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Tracing strategic divergence: 
archetypal and counterfactual 
analysis of StarCraft II gameplay 
trajectories
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Introduction: To address the challenges of data heterogeneity, strategic 
diversity, and process opacity in interpreting multi-agent decision-making 
within complex competitive environments, we have developed TRACE, an end-
to-end analytical framework for StarCraft II gameplay.
Methods: This framework standardizes raw replay data into aligned state 
trajectories, extracts “typical strategic progressions” using a Conditional 
Recurrent Variational Autoencoder (C-RVAE), and quantifies the deviation of 
individual games from these archetypes via counterfactual alignment. Its core 
innovation is the introduction of a dimensionless deviation metric, |Δ|, which 
achieves process-level interpretability. This metric reveals “which elements are 
important” by ranking time-averaged feature contributions across aggregated 
categories (Economy, Military, Technology) and shows “when deviations occur” 
through temporal heatmaps, forging a verifiable evidence chain..
Results: Quantitative evaluation on professional tournament datasets 
demonstrates the framework’s robustness, revealing that strategic deviations 
often crystallize in the early game (averaging 8.4% of match duration) and 
are frequently driven by critical technology timing gaps. The counterfactual 
generation module effectively restores strategic alignment, achieving an average 
similarity improvement of over 90% by correcting identified divergences. 
Furthermore, expert human evaluation confirms the practical utility of the 
system, awarding high scores for Factual Fidelity (4.6/5.0) and Causal Coherence 
(4.3/5.0) to the automatically generated narratives.
Discussion: By providing openaccess code and reproducible datasets, TRACE lowers 
the barrier to large-scale replay analysis, offering an operational quantitative basis for 
macro-strategy understanding, coaching reviews, and AI model evaluation.
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1 Introduction

Complex multi-agent environments have emerged as critical testbeds for advancing 
artificial intelligence research, offering unique challenges in decision-making, strategic 
planning, and competitive dynamics. Among these environments, real-time strategy (RTS) 
games, particularly StarCraft II, have established themselves as canonical benchmarks due to 
their vast state-action spaces, imperfect information constraints, real-time decision 
requirements, and the necessity for both micro-level tactical control and macro-level strategic 
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planning (Vinyals et al., 2019). The game’s complexity, which surpasses 
traditional board games by several orders of magnitude, provides an 
ideal platform for studying emergent behaviors, strategic diversity, and 
the intricate interplay between short-term tactics and long-term 
strategy (Ontañón et al., 2013).

The development of superhuman AI agents has marked significant 
milestones in this domain. DeepMind’s AlphaStar achieved Grandmaster 
level performance, ranking above 99.8% of active players on Battle.net 
across all three races, demonstrating the potential of deep reinforcement 
learning combined with self-play and imitation learning (Vinyals et al., 
2019). Similarly, systems like SCC have shown that efficient architectures 
can achieve competitive performance with significantly reduced 
computational resources (Wang et al., 2020). However, despite these 
remarkable achievements in performance metrics, a fundamental 
challenge persists: the “black-box” nature of these sophisticated neural 
network architectures obscures the underlying strategic principles and 
decision-making processes that drive their success (Barredo Arrieta et al., 
2020). This opacity creates a critical gap between achieving superhuman 
performance and generating interpretable insights that could benefit 
player training, strategic understanding, and the broader development of 
explainable AI systems.

To address these multifaceted challenges, this paper introduces 
TRACE (Trajectory Analysis and Counterfactual Explanation), a 
comprehensive analytical framework designed to bridge the gap between 
raw gameplay data and interpretable strategic insights. Our framework 
advances the state-of-the-art in several key dimensions. First, it establishes 
a unified data processing pipeline that transforms heterogeneous replay 
data into standardized, temporally aligned trajectory representations, 
enabling systematic cross-game and cross-tournament comparisons. 
Second, it leverages archetypal path analysis to automatically discover and 
characterize typical strategic progressions without requiring predefined 
strategy labels or extensive domain knowledge. Third, and most 
innovatively, it introduces a counterfactual alignment paradigm that 
quantifies strategic deviation through a novel dimensionless metric |Δ|, 
providing process-level interpretability by revealing both which game 
elements (economy, army composition, technology choices) are most 
critical and when significant deviations occur during gameplay.

The introduction of the deviation metric |Δ| represents a 
fundamental contribution to interpretable game analysis. Unlike 
existing approaches that focus on aggregate statistics or endpoint 
predictions, this metric provides a continuous, feature-wise measure 
of strategic divergence that can be visualized, analyzed, and directly 
linked to game outcomes. By standardizing deviations across different 
features and time scales, |Δ| enables meaningful comparisons between 
games with varying durations, unit compositions, and strategic 
approaches. The metric’s dual-view visualization—combining time-
averaged feature importance with temporal heatmaps—creates a 
verifiable evidence chain that connects high-level strategic archetypes 
to individual trajectory deviations and ultimately to game outcomes.

Our framework’s design emphasizes reproducibility, extensibility, and 
practical applicability. Beyond theoretical contributions, we provide a 
complete implementation including automated data processing scripts, 
visualization tools, and report generation capabilities that significantly 
lower the barrier to large-scale replay analysis. The framework has been 
validated on diverse datasets spanning multiple tournaments, 
demonstrating its ability to robustly recover recognizable strategic 
patterns, identify critical decision points, and provide actionable insights 
for players, coaches, and AI developers. By establishing a common 
interface between expertise and machine analysis, TRACE opens new 

avenues for collaborative intelligence in complex strategic domains, 
supporting applications ranging from player training and coaching to AI 
system evaluation and improvement.

2 Related works

The field of explainable artificial intelligence (XAI) has emerged 
as a crucial paradigm for addressing this interpretability challenge. 
Recent advances in XAI have introduced various approaches, from 
feature attribution methods to counterfactual explanations, each 
offering different perspectives on model behavior (Guidotti et al., 
2018; Barzekar and McRoy, 2023). Counterfactual reasoning, in 
particular, has been identified as fundamental to cognitive processes 
and explanation generation, as it naturally addresses “what-if ” 
questions that are central to strategic understanding (Frappier, 2018). 
Counterfactual reasoning has gained significant attention in 
explainable AI research. Verma et al. established theoretical 
connections between game-theoretic feature attributions and 
counterfactual explanations (Albini et al., 2023), while Miller provided 
foundational work on explanation generation through counterfactual 
reasoning (Miller and Jing, 2024). Recent work has explored 
counterfactuals in causal understanding versus explainable AI 
applications (Baron, 2023). Madumal et al. specifically applied 
counterfactual reasoning to reinforcement learning contexts 
(Madumal et al., 2020), providing a foundation for our approach but 
not addressing the specific challenges of continuous, multi-
dimensional strategic trajectories. In the context of reinforcement 
learning and game-playing agents, counterfactual explanations can 
illuminate why certain actions were taken by revealing what alternative 
scenarios would have led to different outcomes (Madumal et al., 2020). 
However, applying these principles to the continuous, high-
dimensional, and temporally extended nature of StarCraft II gameplay 
presents unique challenges that existing XAI methods have not 
adequately addressed.

Traditional approaches to StarCraft replay analysis have primarily 
focused on discrete, localized predictions and classifications. Early work 
in data mining for strategy prediction demonstrated the feasibility of 
extracting meaningful patterns from replay data, achieving reasonable 
accuracy in classifying player strategies into predefined categories such as 
“rush,” “economic,” or “defensive” (Weber and Mateas, 2009; Synnaeve 
and Bessière, 2021). Subsequent research has explored build order 
prediction, opponent modeling, and outcome forecasting based on early-
game states (Cho et al., 2013). While these contributions have been 
valuable for understanding specific aspects of gameplay, they suffer from 
significant limitations: they provide static snapshots rather than dynamic 
trajectories, fail to capture the continuous evolution of strategic decisions 
throughout a game, and cannot explain the causal relationships between 
strategic deviations and game outcomes. Furthermore, these methods 
typically require extensive domain-specific feature engineering and lack 
the generalizability needed for cross-tournament or cross-
matchup analysis.

The challenge of trajectory analysis in complex sequential 
decision-making environments extends beyond simple classification 
or prediction tasks. Recent work has shown that understanding 
strategic behavior requires not only identifying what strategies are 
employed but also when and why players deviate from typical patterns 
(Robertson and Watson, 2014). The concept of strategic archetypes—
prototypical trajectories that represent common strategic 
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progressions—has emerged from research in unsupervised learning 
and pattern recognition (Ravanbakhsh et al., 2019; Bauckhage et al., 
2015). Archetypal analysis, originally developed for exploratory data 
analysis, provides a principled approach for discovering extreme 
points in data that can serve as interpretable bases for understanding 
variation (Cutler and Breiman, 1994; Sifa et al., 2021). When 
combined with counterfactual reasoning, this approach offers the 
potential to quantify and explain strategic divergence in a way that is 
both mathematically rigorous and interpretable.

3 Methodology

3.1 Data extraction and trajectory 
representation

Data for this study were sourced from the public StarCraft II 
Esport Game-state Dataset (SC2EGSet), with its original publication 
and technical documentation available (Białecki et al., 2023). The 
dataset covers multiple professional tournaments and years, providing 
standardized game state event streams parsed from official Blizzard 
replays, archived and released at the tournament level. From the 
original compressed files, we extracted a directory tree named by 
tournament, with each directory containing exports of replays and 
corresponding metadata. Each game’s file includes basic participant 
information and a time-ordered sequence of “tracker events,” such as 
PlayerStats, UnitBorn, UnitDied, UnitTypeChange, UpgradeComplete, 
and UnitPositions. Time is measured in “loops,” the internal SC2 
engine clock, where approximately 22.4 loops correspond to 1 s. 
Metadata fields like toonPlayerDescMap provide player race 
(chosenRace), game outcome (result), and unique identifiers. 
UnitPositions are recorded in an incremental format, requiring 
coordinate restoration to the world scale and maintenance of a “last 
known position” cache to handle sparse updates.

To convert this event stream into a time-series representation 
suitable for modeling, we developed the TRACE trajectory extraction 
pipeline. First, we uniformly downsample the entire game at a fixed 
physical time step Δ (in seconds) to define sampling points. The loop 
number for each sampling point is calculated as Equation 1:

	 · ·22.4, 0,1, ,kt k k K= ∆ = … 	 (1)

where kt  is the loop index of the k-th sample. At each sampling 
point, we aggregate player-side game states into a cross-sectional 
feature vector of approximately 55 dimensions, covering economic, 
technological, military, and spatial aspects. The economic 
dimension includes current mineral and vespene gas stockpiles, 
worker counts, collection rates, and the number of operational 
bases. The technological dimension includes the presence and count 
of key tech structures (e.g., Barracks, Factory, Starport for Terran) 
and vectors for upgrade levels (e.g., ground, vehicle, and air attack 
upgrades). In-progress research and construction are included as 
counts. The military dimension covers the total supply distribution 
between army and workers and the counts of core combat units 
(e.g., Marines, Siege Tanks, Stalkers). The spatial dimension is 
derived by performing weighted aggregation of unit positions, 
using density clustering to robustly estimate the centroid of the 

main army cluster when possible. To maintain state continuity, we 
track unit lifecycles at the event level: UnitBorn and 
UnitTypeChange events update unit types and army value 
estimations, while UnitDied events remove units and deduct 
their value.

To visualize how raw gameplay data is translated into the model’s 
input space, Figure 1 depicts our dual-abstraction mechanism. The 
spatial abstraction (Panel A) condenses the precise coordinates of 
distributed units into high-level spatial features, such as the army’s 
center of mass, enabling the framework to track strategic movement 
trends rather than individual unit micro-management. Simultaneously, 
the semantic abstraction (Panel B) maps the diverse array of game 
entities—ranging from economy units to combat forces—into a 
unified, fixed-dimensional state vector. This transformation is critical 
for converting the visually complex and heterogeneous StarCraft II 
environment into standardized trajectories comparable across 
different matches and players (see Figure 2; Table 1).

The data cleaning process addresses three primary issues. First, 
excessively short games or samples with significant data gaps are 
excluded. Second, anomalous position updates are filtered and 
imputed to ensure spatial aggregation stability. Third, if statistical 
events are sparse within a sampling window, we use the most recent 
PlayerStats snapshot, supplemented by unit dictionaries and 
production buffers, to complete the state vector. This entire process 
yields a time series of length T and F dimensions for each player, saved 
as a NumPy array, where T depends on the game duration and Δ, and 
F is approximately 55. These trajectory files, along with tabular views 
for verification, are organized in a directory structure that mirrors the 
original SC2EGSet, ready for consumption by subsequent 
analysis stages.

For model training and evaluation, we recommend stratified 
sampling by tournament and game metadata to balance the effects 
of different game versions, players, and matchups. When 
constructing conditional variables—defined as the auxiliary 
metadata vector c fed into the Conditional VAE to differentiate 
between distinct strategic contexts—we explicitly include the 
player’s race (Protoss, Terran, Zerg) and the matchup type. This 
conditioning ensures that the learned archetypes capture the specific 
meta-game dynamics relevant to each racial matchup rather than 
conflating disparate playstyles. During evaluation, we use the time-
aligned series as the fundamental unit for analysis. Since SC2EGSet 
spans multiple game versions, our feature engineering, which 
explicitly models structural quantities like upgrade levels and tech 
buildings, helps mitigate statistical drift. Nevertheless, we 
recommend performing bias removal and re-weighting when 
generalizing across years or tournaments. Regarding privacy and 
ethics, SC2EGSet is derived from public esports replays and contains 
anonymized game states, involving no sensitive personal 
information. We adhere to its licensing and citation policies. In 
summary, SC2EGSet provides a comprehensive, structured, and 
reproducible record of micro-level game processes. Combined with 
our event-stream-to-time-series extraction and cleaning pipeline, it 
forms a standardized trajectory data layer that provides a solid 
foundation for our subsequent modeling, analysis, and 
narrative generation.

Due to the complexity of the multi-stage pipeline, we focus here 
on the core mathematical formulation and logic. For a comprehensive 
description of the specific model architectures, hyperparameter 
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settings (including VAE dimensions and detection thresholds), and 
data preprocessing protocols, readers are referred to Appendix A: 
implementation details.

3.2 Archetypal path learning

Our methodology is centered on an end-to-end trajectory–
archetype–counterfactual–narrative chain, designed to prioritize 
interpretability and actionability while maintaining expressive power. 
The overall process begins by extracting structured, multidimensional 
time-series states from replay data. After alignment and 
standardization, these trajectories are modeled using a small number 
of interpretable archetypal paths to capture the temporal dynamics of 
gameplay styles. Building on this representation, we employ a 
“minimal modification” counterfactual construction with a series of 
feasibility constraints to pinpoint critical divergence points and the 
dominant dimensions that alter the game’s course. Finally, this 
structured evidence is organized into readable narratives, enabling 
direct use of the technical analysis by coaches, players, 
and commentators.

We represent each match as a sequence of time-series vectors 
of length T, where each time step is a D-dimensional state. To 
ensure comparability across matches, all trajectories are resampled 
at a uniform time step Δt and their time axes are aligned. The 
variables cover mid-level factors such as resources, supply, 
economic nodes, technology/building progress, and the 
composition and losses of key units. Continuous variables undergo 
robust scaling and light smoothing to suppress spurious fluctuations 
from incidental noise. To avoid bias from missing data, we use 
interpolation or forward-filling for short windows and explicitly 
flag unrecoverable segments, ensuring consistent handling in 

subsequent learning and evaluation. Formally, the time-series is 
represented as Equation 2:

	 = …1: 1 2, , ,T Tx x x x 	 (2)

where ∈ D
tx  . Optionally, we may introduce phase segmentation 

based on semantic milestones or statistical change-points (e.g., 
opening/mid/late game) and use fixed or multi-scale sliding windows 
to aggregate local context (e.g., resource differentials, loss ratios, unit 
composition entropy) to characterize short-term trends and 
structural shifts.

To obtain interpretable and composable representations of tactical 
styles, we learn K archetypal paths × ×∈ K T DA   and approximate the 
instantaneous state of any game using a time-varying convex 
combination. This representation allows a game to dynamically 
approach different archetypes throughout its progression, thus 
positioning an individual trajectory within a two-dimensional 
“tactical style–temporal evolution” space. The core approximation is 
Equation 3:

	 α
=

≈∑ , ,1 ·K
t k t k tkx A 	 (3)

Subject to non-negativity (α ≥, 0k t ) and convexity constraints 
( α

=
=∑ ,1 1K

k tk ). To enhance interpretability and stability, we apply 
sparsity regularization to α, ensuring that only a few archetypes are 
significantly active at any given moment. We also add temporal 
smoothing or a total variation (TV) penalty to suppress meaningless, 
frequent switching while preserving legitimate transitions at true tactical 
turning points. The optimization is performed via alternating 
minimization between the archetypes A and the coefficients α, initialized 

FIGURE 1

Conceptual illustration of the state abstraction process. (A) Spatial abstraction: raw unit coordinates (blue dots) scattered across the map are 
aggregated into a macro-level centroid feature (red cross), capturing the army’s strategic positioning while filtering out micro-adjustment noise. 
(B) Semantic abstraction: heterogeneous game entities (e.g., specific unit types like Stalkers and Immortals) are quantified and mapped to fixed 
dimensions in the standardized state vector xt. This pipeline transforms the complex visual game state into a structured time-series format suitable for 
archetypal analysis.
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using representative games or cluster centers from Dynamic Time 
Warping (DTW) /clustering. The choice of K is determined by a trade-off 
between expressiveness and interpretability, guided by the elbow 
method, information criteria, and explained variance on a validation set.

3.3 Counterfactual trajectory

Given a prefix of a real game trajectory ( τ…1 ), we construct a 
“minimally modified” counterfactual trajectory τ +1:ˆ Tx  that aims to 
satisfy a target objective, such as moving closer to a specific archetype or 
crossing a strategic threshold. This is done while minimizing the 
modification cost and adhering to domain-specific feasibility constraints. 
The objective function consists of a weighted reconstruction error, a 
temporal smoothing term, and an archetype proximity term:

	

( ) ( )
( )

2
21

1 11

ˆ ˆ

ˆ |

||

|| ·ˆ ;ˆ|

T
t tt

T
TV t t Arch Archt

L x W x x

x x D x A
τ

τ
λ λ

= +

−= +

= −

+ − +

∑
∑

||

	 (4)

Here, ×∈ D DW   is defined as a diagonal weighting matrix where 
each diagonal element corresponds to the inverse variance of the 
respective feature across the training dataset ( σ −= 2

ii iW ), and ArchD  
measures the proximity of the counterfactual to the target set of 
archetypes. This term serves to normalize the modification cost, 
ensuring that deviations in high-variance features (e.g., Mineral 
Income, which fluctuates by thousands) do not numerically dominate 
those in low-variance but strategically critical features (e.g., Upgrade 
Level, which changes discretely by 1). The equation defines the soft 
objective function representing the trade-off between modification 
cost and strategic alignment. The domain-specific feasibility 
constraints—such as non-negativity ( ≥x̂ 0t ), resource limits, and 
tech-tree prerequisites (e.g., a unit cannot exist without its 
corresponding production facility)—are incorporated as the feasible 
set Ù  over which Equation 4 is minimized. Formally, the problem is 
posed as a constrained optimization: ( )x̂min x̂L∈Ω . In our 
implementation, these hard constraints are enforced effectively via a 
projection operator Ω  at each step of the optimization algorithm 
(Projected Gradient Descent), ensuring that the generated 
counterfactual trajectory always resides within the valid logical 

FIGURE 2

TRACE structure.
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boundaries of the game engine. When non-convex priors are 
introduced, we employ heuristic projection with alternating iterations 
to obtain stable and feasible approximate solutions. The algorithm 
outputs the counterfactual trajectory x̂ , the per-timestep modification 
vector ˆt t tx x∆ = − , and metrics of constraint satisfaction.

It is worth noting that we optimize the entire future trajectory 
τ +1:x̂ T simultaneously, rather than applying a single-step perturbation. 

This global formulation is essential for two reasons. First, strategic 
shifts in RTS games possess temporal inertia; a momentary change at 
step τ  often fails to alter the long-term outcome if the subsequent 
actions revert to the original suboptimal policy. By optimizing the full 

horizon, we ensure that the counterfactual represents a sustained 
‘change of plan’ rather than a momentary noise. Second, the global 
objective allows us to enforce trajectory-level constraints, specifically 
the temporal smoothing (λTV), ensuring that the generated scenario 
remains physically plausible and free from unnatural high-
frequency oscillations.

3.4 Deviation quantification

For feature-level interpretability, we introduce a dimensionless 
deviation metric, denoted as |Δ|, to quantify the point-to-point 
difference between an actual trajectory and an archetypal trajectory 
for a given feature f at a given time step t. Specifically, we first 
standardize both sequences for each feature using the z-score 
transformation with the mean µ f  and standard deviation σ f  of the 
actual trajectory. After temporal truncation and alignment to a 
common length, the difference is calculated as Equation 5:

	 ( ) ( ), , ,/ /t f t f f f t f f fx pµ σ µ σ∆ = − − −
	 (5)

In this equation, ,t fx  denotes the raw value of feature f  at time t  
in the actual gameplay trajectory, and ,t fp  represents the 
corresponding value in the reference archetypal path (derived from 
the learned basis A). The terms µ f  and σ f  correspond to the global 
mean and standard deviation of feature f  computed across the 
training dataset. The absolute value, , |t f| ∆ , serves as the magnitude 
of deviation for that feature at that time step relative to the archetype. 
As a dimensionless quantity, |Δ| eliminates scale and unit differences, 
facilitating cross-feature comparisons. We use the time-averaged 
value, , |meant t f∆| , to rank the contribution of each feature and a 
heatmap of the time-resolved , |t f| ∆  to visualize the temporal 
structure of the deviation. It is important to note that the vertical bars 
denote the absolute value, and Δ represents the difference, which is 
distinct from the time step interval Δt. A larger |Δ| value signifies a 
greater deviation from the archetype, while a smaller value indicates 
closer adherence.

To identify decisive turning points, we define a per-timestep 
deviation ( ) 2ˆ|| ||t t tW x xδ = −  using a weighted difference and 
accumulate it to form a stable divergence evidence curve 
( ) τ

δ
= +

=∑ 1
t

iiS t . After light smoothing, we determine the first 
significant divergence time t by combining threshold-crossing, 
maximum slope, and robust change-point detection, requiring the 
difference to persist for a short window to avoid pseudo-divergences 
from random perturbations. Concurrently, we decompose the 
weighted contribution of each feature to δt  and aggregate it within a 
window  − + ,t h t h   to identify the key dimensions causing the 
divergence (e.g., economic lag, technological delay, or unit 
composition mismatch). By analyzing the change in α ,k t  around t, 
we can attribute a strategic meaning to the style shift, such as a 
transition “from archetype P1 to P2,” facilitating expert review 
and analysis.

Based on the structured evidence ( α, , ,ˆx x t , and dimensional 
contributions), we translate the analytical results into paragraph-level 
narratives. These narratives follow a “who/when/what/why “structure, 
first providing semantic context and archetype proximity, then 
explaining the key divergence points and observable factors causing 

TABLE 1  Overview of the player state feature vector.

Category Feature sub-
group

Description

Economic Resource state Current stockpiles and 

collection rates of minerals 

and vespene gas.

Worker count Total number of active 

worker units.

Economic structures Count of active resource-

gathering headquarters 

(e.g., Command Center, 

Nexus).

Technological Key tech structures Presence and count of 

critical technology-

unlocking buildings (e.g., 

Barracks, Stargate).

Upgrade levels Vector representing the 

current level of major 

combat upgrades (e.g., 

attack, armor, shields).

In-progress state Count of technologies 

currently being researched 

and structures under 

construction.

Military Army supply Total supply dedicated to 

military units, distinct from 

the worker supply.

Unit composition Counts of core combat 

units, grouped by strategic 

role (e.g., ground infantry, 

armored vehicles, air).

Production capacity Count of active unit-

producing structures.

Spatial Army centroid 

coordinates

Estimated X and Y 

coordinates of the main 

army’s center of mass on 

the map.

Spatial dispersion Metric representing the 

spatial spread or clustering 

of military units.

The feature groups listed represent a high-level aggregation. The actual implementation 
includes more specific features, such as specific unit types and upgrade paths, to reach the 
full dimensionality.

https://doi.org/10.3389/frai.2025.1724493
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zhang and Yang� 10.3389/frai.2025.1724493

Frontiers in Artificial Intelligence 07 frontiersin.org

them, and finally connecting to potential outcome changes and 
actionable suggestions. The narrative generation process strictly 
adheres to the factual evidence, avoiding the introduction of 
unobserved information, and uses a unified terminology library to 
ensure consistency in nouns, units, and temporal expressions. We 
provide multi-level narratives, from high-level summaries to technical 
details, to cater to different audiences (coaches, players, commentators, 
viewers) and balance readability with information density.

In our implementation, the four stages are executed by 
independent scripts linked via a defined data contract. Key 
hyperparameters (e.g., K, Δt, λTV , divergence thresholds) can be 
specified via the command line. The outputs, including archetypes, 
time-varying coefficients, counterfactual trajectories, divergence 
statistics, and readable reports, are saved to a results/ directory. We 
provide interfaces for ablation studies (e.g., replacing archetypal 
analysis with K-means/DTW or removing temporal smoothing and 
feasibility constraints) to quantify the contribution of each component 
to interpretability and narrative quality. Default settings are calibrated 
via grid search and manual inspection: K is determined using the 
elbow method and validation set explained variance (typically in the 
range of 4–8), smoothing and sparsity coefficients are fine-tuned, and 
divergence thresholds are set based on historical quantiles and expert 
priors with cross-tournament adjustments. We emphasize safety and 
ethical boundaries: counterfactuals are intended as actionable 
suggestions at the strategic level and are not used for inappropriate 
attribution of individual capabilities. The analysis uses publicly 
available tournament data and adheres to data sharing and 
attribution standards.

3.5 Narrative generation

To bridge the gap between abstract vector-space deviations and 
actionable human insights, the TRACE framework integrates a 
deterministic Natural Language Generation (NLG) module. Unlike 
end-to-end neural captioning models that may suffer from 
hallucination, our approach employs a hierarchical template-based 
mechanism to ensure factual fidelity and terminological consistency. 
The generation process operates through a three-stage pipeline: 
Semantic Abstraction, Content Selection, and Template Population.

First, the raw feature indices are mapped to domain-specific 
semantic labels (e.g., Feature 38 is mapped to “Stalker Count”). To 
capture macro-strategic intent, the system aggregates the 
dimensionless deviation metric Ä∣∣ across five high-level categories: 

{ }C Economy,Military,Technology,Production,Spatial∈ . The 
category with the highest cumulative contribution during the 
divergence window ∗ ∗ + t ,t h  is identified as the Dominant 
Divergence Factor, which determines the thematic focus of 
the narrative.

To prevent information overload, a saliency filter ranks all features 
by their time-averaged deviation contribution. The system selects the 
top-k  features (typically =k 3) that exceed a significance threshold to 
serve as the factual evidence. The narrative is constructed using a 
dynamic template structure composed of three logical slots: 

context evidence implicationT S ,S ,S =   . The population logic is defined 
as follows: Context Slot ( contextS ) describes the timing of the 
divergence based on the normalized time totalt / T∗τ = . For instance, 

if 0.3τ < , the slot is filled with “Early-game divergence detected at 
[Time]…”. Evidence Slot ( evidenceS ) p opulated by the selected top-k  
features. The system generates a list description, such as “Significant 
lags were observed in [Feature 1] ( ...∆ = ) and [Feature 2]….” 
Implication Slot ( implicationS ) utilizes a rule-based mapping 
conditioned on the Dominant Divergence Factor. For example, if the 
Technology category dominates, the system retrieves a corresponding 
heuristic explanation: “This pattern suggests a failure to commit to the 
standard tech-switch timing, delaying the transition to mid-tier units.”

By strictly linking each text segment to quantitative metrics, this 
module generates reports that are both readable for coaches and 
mathematically traceable to the underlying data.

4 Experimental design

We constructed a stratified, reproducible, and causally-compatible 
experimental design around the four-stage TRACE workflow to 
validate the representation power of archetypal path learning, the 
feasibility and consistency of counterfactual inference, and the 
interpretability and practical value of the readable narratives. Data was 
sourced and preprocessed as previously described: the event streams 
from SC2EGSet were down sampled at a fixed time step to extract 
~55-dimensional time-series state vectors covering economic, 
technological, military, and spatial dimensions. To mitigate 
confounding effects from game patches and tournament heterogeneity, 
our experiments prioritized a stratified partitioning strategy based on 
tournament and year. Key comparisons incorporated leave-one-
tournament-out and cross-year extrapolation evaluations to test 
model robustness under realistic distributional shifts. The train/
validation/test split was performed at the game level, ensuring that 
sequences from the two players in the same game did not leak across 
sets. Model selection and hyperparameter tuning were based on the 
validation set, and all reported experiments used fixed random seeds 
and evaluation scripts to support full reproducibility.

To evaluate the suitability and interpretability of archetypal path 
learning, we assessed reconstruction accuracy (defined as the fidelity 
with which the learned archetypal basis can recover the original 
gameplay trajectories via convex combination), temporal alignment 
distance, and the trade-off between coverage and diversity. 
Reconstruction accuracy was measured by mean squared error 
weighted by feature standard deviation. To measure fidelity to 
temporal patterns, we calculated the DTW distance between 
archetypal paths and real trajectories on the test set. The DTW metric 
is defined as Equation 6:

	
( ) ( ) ( )π π∈Π ∈

= ∑ ,DTW , · ,ij i ji jX Y min w d x y
	

(6)

Where Π  is the set of all monotonic alignment paths, ijw  are 
alignment weights, and d  is the Euclidean distance normalized by 
feature standard deviation. To prevent a single archetype from 
subsuming multiple styles, we characterized representation quality 
using two metrics: coverage (the proportion of test sequences within 
an ò-neighborhood of at least one archetype) and diversity (the 
pairwise distance distribution among archetypes). We compared our 
approach against strong baselines, including DTW Barycenter 
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Averaging (DBA), the most likely state paths from Hidden Markov 
Models (HMMs), and smoothed cluster centers from K-Means 
applied to concatenated time steps. We also included conditional and 
standard sequence autoencoders to analyze the contribution of 
conditioning variables. Statistical significance was assessed using 
paired Wilcoxon signed-rank tests with Holm–Bonferroni correction 
for multiple comparisons, and 95% confidence intervals were 
estimated using the BCa bootstrap method.

The experimental design for counterfactual inference focused on 
three aspects: minimal modification, target-orientedness, and feasibility. 
We framed counterfactual optimization as a dual-objective problem: 
minimizing the perturbation norm while maximizing progress towards a 
target archetype or outcome, subject to a set of constraints. The core 
evaluation function was formulated as Equation 7:

	 ( )win· · ·Violations ·Roughnesscf TS P Dα β γ δ= ∆ + − − −
	 (7)

where winP∆  denotes the probability increase derived from a 
calibrated win-prediction model, TD  represents the Dynamic Time 
Warping (DTW) distance to the target archetype, and the remaining 
terms penalize constraint violations and trajectory roughness, 
respectively. We evaluated the plausibility of divergence points using 
two proxy methods: first, by observing whether minimal feasible 
adjustments to decisive features (e.g., worker-to-army ratio, key tech 
timings) around the divergence point led to effective progress; and 
second, by aligning the counterfactual and target archetypes and 
measuring the match rate of key events. Comparison methods 
included sample-based counterfactuals using weighted nearest 
neighbors, generative counterfactuals with latent-space editing, and 
heuristic manual strategies (e.g., prioritizing worker production).

To validate the utility of TRACE on downstream tasks, we 
designed two proxy experiments: first, win prediction using archetype 
alignment distances and trajectory embeddings as features at various 
early-game windows (2, 5, and 8 min); and second, detecting army 
assembly and engagement timings using archetypal paths as priors. 
These tasks employed simple, interpretable models (e.g., regularized 
logistic regression) to avoid confounding the evaluation of the 
representation itself.

Narrative generation was evaluated using a two-stage, hybrid 
automatic-and-human procedure. Automatic evaluation focused on 
alignable consistency, parsing generated text into event triples and 
comparing them against the structured counterfactual explanation to 
calculate factual coverage, temporal consistency, and hallucination 
rates. To assess the practical utility and interpretability of the generated 
narratives, we conducted a human subject study involving 12 expert 
participants (ranking Diamond or higher on the official Battle.net 
ladder). The study followed a within-subject design where each 
participant reviewed 10 randomly selected game instances. For each 
instance, articipants were presented with the raw replay clip and the 
corresponding TRACE-generated narrative report. They were then 
asked to rate the report on a 5-point Likert scale (1 = Strongly 
Disagree, 5 = Strongly Agree) across three dimensions: 1. Factual 
Fidelity: Does the narrative accurately reflect the objective game state 
changes (e.g., “Tech deviation occurred at 4:30”)? 2. Causal Coherence: 
Does the explanation logically connect the feature deviation (e.g., 
“delayed factory”) to the game context (e.g., “lack of map pressure”)? 
3. Actionability: Does the counterfactual suggestion provide clear, 

executable advice for player improvement? To ensure rigor, we 
calculated the Inter-Rater Reliability (IRR) using Fleiss’ kappa to 
measure agreement among experts.

5 Results

In our counterfactual analysis, aligning actual gameplay with the 
archetypal path as a reference reveals the temporal and structural 
location of divergences from “standard play.” To quantify when a 
deviation occurs independently of the match duration, we introduce 
a normalized metric, the Divergence Time Percentage, defined as the 
ratio of the detected divergence timestamp to the total game length. 
As shown in Figure 3, the distribution of these points reveals a 
bimodal pattern: early deviations are often associated with 
inconsistencies in the opening build order (significant timing 
differences in resource and building sequences), whereas later 
divergences are more frequently driven by discrepancies in unit 
positioning and engagement timing. A comparative plot illustrates a 
typical case (Figure 4): before the divergence point, the Worker Count 
and resource income curves closely match the archetype. After this 
point, the archetypal path shows simultaneous technology 
enhancements and a step-wise increase in Army Supply, whereas the 
actual trajectory lags in technological progression. As explicitly 
labeled in the figure panels, the spatial features (e.g., Average Army 
X/Y) exhibit significantly weaker directionality and maneuverability, 
visually confirming the loss of map control described in the analysis.

To validate the robustness of the framework beyond individual 
examples, we performed a quantitative aggregation across the test 
dataset (N = 60 matches). Table 2 summarizes the key performance 
metrics. The average divergence time occurs very early, at 
approximately 8.41% of the game duration. This indicates that in this 
dataset, strategic deviations are primarily rooted in the opening phase 
(Build Order execution) rather than mid-game tactical errors.

The counterfactual generation module demonstrated high 
effectiveness in restoring strategic alignment. By rigorously correcting 
the deviation from ∗t , the framework achieved an average Similarity 
Improvement of 90.89% (drastically reducing the L2 distance from 
2.96 to 0.24). This high improvement metric suggests that once the 
critical early-game divergence is corrected, the subsequent trajectory 
aligns naturally with the archetype. Furthermore, an analysis of the 
‘Dominant Divergence Factors’ reveals a striking pattern: Technology-
related deviations (specifically upgrade timings and tech-structure 
sequences) account for 100% of the identified divergence cases in this 
batch. This strongly suggests that for the analyzed matchups, the 
differentiation between ‘Standard Play’ and ‘Deviant Play’ is almost 
exclusively determined by the timing of the first major 
technological commitment.

The subjective evaluation results are summarized in Table 3. The 
proposed framework achieved high scores in Factual Fidelity (4.6/5.0), 
indicating that the feature-to-text template mechanism successfully 
eliminates hallucination, a common issue in end-to-end neural 
generation models. Causal Coherence received a mean score of 4.3, 
with participants noting that the “Who/When/What/Why” structure 
effectively highlights the logical chain of strategic errors.

Notably, the Actionability score was 4.1, with qualitative feedback 
suggesting that while the system excels at identifying macro-level 
mistakes (e.g., “missed upgrade timing”), it occasionally lacks nuance 
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FIGURE 3

Histogram of divergence point distribution. The x-axis represents the divergence time percentage (τ ), calculated as ( )τ = ×∗ / 100%t Ttotal , where ∗t  is 
the time step of the first significant deviation and Ttotal  is the total duration of that specific game match. This normalization allows for consistent 
comparison of “early” versus “late” deviations across games with varying lengths.

FIGURE 4

Comparison of an actual trajectory (blue) and its corresponding archetypal path (green). The top-left panel tracks the global L2 distance, marking the 
identified divergence point t*. The subsequent panels detail the divergence in specific, semantically labeled dimensions—such as Stalker Count, or 
Army Position—rather than abstract indices. The red dotted line represents divergence point. This visualization directly links the mathematical deviation 
to the concrete game concepts discussed in the case study.
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in micro-management advice. The Fleiss’ kappa score was 0.68, 
indicating substantial agreement among the experts regarding the 
quality of the insights. These results confirm that TRACE translates 
complex vector-space deviations into human-understandable 
strategic advice.

Consistent with these macro-level cues, a feature-level 
contribution analysis indicates that the most influential categories are 
concentrated in “resources, production queues, units, and position,” 
followed by “buildings and upgrades.” This hierarchical structure 
suggests that when a strategy deviates in its resource and production 
scheduling rhythm, the subsequent unit structure and spatial 
deployment inevitably amplify this deviation. Figure 5 presents the 
decomposition of strategic divergence. As shown in the bar chart, 
while specific units like ‘Stalker Count’ or ‘Immortal Count’ appear as 
the top individual deviation factors, the aggregated inset chart reveals 
that the Military category as a whole dominates the divergence 
(accounting for approximately 45% of the total deviation), followed by 
Economy (25%). This confirms that the observed structural break—
while manifested through specific unit discrepancies—is 
fundamentally driven by a mismatch in military composition and 
economic scaling. The accompanying heatmap further illustrates the 
temporal dynamics, showing that deviations in economic features 
(blue labels) often precede the explosion of military deviations (red 
labels), providing a visual verification of the causality chain.

To ensure the usability of our analysis for readers, we automatically 
translate the counterfactual divergences and feature contributions into 
natural language narratives. These narratives can recount, on a case-
by-case basis, “when, where, and due to which mismatched factors the 
strategic path deviated,” connecting the five dimensions of resources, 
production, technology, units, and position with strategic vocabulary. 

For example, a specific match read: “Compared to the archetype, the 
actual strategy significantly deviated in Technology dimensions 
around the 4-min mark. Specifically, the Protoss Ground Weapons 
Level 1 (Δ = 2.15) and Twilight Council Count (Δ = 1.80) lagged 
behind the reference path. This suggests a failure to commit to the 
standard tech-switch timing. Consequently, the player’s transition to 
mid-tier units was delayed, preventing the expected power spike 
observed in the archetypal baseline.” These narratives serve as both a 
high-level summary for interpreting the counterfactual plots and as 
readable material for post-game reviews.

In terms of data products and quantitative review, we converted 
key trajectory slices into easily inspectable tabular formats and 
extended this process to batch processing and summary aggregation 
across the entire dataset. This process, when applied in batch mode, 
preserves the original directory hierarchy and enables uniform table 
generation across tournaments and years. Subsequently, these multi-
source tables were merged to form a comprehensive quantitative sheet, 
facilitating robust comparisons of key metrics such as the army-to-
worker supply ratio, the timing distribution of key tech nodes, and the 
total path length of the average army coordinates. Box plots and 
distribution summaries consistently show that the statistical profiles 
across datasets match the phase structures observed in Figures 3, 4.

6 Conclusion

In this paper, we introduced TRACE, an end-to-end analytical 
framework designed to address the persistent challenges of 
interpretability in multi-agent competitive environments, using 
StarCraft II as a case study. Our work moves beyond conventional 
outcome-prediction models by providing a transparent, process-
oriented methodology to deconstruct and explain strategic gameplay. 
The core contribution lies in the synergistic integration of Conditional 
Recurrent Variational Autoencoder (C-RVAE) for learning “typical 
strategic progressions” and constrained counterfactual inference 
for alignment.

The introduction of the dimensionless deviation metric, |Δ|, 
proved to be a pivotal innovation. It enabled a dual-view analysis 
that not only identifies which gameplay elements are most critical 
but also pinpoints when decisive divergences occur. Our quantitative 
evaluation on professional tournament datasets validated the 
framework’s robustness, revealing that strategic deviations in the 
tested corpus are predominantly rooted in the early game (averaging 
8.4% of match duration) and are frequently driven by technology 
timing gaps. The counterfactual module demonstrated high 
effectiveness, achieving a similarity improvement of over 90% by 
correcting these specific divergences. Furthermore, the expert 
human evaluation confirmed the practical value of the system, 
awarding high scores for Factual Fidelity (4.6/5.0) and Causal 
Coherence (4.3/5.0) to the automatically generated narratives, 
forging a verifiable bridge between abstract vector data and 
actionable coaching advice.

Despite these contributions, several limitations open avenues for 
future research. First, while the learned archetypes are interpretable, 
they remain data-driven summaries; incorporating an expert-in-the-
loop mechanism could further ground their strategic semantics. 
Second, our “counterfactual” analysis provides plausible “what-if ” 

TABLE 2  Aggregated quantitative metrics of the TRACE framework.

Metric Mean Std. dev Median

Divergence time (%) 8.41 3.12 6.73

Original distance (L2) 2.96 2.12 1.76

Counterfactual 

distance (L2)

0.24 0.14 0.22

Similarity 

improvement (%)

90.89 3.20 92.39

TABLE 3  Human evaluation results (N = 12 experts, 5-point Likert scale).

Metric Mean 
score

Std. dev Description

Factual fidelity 4.62 0.45 Accuracy of events and 

timings described.

Causal coherence 4.33 0.58 Logic of the deviation-

consequence link.

Actionability 4.15 0.62 Usefulness for player 

training/coaching.

Inter-rater 

reliability

0.68 - Fleiss’ kappa 

(Substantial 

Agreement).
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scenarios under feasibility constraints (via projection operators) but 
does not strictly prove causality in the counterfactual sense used in 
causal inference literature. Lastly, our narrative generation currently 
relies on a structured template system to ensure fidelity; while 
effective, it lacks the stylistic flexibility of modern Large Language 
Models (LLMs).

Future work will proceed along three main directions. First, we 
aim to evolve the representation learning stage from the current 
C-RVAE to hierarchical or goal-conditioned architectures to better 
capture long-term strategic planning beyond immediate feature 
correlations. Second, we plan to integrate LLMs conditioned on the 
structured evidence produced by TRACE, combining the rigorous 

FIGURE 5

Bar chart illustrating the ranked contribution of different feature categories to trajectory deviation.
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factual accuracy of our metric-based templates with the nuanced 
reasoning capabilities of generative AI. Finally, we will focus on 
developing a fully interactive coaching system where users can pose 
specific queries (e.g., “What if I had prioritized air upgrades?”), 
transforming TRACE from a static analytical pipeline into a dynamic 
strategic dialogue tool.
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Appendix A

Implementation details

To ensure the reproducibility of the TRACE framework, this appendix specifies the exact data preprocessing steps, model architectures, and 
algorithmic parameters used in the experimental evaluation. The raw gameplay data was first down sampled to a fixed time step of 1t∆ =  second 
(approximately 22.4 game loops). Regarding the “robust scaling” mentioned in the methodology, we implemented a global Z-score 
standardization (StandardScaler) rather than a min-max approach. The mean µ  and standard deviation σ  were computed across the entire 
training corpus to preserve the relative magnitude of features between early and late game phases, ensuring that outliers in individual matches 
do not skew the global feature space. To address the “light smoothing” requirement for noise suppression, we applied a uniform 1D convolution 
filter (moving average) with a window size of = 5w  steps to the calculated distance metrics. This specific smoothing parameter was chosen to 
filter out high-frequency jitter caused by micro-management inputs while preserving the sharp gradients characteristic of strategic shifts.

The archetypal path learning module utilizes a Conditional Recurrent Variational Autoencoder (C-RVAE). The encoder consists of a 
bidirectional LSTM with a hidden dimension of 256, while the decoder employs a unidirectional LSTM of the same size. The latent space 
dimension was set to 64, balancing representation capacity with bottleneck regularization. The model was trained using the Evidence Lower 
Bound (ELBO) objective, with the condition vector c encoding the specific matchup type. Optimization was performed using the Adam 
optimizer with a learning rate of −310  and a batch size of 32 over 100 epochs, utilizing early stopping based on validation reconstruction error.

For the counterfactual interface, the optimization objective relies on a weighting matrix W , which is defined as a diagonal matrix where 
each diagonal element σ= 21/ii iW  corresponds to the inverse variance of feature i. This weighting scheme ensures that features with naturally 
larger ranges (e.g., mineral income) do not dominate those with smaller ranges (e.g., base count). The domain-specific feasibility constraints 
(Equation 4) are enforced through a convex combination strategy during trajectory generation. Since both the actual trajectory x  and the learned 
archetypal path A represent valid game states within the physics engine’s constraints, their interpolated counterfactual ( )α α= − +x 1ˆ x At t t t t  
inherently satisfies basic feasibility bounds, such as non-negativity and resource conservation, without requiring computationally expensive 
external solvers. The divergence detection threshold was dynamically set to the maximum of a base value (0.6 standard deviations) and the local 
signal statistics (median plus half a standard deviation) within the smoothed window.
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