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Tracing strategic divergence:
archetypal and counterfactual
analysis of StarCraft || gameplay
trajectories

Jie Zhang and Weilong Yang*

Academy of Military Science, Beijing, China

Introduction: To address the challenges of data heterogeneity, strategic
diversity, and process opacity in interpreting multi-agent decision-making
within complex competitive environments, we have developed TRACE, an end-
to-end analytical framework for StarCraft Il gameplay.

Methods: This framework standardizes raw replay data into aligned state
trajectories, extracts “typical strategic progressions” using a Conditional
Recurrent Variational Autoencoder (C-RVAE), and quantifies the deviation of
individual games from these archetypes via counterfactual alignment. Its core
innovation is the introduction of a dimensionless deviation metric, |A|, which
achieves process-level interpretability. This metric reveals “which elements are
important” by ranking time-averaged feature contributions across aggregated
categories (Economy, Military, Technology) and shows “when deviations occur”
through temporal heatmaps, forging a verifiable evidence chain..

Results: Quantitative evaluation on professional tournament datasets
demonstrates the framework's robustness, revealing that strategic deviations
often crystallize in the early game (averaging 8.4% of match duration) and
are frequently driven by critical technology timing gaps. The counterfactual
generation module effectively restores strategic alignment, achieving an average
similarity improvement of over 90% by correcting identified divergences.
Furthermore, expert human evaluation confirms the practical utility of the
system, awarding high scores for Factual Fidelity (4.6/5.0) and Causal Coherence
(4.3/5.0) to the automatically generated narratives.

Discussion: By providing openaccess code and reproducible datasets, TRACE lowers
the barrier to large-scale replay analysis, offering an operational quantitative basis for
macro-strategy understanding, coaching reviews, and Al model evaluation.

KEYWORDS

analytical framework, archetypal path analysis, counter factual alignment,
dimensionless deviation metric, process-level interpretability, StarCraft Il

1 Introduction

Complex multi-agent environments have emerged as critical testbeds for advancing
artificial intelligence research, offering unique challenges in decision-making, strategic
planning, and competitive dynamics. Among these environments, real-time strategy (RTS)
games, particularly StarCraft IT, have established themselves as canonical benchmarks due to
their vast state-action spaces, imperfect information constraints, real-time decision
requirements, and the necessity for both micro-level tactical control and macro-level strategic
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planning (Vinyals et al., 2019). The game’s complexity, which surpasses
traditional board games by several orders of magnitude, provides an
ideal platform for studying emergent behaviors, strategic diversity, and
the intricate interplay between short-term tactics and long-term
strategy (Ontanon et al., 2013).

The development of superhuman Al agents has marked significant
milestones in this domain. DeepMind’s AlphaStar achieved Grandmaster
level performance, ranking above 99.8% of active players on Battle.net
across all three races, demonstrating the potential of deep reinforcement
learning combined with self-play and imitation learning (Vinyals et al.,
2019). Similarly, systems like SCC have shown that efficient architectures
can achieve competitive performance with significantly reduced
computational resources (Wang et al., 2020). However, despite these
remarkable achievements in performance metrics, a fundamental
challenge persists: the “black-box” nature of these sophisticated neural
network architectures obscures the underlying strategic principles and
decision-making processes that drive their success (Barredo Arrieta et al.,
2020). This opacity creates a critical gap between achieving superhuman
performance and generating interpretable insights that could benefit
player training, strategic understanding, and the broader development of
explainable Al systems.

To address these multifaceted challenges, this paper introduces
TRACE (Trajectory Analysis and Counterfactual Explanation), a
comprehensive analytical framework designed to bridge the gap between
raw gameplay data and interpretable strategic insights. Our framework
advances the state-of-the-art in several key dimensions. First, it establishes
a unified data processing pipeline that transforms heterogeneous replay
data into standardized, temporally aligned trajectory representations,
enabling systematic cross-game and cross-tournament comparisons.
Second, it leverages archetypal path analysis to automatically discover and
characterize typical strategic progressions without requiring predefined
strategy labels or extensive domain knowledge. Third, and most
innovatively, it introduces a counterfactual alignment paradigm that
quantifies strategic deviation through a novel dimensionless metric |A|,
providing process-level interpretability by revealing both which game
elements (economy, army composition, technology choices) are most
critical and when significant deviations occur during gameplay.

The introduction of the deviation metric |A| represents a
fundamental contribution to interpretable game analysis. Unlike
existing approaches that focus on aggregate statistics or endpoint
predictions, this metric provides a continuous, feature-wise measure
of strategic divergence that can be visualized, analyzed, and directly
linked to game outcomes. By standardizing deviations across different
features and time scales, |A| enables meaningful comparisons between
games with varying durations, unit compositions, and strategic
approaches. The metric’s dual-view visualization—combining time-
averaged feature importance with temporal heatmaps—creates a
verifiable evidence chain that connects high-level strategic archetypes
to individual trajectory deviations and ultimately to game outcomes.

Our frameworK’s design emphasizes reproducibility, extensibility, and
practical applicability. Beyond theoretical contributions, we provide a
complete implementation including automated data processing scripts,
visualization tools, and report generation capabilities that significantly
lower the barrier to large-scale replay analysis. The framework has been
validated on diverse datasets spanning multiple tournaments,
demonstrating its ability to robustly recover recognizable strategic
patterns, identify critical decision points, and provide actionable insights
for players, coaches, and Al developers. By establishing a common
interface between expertise and machine analysis, TRACE opens new
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avenues for collaborative intelligence in complex strategic domains,
supporting applications ranging from player training and coaching to Al
system evaluation and improvement.

2 Related works

The field of explainable artificial intelligence (XAI) has emerged
as a crucial paradigm for addressing this interpretability challenge.
Recent advances in XAI have introduced various approaches, from
feature attribution methods to counterfactual explanations, each
offering different perspectives on model behavior (Guidotti et al.,
2018; Barzekar and McRoy, 2023). Counterfactual reasoning, in
particular, has been identified as fundamental to cognitive processes
and explanation generation, as it naturally addresses “what-if”
questions that are central to strategic understanding (Frappier, 2018).
Counterfactual reasoning has gained significant attention in
explainable AI research. Verma et al. established theoretical
connections between game-theoretic feature attributions and
counterfactual explanations (Albini et al., 2023), while Miller provided
foundational work on explanation generation through counterfactual
reasoning (Miller and Jing, 2024). Recent work has explored
counterfactuals in causal understanding versus explainable AI
applications (Baron, 2023). Madumal et al. specifically applied
counterfactual reasoning to reinforcement learning contexts
(Madumal et al., 2020), providing a foundation for our approach but
not addressing the specific challenges of continuous, multi-
dimensional strategic trajectories. In the context of reinforcement
learning and game-playing agents, counterfactual explanations can
illuminate why certain actions were taken by revealing what alternative
scenarios would have led to different outcomes (Madumal et al., 2020).
However, applying these principles to the continuous, high-
dimensional, and temporally extended nature of StarCraft II gameplay
presents unique challenges that existing XAI methods have not
adequately addressed.

Traditional approaches to StarCraft replay analysis have primarily
focused on discrete, localized predictions and classifications. Early work
in data mining for strategy prediction demonstrated the feasibility of
extracting meaningful patterns from replay data, achieving reasonable
accuracy in classifying player strategies into predefined categories such as
“rush,” “economic;” or “defensive” (Weber and Mateas, 2009; Synnaeve
and Bessiére, 2021). Subsequent research has explored build order
prediction, opponent modeling, and outcome forecasting based on early-
game states (Cho et al., 2013). While these contributions have been
valuable for understanding specific aspects of gameplay, they suffer from
significant limitations: they provide static snapshots rather than dynamic
trajectories, fail to capture the continuous evolution of strategic decisions
throughout a game, and cannot explain the causal relationships between
strategic deviations and game outcomes. Furthermore, these methods
typically require extensive domain-specific feature engineering and lack
the generalizability needed for cross-tournament or cross-
matchup analysis.

The challenge of trajectory analysis in complex sequential
decision-making environments extends beyond simple classification
or prediction tasks. Recent work has shown that understanding
strategic behavior requires not only identifying what strategies are
employed but also when and why players deviate from typical patterns
(Robertson and Watson, 2014). The concept of strategic archetypes—
prototypical trajectories that represent

common strategic
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progressions—has emerged from research in unsupervised learning
and pattern recognition (Ravanbakhsh et al., 2019; Bauckhage et al.,
2015). Archetypal analysis, originally developed for exploratory data
analysis, provides a principled approach for discovering extreme
points in data that can serve as interpretable bases for understanding
variation (Cutler and Breiman, 1994; Sifa et al, 2021). When
combined with counterfactual reasoning, this approach offers the
potential to quantify and explain strategic divergence in a way that is
both mathematically rigorous and interpretable.

3 Methodology

3.1 Data extraction and trajectory
representation

Data for this study were sourced from the public StarCraft II
Esport Game-state Dataset (SC2EGSet), with its original publication
and technical documentation available (Biatecki et al., 2023). The
dataset covers multiple professional tournaments and years, providing
standardized game state event streams parsed from official Blizzard
replays, archived and released at the tournament level. From the
original compressed files, we extracted a directory tree named by
tournament, with each directory containing exports of replays and
corresponding metadata. Each game’s file includes basic participant
information and a time-ordered sequence of “tracker events,” such as
PlayerStats, UnitBorn, UnitDied, UnitTypeChange, UpgradeComplete,
and UnitPositions. Time is measured in “loops,” the internal SC2
engine clock, where approximately 22.4 loops correspond to 1s.
Metadata fields like toonPlayerDescMap provide player race
(chosenRace), game outcome (result), and unique identifiers.
UnitPositions are recorded in an incremental format, requiring
coordinate restoration to the world scale and maintenance of a “last
known position” cache to handle sparse updates.

To convert this event stream into a time-series representation
suitable for modeling, we developed the TRACE trajectory extraction
pipeline. First, we uniformly downsample the entire game at a fixed
physical time step A (in seconds) to define sampling points. The loop
number for each sampling point is calculated as Equation 1:

te =k-A22.4,k=0,1,....K (1)

where tf, is the loop index of the k-th sample. At each sampling
point, we aggregate player-side game states into a cross-sectional
feature vector of approximately 55 dimensions, covering economic,
technological, military, and spatial aspects. The economic
dimension includes current mineral and vespene gas stockpiles,
worker counts, collection rates, and the number of operational
bases. The technological dimension includes the presence and count
of key tech structures (e.g., Barracks, Factory, Starport for Terran)
and vectors for upgrade levels (e.g., ground, vehicle, and air attack
upgrades). In-progress research and construction are included as
counts. The military dimension covers the total supply distribution
between army and workers and the counts of core combat units
(e.g., Marines, Siege Tanks, Stalkers). The spatial dimension is
derived by performing weighted aggregation of unit positions,
using density clustering to robustly estimate the centroid of the
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main army cluster when possible. To maintain state continuity, we
UnitBorn and

UnitTypeChange events update unit types and army value

track unit lifecycles at the event level:
estimations, while UnitDied events remove units and deduct
their value.

To visualize how raw gameplay data is translated into the model’s
input space, Figure 1 depicts our dual-abstraction mechanism. The
spatial abstraction (Panel A) condenses the precise coordinates of
distributed units into high-level spatial features, such as the army’s
center of mass, enabling the framework to track strategic movement
trends rather than individual unit micro-management. Simultaneously,
the semantic abstraction (Panel B) maps the diverse array of game
entities—ranging from economy units to combat forces—into a
unified, fixed-dimensional state vector. This transformation is critical
for converting the visually complex and heterogeneous StarCraft II
environment into standardized trajectories comparable across
different matches and players (see Figure 2; Table 1).

The data cleaning process addresses three primary issues. First,
excessively short games or samples with significant data gaps are
excluded. Second, anomalous position updates are filtered and
imputed to ensure spatial aggregation stability. Third, if statistical
events are sparse within a sampling window, we use the most recent
PlayerStats snapshot, supplemented by unit dictionaries and
production buffers, to complete the state vector. This entire process
yields a time series of length T and F dimensions for each player, saved
as a NumPy array, where T depends on the game duration and 4, and
F is approximately 55. These trajectory files, along with tabular views
for verification, are organized in a directory structure that mirrors the
original SC2EGSet, ready for consumption by subsequent
analysis stages.

For model training and evaluation, we recommend stratified
sampling by tournament and game metadata to balance the effects
of different game versions, players, and matchups. When
constructing conditional variables—defined as the auxiliary
metadata vector ¢ fed into the Conditional VAE to differentiate
between distinct strategic contexts—we explicitly include the
player’s race (Protoss, Terran, Zerg) and the matchup type. This
conditioning ensures that the learned archetypes capture the specific
meta-game dynamics relevant to each racial matchup rather than
conflating disparate playstyles. During evaluation, we use the time-
aligned series as the fundamental unit for analysis. Since SC2EGSet
spans multiple game versions, our feature engineering, which
explicitly models structural quantities like upgrade levels and tech
buildings, helps mitigate statistical drift. Nevertheless, we
recommend performing bias removal and re-weighting when
generalizing across years or tournaments. Regarding privacy and
ethics, SC2EGSet is derived from public esports replays and contains
anonymized game states, involving no sensitive personal
information. We adhere to its licensing and citation policies. In
summary, SC2EGSet provides a comprehensive, structured, and
reproducible record of micro-level game processes. Combined with
our event-stream-to-time-series extraction and cleaning pipeline, it
forms a standardized trajectory data layer that provides a solid
foundation for our subsequent modeling, analysis, and
narrative generation.

Due to the complexity of the multi-stage pipeline, we focus here
on the core mathematical formulation and logic. For a comprehensive
description of the specific model architectures, hyperparameter

frontiersin.org


https://doi.org/10.3389/frai.2025.1724493
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Zhang and Yang

10.3389/frai.2025.1724493

A. Spatial Abstraction
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FIGURE 1

archetypal analysis.

Schematic of State Abstraction Pipeline

Conceptual illustration of the state abstraction process. (A) Spatial abstraction: raw unit coordinates (blue dots) scattered across the map are
aggregated into a macro-level centroid feature (red cross), capturing the army'’s strategic positioning while filtering out micro-adjustment noise.

(B) Semantic abstraction: heterogeneous game entities (e.g., specific unit types like Stalkers and Immortals) are quantified and mapped to fixed
dimensions in the standardized state vector x¢. This pipeline transforms the complex visual game state into a structured time-series format suitable for

B. Feature Vector Representation
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Immortals

Feature Extraction
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5.0 2.0
Stalker Immortal
Count Count

settings (including VAE dimensions and detection thresholds), and
data preprocessing protocols, readers are referred to Appendix A:
implementation details.

3.2 Archetypal path learning

Our methodology is centered on an end-to-end trajectory—
archetype—counterfactual-narrative chain, designed to prioritize
interpretability and actionability while maintaining expressive power.
The overall process begins by extracting structured, multidimensional
time-series states from replay data. After alignment and
standardization, these trajectories are modeled using a small number
of interpretable archetypal paths to capture the temporal dynamics of
gameplay styles. Building on this representation, we employ a
“minimal modification” counterfactual construction with a series of
feasibility constraints to pinpoint critical divergence points and the
dominant dimensions that alter the game’s course. Finally, this
structured evidence is organized into readable narratives, enabling
direct use of the technical analysis by coaches, players,
and commentators.

We represent each match as a sequence of time-series vectors
of length T, where each time step is a D-dimensional state. To
ensure comparability across matches, all trajectories are resampled
at a uniform time step At and their time axes are aligned. The
variables cover mid-level factors such as resources, supply,
economic nodes, technology/building progress, and the
composition and losses of key units. Continuous variables undergo
robust scaling and light smoothing to suppress spurious fluctuations
from incidental noise. To avoid bias from missing data, we use
interpolation or forward-filling for short windows and explicitly
flag unrecoverable segments, ensuring consistent handling in
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subsequent learning and evaluation. Formally, the time-series is
represented as Equation 2:

XLT = X15X2e s XT (2)

where x, e RP. Optionally, we may introduce phase segmentation
based on semantic milestones or statistical change-points (e.g.,
opening/mid/late game) and use fixed or multi-scale sliding windows
to aggregate local context (e.g., resource differentials, loss ratios, unit
composition entropy) to characterize short-term trends and
structural shifts.

To obtain interpretable and composable representations of tactical
styles, we learn K archetypal paths A € RETD and approximate the
instantaneous state of any game using a time-varying convex
combination. This representation allows a game to dynamically
approach different archetypes throughout its progression, thus
positioning an individual trajectory within a two-dimensional
“tactical style-temporal evolution” space. The core approximation is
Equation 3:

K
X & Zkzlak,t'Ak,t (3)

Subject to non-negativity (o, >0) and convexity constraints
(ZkK_ Dkt =1). To enhance interpretability and stability, we apply
spars;ty regularization to a, ensuring that only a few archetypes are
significantly active at any given moment. We also add temporal
smoothing or a total variation (TV) penalty to suppress meaningless,
frequent switching while preserving legitimate transitions at true tactical
turning points. The optimization is performed via alternating
minimization between the archetypes A and the coefficients o, initialized
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using representative games or cluster centers from Dynamic Time
Warping (DTW) /clustering. The choice of K is determined by a trade-oft
between expressiveness and interpretability, guided by the elbow
method, information criteria, and explained variance on a validation set.

3.3 Counterfactual trajectory

Given a prefix of a real game trajectory (1...7), we construct a
“minimally modified” counterfactual trajectory %, ;.7 that aims to
satisfy a target objective, such as moving closer to a specific archetype or
crossing a strategic threshold. This is done while minimizing the
modification cost and adhering to domain-specific feasibility constraints.
The objective function consists of a weighted reconstruction error, a
temporal smoothing term, and an archetype proximity term:

LE)=X IW(x )

T A A A
+1Tvzt=r+1 1% = %¢—1 |h +Aarch-Darch (x;A) (4)

Frontiers in Artificial Intelligence

05

Here, W e RP*P is defined as a diagonal weighting matrix where
each diagonal element corresponds to the inverse variance of the
respective feature across the training dataset (W;; = o; 2),and D Arch
measures the proximity of the counterfactual to the target set of
archetypes. This term serves to normalize the modification cost,
ensuring that deviations in high-variance features (e.g., Mineral
Income, which fluctuates by thousands) do not numerically dominate
those in low-variance but strategically critical features (e.g., Upgrade
Level, which changes discretely by 1). The equation defines the soft
objective function representing the trade-off between modification
cost and strategic alignment. The domain-specific feasibility
constraints—such as non-negativity (X; >0), resource limits, and
tech-tree prerequisites (e.g., a unit cannot exist without its
corresponding production facility)—are incorporated as the feasible
set U over which Equation 4 is minimized. Formally, the problem is
posed as a constrained optimization: mingcq L(x) . In our
implementation, these hard constraints are enforced effectively via a
projection operator P at each step of the optimization algorithm
(Projected Gradient Descent), ensuring that the generated
counterfactual trajectory always resides within the valid logical
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TABLE 1 Overview of the player state feature vector.

Feature sub-
group

Category

Description

Economic Resource state Current stockpiles and
collection rates of minerals

and vespene gas.

Worker count Total number of active

worker units.

Economic structures Count of active resource-
gathering headquarters
(e.g., Command Center,

Nexus).

Technological Key tech structures Presence and count of
critical technology-
unlocking buildings (e.g.,

Barracks, Stargate).

Upgrade levels Vector representing the
current level of major
combat upgrades (e.g.,

attack, armor, shields).

In-progress state Count of technologies
currently being researched
and structures under

construction.

Military Army supply Total supply dedicated to
military units, distinct from

the worker supply.

Unit composition Counts of core combat
units, grouped by strategic
role (e.g., ground infantry,

armored vehicles, air).

Production capacity Count of active unit-

producing structures.

Spatial Army centroid Estimated X and Y

coordinates coordinates of the main
army’s center of mass on

the map.

Spatial dispersion Metric representing the
spatial spread or clustering

of military units.

The feature groups listed represent a high-level aggregation. The actual implementation
includes more specific features, such as specific unit types and upgrade paths, to reach the
full dimensionality.

boundaries of the game engine. When non-convex priors are
introduced, we employ heuristic projection with alternating iterations
to obtain stable and feasible approximate solutions. The algorithm
outputs the counterfactual trajectory X, the per-timestep modification
vector A; =Xx; —x; , and metrics of constraint satisfaction.

It is worth noting that we optimize the entire future trajectory
X417 simultaneously, rather than applying a single-step perturbation.
This global formulation is essential for two reasons. First, strategic
shifts in RTS games possess temporal inertia; a momentary change at
step 7 often fails to alter the long-term outcome if the subsequent
actions revert to the original suboptimal policy. By optimizing the full
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horizon, we ensure that the counterfactual represents a sustained
‘change of plan’ rather than a momentary noise. Second, the global
objective allows us to enforce trajectory-level constraints, specifically
the temporal smoothing (A7y), ensuring that the generated scenario
remains physically plausible and free from unnatural high-
frequency oscillations.

3.4 Deviation quantification

For feature-level interpretability, we introduce a dimensionless
deviation metric, denoted as |4|, to quantify the point-to-point
difference between an actual trajectory and an archetypal trajectory
for a given feature f at a given time step t. Specifically, we first
standardize both sequences for each feature using the z-score
transformation with the mean z/¢ and standard deviation o ¢ of the
actual trajectory. After temporal truncation and alignment to a
common length, the difference is calculated as Equation 5:

Aty =(xtp —uag)log~(prp—5)lof )

In this equation, x; ¢ denotes the raw value of feature f at time ¢
in the actual gameplay trajectory, and p; s represents the
corresponding value in the reference archetypal path (derived from
the learned basis A). The terms 4¢ and o ¢ correspond to the global
mean and standard deviation of feature f computed across the
training dataset. The absolute value, | Ay f |, serves as the magnitude
of deviation for that feature at that time step relative to the archetype.
As a dimensionless quantity, |A| eliminates scale and unit differences,
facilitating cross-feature comparisons. We use the time-averaged
value, mean; | A ¢ |, to rank the contribution of each feature and a
heatmap of the time-resolved |A f| to visualize the temporal
structure of the deviation. It is important to note that the vertical bars
denote the absolute value, and A represents the difference, which is
distinct from the time step interval At. A larger |A| value signifies a
greater deviation from the archetype, while a smaller value indicates
closer adherence.

To identify decisive turning points, we define a per-timestep
deviation §, =|| W( Xp— Xy ) |, using a weighted difference and
accumulate it to form a stable divergence evidence curve
S (t) = Z;H Gi- After light smoothing, we determine the first
significant divergence time t* by combining threshold-crossing,
maximum slope, and robust change-point detection, requiring the
difference to persist for a short window to avoid pseudo-divergences
from random perturbations. Concurrently, we decompose the
weighted contribution of each feature to §; and aggregate it within a
window [t* —ht* + h} to identify the key dimensions causing the
divergence (e.g., economic lag, technological delay, or unit
composition mismatch). By analyzing the change in ay; around t*,
we can attribute a strategic meaning to the style shift, such as a
transition “from archetype P1 to P2 facilitating expert review
and analysis.

Based on the structured evidence (x,%,c,t*, and dimensional
contributions), we translate the analytical results into paragraph-level
narratives. These narratives follow a “who/when/what/why “structure,
first providing semantic context and archetype proximity, then
explaining the key divergence points and observable factors causing
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them, and finally connecting to potential outcome changes and
actionable suggestions. The narrative generation process strictly
adheres to the factual evidence, avoiding the introduction of
unobserved information, and uses a unified terminology library to
ensure consistency in nouns, units, and temporal expressions. We
provide multi-level narratives, from high-level summaries to technical
details, to cater to different audiences (coaches, players, commentators,
viewers) and balance readability with information density.

In our implementation, the four stages are executed by
independent scripts linked via a defined data contract. Key
hyperparameters (e.g., K, At, Ay, divergence thresholds) can be
specified via the command line. The outputs, including archetypes,
time-varying coefficients, counterfactual trajectories, divergence
statistics, and readable reports, are saved to a results/ directory. We
provide interfaces for ablation studies (e.g., replacing archetypal
analysis with K-means/DTW or removing temporal smoothing and
feasibility constraints) to quantify the contribution of each component
to interpretability and narrative quality. Default settings are calibrated
via grid search and manual inspection: K is determined using the
elbow method and validation set explained variance (typically in the
range of 4-8), smoothing and sparsity coefficients are fine-tuned, and
divergence thresholds are set based on historical quantiles and expert
priors with cross-tournament adjustments. We emphasize safety and
ethical boundaries: counterfactuals are intended as actionable
suggestions at the strategic level and are not used for inappropriate
attribution of individual capabilities. The analysis uses publicly
available tournament data and adheres to data sharing and
attribution standards.

3.5 Narrative generation

To bridge the gap between abstract vector-space deviations and
actionable human insights, the TRACE framework integrates a
deterministic Natural Language Generation (NLG) module. Unlike
end-to-end neural captioning models that may suffer from
hallucination, our approach employs a hierarchical template-based
mechanism to ensure factual fidelity and terminological consistency.
The generation process operates through a three-stage pipeline:
Semantic Abstraction, Content Selection, and Template Population.

First, the raw feature indices are mapped to domain-specific
semantic labels (e.g., Feature 38 is mapped to “Stalker Count”). To
capture macro-strategic intent, the system aggregates the
dimensionless deviation metric| Al across five high-level categories:
Ce {Economy,Military,Technology,Production,Spatial} . The
category with the highest cumulative contribution during the
t*,t" +h
Divergence Factor, which determines the thematic focus of

divergence window is identified as the Dominant
the narrative.

To prevent information overload, a saliency filter ranks all features
by their time-averaged deviation contribution. The system selects the
top-k features (typically k = 3) that exceed a significance threshold to
serve as the factual evidence. The narrative is constructed using a
dynamic template structure composed of three logical slots:
T= Scontext)sevidence)simplication] . The population logic is defined
as follows: Context Slot (Scontext) describes the timing of the
divergence based on the normalized time 1 =1t"/ Tyo . For instance,
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if 1<0.3, the slot is filled with “Early-game divergence detected at
[Time]...” Evidence Slot (Seyidence) P opulated by the selected top-k
features. The system generates a list description, such as “Significant
lags were observed in [Feature 1] (A=...) and [Feature 2]...”
Implication Slot  (Simplication) utilizes a rule-based mapping
conditioned on the Dominant Divergence Factor. For example, if the
Technology category dominates, the system retrieves a corresponding
heuristic explanation: “This pattern suggests a failure to commit to the
standard tech-switch timing, delaying the transition to mid-tier units.”

By strictly linking each text segment to quantitative metrics, this
module generates reports that are both readable for coaches and
mathematically traceable to the underlying data.

4 Experimental design

We constructed a stratified, reproducible, and causally-compatible
experimental design around the four-stage TRACE workflow to
validate the representation power of archetypal path learning, the
feasibility and consistency of counterfactual inference, and the
interpretability and practical value of the readable narratives. Data was
sourced and preprocessed as previously described: the event streams
from SC2EGSet were down sampled at a fixed time step to extract
~55-dimensional time-series state vectors covering economic,
technological, military, and spatial dimensions. To mitigate
confounding effects from game patches and tournament heterogeneity,
our experiments prioritized a stratified partitioning strategy based on
tournament and year. Key comparisons incorporated leave-one-
tournament-out and cross-year extrapolation evaluations to test
model robustness under realistic distributional shifts. The train/
validation/test split was performed at the game level, ensuring that
sequences from the two players in the same game did not leak across
sets. Model selection and hyperparameter tuning were based on the
validation set, and all reported experiments used fixed random seeds
and evaluation scripts to support full reproducibility.

To evaluate the suitability and interpretability of archetypal path
learning, we assessed reconstruction accuracy (defined as the fidelity
with which the learned archetypal basis can recover the original
gameplay trajectories via convex combination), temporal alignment
distance, and the trade-off between coverage and diversity.
Reconstruction accuracy was measured by mean squared error
weighted by feature standard deviation. To measure fidelity to
temporal patterns, we calculated the DTW distance between
archetypal paths and real trajectories on the test set. The DTW metric
is defined as Equation 6:

DTW (X,Y)=mingzer Y| (iJ)Eﬁwij.d(xi,yj) (6)

Where I is the set of all monotonic alignment paths, w;; are
alignment weights, and d is the Euclidean distance normalized by
feature standard deviation. To prevent a single archetype from
subsuming multiple styles, we characterized representation quality
using two metrics: coverage (the proportion of test sequences within
an v-neighborhood of at least one archetype) and diversity (the
pairwise distance distribution among archetypes). We compared our
approach against strong baselines, including DTW Barycenter
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Averaging (DBA), the most likely state paths from Hidden Markov
Models (HMMs), and smoothed cluster centers from K-Means
applied to concatenated time steps. We also included conditional and
standard sequence autoencoders to analyze the contribution of
conditioning variables. Statistical significance was assessed using
paired Wilcoxon signed-rank tests with Holm-Bonferroni correction
for multiple comparisons, and 95% confidence intervals were
estimated using the BCa bootstrap method.

The experimental design for counterfactual inference focused on
three aspects: minimal modification, target-orientedness, and feasibility.
We framed counterfactual optimization as a dual-objective problem:
minimizing the perturbation norm while maximizing progress towards a
target archetype or outcome, subject to a set of constraints. The core
evaluation function was formulated as Equation 7:

Sef = - APyin + ,B~(—DT ) —y-Violations — §-Roughness (7)

where AP, denotes the probability increase derived from a
calibrated win-prediction model, Dy represents the Dynamic Time
Warping (DTW) distance to the target archetype, and the remaining
terms penalize constraint violations and trajectory roughness,
respectively. We evaluated the plausibility of divergence points using
two proxy methods: first, by observing whether minimal feasible
adjustments to decisive features (e.g., worker-to-army ratio, key tech
timings) around the divergence point led to effective progress; and
second, by aligning the counterfactual and target archetypes and
measuring the match rate of key events. Comparison methods
included sample-based counterfactuals using weighted nearest
neighbors, generative counterfactuals with latent-space editing, and
heuristic manual strategies (e.g., prioritizing worker production).

To validate the utility of TRACE on downstream tasks, we
designed two proxy experiments: first, win prediction using archetype
alignment distances and trajectory embeddings as features at various
early-game windows (2, 5, and 8 min); and second, detecting army
assembly and engagement timings using archetypal paths as priors.
These tasks employed simple, interpretable models (e.g., regularized
logistic regression) to avoid confounding the evaluation of the
representation itself.

Narrative generation was evaluated using a two-stage, hybrid
automatic-and-human procedure. Automatic evaluation focused on
alignable consistency, parsing generated text into event triples and
comparing them against the structured counterfactual explanation to
calculate factual coverage, temporal consistency, and hallucination
rates. To assess the practical utility and interpretability of the generated
narratives, we conducted a human subject study involving 12 expert
participants (ranking Diamond or higher on the official Battle.net
ladder). The study followed a within-subject design where each
participant reviewed 10 randomly selected game instances. For each
instance, articipants were presented with the raw replay clip and the
corresponding TRACE-generated narrative report. They were then
asked to rate the report on a 5-point Likert scale (1 = Strongly
Disagree, 5 = Strongly Agree) across three dimensions: 1. Factual
Fidelity: Does the narrative accurately reflect the objective game state
changes (e.g., “Tech deviation occurred at 4:30”)? 2. Causal Coherence:
Does the explanation logically connect the feature deviation (e.g.,
“delayed factory”) to the game context (e.g., “lack of map pressure”)?
3. Actionability: Does the counterfactual suggestion provide clear,
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executable advice for player improvement? To ensure rigor, we
calculated the Inter-Rater Reliability (IRR) using Fleiss’ kappa to
measure agreement among experts.

5 Results

In our counterfactual analysis, aligning actual gameplay with the
archetypal path as a reference reveals the temporal and structural
location of divergences from “standard play” To quantify when a
deviation occurs independently of the match duration, we introduce
a normalized metric, the Divergence Time Percentage, defined as the
ratio of the detected divergence timestamp to the total game length.
As shown in Figure 3, the distribution of these points reveals a
bimodal pattern: early deviations are often associated with
inconsistencies in the opening build order (significant timing
differences in resource and building sequences), whereas later
divergences are more frequently driven by discrepancies in unit
positioning and engagement timing. A comparative plot illustrates a
typical case (Figure 4): before the divergence point, the Worker Count
and resource income curves closely match the archetype. After this
point, the archetypal path shows simultaneous technology
enhancements and a step-wise increase in Army Supply, whereas the
actual trajectory lags in technological progression. As explicitly
labeled in the figure panels, the spatial features (e.g., Average Army
X/Y) exhibit significantly weaker directionality and maneuverability,
visually confirming the loss of map control described in the analysis.

To validate the robustness of the framework beyond individual
examples, we performed a quantitative aggregation across the test
dataset (N = 60 matches). Table 2 summarizes the key performance
metrics. The average divergence time occurs very early, at
approximately 8.41% of the game duration. This indicates that in this
dataset, strategic deviations are primarily rooted in the opening phase
(Build Order execution) rather than mid-game tactical errors.

The counterfactual generation module demonstrated high
effectiveness in restoring strategic alignment. By rigorously correcting
the deviation from ¢*, the framework achieved an average Similarity
Improvement of 90.89% (drastically reducing the L2 distance from
2.96 to 0.24). This high improvement metric suggests that once the
critical early-game divergence is corrected, the subsequent trajectory
aligns naturally with the archetype. Furthermore, an analysis of the
‘Dominant Divergence Factors’ reveals a striking pattern: Technology-
related deviations (specifically upgrade timings and tech-structure
sequences) account for 100% of the identified divergence cases in this
batch. This strongly suggests that for the analyzed matchups, the
differentiation between ‘Standard Play’ and ‘Deviant Play’ is almost
exclusively determined by the timing of the first major
technological commitment.

The subjective evaluation results are summarized in Table 3. The
proposed framework achieved high scores in Factual Fidelity (4.6/5.0),
indicating that the feature-to-text template mechanism successfully
eliminates hallucination, a common issue in end-to-end neural
generation models. Causal Coherence received a mean score of 4.3,
with participants noting that the “Who/When/What/Why” structure
effectively highlights the logical chain of strategic errors.

Notably, the Actionability score was 4.1, with qualitative feedback
suggesting that while the system excels at identifying macro-level
mistakes (e.g., “missed upgrade timing”), it occasionally lacks nuance
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Histogram of divergence point distribution. The x-axis represents the divergence time percentage (z), calculated as 7 = t* /ﬁota\//)x100%, where t* is
the time step of the first significant deviation and Tptgy is the total duration of that specific game match. This normalization allows for consistent
comparison of “early” versus “late” deviations across games with varying lengths.
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Comparison of an actual trajectory (blue) and its corresponding archetypal path (green). The top-left panel tracks the global L2 distance, marking the
identified divergence point t*. The subsequent panels detail the divergence in specific, semantically labeled dimensions—such as Stalker Count, or
Army Position—rather than abstract indices. The red dotted line represents divergence point. This visualization directly links the mathematical deviation
to the concrete game concepts discussed in the case study.
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TABLE 2 Aggregated quantitative metrics of the TRACE framework.

Metric Mean Std. dev Median
Divergence time (%) 8.41 3.12 6.73
Original distance (L2) 2.96 2.12 1.76
Counterfactual 0.24 0.14 0.22
distance (L2)

Similarity 90.89 3.20 92.39
improvement (%)

TABLE 3 Human evaluation results (N = 12 experts, 5-point Likert scale).

Metric Mean Std. dev  Description
score

Factual fidelity 4.62 0.45 Accuracy of events and
timings described.

Causal coherence 4.33 0.58 Logic of the deviation-
consequence link.

Actionability 4.15 0.62 Usefulness for player
training/coaching.

Inter-rater 0.68 - Fleiss’ kappa

reliability (Substantial
Agreement).

in micro-management advice. The Fleiss' kappa score was 0.68,
indicating substantial agreement among the experts regarding the
quality of the insights. These results confirm that TRACE translates
complex vector-space deviations into human-understandable
strategic advice.

Consistent with these macro-level cues, a feature-level
contribution analysis indicates that the most influential categories are
concentrated in “resources, production queues, units, and position,”
followed by “buildings and upgrades” This hierarchical structure
suggests that when a strategy deviates in its resource and production
scheduling rhythm, the subsequent unit structure and spatial
deployment inevitably amplify this deviation. Figure 5 presents the
decomposition of strategic divergence. As shown in the bar chart,
while specific units like ‘Stalker Count’ or Tmmortal Count’ appear as
the top individual deviation factors, the aggregated inset chart reveals
that the Military category as a whole dominates the divergence
(accounting for approximately 45% of the total deviation), followed by
Economy (25%). This confirms that the observed structural break—
while manifested through specific unit discrepancies—is
fundamentally driven by a mismatch in military composition and
economic scaling. The accompanying heatmap further illustrates the
temporal dynamics, showing that deviations in economic features
(blue labels) often precede the explosion of military deviations (red
labels), providing a visual verification of the causality chain.

To ensure the usability of our analysis for readers, we automatically
translate the counterfactual divergences and feature contributions into
natural language narratives. These narratives can recount, on a case-
by-case basis, “when, where, and due to which mismatched factors the
strategic path deviated,” connecting the five dimensions of resources,

production, technology, units, and position with strategic vocabulary.
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For example, a specific match read: “Compared to the archetype, the
actual strategy significantly deviated in Technology dimensions
around the 4-min mark. Specifically, the Protoss Ground Weapons
Level 1 (A =2.15) and Twilight Council Count (A = 1.80) lagged
behind the reference path. This suggests a failure to commit to the
standard tech-switch timing. Consequently, the player’s transition to
mid-tier units was delayed, preventing the expected power spike
observed in the archetypal baseline” These narratives serve as both a
high-level summary for interpreting the counterfactual plots and as
readable material for post-game reviews.

In terms of data products and quantitative review, we converted
key trajectory slices into easily inspectable tabular formats and
extended this process to batch processing and summary aggregation
across the entire dataset. This process, when applied in batch mode,
preserves the original directory hierarchy and enables uniform table
generation across tournaments and years. Subsequently, these multi-
source tables were merged to form a comprehensive quantitative sheet,
facilitating robust comparisons of key metrics such as the army-to-
worker supply ratio, the timing distribution of key tech nodes, and the
total path length of the average army coordinates. Box plots and
distribution summaries consistently show that the statistical profiles
across datasets match the phase structures observed in Figures 3, 4.

6 Conclusion

In this paper, we introduced TRACE, an end-to-end analytical
framework designed to address the persistent challenges of
interpretability in multi-agent competitive environments, using
StarCraft II as a case study. Our work moves beyond conventional
outcome-prediction models by providing a transparent, process-
oriented methodology to deconstruct and explain strategic gameplay.
The core contribution lies in the synergistic integration of Conditional
Recurrent Variational Autoencoder (C-RVAE) for learning “typical
strategic progressions” and constrained counterfactual inference
for alignment.

The introduction of the dimensionless deviation metric, |4],
proved to be a pivotal innovation. It enabled a dual-view analysis
that not only identifies which gameplay elements are most critical
but also pinpoints when decisive divergences occur. Our quantitative
evaluation on professional tournament datasets validated the
frameworKk’s robustness, revealing that strategic deviations in the
tested corpus are predominantly rooted in the early game (averaging
8.4% of match duration) and are frequently driven by technology
timing gaps. The counterfactual module demonstrated high
effectiveness, achieving a similarity improvement of over 90% by
correcting these specific divergences. Furthermore, the expert
human evaluation confirmed the practical value of the system,
awarding high scores for Factual Fidelity (4.6/5.0) and Causal
Coherence (4.3/5.0) to the automatically generated narratives,
forging a verifiable bridge between abstract vector data and
actionable coaching advice.

Despite these contributions, several limitations open avenues for
future research. First, while the learned archetypes are interpretable,
they remain data-driven summaries; incorporating an expert-in-the-
loop mechanism could further ground their strategic semantics.
Second, our “counterfactual” analysis provides plausible “what-if”
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FIGURE 5
Bar chart illustrating the ranked contribution of different feature categories to trajectory deviation.
scenarios under feasibility constraints (via projection operators) but Future work will proceed along three main directions. First, we

does not strictly prove causality in the counterfactual sense used in  aim to evolve the representation learning stage from the current
causal inference literature. Lastly, our narrative generation currently =~ C-RVAE to hierarchical or goal-conditioned architectures to better
relies on a structured template system to ensure fidelity; while  capture long-term strategic planning beyond immediate feature
effective, it lacks the stylistic flexibility of modern Large Language  correlations. Second, we plan to integrate LLMs conditioned on the
Models (LLMs). structured evidence produced by TRACE, combining the rigorous
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factual accuracy of our metric-based templates with the nuanced
reasoning capabilities of generative Al Finally, we will focus on
developing a fully interactive coaching system where users can pose
specific queries (e.g., “What if I had prioritized air upgrades?”),
transforming TRACE from a static analytical pipeline into a dynamic
strategic dialogue tool.
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Appendix A
Implementation details

To ensure the reproducibility of the TRACE framework, this appendix specifies the exact data preprocessing steps, model architectures, and
algorithmic parameters used in the experimental evaluation. The raw gameplay data was first down sampled to a fixed time step of At =1 second
(approximately 22.4 game loops). Regarding the “robust scaling” mentioned in the methodology, we implemented a global Z-score
standardization (StandardScaler) rather than a min-max approach. The mean u and standard deviation o were computed across the entire
training corpus to preserve the relative magnitude of features between early and late game phases, ensuring that outliers in individual matches
do not skew the global feature space. To address the “light smoothing” requirement for noise suppression, we applied a uniform 1D convolution
filter (moving average) with a window size of w =5 steps to the calculated distance metrics. This specific smoothing parameter was chosen to
filter out high-frequency jitter caused by micro-management inputs while preserving the sharp gradients characteristic of strategic shifts.

The archetypal path learning module utilizes a Conditional Recurrent Variational Autoencoder (C-RVAE). The encoder consists of a
bidirectional LSTM with a hidden dimension of 256, while the decoder employs a unidirectional LSTM of the same size. The latent space
dimension was set to 64, balancing representation capacity with bottleneck regularization. The model was trained using the Evidence Lower
Bound (ELBO) objective, with the condition vector ¢ encoding the specific matchup type. Optimization was performed using the Adam
optimizer with a learning rate of 10~ and a batch size of 32 over 100 epochs, utilizing early stopping based on validation reconstruction error.

For the counterfactual interface, the optimization objective relies on a weighting matrix W, which is defined as a diagonal matrix where
each diagonal element W;; =1/ o corresponds to the inverse variance of feature i. This weighting scheme ensures that features with naturally
larger ranges (e.g., mineral income) do not dominate those with smaller ranges (e.g., base count). The domain-specific feasibility constraints
(Equation 4) are enforced through a convex combination strategy during trajectory generation. Since both the actual trajectory x and the learned
archetypal path A represent valid game states within the physics engine’s constraints, their interpolated counterfactual x; = (1 -y )xt +ap Ay
inherently satisfies basic feasibility bounds, such as non-negativity and resource conservation, without requiring computationally expensive
external solvers. The divergence detection threshold was dynamically set to the maximum of a base value (0.6 standard deviations) and the local
signal statistics (median plus half a standard deviation) within the smoothed window.
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