et al., 2025; Katta, 2025), including DeepSeek (Tubishat et al., 2025; Hossain, 2025; Santosa et al., 2025; Lalupanda et al., 2025). However, few articles examine academic sentiment regarding ChatGPT and early LLM models (Tao and Shen, 2025; Watters and Lemanski, 2023; Twinomurinzi and Gumbo, 2023; Mostafa and Beshir, 2025). This is the first study purely examining academic research on DeepSeek.

While early academic literature on ChatGPT was universally critical across disciplines (Watters and Lemanski, 2023), it remains to be seen how scholars are responding to DeepSeek in its initial phase of academic reception. It is therefore important to investigate not only the overall sentiment expressed in early studies of DeepSeek but also whether differences in evaluation emerge across academic fields. In the next section, this review outlines the methodology, including the inclusion policies for the literature. Then, section three details the findings and a discipline-based discussion of the sentiment towards DeepSeek. Finally, the review concludes in section 4.

2 Methodology: literature search strategy and inclusion criteria

To answer the research question, this paper first needed to identify the existing literature within various academic disciplines. The Scopus database was selected because it is a well-recognized indexing database commonly used in reviews (Kusuma et al., 2024; Culbert et al., 2025; Hartanto et al., 2024) and because it already categorizes publications by discipline, thereby reducing the risk of author bias in article categorization.

A search was conducted on May 25, 2025, for all Scopus-indexed publications with 'DeepSeek' in the title, abstract, or as a keyword. This search provided 144 documents. Conference papers, editorials and other non-article formats were excluded, leaving 80 articles, of which 69 were in English (see Table 1). Then, the articles available through the Bond University Library were downloaded, and their sentiment was analyzed using VADER, a sentiment analysis tool within NLTK (Natural Language Toolkit), a Python library. VADER is commonly used for sentiment analysis in academic research (Asthana et al., 2024; Kalamkar and Sharma, 2024; Singla et al., 2024; Kumar et al., 2024). Although one of its benefits is analysing short texts, it is also used in standard academic texts and literature (Vinodini, 2023; Youvan, 2024). Approaches to sentiment analysis can be broadly categorized as lexicon-based (Zhuo et al., 2024; Kumar et al., 2024; Catelli et al., 2022), as is VADER, or machine/deep learning based. ML models, BERT being one of the most common, require training on a dataset and are often fine-tuned (Taye et al., 2025; Rhomrasi et al., 2025; Alaparthi and Mishra, 2021; Goud and Garg, 2025; Culbert et al., 2025). This makes them more nuanced but less reproducible and more subjective. Here, we used the integrated lexicon for VADER, thereby providing a more reproducible and objective approach, which is valuable for analyzing topics that may be controversial. VADER also employs a single, unified lexicon, which did not require fine-tuning but was initially validated against sample texts. Despite these benefits, the decreased language nuance in the lexicon approach can result in more extreme results.

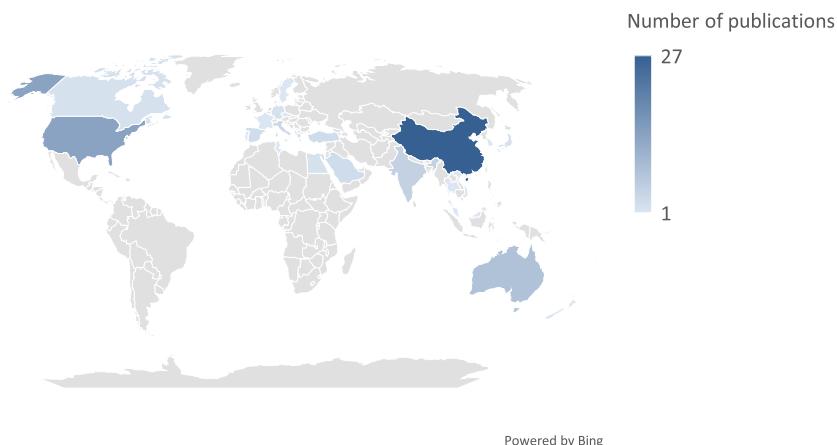

Sentiment is represented on a scale from -1 to 1, with -1 signifying entirely negative sentiment, zero being neutral, and 1 signifying entirely favorable treatment. The mean sentiment was calculated for available articles in each academic discipline, with the percentage of positive articles also calculated for disciplines with 15 or more articles. This data is presented in Table 1. Furthermore, the articles were examined for their topics, and a heatmap of the words used in the articles was also included. Lastly, we examined the countries where authors are located to understand the distribution of authorship and its potential impact on sentiment. This was presented in Figure 1. Articles that were written by multiple authors in different countries or that are classified in more than one discipline are included in all applicable categories.

This research aims to provide a structured overview of how scholars are engaging with DeepSeek, a major non-Western AI model. This fills a gap in AI-related literature analysis that is still focused on models developed by Western companies (e.g., Google, OpenAI). In addition, by identifying how different academic fields evaluate DeepSeek, this research would potentially reveal any disciplinary biases, priorities, and blind spots. However, one significant limitation of the research is that it excludes the Chinese language literature.

TABLE 1 Scopus literature on DeepSeek.

Discipline	Total	Sentiment	Citations
Computer Science	28	Mean 0.866 Positive 0.933	Yang et al. (2025), Alghamdi and Mostafa (2025), Bevara et al. (2025), Li M. et al. (2025), Liu Y. et al. (2025), Bai et al. (2025), Chen Y. Q. et al. (2025), Marcaccini et al. (2025a), Fernandes et al. (2025), Jiao et al. (2025), Spennemann (2025), Roumeliotis et al. (2025), Rasool et al. (2025), Li J. et al. (2025), Du et al. (2025), Fei et al. (2025), Deng Z. et al. (2025), Xiong et al. (2025), Mavridis et al. (2025), Alsaif et al. (2025), Zyda (2025), Valmeekam et al. (2025), Liu Y. J. et al. (2025), Zhang et al. (2025), Ben Saad et al. (2025), Franzoni et al. (2024), Munley et al. (2024), Cassano et al. (2024)
Engineering	16	Mean 0.7501 Positive 0.87	Yang et al. (2025), Li M. et al. (2025), Dong et al. (2025), Jiang et al. (2025), Bai et al. (2025), Fernandes et al. (2025), Jiao et al. (2025), Rhomrasi et al. (2025), Spennemann (2025), Roumeliotis et al. (2025), Peng et al. (2025), Fei et al. (2025), Deng Z. et al. (2025), Xiong et al. (2025), Okaiyeto et al. (2025), Cassano et al. (2024)
Medicine	15	Mean 0.749 Positive 0.875	Cai et al. (2025), Uldin et al. (2025), Prasad et al. (2025), Zhou J. et al. (2025), Patil et al. (2025), Zhou M. et al. (2025), Mccoy and Perlis (2025), Chen C. C. et al. (2025), Marcaccini et al. (2025b), Bhattacharya et al. (2025), Ali (2025), Zeng et al. (2025), Zhou H. et al. (2025), Deng M. et al. (2025), Alsammarraie and Househ (2025)
Social Sciences	10	Mean 0.9997	Mizumoto and Teng (2025), Sroyprapai et al. (2025), Bevara et al. (2025), Liu Y. et al. (2025), Chen Y. Q. et al. (2025), Pal and Ray (2025), Spennemann (2025), Tewari (2025), Arnal (2025)
Environmental Sci	4	Mean 0.9995	Liu Y. et al. (2025), Dong et al. (2025), Jiang et al. (2025), Peng et al. (2025)
Econ & Finance	4	Mean 0.9999	Yang (2025), Moravec et al. (2025), Pal and Ray (2025), Tewari (2025)
Business	4	Mean 0.9999	Dwivedi (2025), Moravec et al. (2025), Spennemann (2025), Saleh (2025)
Mathematics	3	Mean 1.0	Deng Z. et al. (2025), Xiong et al. (2025), Zhang et al. (2025)
Dentistry	3	Mean 0.997	Kaygisiz and Teke (2025), Yilmaz et al. (2025), Diniz-Freitas and Diz-Dios (2025)
BioChem/Genetics	3	Mean 0.9998	Seth et al. (2025), Sandmann et al. (2025), Tordjman et al. (2025)
Categories with 2 or less articles	12	Mean 0.999	Si et al. (2025), Yang et al. (2025), Shao et al. (2025), Jia et al. (2025), Liu Y. et al. (2025), Peters and Chin-Yee (2025), Chen Y. Q. et al. (2025), Chen C. C. et al. (2025), Fei et al. (2025), Xie et al. (2025), Ben Saad et al. (2025), Okaiyeto et al. (2025)

Word usage heat map


Languages each have their own styles and subtleties that lexicons and models attempt to encapsulate. However, no model or lexicon in one language can be the objective equivalent of one in another. To avoid bias, sentiment can therefore not be reliably compared across languages. To avoid bias, this study focuses on English literature, with a future study of Chinese literature recommended.

3 The findings and discussion

3.1 Findings

Unlike ChatGPT, which received negative sentiment in the early literature, DeepSeek has been met with a more positive reception.

DeepSeek Publications by Jurisdiction

FIGURE 1
DeepSeek publications by jurisdiction.

However, this may be less a result of sentiment specific to DeepSeek but rather a reflection of increasing comfort with the role of artificial intelligence, and large language models in particular. Table 1 presents the mean sentiment for articles across various academic disciplines, along with the percentage of positive articles for disciplines with 15 or more articles. A word map is also used to illustrate the most common terms across all disciplines in the articles Figure 1 shows the geographic distribution of authorship. Unsurprisingly, the jurisdictions with the most authored papers were China, followed by the United States.

3.2 Implications and research gap

3.2.1 Disciplinary analysis

The analysis produces an overall positive sentiment toward DeepSeek, with no discipline demonstrating a mean sentiment below 0.74, and most clustering close to 1.0 (see Table 1). This reflects a generally favorable perception of DeepSeek in early academic literature. From the analysis of disciplinary differences, three disciplines - Computer Science (28 articles), Engineering (16 articles), and Medicine (15 articles) - account for over half of the data. This suggests that DeepSeek is most impactful in technical and scientific fields. However, these patterns should be interpreted with caution. The total dataset includes only 69 articles, and many fields are represented by a relatively small number of publications. The limited size of the corpus may constrain the generalizability of disciplinary trends. Nevertheless, existing literature generally agrees that by making the model's intermediate reasoning steps transparent, DeepSeek supports more trustworthy and verifiable outputs when it launched its reasoning model. This capability is especially valuable in computer science and technical research settings, where understanding how a conclusion is reached is often as important as the conclusion itself.

Among these three fields, it is interesting to note that (within the limits of the dataset) Computer Science demonstrated the highest mean sentiment (0.866) as well as the most significant proportion of

positive articles (93.3%), reflecting a possible strong appreciation for DeepSeek's open-source nature, computational efficiency, and potential for technical experimentation and fine-tuning models. This sentiment is also likely influenced by DeepSeek's contributions to the coding domain. The release of DeepSeek Coder in late 2023 marked a significant milestone as China's first open-source coding-specific model, offering a competitive alternative to international models such as OpenAI's Codex and Google's Gemini. In contrast, when ChatGPT was first introduced, it lacked strong coding capabilities, an area that has since become a key benchmark in LLM performance. DeepSeek's strong early positioning in this space may have bolstered its reception in Computer Science research communities. Meanwhile, Engineering and Medicine had slightly lower mean sentiment scores (0.7501 and 0.749, respectively), with 87.5% of articles in both fields showing positive evaluations. This relative moderation, unsurprisingly, reflects discipline-specific concerns, as Engineering research tends to approach new tools like DeepSeek primarily as components within larger socio-technical systems, where questions of reliability, robustness, integration with existing infrastructure, and life-cycle maintenance are central (Breznická et al., 2023; Baxter and Sommerville, 2011).

Medicine, on the other hand, operates within an explicitly risk-averse and heavily regulated framework. Clinical disciplines typically require strong empirical evidence, clear regulatory guidance, and well-defined accountability before integrating new technologies into practice (Pham, 2025). In this context, known limitations of large language models (such as hallucinations, lack of guaranteed accuracy, difficulties in ensuring explainability, and concerns over patient data privacy and medico-legal liability) carry considerable weight. Even if DeepSeek's reasoning model and open-source architecture are viewed as promising for clinical decision support, education, or documentation, medical authors may be more inclined to emphasize potential harms and ethical constraints. Taken together, these disciplinary norms help explain why Engineering and Medicine, while still largely positive, exhibit slightly more cautious sentiment toward DeepSeek than Computer Science, where experimentation, coding

support, and model fine-tuning are more immediately aligned with core research practices.

Several disciplines reported near-perfect sentiment averages. Small sample sizes in these disciplines may artificially inflate sentiment scores, since a few highly favorable articles can significantly skew the average in the absence of a critical mass. These findings should therefore be treated as preliminary observations rather than conclusive indicators of disciplinary enthusiasm.

3.2.2 Word cloud analysis

Through the word cloud, the most frequently occurring terms included “model,” “data,” “ChatGPT,” “LLM,” “AI,” “DeepSeek,” and “language” (see Word Cloud in [Table 1](#)). This concentration of technical terminology suggests that the prevailing academic interest centers on the architecture, performance, and training methods of DeepSeek, often in comparison to other large language models (LLMs), such as ChatGPT. This is also reflected in the prominence of the term “ChatGPT” recorded in the map. Furthermore, the frequent appearance of terms such as “training,” “dataset,” “accuracy,” and “output” reinforces the focus on model benchmarking and quantitative evaluation.

A significant portion of the high-frequency terms identified in the heatmap (e.g., “use,” “case,” “question,” “tool,” “method,” “task,” “context,” “study”) suggests a practical orientation in the literature. This indicates that DeepSeek is not only examined as a technological development but also evaluated for its utility across various academic contexts, including research assistance, content generation, and information retrieval. The presence of domain-specific terms, such as “healthcare,” “education,” “clinical,” “communication,” and “patient,” indicates DeepSeek’s interdisciplinary reach. Its perceived usefulness spans technical disciplines such as computer science and engineering, as well as applied domains like medicine, education, and business. This supports the earlier findings from sentiment analysis that DeepSeek is being actively explored across diverse academic fields, albeit with different evaluative priorities.

Notably absent from the heat map are terms related to ethics, regulation, censorship, or governance (e.g., “bias,” “trust,” “privacy,” “surveillance”). This suggests that while technical and application-oriented discussions are well-developed, critical engagement with the political or ethical implications of DeepSeek - such as its alignment with state censorship norms or privacy concerns - remains limited in the current literature. As noted in the introduction, DeepSeek has been criticized for censorship. This stands in contrast to the earlier literature on ChatGPT, which often advocated for what might be considered a form of censorship due to concerns about bias. A key difference is that the literature addressing bias risk for ChatGPT focuses primarily on the training data. One of the challenges in training early LLMs is accessing data to train the LLM. The best sources, such as news and academic papers, are often subject to copyright and behind paywalls. The discussion and criticisms of censorship primarily focus on the limitations of post-training answers that large language models can provide. However, the training dataset also has a significant impact, and the decisions over which data to include or exclude can always be criticized. Fortunately, multiple models can now be used simultaneously for users who want different perspectives or seek to mitigate bias. Additionally, following the approach of DeepSeek,

many thinking models display the reasoning behind the model’s answers. This empowers the user but requires more active engagement with the language model than many casual users may be willing to undertake.

3.2.3 Geographical analysis

In terms of the geographic distribution of publications, unsurprisingly, China accounts for the highest number of publications (27), reflecting its role as the originator and primary developer of DeepSeek. Beyond simple proximity, this domestic prominence is closely tied to China’s broader strategy of fostering domestic AI capability and digital sovereignty, in which home-grown large language models are positioned as strategic assets that can reduce dependence on US-controlled technologies and infrastructure ([Chang et al., 2025](#)). The United States emerges as the second most active jurisdiction, suggesting substantial international interest in evaluating Chinese AI models, driven by comparative research agendas or the open-source availability of DeepSeek’s model architecture. However, this interest is not merely technical. DeepSeek has been framed in Western policy and media discourse as both a symbol of China’s accelerating AI capabilities and a potential inflection point in the global AI race, prompting reassessments of Chinese progress in open-source and reasoning-capable models. At the same time, DeepSeek has been linked to concerns over national security, data privacy, and information control, which leads to proposed and actual restrictions on its use within government and critical sectors, and public warnings about censorship and disinformation risks ([Freifeld, 2025](#)). These geopolitical dynamics help to explain why early English-language scholarship is concentrated in China and the US.

India, Australia, Canada, Germany, and the United Kingdom each contribute between two and five publications, while isolated single contributions appear from several other regions. This pattern suggests widespread but uneven global engagement with DeepSeek. Linguistic and academic-network factors provide a more convincing explanation than geopolitics. In medium- and low-volume countries, geopolitical rivalry is also less central to how DeepSeek is perceived. Unlike in the United States, where DeepSeek can be framed as a potential strategic competitor to domestic models, many of these jurisdictions do not position DeepSeek as a direct national rival in their own AI industrial strategies. For them, DeepSeek tends to appear as one tool among many in a wider ecosystem dominated by US and European providers. This weakens the explanatory power of a purely geopolitical lens. It has been found that DeepSeek systematically refuses or reshapes answers on politically sensitive topics related to China, and that sensitive content can appear in internal reasoning while being suppressed or rewritten in the final output ([Qiu et al., 2025](#)). For researchers and practitioners in many countries, this makes DeepSeek less attractive as a general-purpose information tool, since its outputs on politically or historically contested questions are perceived as incomplete or biased. Outside China, DeepSeek is therefore more likely to be used for comparative benchmarking, bias and censorship audits, or technical experimentation, rather than as a trusted knowledge source. This helps to explain why, despite its technical appeal and open-weight availability, sustained scholarly engagement remains relatively limited in many parts of the world.

4 Conclusion

Early adopters of DeepSeek are typically researchers who are already positively inclined toward generative AI and who primarily frame the system as a pragmatic tool for enhancing efficiency, rather than as an object of ethical or political concern. When DeepSeek is used mainly for summarization, drafting, translation, or data handling, authors tend to focus on whether it “works” in practice and improves workflows, rather than interrogating its broader implications. In addition, critical and normative analyses of emerging technologies usually appear later in the publication cycle than technical reports or methodological case studies, as evidence of harms, biases, or structural effects takes time to accumulate.

A similar lag can be observed with respect to legal and regulatory concerns. Potentially contentious issues - such as responsibility for erroneous outputs, the use of copyrighted or sensitive data in training, data protection and cross-border transfers, or the legal status of AI-assisted authorship - require careful doctrinal and empirical analysis. These questions typically take longer to surface in the literature than methodological case studies or technical evaluations, and they often appear in specialized legal or policy venues that may fall outside the initial corpus. As a result, early work is more likely to present DeepSeek as a useful, low-cost, open-source resource than to interrogate its compliance with data protection regimes, intellectual property law, or emerging AI regulation. Taken together, these dynamics help to explain why early English-language literature on DeepSeek is characterized by very high sentiment scores and limited critical engagement, especially in fields where the model is used instrumentally for research-support functions.

This study reveals that early academic sentiment toward DeepSeek is overwhelmingly positive, especially in technical fields such as Computer Science and Engineering. The Word Heat Map confirms a strong focus on performance, model architecture, and practical use cases, with limited engagement in ethical or political critiques. Geographically, China and the United States lead in publication output, though global participation remains uneven. While early literature reflects a broadly positive perception of DeepSeek, a more comprehensive understanding of its scientific, ethical, and societal implications will require expanded interdisciplinary engagement and more regionally diverse research.

References

Abdullah, F., Naeem, H. M., and Aslam, H. (2025). Big data, bigger ideas: the role of big data analytics management capability in supply chain sustainability. *Ind. Manag. Data Syst.*, 1–23. doi: 10.1108/IMDS-09-2024-0913

Alaparthi, S., and Mishra, M. (2021). BERT: a sentiment analysis odyssey. *J. Mark. Anal.* 9, 118–126. doi: 10.1057/s41270-021-00109-8

Alghamdi, H., and Mostafa, A. (2025). Advancing EHR analysis: predictive medication modeling using LLMs. *Inf. Syst.* 131:4. doi: 10.1016/j.is.2025.102528

Ali, M. J. (2025). DeepSeektm and lacrimal drainage disorders: hype or is it performing better than Chatgpttm? *Orbit* 44, 736–742. doi: 10.1080/01676830.2025.2501656

Alsaif, K., Albeshri, A., Khemakhem, M., and Eassa, F. (2025). Healthcare 4.0: a large language model-based blockchain framework for medical device fault detection and diagnostics. *Int. J. Adv. Comput. Sci. Appl.* 16, 980–992. doi: 10.14569/ijacs.2025.0160495

Alsammaraie, A., and Househ, M. (2025). The use of large language models in generating patient education materials: a scoping review. *Acta Informatica Medica* 33, 4–10. doi: 10.5455/aim.2024.33.4-10

Arnal, J. (2025). Ai at risk in the Eu: it's not regulation, it's implementation. *Eur. J. Risk Regul.* 1–10.

Asthana, P., Barnwal, M., Yadav, A., Aggrawal, M., and Goel, M. (2024). *Vader: a lightweight and effective approach for sentiment analysis*. 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCT), 2024. Ieee, 687–692.

Bai, X., Huang, S., Wei, C., and Wang, R. (2025). Collaboration between intelligent agents and large language models: a novel approach for enhancing code generation capability. *Expert Syst. Appl.* 269:126357. doi: 10.1016/j.eswa.2024.126357

Bansemir, J., and Miller, K. (2025). Deepseek's release of an open-weight frontier AI model. *Strateg. Comm.* 31:6.

Baxter, G., and Sommerville, I. (2011). Socio-technical systems: from design methods to systems engineering. *Interact. Comput.* 23, 4–17.

Ben Saad, H., Dergaa, I., Ghouili, H., Ceylan, H. İ., Chamari, K., and Dhahbi, W. (2025). The assisted technology dilemma: a reflection on AI chatbots use and risks while reshaping the peer review process in scientific research. *AI Soc.* 40, 1–8. doi: 10.1007/s00146-025-02299-6

Bevara, R. V. K., Mannuru, N. R., Lund, B. D., Karedla, S. P., and Mannuru, A. (2025). Beyond Chatgpt: how DeepSeek R1 may transform academia and libraries? *Libr. Hi Tech News* 42, 4–8. doi: 10.1108/LHTN-01-2025-0024

Author contributions

YH: Conceptualization, Formal analysis, Writing – original draft, Writing – review & editing. AG: Formal analysis, Writing – review & editing. NV: Writing – review & editing. CW: Conceptualization, Methodology, Writing – review & editing.

Funding

The author(s) declared that financial support was not received for this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that Generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Bhattacharya, K., Bhattacharya, S., Bhattacharya, N., and Bhattacharya, N. (2025). DeepSeek versus Chatgpt in surgical practice. *Indian J. Surg.* 87, 1–4. doi: 10.1007/s12262-025-04368-y

Breznická, A., Kohutiar, M., Krbařa, M., Eckert, M., and Mikuš, P. (2023). Reliability analysis during the life cycle of a technical system and the monitoring of reliability properties. *Systems* 11:556.

Cai, X., Geng, Y., Du, Y., Westerman, B., Wang, D., Ma, C., et al. (2025). Utilizing large language models to select literature for meta-analysis shows workload reduction while maintaining a similar recall level as manual curation. *BMC Med. Res. Methodol.* 25, 1–10. doi: 10.1186/s12874-025-02569-3

Cassano, F., Gouwar, J., Lucchetti, F., Schlesinger, C., Freeman, A., Anderson, C. J., et al. (2024). Knowledge transfer from high-resource to low-resource programming languages for code Llms. *Proc. ACM Program. Lang.* 8, 677–708.

Catelli, R., Pelosi, S., and Esposito, M. (2022). Lexicon-based vs. Bert-based sentiment analysis: a comparative study in Italian. *Electronics* 11:374. doi: 10.3390/electronics11030374

Chang, W. A., Rebecca, and Hmaidi, A. (2025). China's drive toward self-reliance in artificial intelligence: From chips to large language models: Merics.

Chen, C. C., Chen, J. A., Liang, C. S., and Lin, Y. H. (2025). Large language models may struggle to detect culturally embedded filicide-suicide risks. *Asian J. Psychiatr.* 105:104395. doi: 10.1016/j.ajp.2025.104395

Chen, Y. Q., Yu, T., Song, Z. Q., Wang, C. Y., Luo, J. T., Xiao, Y., et al. (2025). Application of large language models in drug-induced Osteotoxicity prediction. *J. Chem. Inf. Model.* 65, 3370–3379. doi: 10.1021/acs.jcim.5c00275

Culbert, J. H., Hobert, A., Jahn, N., Haupka, N., Schmidt, M., Donner, P., et al. (2025). Reference coverage analysis of OpenAlex compared to web of science and Scopus. *Scientometrics* 130, 2475–2492. doi: 10.1007/s11192-025-05293-3

Demirel, S., Kahraman-Gokalp, E., and Gündüz, U. (2025). From optimism to concern: unveiling sentiments and perceptions surrounding Chatgpt on twitter. *Int. J. Hum.-Comput. Interact.* 41, 7292–7314. doi: 10.1080/10447318.2024.2392964

Deng, M., He, J., and Miao, J. (2025). Comparative analysis of Ai models in disseminating genetic counseling knowledge for gynecologic cancers. *Int. J. Gynecol. Obstet.* 170, 1408–1410. doi: 10.1002/ijgo.70143

Deng, Z., Ma, W., Han, Q. L., Zhou, W., Zhu, X., Wen, S., et al. (2025). Exploring DeepSeek: a survey on advances, applications, challenges and future directions. *IEEE/CAA J. Autom. Sin.* 12, 872–893. doi: 10.1109/JAS.2025.125498

Diniz-Freitas, M., and Diz-Dios, P. (2025). DeepSeek: another step forward in the diagnosis of oral lesions. *J. Dental Sci.* 20, 1904–1907. doi: 10.1016/j.jds.2025.02.023

Dong, Z., Lu, Z., and Yang, Y. (2025). Fine-tuning a large language model for automating computational fluid dynamics simulations. *Theor. Appl. Mech. Lett.* 15:100594. doi: 10.1016/j.taml.2025.100594

Du, X., Hu, S., Zhou, F., Wang, C., and Nguyen, B. M. (2025). Fi-Nl2py2sql: financial industry Nl2sql innovation model based on Python and large language model. *Future Internet* 17:12. doi: 10.3390/fi17010012

Dwivedi, Y. K. (2025). Generative artificial intelligence (Genai) in entrepreneurial education and practice: emerging insights, the gain framework, and research agenda. *Int. Entrep. Manag. J.* 21, 1–21. doi: 10.1007/s11365-025-01089-2

Fei, Y., Fan, J., and Zhou, G. (2025). Extracting fruit disease knowledge from research papers based on large language models and prompt engineering. *Appl. Sci.* 15:628. doi: 10.3390/app15020628

Fernandes, D., Matos-Carvalho, J. P., Fernandes, C. M., and Fachada, N. (2025). DeepSeek-V3, Gpt-4, Phi-4, and Llama-3.3 generate correct code for LoRawan-related engineering tasks. *Electronics* 14:1428. doi: 10.3390/electronics14071428

Field, A. (2025). China's DeepSeek Ai tops Chatgpt in App Store downloads: What you should know Cnbc [Online]. Available online at: <https://www.cnbc.com/2025/01/27/chinas-deepseek-ai-tops-chatgpt-app-store-what-you-should-know.html> [Accessed 10 July 2025].

Franzoni, V., Tagliente, S., and Milani, A. (2024). Generative models for source code: fine-tuning techniques for structured pattern learning. *Technologies* 12:219. doi: 10.3390/technologies12110219

Freifeld, K. (2025). Us commerce department bureaus ban China's DeepSeek on government devices, sources say: Reuters.

Gibney, E., and Pachocki, J. (2025). 'Ai models are capable of novel research': Openai's chief scientist on what to expect. *Nature* 641, 830–830. doi: 10.1038/d41586-025-01485-2

Goud, A., and Garg, B. (2025). A novel framework for aspect based sentiment analysis using a hybrid Bert (Hybert) model. *Multimed. Tools Appl.* 84, 34819–34851.

Hartanto, A., Nachrowi, N. D., Samputra, P. L., and Huda, N. (2024). A bibliometric analysis of Islamic banking sustainability: a study based on Scopus scientific database. *J. Islamic Mark.* 15, 2245–2285. doi: 10.1108/JIMA-04-2023-0123

Hossain, M. S. (2025). Emotional drivers of sustainable Ai adoption: a sentiment analysis of early user feedback on the DeepSeek app. *Sustainable Futures* 10:100947. doi: 10.1016/j.sfr.2025.100947

Islam, H., Begum, M., Mahmud, T., Chakma, R., Hanip, A., and Hossain, M. S. An approach to detect sentiment on public opinions towards Chatgpt. *2025 International Conference on Electrical, Computer and Communication Engineering (ECCE)*, 2025. Chittagong: Ieee, 1–6.

Jia, H., Tai, Z., Lyu, R., Ishikawa, K., Sun, Y., Cao, J., et al. (2025). Low-temperature sealing material database and optimization prediction based on Ai and machine learning. *Polymers* 17:1233. doi: 10.3390/polym17091233

Jiang, Q., Gao, Z., and Karniadakis, G. E. (2025). DeepSeek vs. Chatgpt vs. Claude: a comparative study for scientific computing and scientific machine learning tasks. *Theor. Appl. Mech. Lett.* 15:100583. doi: 10.1016/j.taml.2025.100583

Jiao, J., Jiang, L., Zhou, Q., and Wen, R. (2025). Evaluating large language model application impacts on evasive spectre attack detection. *Electronics* 14:1384. doi: 10.3390/electronics14071384

Kalamkar, P. N., and Sharma, Y. K. *Blend of Vader and TextBlob for movie script classification*. 2024 4th International Conference on Artificial Intelligence, Robotics, and Communication (ICAIRC), 2024. Ieee, 875–881.

Katta, K. (2025). Analyzing user perceptions of large language models (Llms) on Reddit: sentiment and topic modeling of Chatgpt and DeepSeek discussions. Open Source Initiative.

Kaygisiz, Ö. F., and Teke, M. T. (2025). Can deepseek and Chatgpt be used in the diagnosis of oral pathologies? *BMC Oral Health* 25:638. doi: 10.1186/s12903-025-06034-x

Kiziltepe, R. S., Ezin, E., Yentür, Ö., Basbrain, A., and Karakus, M. (2025). Advancing sentiment analysis for low-resource languages using fine-tuned Llms: a case study of customer reviews in Turkish language. *IEEE Access* 13:77382. doi: 10.1109/ACCESS.2025.3566000

Kumar, B., Badiger, V. S., and Jacintha, A. D. *Sentiment analysis for products review based on Nlp using lexicon-based approach and Roberta*. 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), 2024. Bengaluru: Ieee, 1–6.

Kusuma, H. S., Nida, R. A., Listiawati, V., Rahayu, D. E., Febryola, L. A., Darmokoesoemo, H., et al. (2024). Trends on adsorption of lead (Pb) using water hyacinth: bibliometric evaluation of Scopus database. *Environ. Res.* 244:117917. doi: 10.1016/j.enres.2023.117917

Lalupanda, E. S., Lede, P. A. R. L., and Priyastiti, I. (2025). Application of support vector machine algorithm for sentiment analysis of Deepseek app user reviews on Google play store. *J. Artificial Intell. Eng. App.* 5, 390–396. doi: 10.59934/jaiae.v5i1.1332

Li, J., Li, G., Li, Y., and Jin, Z. (2025). Structured chain-of-thought prompting for code generation. *ACM Trans. Softw. Eng. Methodol.* 34:1. doi: 10.1145/3690635

Li, M., Wu, T., Dong, Z., Liu, X., Lu, Y., Zhang, S., et al. (2025). Deeprt: a hybrid framework combining large model architectures and ray tracing principles for 6G digital twin channels. *Electronics* 14:1849. doi: 10.3390/electronics14091849

Liu, Y., Awang, H., and Mansor, N. S. (2025). Exploring the potential barrier factors of AI chatbot usage among teacher trainees: from the perspective of innovation resistance theory. *Sustainability* 17:4081. doi: 10.3390/su17094081

Liu, Y., J., Du, H., Xu, X., Zhang, R., Feng, G., Cao, B., et al. (2025). A survey of integrating generative artificial intelligence and 6G mobile services: architectures, solutions, technologies and outlooks. *IEEE Trans. Cogn. Commun. Netw.* 11:1334. doi: 10.1109/TCCN.2025.3558992

Marcaccini, G., Seth, I., Novo, J., McClure, V., Sacks, B., Lim, K., et al. (2025a). Leveraging artificial intelligence for personalized rehabilitation programs for head and neck surgery patients. *Technologies* 13:142. doi: 10.3390/technologies13040142

Marcaccini, G., Seth, I., Xie, Y., Susini, P., Pozzi, M., Cuomo, R., et al. (2025b). Breaking bones, breaking barriers: Chatgpt, DeepSeek, and Gemini in hand fracture management. *J. Clin. Med.* 14:1983. doi: 10.3390/jcm14061983

Mavridis, A., Tegos, S., Anastasiou, C., Papoutsoglou, M., and Meditskos, G. (2025). Large language models for intelligent RDF knowledge graph construction: results from medical ontology mapping. *Front. Artificial Intell.* 8:1546179. doi: 10.3389/frai.2025.1546179

Mccoy, T. H., and Perlis, R. H. (2025). Reasoning language models for more transparent prediction of suicide risk. *Bmj Mental Health* 28:e301654. doi: 10.1136/bmjment-2025-301654

Mizumoto, A., and Teng, M. F. (2025). Large language models fall short in classifying learners' open-ended responses. *Res. Methods App. Linguistics* 4:100210. doi: 10.1016/j.rmal.2025.100210

Moravec, V., Gavurova, B., and Kovac, V. (2025). Environmental footprint of Genai – changing technological future or planet climate? *J. Innov. Knowl.* 10:100691.

Mostafa, L., and Beshir, S. *Emotion detection in Egyptian academics sentiment about Chatgpt usage in academic article writing using Word2Vec*. International Conference on Advanced Intelligent Systems and Informatics, 2025. Springer, 146–156.

Mouthami, K., Naren, P., and Pranesh, R. *Political sentiment analysis on twitter using deep learning and Llm models*. 2025 3rd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2025. Ieee, 1–6.

Muhammad, I., and Rospocher, M. (2025). On assessing the performance of Llms for target-level sentiment analysis in financial news headlines. *Algorithms* 18:46. doi: 10.3390/a18010046

Munley, C., Jarmusch, A., and Chandrasekaran, S. (2024). Llm4vv: developing Llm-driven testsuite for compiler validation. *Futur. Gener. Comput. Syst.* 160, 1–13.

Okaiyeto, S. A., Bai, J., Wang, J., Mujumdar, A. S., and Xiao, H. (2025). Success of DeepSeek and potential benefits of free access to Ai for global-scale use. *Int. J. Agric. Biol. Eng.* 18, 304–306. doi: 10.25165/j.ijabe.20251801.9733

Open Source Initiative O. S. I. 2024 The open source Ai definition 1.0

Pal, P., and Ray, P. (2025). The fight for supremacy in artificial intelligence the beginning of a Sino-us technology war. *Econ. Polit. Wkly.* 60, 20–23.

Patil, N. G., Kou, N. L., Baptista-Hon, D. T., and Monteiro, O. (2025). Artificial intelligence in medical education: a practical guide for educators. *MedComm - Future Medicine* 4:e70018. doi: 10.1002/mef2.70018

Peng, X., Jiang, H., Chen, J., Liu, M., and Chen, X. (2025). Research and construction of knowledge map of Golden Pomfret based on La-cancer model. *J Mar Sci Eng* 13:400. doi: 10.3390/jmse13030400

Peters, U., and Chin-Yee, B. (2025). Generalization bias in large language model summarization of scientific research. *R. Soc. Open Sci.* 12:241776.

Pham, T. (2025). Ethical and legal considerations in healthcare Ai: innovation and policy for safe and fair use. *R. Soc. Open Sci.* 12:241873. doi: 10.1098/rsos.241873

Prasad, S., Langlie, J., Pasick, L., Chen, R., and Franzmann, E. (2025). Evaluating advanced Ai reasoning models: Chatgpt-4.0 and DeepSeek-R1 diagnostic performance in otolaryngology: a comparative analysis. *Am. J. Otolaryngol.* 46:104667. doi: 10.1016/j.amjoto.2025.104667

Qiu, P., Zhou, S., and Ferrara, E. 2025. Information suppression in large language models: auditing, quantifying, and characterizing censorship in DeepSeek

Rasool, A., Shahzad, M. I., Aslam, H., Chan, V., and Arshad, M. A. (2025). Emotion-aware embedding fusion in large language models (flan-T5, llama 2, DeepSeek-R1, and Chatgpt 4) for intelligent response generation. *AI* 6:56. doi: 10.3390/ai6030056

Rhomrasi, L., Ahsini, Y., Igualde-Sáez, A., Vinuesa, R., Hoyas, S., García-Sabater, J. P., et al. (2025). Llm performance on mathematical reasoning in Catalan language. *Results Eng.* 25:104366. doi: 10.1016/j.rineng.2025.104366

Roumeliotis, K. I., Tselikas, N. D., and Nasiopoulos, D. K. (2025). Think before you classify: the rise of reasoning large language models for consumer complaint detection and classification. *Electronics* 14:1070. doi: 10.3390/electronics14061070

Saleh, M. I. (2025). Generative artificial intelligence in hospitality and tourism: future capabilities, Ai prompts and real-world applications. *J. Hosp. Mark. Manag.* 34, 467–498. doi: 10.1080/19368623.2025.2458603

Sandmann, S., Hegelmann, S., Fujarski, M., Bickmann, L., Wild, B., Eils, R., et al. (2025). Benchmark evaluation of DeepSeek large language models in clinical decision-making. *Nat. Med.* 31, 2546–2549. doi: 10.1038/s41591-025-03727-2

Santosa, A., Prasanna, G. A., Rizky, M., and Prabowo, A. S. *Optimizing social media sentiment analysis: Roberta framework for evaluating public perception of DeepSeek*. 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), 2025. Ieee, 340–345.

Sapkota, R., Raza, S., and Karkee, M. 2025. Comprehensive analysis of transparency and accessibility of chatgpt, deepseek, and other sota large language models.

Seth, I., Marcaccini, G., Lim, K., Castrechini, M., Cuomo, R., Ng, S. K. H., et al. (2025). Management of Dupuytren's disease: a multi-centric comparative analysis between experienced hand surgeons versus artificial intelligence. *Diagnostics* 15:587. doi: 10.3390/diagnostics15050587

Shah, F. A., Sabir, A., Sharma, R., and Pfahl, D. *How effectively do llms extract feature-sentiment pairs from app reviews?* International Working Conference on Requirements Engineering: Foundation for Software Quality, 2025. Springer, 123–138.

Shao, L., Yu, H., Huang, W., Zhao, H., Zhang, L., and Song, J. (2025). DeepSeek-based multi-dimensional augmentation of short and highly domain-specific textual inquires for aquaculture question-answering framework. *Aquac. Int.* 33:279. doi: 10.1007/s10499-025-01948-3

Si, S., Jiang, X., Su, Q., and Carin, L. (2025). Detecting implicit biases of large language models with Bayesian hypothesis testing. *Sci. Rep.* 15:12415. doi: 10.1038/s41598-025-95825-x

Singla, S., Ahluwalia, P., and Choudhary, A. *Sentiment analysis using machine learning*. 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), 2024. Ieee, 575–580.

Spennemann, D. H. R. (2025). The origins and veracity of references 'cited' by generative artificial intelligence applications: implications for the quality of responses. *Publica* 13:12. doi: 10.3390/publications13010012

Sroyprapai, P., Songsriwittaya, A., Kaewrattanapat, N., and Nittayathammakul, V. (2025). The cloud-based remote learning via digital media ecosystem to enhance learning engagement among undergraduate students in engineering education. *Stud. Media Commun.* 13, 96–111.

Tao, Y., and Shen, Q. (2025). Academic discourse on Chatgpt in social sciences: a topic modeling and sentiment analysis of research article abstracts. *PLoS One* 20:e0334331. doi: 10.1371/journal.pone.0334331

Taye, M. M., Abulail, R., Al-Ifan, B., and Alsuhimat, F. (2025). Enhanced sentiment classification through ontology-based sentiment analysis with Bert. *J. Internet Serv. Inf. Secur.* 15, 236–256. doi: 10.58346/JISIS.2025.II.015

Tewari, A. (2025). Deepseek's disruptive intervention Ai beyond big tech's grip. *Econ. Polit. Wkly.* 60, 15–18.

Tordjman, M., Liu, Z., Yuce, M., Fauveau, V., Mei, Y., Hadjadj, J., et al. (2025). Comparative benchmarking of the DeepSeek large language model on medical tasks and clinical reasoning. *Nat. Med.* 31, 2550–2555. doi: 10.1038/s41591-025-03726-3

Tubishat, M., Abugabah, A., and Shuhaiber, A. *Sentiment analysis of Deepseek-Ai assistant app*. 2025 International Conference on Smart Applications, Communications and Networking (SmartNets), 2025. Ieee, 1–6.

Twinomurinzi, H., and Gumbo, S. *Chatgpt in scholarly discourse: sentiments and an inflection point*. Annual Conference of South African Institute of Computer Scientists and Information Technologists, 2023. Springer, 258–272.

Uldin, H., Saran, S., Gandikota, G., Iyengar, K. P., Vaishya, R., Parmar, Y., et al. (2025). A comparison of performance of DeepSeek-R1 model-generated responses to musculoskeletal radiology queries against Chatgpt-4 and Chatgpt-4o – a feasibility study. *Clin. Imaging* 123:110506. doi: 10.1016/j.clinimag.2025.110506

Valmeeckam, K., Stechly, K., Gundawar, A., and Kambhampati, S. (2025). A systematic evaluation of the planning and scheduling abilities of the reasoning model o1. *Trans. Machine Learning Res.*

Vinodini, S. *Analyzing sentiments in Paulo Coelho's literary works using Vader sentiment analysis*. 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 2023. 1–6.

Wan, W. Y., and Watters, C. (2021). Mandatory disclosure in corporate debt restructuring via schemes of arrangement: a comparative approach. *Int. Insolv. Rev.* 30, S111–S131. doi: 10.1002/iir.1425

Watters, C., and Lemanski, M. K. (2023). Universal skepticism of Chatgpt: a review of early literature on chat generative pre-trained transformer. *Front. Big Data* 6:1224976. doi: 10.3389/fdata.2023.1224976

Williams, R., and O'Donnell, J. (2024). We finally have a definition for open-source Ai. *Technol. Rev.*

Xie, C., Gao, H., Huang, Y., Xue, Z., Xu, C., and Dai, K. (2025). Leveraging the DeepSeek large model: a framework for Ai-assisted disaster prevention, mitigation, and emergency response systems. *Earthquake Res. Adv.* 5:100378. doi: 10.1016/j.eqrea.2025.100378

Xiong, L., Wang, H., Chen, X., Sheng, L., Xiong, Y., Liu, J., et al. (2025). DeepSeek: paradigm shifts and technical evolution in large Ai models. *IEEE/CAA J. Automatica Sinica* 12, 841–858. doi: 10.1109/JAS.2025.125495

Yang, X. (2025). Ai competition and firm value: evidence from DeepSeek's disruption. *Financ. Res. Lett.* 80:107447. doi: 10.1016/j.frl.2025.107447

Yang, G., Li, Y., He, Y., Zhou, Z., Ye, L., Fang, H., et al. (2025). Multimodal large language model for wheat breeding: a new exploration of smart breeding. *ISPRS J. Photogramm. Remote Sens.* 225, 492–513. doi: 10.1016/j.isprsjprs.2025.03.027

Yilmaz, B. E., Gokkurt Yilmaz, B. N., and Ozbey, F. (2025). Artificial intelligence performance in answering multiple-choice oral pathology questions: a comparative analysis. *BMC Oral Health* 25:573. doi: 10.1186/s12903-025-05926-2

Youvan, D. C. (2024). Understanding sentiment analysis with Vader: a comprehensive overview and application. *Ai and Data Science J.*

Zeng, D., Qin, Y., Sheng, B., and Wong, T. Y. (2025). Deepseek's "low-cost" adoption across China's hospital systems: too fast, too soon? *JAMA* 333, 1866–1869. doi: 10.1001/jama.2025.6571

Zhang, Z. X., Wen, Y. B., Lyu, H. Q., Liu, C., Zhang, R., Li, X. Q., et al. (2025). AI computing systems for large language models training. *J. Comput. Sci. Technol.* 40, 6–41. doi: 10.1007/s11390-024-4178-1

Zhou, J., Cheng, Y., He, S., Chen, Y., and Chen, H. (2025). Large language models for transforming healthcare: a perspective on DeepSeek-R1. *MedComm (Future Med.)* 4:e70021. doi: 10.1002/mef2.70021

Zhou, M., Pan, Y., Zhang, Y., Song, X., and Zhou, Y. (2025). Evaluating Ai-generated patient education materials for spinal surgeries: comparative analysis of readability and discern quality across Chatgpt and deepseek models. *Int. J. Med. Inform.* 198:105871. doi: 10.1016/j.ijmedinf.2025.105871

Zhou, H., Wang, Z., Wang, R., Jiang, L., Zhu, C., Guo, H., et al. (2025). DeepSeek versus Gpt: evaluation of large language model Chatbots' responses on orofacial clefts. *J. Craniofacial Surg.* 36, 2197–2201. doi: 10.1097/SCS.00000000000011399

Zhuo, X., Irresberger, F., and Bostandzic, D. (2024). How are texts analyzed in blockchain research? A systematic literature review. *Financ. Innov.* 10:60. doi: 10.1186/s40854-023-00501-6

Zyda, M. (2025). Much ado about DeepSeek *Computer* 58, 78–81. doi: 10.1109/MC.2025.3541112