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Superiority of images in low light is necessary in the case of medical image
as well as autonomous systems but there is still a challenge of balancing
between brightness and natural appearance. The presented paper elaborates
a new improvement model that combines Interval-Valued Intuitionistic Fuzzy
Set as well as Reptile Search Algorithm optimization. The proposed approach
automatically tunes the fuzzy membership and hesitation factors to adapt
to uncertainty in dark areas while preserving significant structural data. The
Performance is evaluated using common objective metrics which are Peak
Signal-to-Noise Ratio, Absolute Mean Brightness Error, Contrast Improvement
Index and entropy. All the reported percentage improvements are computed
using the average metric values of the baseline Interval-Valued Intuitionistic
Fuzzy Set method on the complete dataset. The results of the investigations
indicate significant and consistent increases in the experimental results with
a 3.69% percentage gain in entropy, a 21.71% percentage gain in brightness
restoration, an 18.73% percentage gain in contrast and a 66.12% percentage gain
in Peak Signal to Noise Ratio compared to the baseline method. As these results
show, the given technique yields naturally amplified images that have better
qualities in clarity, conciseness and structural conservation, which is extremely
applicable in real-life situations involving low-light photography.

KEYWORDS

entropy measure, HSV color space, Interval-Valued Intuitionistic Fuzzy Set, low-light
enhancement, Reptile Search Algorithm

1 Introduction

The image processing of digital images is a major feature in various intelligent
systems such as medical imaging, surveillance, autonomous driving and facial recognition
(Zhao et al., 2019; Mohammed and Al-Tuwaijari, 2022; Badue et al., 2021). The clarity
and quality of the input images is of great importance to the performance of these
applications. In real-life scenarios, though they usually get shot in underprivileged or
unreliable conditions because of low light, environmental interference, camera constraints
and other things in the atmosphere. These are the factors that may add noise, decrease
contrast and blur significant details. The low-light situations are particularly problematic
since they greatly decrease the visibility and influence on the human perception and
precision of the computer vision algorithms. It is due to this fact that low-light image
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enhancement has been added to the list of preprocessing
operations, intended to assist in enhancing brightness, restoring
crucial data and give rise to naturally looking results. The
complexity of such a balance development has stimulated
the creation of approaches, including traditional enhancement
methods, more sophisticated optimization-oriented and learning-
oriented systems.

Image enhancement methods have widely been categorized
under spatial-domain and frequency-domain in terms of their
use over the years. The most basic technique is called Histogram
Equalization (HE) and this method enhances contrast by
reallocating intensity levels. Although, HE tends to bring undue
brightness changes and artifacts particularly in the high-intensity
areas. As a remedy to these problems, Pizer (1977) proposed
the Adaptive Histogram Equalization (AHE) that enhances the
visibility of the local details by applying the equalization in
smaller image tiles, but often increased noise in the smooth
areas. Haddadi et al. (2023) optimized the conventional Adaptive
Histogram Equalization into an optimized Contrast Limited
Adaptive Histogram Equalization (CLAHE), which controls the
levels up or down of contrast utilization by using a clipping
threshold and an optimization mechanism that enhances the
quality of images at the lowest feasible noise levels. Other than
methods on histograms, there are color space transformations,
which have been applied to improve images. Kumar and Jindal
(2019) combined the RGB and HSV channels and minimized the
haze of foggy image, without damaging structural information and
contrast. Wu et al. (2024) also use the V(brightness) channel of
HSV to improve images without altering hue and saturation to
ensure that the images retain the soft, natural colors.

Although the traditional practices seem to offer some relevant
improvement, their lack of flexibility to confront rough image
conditions and the inability to control noise usually introduced
qualitatively unnatural effects. It is this failure that has encouraged
researchers to look at deep learning techniques, which have
recently taken the limelight in providing a more flexible, robust
and natural enhancement. Wei et al. (2018) presented Retinex-
Net that separates pictures into components of illumination and
reflectance, which works with the adjustment of illumination
and then suppresses noise in the reflectance component and
reconstructs the final results with a multi-scale method. Jiang
et al. (2021) proposed EnlightenGAN that uses an unsupervised
setup of a generative adversarial model where illumination changes
are learned directly off of the data and that visually natural
results are generated without the use of paired data. On the
same note, Zero-DCE presented by Guo et al. (2020) developed
enhancement into a curve estimation problem by which the authors
designed a small network that can enhance in real-time with

Abbreviations: AMBE, Absolute Mean Brightness Error; CII, Contrast

Improvement Index; HE, Histogram Equalization; AHE, Adaptive Histogram

equalization; CLAHE, Contrast Limited Adaptive Histogram Equalization; IFG,

Intuitionistic Fuzzy Generator; IFS, Intuitionistic Fuzzy Set; IFI, Intuitionistic

Fuzzy Image; IVIFS, Interval Valued Intuitionistic Fuzzy Set; IVIFI, Interval

Valued Intuitionistic Fuzzy Image; RSA, Reptile Search Algorithm; NIQE,

Natural Image Quality Evaluator; PSNR, Peak Signal Noise Ratio.

zero-reference learning. Elaborating on them, Yang et al. (2023)
proposed LightenNet, a convolutional architecture that can directly
learn the brightness mapping functions that allow enhancing low-
light scenes adaptively. FlightNet is a proposal of Ozcan et al.
(2023)) that is a lightweight architecture tested with the aim of
maintaining a balance between computational efficiency and high
quality improvement where it is fine-tuned to operating real-
time in devices with low resources. The SCI as developed by
Ma et al. (2022) improves the images through the learning of
illumination adjustment in the self-supervised mode by removing
the requirement of paired datasets and maximizing flexibility. Since
also, more recently, Demir and Kaplan (2023) introduced SSIF
that combines both spatial and spectral information to improve
the visibility and reveal the fine detail in the complicated low-
light scenarios. Moreover, transformer models, including Uformer
suggested by Wang et al. (2022), has demonstrated high levels of
generalization to restoration tasks, including similarity to low-light
enhancement through self-attention to detect relations on both
local and global dependencies to improve the images in a specific
dataset. The deep learning techniques are thought to be the most
common and effective option but the training of such networks
would need a performance hardware and the running time can
take a long time greatly varying meaning that it would require a
long time depending on the network structure. Wang et al. (2020)
conducted an experimental review of the traditional methods,
including the Retinex, machine learning methods, frequency-based,
which have offered a comprehensive examination of the benefits
and shortcomings of every approach.

Through these developments, fuzzy set theory has become
widely used in dealing with uncertainty in the digital image
processing. The images in digital form tend to leave uncertainty
because of the clarity and the general quality of the image. This
uncertainty exists in the case of low-light image enhancement,
which involves the difference in brightness and darkness between
the various parts of an image. Fuzzy set theory was introduced
by Zadeh (1965), which is successfully addresses this issue by
dealing with the fuzziness in intensity levels. So, thereby improving
image quality through enhanced contrast. In fuzzy set-based image
enhancement, the degree of contrast level of pixels is represented
using membership functions. For instance, Singh et al. (2021) have
created a fuzzy-based image enhancement method, which involves
using modified membership helps to enhance the global contrast
and maintain color image visual quality. Liu et al. (2022) came
up with a straight forward, yet effective improvement technique
that integrates an adaptive membership function with gamma
correction to improve brightness and reduce uneven illumination.
But traditional fuzzy sets just take into consideration a membership
degrees and explicitly report nothing on hesitation or uncertainty
in the assignment of values. In order to eliminate this problem,
Atanassov (1999) generalized fuzzy sets into Intuitionistic Fuzzy
Sets (IFS) with a hesitation component in addition to membership
function. This extension is enhanced better than fuzzy sets, In order
to create the hesitation element in IFS, Chaira (2020) developed the
Intuitionistic Fuzzy Generator (IFG) and it was inspired by Yager
and Sugeno generating functions, to construct an IFS from a fuzzy
set. The IFG involves a parameter that determines the final IFS
representation with different parameter values used for different
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applications. For example, Chaira (2011) tested a parameter of 0.85
when coming up with an intuitionistic fuzzy c -means clustering
algorithm of CT brain image segmentation, and subsequently used
a constant parameter of 0.1 in low-contrast mammogram image
enhancement (Chaira, 2020).

Building on this concept, Jebadass and Balasubramaniam
(2022b) proposed a technique to enhance low-light images via
IFS, where Yager’s IFG was employed to build Intuitionistic Fuzzy
Image (IFI). This parameter was confined within the range of
0.1–1.0 in steps of 0.1 to generate ten virtual images with the
best being selected based on the highest entropy to be the final
output image optimized. Extending this work further, Jebadass and
Balasubramaniam (2022a) proposed Interval-Valued Intuitionistic
Fuzzy Set (IVIFS) to improve image quality as well with the help of
the generating function of Yager. The parameter in this case was set
between 0.1 and 1.0 with a step size of 0.1 giving a total output of
100 candidate images with the one having maximum entropy being
selected. Subsequently, in “Color Image Enhancement Technique
Based on IVIFS” Jebadass and Balasubramaniam (2024) allow
parameter values to change between 0.1 to 10 as the generating
function of Chaira. Such were combined with the hesitation image
and added to the membership image to create the Interval-Valued
intuitionistic fuzzy image (IVIFI) that produced 1,000 candidate
images, one of which was chosen as the best one in terms of entropy.
Jebadass and Balasubramaniam (2023) presented the “Interval
Type-2 Fuzzy Set Based Block-SBU for Image Fusion Technique,”
based image fusion method based on the generating function
of Chaira. The IFI in this approach was changed into interval
type-2 fuzzy images and that was followed with block separation,
unification and successful fusion and conversion of blur images by
varying values of β and ζ starting with 0.1 expressed in multiples
of 0.1 as a fuzzy-based image fusion approach using Chaira’s
generating function. The new intuitionistic fuzzy generator (IFG)
is suggested by Selvam et al. (2024) to build IFI, in which CLAHE
was used instead of histogram equalization (HE). the parameter
range ranging between 0.1 to 1.0 with the image of the highest
entropy being selected. This chain of research was continued
further in Selvam and Sundaram (2025) by use of IVIFS where
Chaira generating function was applied to movements of parameter
variation ranging between 0.1 to 1.0 with the orchestration of
steps as 1.0. The methodology in contrast to the previous ones to
determine the best image based on the best entropy index, picks the
image with the best structural similarity index (SSIM) index. On
the same note, Ragavendirane and Dhanasekar (2025) provided an
improvement process, though the parameter was set to be between
0 and 1.0 in intervals of 0.01, producing 100 candidate images and
the image with the greatest entropy as the enhanced output. A
new intuitionistic fuzzy generator of low-light video-enhancement
was proposed by Chinnappan and Sundaram (2024) by employing
0.1–1.0 as the parameters, as ten images were created per frame,
and the frame with the highest level of entropy was enhanced
with histogram equalization. This showed enhancement in the
contrast, less noise and higher structural similarity over current
methods. Later doing the same work, Chinnappan and Sundaram
(2025) suggested using an image optimization strategy that uses
both IVIFS-based fuzzification with a fractional Sobel operator to
enhance edges and details. Parameters ζ (0.1–δ) and the degree of

hesitation J̃M (0.1–ρ) were used in order to produce a number of
candidate images with the optimal image selected depending on the
entropy. Such a technique guaranteed the best contrast, retention of
detail and likeness of form.

Based on this literature, it can be seen that parameter values
are usually taken as discrete fixed sets as opposed to optimizing
over continuous interpolation of the variables. Despite promising
results shown by fuzzy set, IFS and IVIFS-based approaches, they
have remained promising. One of the key weaknesses is that
they are based on brute-force adjustment of parameters. In most
existing solutions, a large number of candidate images are created
by changing the parameters with discrete variations (e.g., 0.1–10)
after which the one with the largest entropy or SSIM is chosen.
Although it is a tradeoff between reasonable improvement and
computational cost, and is not adaptive because similar range of
parameters might not be the best for every image. Also, discrete
sampling can fail to achieve the optimal point in the interval
causing suboptimal improvement. Such constraints encourage the
creation of optimization based techniques that can find the most
appropriate parameter values in a dynamic manner to enhance
them effectively and successfully.

To overcome this drawback, a number of scholars have
integrated the concept of optimization in fuzzy-based improvement
mechanisms. Kabir et al. (2023) used metaheuristics to fine-tune
parameters of the enhancement of the contrast images, whereas
Haribabu and Guruviah (2025) suggested an approach called
Fermatean fuzzy set and Whale Optimization as FFSWOA Fuse
to multimodal fusion of medical images. Rajasekar et al. (2022)
created an optimized version of the fuzzy genetic algorithm of
multimodal biometric recognition and Dounis et al. (2023) used
the state-of-the-art fuzzy sets along with genetic algorithms to
enhance the mammographic image quality. Such studies express
the usefulness of optimization in enhancing fuzzy-based techniques
but it may still be desirable to enhance fuzzy-based approaches
in order to guarantee flexibility, prevent early convergence and
versatility of various image classes. Although such old methods of
optimization like Genetic Algorithm (GA) (Alhijawi and Awajan,
2024), Harmony Search (HS) (Abualigah et al., 2020), Cuckoo
Search (CS) (Al-Abaji, 2021), Gray Wolf Optimizer (GWO) (Dada
et al., 2022), Krill Herd Algorithm (KHA) (Bhatti et al., 2024),
Artificial Bee Colony (ABC) (Pham et al., 2024), and Aquila
Optimizer (AO) (Abualigah et al., 2021) but no single algorithm
is universally optimal across all problem domains, as stated by the
No-Free-Lunch (NFL) theorem (Wolpert and Macready, 2002). It
has resulted in a continuous development of some new problem-
specific metaheuristic strategies. Based on these observations, the
paper will develop a brand new framework based on the low-
light image enhancement a system that combines Interval-Valued
Intuitionistic Fuzzy Sets (IVIFS) with the Reptile Search Algorithm
(RSA). In contrast to traditional methods based on the brute-
force or discrete parameter sampling, RSA provides continuous
optimization of the fuzzy membership and degree of hesitation
to guarantee the flexibility in a variety of imaging situations.
In the proposed framework, membership, non-membership and
hesitation degrees along with IVIFS domain are used to represent
the image in the first stage and actually the uncertainty in the low-
illuminated regions is well represented. The well-known idea of the
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offered method is to optimize these parameters with the help of
RSA and maximize a fitness value according to entropy, contrast
and brightness to enhance the visual value and dynamic range of
the images produced in low-light conditions.

This manuscript has the following structure: Section 2 presents
the required background and preliminaries. Section 3 describes the
proposed RSA–IVIFS enhancement methodology. Section 4 reports
the experimental analysis and results, while Section 5 discusses the
limitations and potential applications. Finally, the conclusion of the
study is done in Section 6.

2 Fundamental concepts

In this section, the author describes the main ideas that are the
foundation of the current work and help to have a clearer idea of
the suggested methodology.

2.1 Color space conversion

In case of illumination-based improvement, the input images
are firstly transformed in the HSV color model out of the RGB
space. The HSV model separates the chromatic constituents (hue
and saturation) of a representation, unlike the RGB model, which
makes it especially appropriate in the adjustment of brightness
and contrast. In the present work, the enhancement procedure is
confined to the V channel since it directly encodes the intensity
distribution of the image, while the H and S channels are retained to
ensure that the original color fidelity is preserved. The conversion
from RGB to HSV is performed using the standard transformation
equations reported in Wu et al. (2024).

2.2 Fuzzy set and its representation in
image

Zadeh (1965) introduced the concept of a fuzzy set to represent
vagueness and imprecision. A Fuzzy Set (FS) A in a universe of
discourse X is defined as:

A = {(x, μA(x)) | x ∈ X}, (1)

where μA(x) :X → [0, 1] is the membership function that assigns
to each element x a degree of membership in A.

This concept is used in image processing wherein a sharp
image, the pixel values of which are usually in the range of 0
to 255, is transformed into a fuzzy image representation. This
is accomplished by the use of a membership operation which
normalizes the gray levels of the pixels within the range [0, 1]. The
fuzzification process of an image S is written as.

μij =
γij − γmin

γmax − γmin
, (2)

where γij is the value of the intensity of a pixel, γmin and γmax are the
maximum and minimum gray levels of the image respectively. This
fuzzy representation provides a foundation for extending classical
fuzzy concepts are broadened to a higher level of representation like
IFS and IVIFS.

2.3 Intuitionistic Fuzzy Sets (IFSs)

The Intuitionistic Fuzzy Sets (IFSs) are a category of fuzzy sets
constructed based on the intuitionistic logic instead of a classical
or traditional logic approach. This sub section is a summary of
the IFSs. It brings in the noteworthy mathematical constructs and
provides the procedure involved in developing an IFS and creating
the relatable Intuitionistic Fuzzy Image (IFI).

2.3.1 Mathematical foundation of IFSs
To generate membership and non-membership functions,

Atanassov (1999) presented an improved fuzzy set variant known
as the IFS. An IFS on a universe of discourse X can be described as

F = {(x, μF(x), νF(x)) | x ∈ X}, (3)

where μF(x) :X → [0, 1] and νF(x) :X → [0, 1] denote the
membership and non-membership degrees of an element x with
the condition 0 ≤ μF(x) + νF(x) ≤ 1 and also the hesitancy degree
πF(x) is defined as πF(x) = 1−μF(x)−νF(x), where πF(x) ∈ [0, 1].
Thus, for every x ∈ X , the relation μF(x) + νF(x) + πF(x) = 1 is
satisfied.

2.3.2 Construction of IFS and Intuitionistic Fuzzy
Image (IFI)

In the previous section, the mathematical background of the
IFS was discussed, where each pixel in the image is represented by a
membership and non-membership degree. However, to practically
apply this concept in image enhancement, it becomes important
to construct suitable functions that can generate these values
accurately for each pixel. To achieve this, an Intuitionistic Fuzzy
Generator (IFG) plays a significant role in extending fuzzy sets into
IFS and is defined as a function

ψ :[0, 1] → [0, 1]

that satisfies the condition

ψ(x) ≤ (1 − x), ∀x ∈ [0, 1]. (4)

The development of an Intuitionistic Fuzzy Generator (IFG) begins
with characterizing a fuzzy complementary function, which can be
realized by selecting either an increasing or a decreasing function.
In this work, an IFG is developed using Chaira (2020) generating
function to effectively handle low-light images.

Let n :[0, 1] → [0, 1] be an increasing function that satisfies the
condition of an involutive fuzzy complement. A function n(x) is
said to be an involutive fuzzy complement if and only if there exists
a continuous, strictly increasing function L such that L(0) = 0. In
this case, the fuzzy complement is expressed as:

n(μ(x)) = L−1(L(1) − L(μ(x))). (5)

To construct the complement, we consider the generating function
defined as:

L(x) = 1
a

log[1 + x(1 + a)], (6)
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where a is a control parameter that adjusts the shape of the fuzzy
transformation curve. Substituting x = 0 and x = 1 in (6) :

L(0) = 1
a

log(1) = 0, L(1) = 1
a

log(2 + a).

The inverse of L(x) can be expressed as:

L−1(x) = eax − 1
1 + a

. (7)

By substituting L(x) and L−1(x) into the (5), the fuzzy complement
function becomes:

n(x) = L−1
[

1
a

log(2 + a) − 1
a

log(1 + (1 + a)x)
]

, (8)

= L−1
[

1
a

log
(

2 + a
1 + (1 + a)x

)]
.

Now, using (7) in (9) we get,

n(x) = elog
(

2+a
1+(1+a)x

)
− 1

1 + a
, (9)

n(x) =
2+a

1+(1+a)x − 1

1 + a
,

n(x) = (2 + a) − [1 + (1 + a)x]
(1 + a)[1 + (1 + a)x]

,

= 1 − x
1 + (1 + a)x

, a > 1. (10)

Thus, the fuzzy complement is expressed as:

n(x) = 1 − x
1 + (1 + a)x

. (11)

Based on ψ(x) in (4), the corresponding non-membership function
is defined as:

n(μ(x)) = ψ(μ(x)) = 1 − μ(x)
1 + (1 + a)μ(x)

, a > 0. (12)

The complement relation is employed to compute the enhanced
membership value μ′

ij at pixel position (i, j), given by:

μ′
ij = 1 − n(μij). (13)

Substituting (12) in (13) gives

μ′
ij = 1 − 1 − μij

1 + (1 + a)μij
,

μ′
ij =

(a + 2)μij

1 + (a + 1)μij
. (14)

This illustrates the enhanced membership function for the image.
Similarly, the non-membership function for the enhanced

image is obtained by using (12) as

ν′ij = ψ(μ′
ij) =

1 − μ′
ij

1 + (1 + a)μ′
ij

. (15)

Substituting (14) in (15) we get,

ν′ij =
1 − μij

1 + (a2 + a + 3)μij
. (16)

Finally, the hesitation value for the image at each pixel is computed
using the standard intuitionistic fuzzy relation:

π ′
ij = 1 − μ′

ij − ν′ij. (17)

2.4 Interval-Valued Intuitionistic Fuzzy Sets
(IVIFIs)

This subsection represent the overview of IVIFSs. It outlines
the fundamental mathematical ideas and explains how an IVIFS is
constructed and subsequently used IVIFI.

2.4.1 Mathematical foundation of IVIFIs
An IVIFS F∗ on a universe of discourse X is defined as

F∗ = {(x, MF∗ (x), NF∗ (x)) | x ∈ X}, (18)

where MF∗ (x) ⊆ [0, 1] and NF∗ (x) ⊆ [0, 1] denote the membership
interval and the non-membership interval of the element x ∈ X.
These intervals are represented as

MF∗ (x) = [
inf MF∗ (x), sup MF∗ (x)

]
, NF∗ (x) = [

inf NF∗ (x), sup NF∗ (x)
]
,

and it must satisfy the condition sup MF∗ (x)+sup NF∗ (x) ≤ 1, ∀x ∈
X.

2.4.2 Construction of IVIFS
Although IFS effectively reduces ambiguities in images,

practical scenarios such as sensor noise and unclear boundaries
provide a level of uncertainty that remains challenging to quantify.
The hesitation degree in IFS being a single, definitive number,
may not adequately represent this variability. To address this issue,
IVIFS was first introduced by Bustince and Burillo (1995), extend
IFS by representing membership and non-membership as intervals
rather than fixed values.

Now to construct the IVIFS by defining a mapping as follows:

σ : IFS → IVIFS

σ (F) = {(x, Mσ (F), Nσ (F) | x ∈ X} = F∗, (19)

Mσ (F) and Nσ (F) are split into the upper and lower limits of the
membership and non membership intuitionistic fuzzy intervals,
respectively. These components are defined as follows:

1. Mσ (F)U (x) = MF∗Ũ (x) = μ′
ij(x) + ω · π ′

ij(x), 0 ≤ ω ≤ 1.

2. Mσ (F)L(x) = MF∗L̃(x) = μ′
ij(x) − c · π ′

ij(x), 0 ≤ c ≤ μ′
ij(x)

π ′
ij(x) .

3. Nσ (F)U (x) = NF∗Ũ (x) = ν′ij(x) + ρ · π ′
ij(x), 0 ≤ ρ ≤ 1.

4. Nσ (F)L(m) = NF∗L̃(x) = ν′ij(x) − d · π ′
ij(x), 0 ≤ d ≤ ν′ij(x)

π ′
ij(x) .
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The parameters ω, c, ρ, d weight the influence of the hesitation
degree on the interval bounds. Specifically, ω and c adjust the
membership interval, while ρ and d adjust the non-membership
interval. With the constraints 0 ≤ ω + ρ ≤ 1, 0 < ω + c ≤
1, 0 < ρ + d ≤ 1.

Next, the interval widths can be expressed as

hM = MF∗Ũ (x) − MF∗L̃(x) = (ω + c) · π ′
ij(x) = αM · π ′

ij(x), (20)

hN = NF∗Ũ (x) − NF∗L̃(x) = (ρ + d) · π ′
ij(x) = βN · π ′

ij(x). (21)

Where αM and βN correspond to (ω + c) and (ρ + d), respectively.
This construction confirms the gap between membership and

non-membership values in IVIFS never exceeds the intuitionistic
fuzzy index (π ′

ij). Here, if F ∈ FS, then the mapping is defined as

σ (F) = {(x, Mσ (F∗), Nσ (F∗) | x ∈ X)}

with π ′
ij(x) = 0, implies

MF∗Ũ (x) = MF∗L̃(x) = μ′
ij(x), (22)

NF∗Ũ (x) = NF∗L̃(x) = ν′ij(x), (23)

which implies σ (F) = F. Therefore, if F ∈ FS then σ (F) = F.

2.4.3 Interval-Valued Intuitionistic Fuzzy Image
(IVIFI)

The low-light input image S = [γij] of size k × l, is normalized
using (2), and the resulting values are used to create a fuzzified
image. During this fuzzification step assigns a membership value to
each pixel, improving low-intensity information and maintaining
the structural details. The fuzzified image is then converted into
an Intuitionistic Fuzzy Image (IFI) F = [fij] by applying the
transformation in (14), which incorporates both membership
and non-membership values to better model pixel uncertainty.
To further enrich this representation, the IFI is extended to an
Interval-Valued Intuitionistic Fuzzy Image (IVIFI) by combining
the transformations in (14) and (20). This extension defines interval
limits that are determined by the hesitation value π ′

ij, resulting in an
IVIFS representation F∗ = [f ∗ij ] defined in (24).

f ∗ij = μ′
ij + (ω + c)π ′

ij,

f ∗ij = μ′
ij + hM . (24)

Here, μ′
ij represents the modified membership degree, while the

parameters ω and c determine how the hesitation term adjusts the
membership interval. Unlike the IFI, which assigns a single value
to each component, the IVIFI captures pixel uncertainty using
intervals, providing more flexibility in representing ambiguous
regions and improving the preservation of structural details in
low-light images.

3 Proposed method

In this section, the proposed methodology of RSA-IVIFI
enhancement is described, where image improvement as the

Reptile Search Algorithm and an optimization problem is used
to create the most optimal IVIFI parameters. The general design
has three major aspects: the problem formulation, the RSA
optimization strategy, and the complete RSA-IVIFI enhancement
algorithm. Figure 1 illustrates the full process working diagram of
the proposed RSA-IVIFI improvement algorithm. The conversion
of the image starts the process based on conversion of RGB
to HSV (Section 2.1), the luminance information is isolated in
the V-channel while preserving color components in H and
S channels. The fundamental improvement process employs
the RSA (Section 3.2) to optimize IVIFI parameters (a, αm)
through an iterative optimization loop. This optimization is
driven of four behavioral states of the RSA: High Walking
for global exploration, Belly Walking for local search, Hunting
Coordination for collaborative information sharing, and Hunting
Cooperation for final convergence. These steps, as seen in
Figure 1 are mathematically reasoned out in Sections 3.2.2–3.2.5.
After each candidate solution goes through the fitness function
(Section 3.1) it is computed to estimate the quality of each
solution after it undergoes the complete enhancement pipeline:
IVIFI transformation (Section 2.4), CLAHE processing (Section
3.4), and defuzzification (Section3.5). The detailed mathematical
formulation of the proposed methodology is described in the
upcoming subsections.

3.1 Problem formulation

Images taken in low-light are usually full of low contrast,
low brightness and structural detail. Consequently, the process
of improvement is developed into an optimization problem in
order to discover it automatically. The optimum values of the
IVIFS-based visual enhancement approach which optimize the
visuals of the resulting images. In this paper, the proposed fitness
function is formulated as a multi-objective function. To balance
these objectives, a normalized weight coefficients of w1 = 0.4,
w2 = 0.3 and w3 = 0.3 are assigned, where the slightly higher
value of w1 emphasizes entropy to preserve fine details, while w2
and w3 ensure balanced contrast and brightness retention. The
fitness function proposed in (Acharya and Kumar, 2021) employs
equal weighting for all components, which may optimize statistical
measures but often compromises perceptual quality. In contrast,
the proposed fitness function in this work is designed to prioritize
visual quality and detail preservation, producing enhanced images
that are both statistically consistent and perceptually superior.

The first objective function is represented as entropy, which
evaluates the amount of information content present in the
enhanced image. It is mathematically represented as

Ê(Ienh) = −
L−1∑
i=0

pi log2(pi). (25)

where pi is the normalized histogram probability of gray level i
and L represents the total number of intensity levels. An increased
value of entropy implies that the pixel intensities have a more even
distribution, denotes that the improvement procedure has been
effective in uncovering concealed data and finer structural. some
details that were not seen in the low-light original image.
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FIGURE 1

Flowchart demonstrate the proposed IVIFS-RSA enhancement framework.

The second objective role is determined by Contrast
Improvement Index (CII) which determines the assessment
of the increased contrast between the original image Io and
enhanced image Ienh. It is formulated as

ĈII(Io, Ienh) = C(Ienh)
C(Io)

, (26)

where

C(I) =
√√√√ 1

MN

M∑
x=1

N∑
y=1

(I(x, y) − μI)2. (27)

Here, the standard deviation–based contrast measure of an image
I, M × N is the image size, and μI is the mean intensity. A value
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of CII > 1 indicates that the enhanced image displays improved
contrast than the original, indicating successful enhancement and
improved edges clarity and fine textures.

The third objective function considers brightness preservation,
which is evaluated using the Absolute Mean Brightness Error
(AMBE). It ensures that the enhancement process maintains the
overall natural brightness level of the original image and avoids
over-enhancement or darkening and It is formulated as

̂AMBE(Io, Ienh) = |M(o) −M(e)|. (28)

where M(o) and M(e) denote the mean intensities of the original
and enhanced images, respectively.

By combining these three objective functions, the overall fitness
function is formulated as

max
a∗ , h∗M

F(a∗, h∗M) = 0.4 Ê(Ienh)+0.3 ĈII(Io, Ienh)+0.3 ̂AMBE(Io, Ienh).

(29)
where the parameters a and hM act as the control variables of
the IVIFS transformation that determine the amount of hesitation,
fuzzification and scaling during enhancement. The goal of the
optimization is to determine the optimal parameter set [a∗, h∗M]
that yields the highest fitness value F(a, hM), resulting in an
enhanced image with higher improved contrast, information
content, and preserved natural brightness. The parameters are
optimized within bounded ranges, with a ∈ [0.1, 10] and hM ∈
[0.1, 1], which define the feasible search space of the optimization
problem.

3.2 Reptile search algorithm

This section demonstrates the optimization task of determining
the most effective parameters (a, hM) for enhancing the contrast
of low-light images within the Interval-Valued Intuitionistic Fuzzy
Set (IVIFS) and CLAHE framework. The Reptile Search Algorithm
(RSA) was adopted as the optimization method based on its
advantages over other metaheuristics for this type of problem
domain. The optimization problem in IVIFS-CLAHE presents
three major challenges: (1) the requirement for precise fine-tuning
of enhancement parameters (2) a multimodal fitness surface with
multiple local optima, and (3) complex interdependencies among
contrast, brightness preservation and structural integrity metrics.
RSA effectively addresses these challenges due to its adaptive design
and balanced search dynamics.

Unlike Genetic Algorithms (GA), in where disruptive crossover
operations can slow down convergence, or Particle Swarm
Optimization (PSO) that is associated with premature convergence
in search complexities spaces, RSA uses a two stage process that is
well organized, which ensures that there is a distinction between
exploration (global search) and exploitation (local search). There
are four integrated mathematical models of these strategies: high
walking, belly walking, coordination of hunting and cooperation in
hunting. The exploratory the phase retains a diverse population to
cover the globe effectively whereas the exploitative phase executes
its functions and solutions with high accuracy an important feature
to control exactly the fine parameters (a, hM) in CLAHE. In
addition to its biological motivation, the mechanisms of RSA

have the practical optimization benefits. Crocodiles’ exceptional
low-light vision and cooperative hunting behaviors reflect RSA’s
ability to adaptively balance wide-ranging exploration with precise
exploitation, supports both robustness and efficient convergence.

Benchmark studies in the foundational RSA literature
Abualigah et al. (2022) have demonstrated its improved
optimization accuracy, convergence rate and reliable performance
compared with GA, PSO and Differential Evolution (DE) across
63 benchmark functions. A recent survey by Sasmal et al. (2024)
reported that RSA achieves an efficient balance between exploration
and exploitation with competitive computational performance
compared to other commonly applied metaheuristics. These
findings confirm RSA’s suitability for solving highly nonlinear and
multimodal optimization problems. Owing to these properties,
RSA is well suited for optimizing (a, hM) parameters that boost
image contrast and perceptual quality while maintaining the
natural appearance of low-light images.

The following subsections describe the three major stages of
RSA: Initialization, Exploration and Exploitation.

3.2.1 Initialization phase
In RSA (Abualigah et al., 2022), the optimization process begins

with the generation of an initial population of candidate solutions,
which can be represented in the form of a matrix Y :

Y =

⎡
⎢⎢⎢⎢⎣

y1,1 · · · y1,j · · · y1,n
y2,1 · · · y2,j · · · y2,n

...
. . .

...
. . .

...
yN,1 · · · yN,j · · · yN,n

⎤
⎥⎥⎥⎥⎦ .

Here, N denotes the number of candidate solutions in the
population and n represents the dimensionality of the optimization
problem. The notation y(i,j) corresponds to the value of the jth

decision variable in the ith candidate solution. The initialization of
each element is performed using:

y(i,j) = LB + rand × (UB − LB), j = 1, 2, . . . , n. (30)

where UB and LB denote the upper and lower bounds of the search
space, respectively and rand is a uniformly distributed random
number between 0 and 1. This procedure ensures that the initial
population is spread across the entire feasible region of the search
space.

3.2.2 Encircling phase (exploration)
The encircling stage of RSA is based on the high-walking

and belly-walking of crocodiles movements, and these aid it
in searching a wide space and then approaching its prey. This
mechanism broadens the search space, promotes the process of
exploring a large set of candidate solutions and eliminates the
risk of premature convergence. The ability to model this behavior
used by RSA puts it in a better position to identify promising
areas during the search domain and thus a good foundation to the
subsequent stage of later hunting (exploitation).
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3.2.3 Strategy 1: high walking
The exploration process enables the reptile to detect the prey

area and establish the optimal hunting region using the high
walking strategy when d ≤ D/4. During the exploration phase,
the reptile identifies the prey region and determines the optimal
hunting zone by adopting the high walking strategy, is formulated
as

y(i,j)(d + 1) = Bestj(d) ×−η(i,j)(d) × β − R(i,j)(d) · rand, d ≤ D
4

(31)
Here, Bestj(d) represents the j-th position of the best solution
obtained up to the current iteration. η(i,j)(d) denotes the hunting
operator that influences the search direction. The parameter β

controls the accuracy of the search process, while rand is a random
number in the range [0, 1] that maintains population diversity. The
variable d is the current iteration number and D is the maximum
number of iterations allowed. The term R(i,j)(d) progressively
reduces the search space over time, expressed as

η(i,j)(d) = Bestj(d) × P(i,j) (32)

R(i,j)(d) = Bestj(d) − y(r2,j)

Bestj(d) + ε
(33)

In (31), P(i,j) denotes the percentage difference between the j-th
position of the best solution and that of the current solution. The
index r2 is a randomly chosen number within the range [1, N]
where N is the population size and The ε is a small constant used to
avoid division by zero.

3.2.4 Strategy 2: belly walking
When the prey location is identified and the iteration index

falls within the range D/4 < d ≤ 2D/4, the reptile adopts the
belly walking strategy to prepare the surrounding area and closely
monitor the prey. This behavior is mathematically defined as

y(i,j)(d+ 1) = Bestj(d)× y(r1,j) × ES(d)× rand, D/4 < d ≤ 2D/4
(34)

The term ES(d) is a probability factor that regulates the movement
magnitude, defined as

ES(d) = 2 · r3 ·
(

1 − 1
D

)
, (35)

where r3 is a random number in the range [−1, 1] and D denotes
the maximum number of iterations. This formulation allows
ES(d) to fluctuate between approximately −2 and 2, providing
stochastic adjustment of movement strength. This variability
helps to maintain population diversity while refining the search
around promising regions, thereby strengthening the exploitation
capability of RSA.

3.2.5 Hunting phase (exploitation)
In RSA, the hunting phase is inspired by the natural predatory

behavior of crocodiles which primarily depends on coordination
and cooperation. Once promising regions are detected during the

exploration stage, the algorithm shifts into this phase to intensify
the search and identify optimal solutions. This stage incorporates
two complementary strategies: hunting coordination and hunting
cooperation both designed to direct the search agents toward the
global optimum.

3.2.6 Strategy 3: hunting coordination
During this strategy, agents expand the search area in the early

iterations (d ≤ D/2) and slowly shift toward convergence as
iterations progress (d > D/2). Once the prey region is identified,
the reptile prepares to attack. This strategy operates within the
interval 2D/4 < d ≤ 3D/4, and is mathematically expressed in
(36)

y(i,j)(d + 1) = Bestj(d) × P(i,j)(d) × rand, 2D/4 < d ≤ 3D/4,

(36)

P(i,j) = α + y(i,j) − M(yi)
Bestj(d) · (UBj − LBj) + ε

(37)

Here, α is assigned a value of 0.1 serving as a key parameter that
regulates both the sensitivity and the precision of the search across
iterations. The term M(yi) represents the mean position of the i-th
solution, it is defined as,

M(yi) = 1
n

n∑
j=1

y(i,j). (38)

This ensures a balance between exploration and exploitation by
guiding agents toward the prey while maintaining controlled
variability in the search.

3.2.7 Strategy 4: hunting cooperation
Hunting cooperation is applied during the later iterations

(3D/4 < d ≤ D) and defined as

y(i,j)(d+1) = Bestj(d)−η(i,j)(d)×ε−R(i,j)(d)×rand, 3D/4 < d ≤ D.
(39)

This strategy is motivated by cooperative hunting behavior of
crocodiles, where agents exchange information and concentrate on
the most promising regions of the search space. This coordination
and cooperation help reduce the risk of getting trapped in local
optima by preserving solution diversity, while still directing the
search process toward the global optimum. To support this
mechanism, two stochastic parameters α and β are employed,
which play a crucial role in avoiding stagnation, especially during
the later stages of optimization. The algorithm terminates when
the maximum iterations are reached, convergence is achieved or no
improvement occurs over successive iterations.

3.3 The RSA-IVIFI enhancement algorithm

Algorithm 1 illustrated the integration of RSA-IVIFI
enhancement framework, combining the problem formulation
established in Section 3.1 with the Reptile Search Algorithm
methodology detailed in Section 3.2.
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The algorithm requires three inputs: the low-light image IO, the
population size N, and the maximum number of iterations D. The
initialization phase generates a population of N agents using (30),
where each agent yi corresponds to a candidate solution containing
the IVIFI parameters (a, hM) within the defined bounds.

The optimization core consists of an iterative loop executing for
D cycles, with each iteration comprising three sequential stages:

Fitness Evaluation: Each agent’s parameters (ai, hM,i) drive
the complete IVIFI-CLAHE enhancement pipeline. This process
transforms the input image through intensity normalization (2),
computation of membership (14), Non membership (16) and
hesitation degreee (17) to construct the IVIFI image using (24),
CLAHE-based contrast enhancement, and final defuzzification
to produce enhanced image candidate Ienh. The fitness function
F(ai, hM,i) from (29) then evaluates enhancement quality through
a weighted combination of enhancement measure, contrast
improvement index and brightness preservation metric.

Solution Update: The algorithm compares all agents’ fitness
scores and updates the global best solution ybest when superior
performance is identified.

Population Update: Agent positions are modified using one
of four RSA strategies described in Sections [3.2.2 and 3.2.5]
and the Strategy selection follows the iterative progression: High
Walking (d ≤ D/4), Belly Walking (D/4 < d ≤ D/2), Hunting
Coordination (D/2 < d ≤ 3D/4), and Hunting Cooperation
(3D/4 < d ≤ D).

Upon completing D iterations, the algorithm returns the
enhanced image Ienh generated using the optimal parameters
(a∗, h∗M) derived from the best-performing agent ybest .

3.4 CLAHE technique and integration of
IVIFS-CLAHE

Contrast Limited Adaptive Histization Equalization (CLAHE)
improves the local image contrast and at the same time limiting
amplification of noise, overcome the weaknesses of traditional
histogram equalization. This study uses CLAHE in combination
with Interval-Valued Intuitionistic Fuzzy Sets (IVIFS) to maximize
low-light image enhancement. The hybrid methodology adheres to
known fuzzy-CLAHE methodologies that prove their effectiveness
enhanced outcomes of improvement (Padmavathy et al., 2024).
The multi-stage system analyses pictures in that order: IVIFS
transformation processes the uncertainty of low-light pixel
intensities, and then Application of the refined representation to
CLAHE. This avoids noise amplification, in addition to optimizing
local contrast. In this paper, CLAHE is used on the V cover of the
HSV color space, but not H and S channels remain unchanged. The
procedure is as follows:

1. Convert the RGB image to HSV and extract the V channel.
2. Divide the V channel into small tiles, for example, 8 × 8 pixels.
3. Compute the histogram for each tile and clip it at a predefined

threshold to prevent over-enhancement.
4. Redistribute the clipped pixels uniformly across the histogram

bins and apply histogram equalization to enhance the tile.
5. Apply bilinear interpolation across neighboring tiles to remove

block boundaries and produce smooth transitions.

Require: Low-light image I0, population size N,
maximum iterations D

Ensure: Enhanced image Ienh, optimal parameters
(a∗,h∗m)

1: Initialize RSA parameters and population of
agents yi = (ai,hm,i) within bounds

2: Evaluate initial fitness of each agent and set
ybest

3: for d = 1 to D do
4: for each agent yi = (ai,hm,i) do
5: Normalize intensity values
6: Compute Membership, Non-membership and

Hesitation images
7: Construct IVIFI image
8: Apply CLAHE on IVIFI
9: Perform defuzzification → Ienh
10: Compute fitness:
11: F(ai,hm,i) = 0.4E(Ienh) + 0.3CII(I0,Ienh) +

0.3AMBE(I0,Ienh)
12: end for
13: Update the best solution ybest

	 RSA Exploration and Exploitation
14: if d ≤ D/4 then
15: Apply High Walking update
16: else if D/4 < d ≤ D/2 then
17: Apply Belly Walking update
18: else if D/2 < d ≤ 3D/4 then
19: Apply Hunting Coordination update
20: else D/2 < d ≤ 3D/4
21: Apply Hunting Cooperation update
22: end if 3D/4 < d ≤ D
23: end for
24: return Ienh with optimal parameters (a∗,h∗m)

Algorithm 1. RSA-IVIFI image enhancement.

6. Merge the enhanced V channel with the original H and S
channels and convert the image back to RGB to obtain the final
enhanced image.

In this work, CLAHE is integrated with an Interval-Valued
Intuitionistic Fuzzy Set (IVIFS) framework to form a sequential
enhancement pipeline. The process begins with the IVIFS stage,
which is designed to handle the inherent uncertainty in noise
reduction and in dark space, resulting in a cleaner intermediate
image. This pre-conditioned image is then serves as the input
for the CLAHE algorithm. With the noise already mitigated,
CLAHE can robustly enhance local contrast, preventing the noise
amplification that typically plagues such methods. This combined
methodology ensures that the contrast enhancement is applied to a
pre-optimized image, leading to more reliable and superior results.

3.5 Defuzzification of fuzzy image

Defuzzification converts a fuzzy image into a sharp image,
which is suitable for visualization and further processing. The input
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FIGURE 2

Original low-light images. Images reproduced from Chen et al. 2018 Deep Retinex Decomposition for Low-Light Enhancement dataset (https://
daooshee.github.io/BMVC2018website/).

image in the proposed method is initially converted into fuzzy
domain in order to get the fuzzy intensity values. The maximum
and minimum gray levels of the original image (Zmin and Zmax) are
determined and each fuzzy pixel Zmn is mapped to a crisp value Z′

mn
using

Z′
mn = Zmn · (Zmax − Zmin) + Zmin, (40)

producing the resultant improved image. This approach is
simple, computationally efficient, preserves the original dynamic
range, effectively enhances visibility and contrast in low-light
images. Alternative defuzzification strategies can also be employed
depending on specific application requirements.

4 Experimental analysis

The experiments were performed on a machine that have a
13 th-generation Intel R© CoreTM i7-1360P processor (2.20 GHz),
16 GB RAM and a 475 GB SSD, running Windows 11 Home Single
Language (version 24H2). All the implementations were done in
MATLAB R2024b with Image Processing Toolbox. The assessment
utilized LOL dataset (Wei et al., 2018), which contains 500 paired
low-light and normal-light images. For this study, 14 low-light
images were selected, as shown in Figure 2. The LOL dataset is a
widely used benchmark for low-light image enhancement due to its
acquisition noise and standardized 400× 600 indoor scenes. The
computational time (CT) of the proposed RSA-based framework,
as shown in Figure 3 ranged between 120s and 150s with slight
variations observed for the same image across different runs due
to the stochastic nature of RSA. The dataset is publicly available for
research purposes.

4.1 Parameter selection

The parameters that are used in the successful implementation
of our proposed methodology are given in Table 1. The population
size is set to be 100 candidate solutions, which represents a
balanced approach between both computational efficiency and
solution diversity. A lower risk number of population can cause
premature convergence, excessively large population would be a
very large source of computational overhead without proportional
performance gains. The 100 iterations had been decided by the
maximum. empirical analysis, which gave sufficient convergence
on all test images at relatively low runtime reasonable. The
exploration and exploitation parameters α = 0.1 and β =
0.9 were set to emphasize local refinement while maintaining
sufficient global search capability, making this configuration
particularly suitable for image enhancement applications requires
a precise parameter tuning. The search space was limited
to a ∈ [0.1, 10] and hM ∈ [0.1, 1] depending on the
theoretical characteristics of Interval-Valued Intuitionistic Fuzzy
Sets and based on empirical observations from initial experiments
(Jebadass and Balasubramaniam, 2024). These bounds guarantee
the mathematical stability, but include the effective parameter set
as various conditions of low-light enhancement.

4.2 Efficiency and precision advantages of
RSA

The benefits of optimization that the proposed RSA framework
offers are very evident in Table 2. Using As a representative
example, Image 1, the RSA method was able to find the precise
optimal parameter pair (a = 1.381, hM = 0.1005), but the
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FIGURE 3

Enhanced images with optimized parameter values (a∗, h∗
M) obtained through RSA-based tuning. Images reproduced from Chen et al. 2018 Deep

Retinex Decomposition for Low-Light Enhancement dataset (https://daooshee.github.io/BMVC2018website/).

TABLE 1 Parameter employed in RSA optimization.

Parameter Value

Population size 100

Maximum iterations 100

α 0.1

β 0.9

a bounds [0.1, 10]

hM bounds [0.1, 1]

coarse and fine brute-force searches were essentially cannot take
this step size solution because steps are discrete. Limited the rough
brutality method to 0.1 change, only reached the suboptimal pair
(a = 1.4, hM = 0.1). Although the fine brute-force search
provided a slightly closer to the truth, ′a′ parameter (a = 1.38),
it was still a limited tool that was offered by brute-force search
to hM values (hM = 0.10), which does not allow hM to go to
the real continuous optimum. This slight improvement needed a
high cost of computation, which needed 100,000 evaluations and
more than 11,600 s of processing time. As a comparison, RSA
identified the exact optimal pair for Image 1 using only 3,000
evaluations in 130.4 s achieving 97% reduced appraisals and 98.9%
lower calculation time. By working on a continuous parameter
space, RSA achieves higher precision and improved efficiency.
This performance advantage is consistently observed across all test
images, as reflected in the varied optimal parameter combination
(a∗, h∗M) shown in Figure 3, confirming RSA’s robustness and
adaptability for multi-parameter, image-specific optimization.

4.3 Comparison of existing methods

The visual and performance analysis of the proposed
enhancement method is demonstrated through its comparison
with seven state-of-the-art methods: CLAHE (Haddadi et al.,
2023), LIME (Supraja et al., 2022), LightenNet (Yang et al., 2023),
FlightNet (Ozcan et al., 2023), AIE (Wang et al., 2019), SSIF (Demir
and Kaplan, 2023), and IVIFI (Jebadass and Balasubramaniam,
2023). Here, CLAHE, LIME, LightenNet, FlightNet, AIE, SSIF and
IVIFI denote the names of the enhancement methods, whereas the
authors and years in brackets correspond to the original works.

Table 3 provides a comprehensive visual comparison across all
14 test images from the LOL dataset. The first column displays
the original low-light images, followed by enhancement results
from: CLAHE (second column), AIE (third column), FlightNet
(fourth column), LightenNet (fifth column), LIME (sixth column),
SSIF (seventh column), IVIFI (eighth column), and the proposed
method (ninth column). This extensive comparison demonstrates
the consistent performance of our approach across diverse lighting
conditions and scene types.

4.4 Visual analysis

In Figure 4, the enhancement results produced by various
methods for Image 11, while Figure 5 shows the corresponding
histogram equalization, in which the contrast distribution of the
enhanced outputs is illustrated.

Figure 4 demonstrates the enhancement results of a low-
light image: (a) the original image exhibits poor visibility with
limited detail and dynamic range, (b) CLAHE improves local
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TABLE 2 Comparative analysis demonstrating the optimization efficiency and parameter tuning precision of RSA.

Method Parameter
ranges

Step /
precision

Evaluations Time
(seconds)

Key finding

Brute-force (Coarse)
(Reference)

a: 1.0–10.0, hM :
0.1–1.0

0.1 (discrete) 910 98.5 Limited precision due to coarse grid; unable
to reach exact optimum

Brute-force (Fine) a: 1.0–10.0, hM :
0.1–1.0

0.01 (discrete) 100,000 11,658.6 High computational cost; still constrained by
discrete steps

IVIFI-RSA (Proposed) a: 1.0–10.0, hM :
0.1–1.0

Continuous 3,000 130.4 Efficient continuous optimization; precisely
identifies optimal parameter (e.g., θ = 1.381)

contrast and object visibility but introduces noise and reddish
tones, (c) AIE brightens the image but causes overexposed areas
and a bluish color cast, (d) FlightNet suppresses noise and
smooths illumination but over-smooths textures, (e) Lightnet
provides conservative enhancement, preserving natural tones
while leaving shadows undercorrected, (f) LIME enhances details
and contrast but produces halo artifacts and amplified noise,
(g) SSIF improves structural clarity with natural exposure but
slightly over-smooths and desaturates some regions, (h) IVIFI
offers high contrast and vibrant colors with minor haloing and
local noise and (i) the proposed method achieves balanced
brightness, accurate colors, well-preserved textures and effective
noise mitigation, demonstrating robustness for real-world low-
light enhancement.

Figure 5 shows the histograms corresponding to Figure 4. (a)
Original is compressed in the lower intensity range indicating poor
brightness and contrast, (b) CLAHE depicts that pixel values are
widely dispersed in the middle range of intensity, which means
that the overall contrast could be increased. This behavior is
also reflected in the corresponding image, where there is better
brightness, as well as visible noise amplification in smooth areas,
(c) AIE increases brightness and mid-to-high intensities but over-
amplifies highlights, (d) FlightNet smooths midtones and preserves
details but under-enhances shadows, (e) Lightnet enhances dark
regions while offering limited contrast in bright areas, (f) LIME
improves dark and midtones with noise control but struggles in
severely underexposed regions, (g) SSIF enhances textures but
may introduce noise, (h) IVIFI balances midtones and highlights
with good color preservation, though fine details may blur and
(i) Proposed method produces a well-distributed histogram across
all channels. The red channel shows distinct peaks in the low-to-
mid range, enhancing contrast and details, while green and blue
channels remain uniform, preserving color fidelity. This balanced
distribution demonstrates effective contrast enhancement without
over-saturation or loss of detail.

4.5 Performance analysis

Four complementary measures are taken to make sure
that enhancement performance is assessed thoroughly used:
Entropy to maintain detail preservation (Ma et al., 2022), CII
to imprive contrast (Mittal et al., 2019), AMBE for brightness
consistency (Ozturk and Ozturk, 2023), a PSNR for noise
reduction and fidelity (Veluchamy and Subramani, 2023) and

a NIQE (Natural Image Quality Evaluator) uses measurable
changes from statistical regularities of natural images to measure
image quality, and small values indicate better performance (Du
et al., 2022). The average values of all of these metrics are
displayed in Table 4. A balanced analysis is ensured through this
multi-factor evaluation, exceeding what any individual metric
can provide. For each metric, the percentage improvement of
the proposed method over a baseline is calculated using the
standard formula:

Improvement (%) =
(

Mprop − Mbase

|Mbase|
)
× 100 (41)

Here, Mprop and Mbase denote the metric values corresponding to
the proposed and baseline methods, respectively. In all result tables,
the best and second-best performances are used to indicate in blue
and red, respectively.

4.5.1 Entropy analysis
Entropy is taken as an important measure of the degree of

information and detail retained in an enhanced image, which
increases values signify increased texture preservation and better
perceptual quality. The Shannon entropy formulation that is used
in the present piece of work is (25). The entire set of entropy
calculation in Table 5 provides the values for each test image across
all compared methods, whereas the following discussion focuses
on the average performance derived from this comprehensive
data. The Analysis of the average values of entropy show there
is a distinct performance pyramid. Traditional methods such as
CLAHE (6.81) and LIME (6.86) shows a moderate improvement
compared to the original images which have a average of 4.95.
Among deep learning mehtods, LightenNet (6.21) and SSIF (6.62)
have more conservative gains, while FlightNet (6.99) and AIE
(6.83) are more effectively used when it comes to information. The
IVIFI method attains a average entropy of 7.33, which significant
improvement. The proposed RSA-optimized method has the largest
average entropy value of 7.63, which shows that it preserves
better processing and improves information in dim surroundings.
This increase is by 53.5% over the original image and a 3.69%
improvement compared to the IVIFI method, which underlines
its effectiveness in maximizing visual information to a variety of
lighting conditions.
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TABLE 3 Visual comparison of various enhancement methods applied to all 14 test images in the LOL dataset.
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4.5.2 Absolute Mean Brightness Error (AMBE)
analysis

The Average Mean Brightness Error (AMBE) metric is
used to measure of the difference in brightness between
original and enhanced images, and the value of which is
computed in (28). The entire set of AMBE calculation in
Table 6 provides the values for each test image across all
compared methods, whereas the following discussion focuses
on the average performance derived from this comprehensive
data. Lower AMBE values indicate better preservation of original
brightness levels, whereas higher values reflect more significant
enhancement aimed at improving visibility. Analysis of the
average AMBE scores represents that LIME (52.45) offers
moderate performance in terms of improving. Deep learning
methods are varying in their effectiveness: LightenNet (26.80)
and SSIF (35.08) show conservative brightness adjustment, while
CLAHE (91.26), FlightNet (90.19) and AIE (92.04) achieve
more pronounced transformation. The IVIFI method produces a
significant brightness shift with an average AMBE of 102.39. The
maximum average AMBE is 124.62 which is registered by the
optimized form of RSA approach, which indicates that regular and
high-quality brightness enhancement is acquired in varying low
light situations. This is equivalent to an increase of 204.62% over the
high capability of its own and a 21.71% improvement relative to the
IVIFI procedure, it is good at original images to increase brightness
conversion and keep visual balance and retain a significant
image structures.

4.5.3 Contrast Improvement Index (CII) analysis
The Contrast Improvement Index (CII) was reported the

effectiveness of an enhancement methods in improving image
contrast by characterizing the ratio between the enhanced image
and original image mean intensities. A Value of CII above 1 is
indicative of successful contrast improvement and values less than
1 are not indicative of success to express contrast degradation
and the formula which involves calculation of the CII is defined
in (26). Table 7 presents reported CII values of all the test
image across all methods, and the following analysis focuses
on the average performance across the dataset. The average CII
values illustrate that traditional methods including CLAHE (4.75)
and LIME (4.80) provide noticeable contrast improvement.Varied
performance is are found in the deep learning frameworks like
LightenNet (2.74) and AIE (0.39) shows weak, whereas FlightNet
(7.79) has significant improvement. The IVIFI method attains
an average CII of 6.30, confirming the utility of intuitionistic
fuzzy approaches. The proposed RSA-optimized method is having
better performance with average CII of 7.48. In direct comparison
with the original images and IVIFI method 18.73% improvement
compared to the IVIFI method, and 85.35% attained by the IVIFI
method surpassing the original pictures, making it obvious that
it is good.

4.5.4 Peak Signal-to-Noise Ratio (PSNR) analysis
The PSNR is a widely known measure of the noise level

regarding an improved image. Higher PSNR values show
improved noise elimination and improved image quality. It is
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FIGURE 4

Visual comparison of various enhancement results for Image 11: (a) Original, (b) CLAHE, (c) AIE, (d) FlightNet, (e) LightenNet, (f) LIME, (g) SSIF, (h)
IVIFI, and (i) Proposed. Images reproduced from Chen et al. 2018 Deep Retinex Decomposition for Low-Light Enhancement dataset (https://
daooshee.github.io/BMVC2018website/).

defined as

PSNR = 20 log10

⎛
⎝ L√

1
MN

∑M−1
i=0

∑N−1
j=0

[
O(i, j) − E(i, j)

]2

⎞
⎠ (42)

where L represents the maximum possible pixel value, M and
N are the image dimensions, O(i, j) denotes the pixel value at
position (i, j) in the original image and E(i, j) is the corresponding
pixel in the enhanced image. Table 8 presents the complete
set of PSNR results calculated for each individual test image
across all compared methods. The discussion below focuses
on the average PSNR values derived from this comprehensive
dataset, which offer a more robust evaluation of each method’s
overall performance than single-image results. The average PSNR
values indicates clear performance across method categories.
Traditional methods including CLAHE (8.22) and LIME (12.76),
demonstrate only modest quality improvements. Among deep
learning methods, performance shows noticeable improvement:
LightenNet (16.32) and SSIF (16.17) achieve acceptable noise
reduction, while AIE (8.53) and FlightNet (7.81) performs poorly
for low-light enhancement. The IVIFI method obtains a moderate
PSNR of 13.24, indicating better performance than the weaker deep

learning approaches. The proposed RSA-optimized method yields
the highest average PSNR of 20.11, indicating its superior noise
reduction ability. When compared directly with the original images
and the IVIFI method, it achieves a 28.96% improvement over the
original images and 66.12% enhancement over the IVIFI method,
demonstrating the strong capability of the proposed approach to
enhance image quality while minimizing noise amplification in
low-light conditions.

5 Limitations and applications

The proposed methodology has a few number limitations that
must be noted:

• The algorithm has a relatively intense computational cost
involved compared with the conventional enhancement
techniques, which might be not applicable in real-time on
limited processing capability devices can be used.

• This study has evaluated the proposed method only on static
images, which represents a major limitation. Although it is
theoretically feasible to modify the RSA framework to improve
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FIGURE 5

Histogram analysis of the Image 11 under various enhancement methods: (a) Original, (b) CLAHE, (c) AIE, (d) FlightNet, (e) LightenNet, (f) LIME, (g)
SSIF, (h) IVIFI, and (i) Proposed.

TABLE 4 Average quantitative metrics for different image enhancement methods.

Methods / metrics CLAHE LIME LightenNet AIE FlightNet SSIF IVIFI Proposed

Entropy 6.8067 6.8603 6.2122 6.9880 6.8272 6.6248 7.3297 7.6000

AMBE 91.2611 52.4487 26.8022 92.8022 90.1863 35.1063 102.3933 124.6198

CII 4.7541 4.7985 2.7379 0.3820 7.7856 3.3868 6.2965 7.4611

PSNR 8.2215 12.7574 16.3185 8.5380 7.8102 16.0870 13.2478 20.1735

NIQE 9.3693 8.4769 6.0428 7.9032 7.9129 8.6038 7.3073 3.7678

Bold values indicate the best performance among the compared methods.

the video enhancement, experimentation has not verified this
capability. As a result, any mentioned video applications
should be noted as theoretical rather than verifiable, and future
work will focus on incorporating temporal information and
validating this approach on video datasets.

• Performance is based on parameter ranges which are
configured and might require minor change to fit some
imaging conditions.

• Since this method is offered particularly to optimize the
image enhancement of the low-light and could not be easily
generalized to other image processing domains.

The proposed method demonstrates strong potential for various
practical applications:

• Medical imaging: Medical image improvement in low-light
images and endoscopic image.

• Surveillance systems: Enhancing clarity of detail in night
security surveillance.

• Autonomous navigation: Consistent perception of the
surroundings in low light.

• Astronomical imaging: An in-depth examination of the
heavenly bodies.
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TABLE 5 Entropy-based performance analysis.

S.NO Original image CLAHE LIME LightenNet FlightNet AIE SSIF IVIFI Proposed method

1 5.8571 7.4826 7.1568 6.8774 7.0128 6.8800 6.9857 7.6156 7.8648

2 5.2868 7.2051 6.9996 6.8141 7.1414 7.0783 6.9460 7.4917 7.7308

3 4.5626 7.4364 6.9094 6.0395 7.3309 7.2654 6.4087 7.7746 7.4741

4 5.2337 7.4660 6.9074 6.7699 6.9199 6.5487 7.1016 7.2517 7.7224

5 5.2252 7.4214 6.9362 6.6369 7.0156 6.7898 6.9025 7.3067 7.7290

6 5.1772 7.2401 6.6963 6.7933 6.6951 6.4769 6.9178 6.8940 7.6871

7 5.4264 7.2514 6.4008 5.9656 6.6198 6.3513 6.6226 7.1004 7.7763

8 4.1892 7.0069 6.7545 5.8556 7.1480 6.8594 5.9390 7.8607 7.1379

9 4.9988 7.5208 6.7611 6.2624 7.0050 6.9508 6.7182 7.0730 7.6833

10 4.2579 7.1431 6.7473 5.4547 6.8079 6.8084 6.1077 7.2692 7.5404

11 5.1977 7.4261 6.9716 6.3283 7.0368 6.8128 6.9609 7.1683 7.7598

12 4.7943 7.4543 7.0333 5.8903 6.9026 6.9649 6.6487 7.2164 7.6815

13 4.3397 7.1795 6.9757 5.6494 7.2324 7.0095 6.1626 7.2862 7.1876

14 4.7869 7.1056 6.7943 5.6336 6.9641 6.7847 6.3255 7.3067 7.4250

Blue indicates the best value and red indicates the second-best value among the compared methods.

TABLE 6 AMBE-based performance analysis.

Original images CLAHE LIME LightenNet AIE FlightNet SSIF IVIFI Proposed method

Image 1 94.1688 53.927 46.187 62.861 81.54 37.515 94.1335 104.104

Image 2 90.0018 55.612 37.295 110.78 97.139 40.301 60.4309 132.6008

Image 3 95.7955 43.531 17.665 84.046 95.243 28.022 73.9842 132.9822

Image 4 92.7573 70.183 38.997 138.77 104.05 50.493 118.8621 126.1099

Image 5 92.4349 59.89 34.357 123.06 96.802 45.288 71.6359 127.603

Image 6 82.7436 59.327 47.125 114.5 95.955 46.247 127.152 137.2734

Image 7 90.9278 48.788 23.572 77.485 73.701 37.342 81.206 102.5372

Image 8 83.8941 39.777 17.398 54.434 74.011 19.467 104.451 129.2907

Image 9 100.5230 54.451 26.178 122.6 98.251 38.723 18.7991 134.6397

Image 10 90.3898 48.374 14.366 74.859 104.73 24.555 177.907 137.3341

Image 11 93.6824 58.988 25.923 110.14 95.15 42.228 41.5167 114.0094

Image 12 100.2981 57.439 17.823 94.984 94.067 34.944 171.917 124.4918

Image 13 86.2103 43.38 13.911 58.644 75.301 21.656 163.279 108.3907

Image 14 83.8282 40.617 14.435 61.341 76.668 24.298 128.2314 133.3104

Blue indicates the best value and red indicates the second-best value among the compared methods.

6 Conclusion and future direction

This paper introduced an efficient Interval-Valued
Intuitionistic Fuzzy Image (IVIFI) was introduced to optimized the
enhancement framework by using the Reptile Search Algorithm
(RSA). By adaptively selecting parameters of fuzzy membership
and fuzzy hesitation, the suggested approach increases brightness,
contrast and fineness low-light image structures and maintaining
natural visual image quality. Quantitative evaluations based on the
use of Entropy, AMBE, PSNR and CII indicate that the proposed
method is always better as compared to conventional techniques,

generating both visually good and analytically sound results.
Owing to its adaptability, the architecture is suited to a wide variety
of real-world tasks including surveillance, medical imaging and
remote sensing in which strong image improvement under adverse
lighting situations is necessary.

This method can be generalized in the future,

• While the suggested RSA-driven IVIF method performs well
on static images, its applicability to video enhancement had
not been evaluated within the scope of this study. This
approach can be extended to video sequences using either
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TABLE 7 CII-based performance analysis.

Original images CLAHE LIME LightenNet AIE FlightNet SSIF IVIFI Proposed method

Image 1 1.9000 3.1886 2.8745 0.4492 4.3093 2.5226 3.5421 3.0225

Image 2 5.5225 3.8719 2.926 0.2957 6.0165 3.0812 6.1098 5.6891

Image 3 5.9366 5.4695 2.8137 0.3759 10.779 3.8771 11.0626 9.665

Image 4 4.3806 4.1554 2.7533 0.2269 5.6782 3.2701 3.6629 7.1458

Image 5 3.9687 4.102 2.7795 0.3097 6.0138 3.3457 3.703 6.5315

Image 6 2.9111 3.4353 2.9344 0.2642 4.9387 2.8984 4.8222 5.8951

Image 7 5.0761 3.4514 2.1844 0.4688 4.7031 2.8762 6.1811 7.648

Image 8 5.7972 7.2017 3.7125 0.5102 12.539 4.0351 14.2809 10.0432

Image 9 5.8363 4.443 2.6553 0.274 7.2125 3.4484 7.2121 7.9589

Image 10 7.268 6.5655 2.6528 0.4464 13.049 3.8251 7.7912 13.3013

Image 11 5.0430 4.4372 2.5106 0.334 6.5444 3.4606 6.1284 7.221

Image 12 4.8008 5.3421 2.3473 0.34 8.1111 3.6416 3.6458 6.5404

Image 13 5.4137 6.6519 2.8125 0.518 10.811 3.8215 6.8146 8.7656

Image 14 2.7035 4.8637 2.3731 0.5354 8.293 3.3114 3.1937 5.0274

Blue indicates the best value and red indicates the second-best value among the compared methods.

TABLE 8 PSNR-based performance analysis.

Original images CLAHE LIME LightenNet AIE FlightNet SSIF IVIFI Proposed method

Image 1 7.8948 12.613 11.305 9.0256 9.9016 15.35 12.2252 17.8832

Image 2 8.3909 12.298 14.214 7.7281 5.5144 14.488 8.7259 12.8039

Image 3 7.8573 13.482 17.755 7.7729 7.3872 17.174 9.369 17.8061

Image 4 7.9227 10.805 14.382 7.5112 4.2575 12.898 17.0933 20.1921

Image 5 8.0091 11.924 15.303 8.0683 5.957 14.024 10.8212 20.3782

Image 6 9.0605 11.957 12.966 7.9454 4.6454 13.561 5.7544 18.407

Image 7 8.2806 13.875 17.427 10.407 10.0064 15.691 11.5146 27.8109

Image 8 9.0229 13.843 17.784 9.728 11.0764 19.895 10.9425 19.3744

Image 9 7.3029 12.791 16.842 7.9682 5.1641 15.308 5.4528 19.4576

Image 10 8.4473 13.392 18.693 7.3978 9.6268 19.044 24.6462 18.9882

Image 11 7.8820 12.041 16.843 8.2298 6.6445 14.361 6.1284 23.1161

Image 12 7.3723 12.102 18.081 8.407 6.7478 16.022 24.5849 21.309

Image 13 8.7084 13.167 18.468 9.5778 10.9155 18.863 22.1549 24.1714

Image 14 8.9498 14.313 18.396 9.7646 11.4989 18.539 16.0562 20.7313

Blue indicates the best value and red indicates the second-best value among the compared methods.

frame-wise optimization or temporal coherence, which is still
a promising avenue for future research. Our future research
will include an analysis of such extensions.

• The optimization process can be further enhanced by
exploring alternative metaheuristic algorithms or hybrid
metaheuristic approaches to computational efficiency,
enhance global convergence and overall performance.

• Experiments on large-scale, real-world datasets of a variety
of illumination environmental conditions high lights the
strength of the suggested method.

In conclusion, the RSA–IVIF framework marks a significant
advancement in adaptive low-light image enhancement which
provides consistent high-quality outcomes.
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