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Introduction: Predictive maintenance has emerged as a critical strategy 
in modern manufacturing, in the frame of Industry 4.0, enabling proactive 
intervention before equipment failure. However, traditional machine learning 
approaches require extensive labeled data and lack adaptability to evolving 
operational conditions. On the other hand, Reinforcement Learning (RL) enables 
agents to learn optimal policies through interaction with the environment, 
eliminating the need for labeled datasets and naturally capturing the sequential, 
uncertain dynamics of equipment degradation.
Methods: In this paper, we propose an approach that incorporates four model-
free RL algorithms, namely Proximal Policy Optimization (PPO), Advantage 
Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG), and Soft Actor-
Critic (SAC). We formulate the problem as a Markov Decision Process (MDP), 
which is solved with the aforementioned RL algorithms.
Results: The proposed approach is validated in the context of CNC machine tool 
wear prediction, using sensor data from the 2010 PHM Society Data Challenge. 
We examine algorithmic performance across four custom made environments, 
corrective and non-corrective environments both with and without delay correction 
mechanisms in order to compare learning dynamics, convergence behavior, and 
generalization aspects. Our results reveal that PPO and SAC achieve the most stable 
and efficient performance, with SAC excelling in structured environments and PPO 
demonstrating robust generalization. A2C shows consistent long-term learning, 
while DDPG underperforms due to insufficient exploration.
Discussion: The findings highlight the potential of RL for predictive maintenance 
applications and underscore the importance of aligning algorithm design with 
environment characteristics and reward structures.
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1 Introduction

In the era of Industry 4.0, predictive maintenance has become a foundational component 
of intelligent manufacturing, aiming to reduce unexpected downtime, optimize maintenance 
scheduling, and extend equipment life through data-driven insights (Aivaliotis et al., 2019; 
Fordal et al., 2023). The integration of high-frequency sensors and advanced data acquisition 
systems has enabled real-time condition monitoring, but the inherent complexity and 
variability of industrial environments continue to challenge traditional Machine Learning 
(ML) techniques (Turner et al., 2019; Lepenioti et al., 2020). These models often rely on large 
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volumes of labeled failure data, assume stationary behavior, and 
struggle to generalize across diverse operational contexts (Bousdekis 
et al., 2021).

Reinforcement learning (RL) offers a compelling alternative, as it 
enables agents to learn optimal policies through interaction with the 
environment, eliminating the need for labeled datasets and naturally 
capturing the sequential, uncertain dynamics of equipment degradation 
(Siraskar et al., 2023). Recent studies have demonstrated the viability of 
RL in predictive maintenance tasks such as fault detection, health index 
estimation, and direct maintenance scheduling (Siraskar et al., 2023; 
Feng and Li, 2022; Ong et al., 2022). However, real-world applications 
remain limited, and comprehensive evaluations of RL algorithms under 
realistic conditions are still scarce (Siraskar et al., 2023).

In this paper, we propose an approach that incorporates four 
model-free RL algorithms, namely Proximal Policy Optimization 
(PPO), Advantage Actor-Critic (A2C), Deep Deterministic Policy 
Gradient (DDPG), and Soft Actor-Critic (SAC). To do this, we 
formulate the problem as a Markov Decision Process (MDP), which 
is solved with the aforementioned RL algorithms. The proposed 
approach is validated in the context of CNC machine tool wear 
prediction, using sensor data from the 2010 PHM Society Data 
Challenge. We examine algorithmic performance across corrective 
and non-corrective environments, both with and without delay 
correction mechanisms in order to compare learning dynamics, 
convergence behavior, and generalization aspects.

The rest of the paper is organized as follows. Section 2 presents the 
literature review on the use of RL in predictive maintenance. Section 
3 describes our proposed approach for health state prediction with 
RL. Section 4 presents the application of the proposed approach to a 
CNC milling machine and the experimental results. Section 5 
concludes the paper and outlines our plans for future work.

2 Literature review

Predictive maintenance has become a pillar of Industry 4.0, with 
the goal of minimizing unplanned downtime, optimizing maintenance 
schedules, and extending equipment life by forecasting degradation 
and impending failures (Aivaliotis et al., 2019; Bousdekis et al., 2019). 
The sensory technologies support real-time condition monitoring 
using continuous sensor signals such as vibration, acoustic emissions, 
force, and temperature (Huang et al., 2017; Pech et al., 2021).

The first predictive maintenance systems were mainly rule-based 
and deterministic, limiting their effectiveness in dynamic and 
nonlinear industrial environments (Bousdekis et al., 2018). The 
introduction of ML represented a major advancement, enabling the 
modeling of complex degradation patterns (Carvalho et al., 2019). 
Supervised ML techniques, such as decision trees (Frangopol et al., 
1997), Support Vector Machines (SVM) (Ding et al., 2008; Susto et al., 
2013), random forests (Kabir et al., 2018), gradient-boosted trees (e.g., 
XGBoost) (Ma et al., 2020), and Bayesian Networks (Yang et al., 2023a; 
Yang et al., 2023b) have been widely used for fault classification and 
prognostics (Dalzochio et al., 2020). Other techniques such as 
Principal Component Analysis (PCA) (Eke et al., 2017) and 
regression-based ML models (Susto et al., 2014) have also contributed 
to predictive maintenance by reducing dimensionality and supporting 
flexible diagnostic systems (Sun et al., 2007). Deep learning has 
further improved predictive maintenance performance by enabling 
models to learn directly from raw time-series data. Long Short-Term 

Memory (LSTM) networks (Zheng et al., 2017; Sayyad et al., 2022) 
and Convolutional Neural Networks (CNNs) (Sateesh Babu et al., 
2016) have been effectively applied to degradation modeling and 
regression tasks (Serradilla et al., 2022).

However, these approaches and algorithms face notable 
limitations. They typically require large amounts of labeled data, 
particularly historical failure records, which are often unavailable or 
expensive to collect (Shakya et al., 2023). Moreover, they assume 
stationary input–output mappings, making their application to real-
world settings challenging, because the equipment behavior evolves 
over time (Dalzochio et al., 2020). Retraining models to adapt to new 
machines or operational conditions is time-consuming and often 
suffers from concept drift (Lehmann et al., 2020). In this realm, RL has 
emerged as a promising alternative to traditional ML for predictive 
maintenance (Ogunfowora and Najjaran, 2023). Unlike supervised 
learning, RL does not depend on labeled data; instead, it learns 
optimal decision policies through interaction with the environment 
(Shakya et al., 2023). In predictive maintenance applications, RL 
agents monitor system states (e.g., sensor measurements or health 
indicators), take actions such as predicting wear or scheduling 
maintenance, and receive rewards based on objectives like minimizing 
repair costs or downtime (Siraskar et al., 2023).

This trial-and-error learning paradigm naturally captures the 
sequential and uncertain characteristics of maintenance decision-
making, where current actions influence future system outcomes 
(Lewis et al., 2012; Sutton and Barto, 1998). Siraskar et al. (2023) have 
reviewed RL applications across tasks such as early fault detection, 
health index estimation, and direct maintenance decision support. 
Ogunfowora and Najjaran (2023) further highlight RL’s capacity to 
integrate short-term equipment states with long-term maintenance 
cost considerations, something traditional deep learning models 
struggle with under shifting conditions. However, these works typically 
focus on single algorithms or single-task environments. In contrast, our 
study contributes a multi-environment, multi-algorithm experimental 
framework that reveals how RL performance depends on problem 
formulation, reward structure, and environment corrective behavior.

Several RL algorithms have been applied to the predictive 
maintenance domain. Value-based methods, such as Q-learning and 
Deep Q-Networks (DQN), are well-suited for discrete action spaces. 
According to (Ogunfowora and Najjaran, 2023), more than 70% of 
reviewed studies utilized Q-learning variants. For instance, Latifi et al. 
(2021) employed DQN and PPO for infrastructure asset management, 
effectively balancing cost and performance. Some works have shifted 
towards policy-gradient and actor-critic methods for their effectiveness 
in continuous state-action spaces (Khadka and Tumer, 2018). 
Algorithms such as PPO, A2C, DDPG, and SAC combine value 
estimation with policy learning for enhanced decision control. Wang et 
al. (2024) demonstrated that a CNN–BiLSTM-enhanced DDPG model 
outperformed conventional methods in bearing RUL prediction. SAC, 
notable for its entropy-based exploration, has shown effectiveness in 
high-stakes applications like aircraft engine maintenance, where sample 
efficiency is critical. These findings suggest that while model-free 
methods like Q-learning and DQN perform well in discrete domains, 
actor-critic algorithms offer greater control precision and adaptability 
in complex industrial scenarios. Recent studies have also explored 
advanced RL-based frameworks for predictive maintenance. Abbas et 
al. (2024) propose a hierarchical approach that combines an Input–
Output Hidden Markov Model with DRL to improve interpretability 
and sample efficiency in safety-critical applications. Zhao et al. (2024) 
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introduce TranDRL, which integrates Transformer-based RUL 
prediction with DRL-driven maintenance recommendations and 
human-in-the-loop feedback. In the machining domain, Kaliyannan et 
al. (2024) evaluate RL algorithms for tool-condition monitoring and 
show that SARSA outperforms both deep learning and other RL 
baselines for classifying tool wear from vibration signals. Furthermore, 
literature reviews by Ogunfowora and Najjaran (2023) and Siraskar et 
al. (2023) support the conclusion that well-calibrated deep RL models 
can exceed traditional ML baselines in simulated environments.

Despite their potential, many RL-based predictive maintenance 
approaches remain at the proof-of-concept stage, often relying on 
synthetic data or simplified simulation environments (Siraskar et al., 
2023). The lack of real-world benchmarks and standardized evaluation 
protocols limits cross-study comparability. Moreover, safe deployment 
in industrial settings is constrained by the need for robust, cautious 
exploration mechanisms, particularly in high-risk systems where 
untested policies could cause costly failures (Çınar et al., 2020). These 
challenges underscore the need for ongoing research focused on 
developing generalizable, scalable, and real-time RL frameworks that 
can adapt to evolving operational conditions in industrial predictive 
maintenance applications.

3 The proposed approach for health 
state prediction with reinforcement 
learning

This Section describes the proposed approach for health state 
assessment of manufacturing equipment with RL in order to realize 
the predictive maintenance paradigm. The proposed approach consists 
of the following steps: (i) Data Structuring (Section 3.1); (ii) Data 
Preprocessing (Section 3.2); (iii) MDP Modelling (Section 3.3); (iv) 
Solving with RL (Section 3.4); and, (v) Evaluation (Section 3.5).

Initially, data collected from sensors are processed and 
subsequently transformed into a MDP model. Through the MDP, a 
suitable environment is developed for the implementation of various 
RL algorithms, which is trained on the processed dataset. The last step 
is, after the training, the algorithms will be evaluated to determine 
their effectiveness. If their performance is satisfactory, they can be 
utilized to perform predictions about the equipment degradation. The 
end goal is to develop an RL-based Predictive maintenance agent 
capable of making autonomous decisions to predict the health state 
and the wear. Table 1 presents the steps of the proposed approach 
along with their inputs and outputs throughout the data pipeline. The 
proposed approach incorporates model-free RL algorithms.

Unlike previous studies that examine single RL algorithms or 
simplified maintenance scenarios, this work introduces a unified and 
reproducible RL evaluation framework specifically tailored for 
equipment wear prediction. Our contributions are fourfold: (i) we 
propose a novel 2 × 2 environment design (corrective/non-corrective 
× delayed/non-delayed rewards) that enables systematic investigation 
of how RL agents interpret different degradation formulations; (ii) we 
integrate domain-informed reward shaping by adapting the PHM 
competition score as an RL reward function; (iii) we provide the first 
comprehensive cross-algorithm comparison of PPO, A2C, SAC, and 
DDPG on the Li, 2021 dataset using a unified pipeline; (iv) we present 
open-source implementations and reveal empirical insights—such as 
differential sensitivity to reward delay and overfitting tendencies—that 

have not been documented in prior RL-based predictive maintenance 
studies.

3.1 Data structuring

In this step, the sensor-generated time-series data is formulated in 
a table form with each row corresponding to a sensor value at a 
specific timeframe. These sensors capture critical parameters such as 
vibrations, force, spin, temperature, pressure over time and other 
related functional characteristics. The input parameters include not 
only the raw sensor readings but also derived features that help in 
capturing the underlying patterns and trends in the data. The output 
of this step is structured data that provides a better understanding of 
the use case and can be subsequently processed in an effective manner.

3.2 Data preprocessing

Through data preprocessing, it becomes possible to create a more 
manageable and informative dataset. This step takes as input the 
structured data and includes the following steps: (a) data visualization: 
Exploratory Data Analysis (EDA) supporting understanding of the 
data’s characteristics, distributions, anomalies, inconsistencies, and 
irregularities; (b) data cleaning: removing noise and errors to ensure 
consistency and robustness; (c) feature extraction: transforming raw 
data into meaningful features in order to handle the high-dimensional 
nature of sensor data. As far as feature extraction is concerned, the 
proposed approach adopts a set of time-domain features, characteristics 
derived from analyzing time-series data-data points collected or 
observed at different time intervals, which have been proved effective 
in various manufacturing settings, particularly in the presence of 
vibration sensors (Wilson, 2017; Kumar et al., 2022). The proposed 
approach incorporates the features presented in Table 2. The output of 
this step is the transformed data that feeds into the MDP modelling step.

3.3 MDP modelling

This step receives the transformed data and creates the MDP model 
that represents the degradation process of the equipment. In this way, it 
defines the observation space, the action space, the reward function, 

TABLE 1  The steps of the proposed approach along with their inputs and 
outputs.

Section Step Input Output

3.1 Data Structuring Sensor Signals Structured Data

3.2 Data 

Preprocessing

Structured Sensor 

Data

Transformed Data

3.3 MDP Modelling Transformed Data Observation Space, 

Action Space, 

Reward Function, 

Episode Information

3.4 Solving with RL Observation, 

Reward

Action

3.5 Evaluation Trained RL Model Evaluation Metrics
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and the episode information, that will be subsequently used by the RL 
algorithms, thus defining the environment in which the agent will take 
actions. The MDP consists of the following components: States Space, 
Action Space, Transition Model, Reward Function and the starting state 
distribution ρ0. Therefore, an MDP is a 5-tuple, (S, A, R, P, ρ0), where: S 
is the set of all valid states; A is the set of all valid actions; 

× × →:R S A S R  is the reward function, with ( )+= 1, ,t t t tr R s a s ; 
( )× →:P S A P S  is the transition probability function, with ( )′|, |,P s s a  

being the probability of transitioning into state ′s  if you start in state s 
and take action a; ρ0 is the starting state distribution (Garcia and 
Rachelson, 2013).

Below, we describe in detail the MDP model specifically crafted 
for equipment Health State Prediction:

	•	 State tS : The state at any time step t is represented by the condition 
of the machine parts that is represented by the value of the 
sensors attached to the machines at t. The vector containing all 
the information of the environment is called the state of the 
environment. The set S contains all the valid states ∀,tS t  of the 
environment, therefore it contains all the different wear states and 
values the examined equipment may attain.

	•	 Action ta : The action space consists of a n-dimensional space 
representing the wear of the n components of the equipment, i.e., 

= …  1 2, , ,t na action action action , where: ( )1 1action prediction : 
is the prediction of the agent for the additional wear of the 
component 1 at timestep t, ( )2 2action prediction  is the prediction 
of the agent for the additional wear of the component 2 at 
timestep t, and ( )n naction prediction  is the prediction of the 
agent for the additional wear of the component n at timestep t. 
The action is the corresponding additional wear that the agent 
predicts for the component. This vector can be either discrete or 
continuous; however, a continuous action space is more fitting, 
since the wear is not a discrete metric.

	•	 Transition Probabilities (P): The transition probabilities define 
how the state changes in response to actions. Depending on how 
the machine operates, the resulting induced wear is a stochastic 
phenomenon. Therefore, the way predictions are managed is 
through calculating the probability of the given wear occurring 
given the current state. Due to the Markov property, the 
transitions only depend on the most recent state and action, and 
not on prior history. The probability of transitioning to state +1ts  
given the current state ts  and action ta  is denoted by ( )+1|, |,t t tP s s a .

	•	 Reward tR : The reward function is designed to provide feedback 
to the agent based on the accuracy of its predictions. Depending 
on the objective, a different reward function will be used, 
penalizing bad behavior and rewarding good behavior-actions. 
The reward can be computed based on the difference between 
the predicted wear and the actual wear observed. Although this 
is a credible method, more advanced ways of scoring the reward 
are usually used, called score functions. The score functions 
behave differently in the case of a bad action and a good action 
in order to help the agent learn more effectively. The way a score 
function evaluates actions determines what and how the agent 
learns. Typically, defining the score function is a challenging 
step that requires a deep understanding of the 
problem we aim to solve. The general formula of a 
reward is: ( )= −  t fR Score predicted value actual value .

	•	 Starting state distribution ρ0 defines the probability distribution 
over the initial states from which the agent begins. This 
distribution is crucial as it sets the initial conditions and 
significantly influences the early stages of learning and 
exploration. Therefore, ρ0 represents the likelihood of various 
initial wear conditions and sensor readings of the machine at the 
start of the monitoring period. The initial state could be 
determined based on historical data, reflecting common starting 
conditions observed in past machine operations. A well-defined 
ρ0 ensures that the agent experiences a realistic range of initial 
conditions during training, promoting robust learning and better 
generalization to real-world scenarios. It is bad practice to always 
have the same initial condition since it does not reflect real life 
conditions.

	•	 Trajectories / Episodes: A trajectory τ consists of a sequence of 
states and actions: ( )τ α= …0 0 1 1, , , ,s a s . The initial state s0 is 
randomly drawn from the start-state distribution, often 
represented by ρ0: ( )ρ∼0 0 ·s . State transitions, which describe 
changes in the world from state ts  at time t  to state +1ts at time 
+1t , are influenced by the most recent action ta . Trajectories are 

often referred to as episodes or rollouts.

TABLE 2  The time-domain features of the proposed approach.

Feature Definition Formula

Mean It is derived from the 

average value over a given 

time period. It provides a 

sense of central tendency.

µ ι= =
Ν

Ν
=∑1
1Mean xi

Root Mean 

Square (RMS)

It is a signal processing 

feature which measures the 

square root of the mean of 

the squares of all values in 

the time series.

=
Ν =∑1 2

1RMS xN
ii

Crest Factor It is a signal processing 

feature and is calculated by 

the ratio between the peak 

value and the RMS value, 

indicating the dynamic 

range of a signal.

[ ]
=

max
 

x
Crest Factor

RMS
i

Average power It is the average quantity of 

work done or energy 

utilised per unit of time.

=
Ν =∑1

. 2
1avg power xN
ii

Skewness It is a high-order statistical 

feature which indicates the 

asymmetry of the data 

distribution. A skewed 

time series may suggest 

trends or biases.

( ) −  =

3

3

E x x
Skewness

RMS

i

Kurtosis It is a high-order statistical 

feature which reflects the 

“tailedness” of the data 

distribution, which can 

reveal the presence of 

outliers or extreme events.

( )−
= =∑1 4

1
4

x x
NKurtosis

RMS

N
ii
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The MDP model results in a solution specifying the agent’s actions 
for any state it may encounter, i.e., a policy. The policy is denoted by 
π , and ( )π s  is the action that policy π  recommends for state s. 
Regardless of the outcome of the action, the resulting state will belong 
to the policy, and the agent will know what to do next. The quality of 
a policy is measured in terms of the expected utility of the possible 
histories of the environment generated by the policy. An optimal 
policy is a policy that gives the highest expected utility. The utility 
function allows the agent to choose actions using the maximum 
expected utility principle, to choose the action that maximizes the 
reward for the next step plus the expected utility of the subsequent 
state of the environment. The output observation space, action space, 
reward function, and episode information that are derived from the 
MDP model feed into the subsequent step to be solved with the use of 
RL algorithms.

3.4 Solving with RL

The MDP model is solved with RL, which selects a policy that 
maximizes the expected return when the agent acts according to it. 
Therefore, RL consists of the agent and the environment. The 
environment represents the world in which the agent resides and with 
which it interacts. During each interaction step, the agent observes a 
(potentially partial) view of the world’s state and then decides on an 
action to take. The environment changes in response to the agent’s 
actions but can also change independently. The agent receives a reward 
signal from the environment, which measures the value of the current 
state. The agent’s objective is to maximize its cumulative reward, 
known as the return.

Our proposed approach incorporates PPO, A2C, DDPG, and 
SAC, These algorithms are categorized into off-policy and on-policy 
methods, as shown in Table 3. An off-policy learner learns the value 
of the optimal policy independently of the agent’s actions, while an 
on-policy learner learns the value of the policy being carried out by 
the agent including the exploration steps (Gu et al., 2017). The 
algorithms are described below.

3.4.1 PPO
The PPO Algorithm (Schulman et al., 2017) is designed to take the 

largest possible improvement step on a policy using the available data 
without risking performance collapse. The main idea is to keep the 
new policy not too far from the old policy after an update, using 
clipping to prevent large updates. PPO is an on-policy algorithm 
suitable for environments with both discrete and continuous action 
spaces. The PPO algorithm trains a stochastic policy in an on-policy 
method, meaning it explores by sampling actions based on the current 
stochastic policy. The randomness in action selection depends on 

initial conditions and the training process. Over time, the policy 
becomes less random as the update rule encourages exploiting 
previously discovered rewards. This reduction in randomness can lead 
to the policy within a local minimum. PPO was selected for this task 
due to its stability and reliable performance in continuous control 
tasks. As an on-policy algorithm, its core design, which uses a clipped 
objective function, prevents large, destabilizing policy updates. This 
characteristic is highly desirable for a predictive maintenance problem, 
where erratic predictions or policy collapse would be detrimental.

3.4.2 A2C
The A2C Algorithm (Mnih et al., 2016) is a synchronous RL 

algorithm that enhances the Asynchronous Advantage Actor-Critic 
(A3C) by synchronizing data collection across multiple parallel 
workers. This approach mitigates the high variance and noisy 
gradients seen in vanilla policy gradients by incorporating a baseline, 
typically the value function, which stabilizes learning. In A2C, the 
Actor updates the policy distribution based on feedback from the 
Critic, who estimates the value function. The advantage function 
( ) ( ) ( )= −, ,A s a Q s a V s  quantifies how much better taking action a in 

state s is compared to the average action. This advantage function 
helps calculate the policy gradient, ensuring policy parameters are 
updated to maximize expected returns. The synchronous nature of 
A2C ensures efficient and stable training, suitable for various complex 
environments. This method effectively balances exploring new actions 
with exploiting known rewards, leading to robust and efficient policy 
learning. A2C was chosen for this evaluation as it represents a 
synchronous and more stable implementation of the foundational 
actor-critic framework.

3.4.3 DDPG
The DDPG (Silver et al., 2014; Lillicrap et al., 2016) is an algorithm 

that simultaneously learns a Q-function and a policy. Using off-policy 
data and the Bellman equation, it learns the Q-function, and this 
Q-function is then used to optimize the policy. DDPG is closely 
related to Q-learning, sharing the motivation that if the optimal 
action-value function ( )∗ ,Q s a  is known, the optimal action ( )∗a s  in 
any given state can be found by solving: ( ) ( )∗ ∗= ,aa s argmax Q s a . In 
DDPG, a deterministic policy is trained in an off-policy manner. Due 
to its deterministic nature, the policy might not initially explore a 
sufficient range of actions to gather valuable learning signals if 
explored on-policy. To enhance exploration, noise is added to the 
actions during training. To improve the quality of training data, the 
noise scale can be gradually reduced as training progresses. During 
testing, no noise is added to the actions, allowing the policy to fully 
exploit what it has learned. As a foundational off-policy algorithm for 
continuous control, DDPG was selected to serve as a critical baseline 
in this paper. The inclusion of DDPG enables the comparison of the 
effectiveness of a deterministic policy gradient approach against the 
stochastic policy methods (PPO and SAC) and the synchronous actor-
critic (A2C) in the context of the health state prediction problem.

3.4.4 SAC
The SAC Algorithm (Haarnoja et al., 2018a; Haarnoja et al., 

2018b) optimizes a stochastic policy using an off-policy approach, 
creating a bridge between stochastic policy optimization and DDPG-
style methods. The stochastic nature of SAC’s policy benefits from an 
effect similar to target policy smoothing. Entropy regularization is a 

TABLE 3  The classification of the implemented RL algorithms to learning 
policies.

Learning policy RL Algorithms

On-policy PPO

A2C

Off-policy DDPG

SAC
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key feature. The policy is trained to balance expected return with 
entropy, which measures the randomness in the policy. This balance 
is closely related to the exploration-exploitation trade-off: higher 
entropy promotes more exploration, potentially accelerating learning 
in later stages. Additionally, it helps prevent the policy from 
prematurely converging to suboptimal solutions. SAC was included in 
algorithm stack as it represents a state-of-the-art off-policy algorithm 
for continuous action spaces. Its key feature, maximum entropy 
regularization, fundamentally changes the objective by encouraging 
the agent to explore as widely and randomly as possible while still 
maximizing rewards. SAC was chosen in order to investigate whether 
this advanced, built-in exploration mechanism would enable the agent 
to discover more effective and sample-efficient policies for health state 
prediction compared to the other methods.

3.5 Evaluation

This step evaluates and compares the trained RL models by 
computing various evaluation metrics. The RL optimization problem 
is solved within a custom environment which simulates a system 
where an agent makes predictions about the wear on certain 
components in a manufacturing process. To evaluate the RL 
algorithms in each environment, we use the following metrics:

	•	 Mean Episode Length (Bojun, 2020). It indicates the average 
duration of an episode before a terminal state is reached. In the 
context of predictive maintenance, an episode could represent the 
operational period of a machine before a maintenance 
intervention is required. A longer mean episode length could 
suggest that the learned policy is effective at preventing failures 
and prolonging the operational time of the equipment.

	•	 Mean Episode Reward (Ladosz et al., 2022). It represents the 
average cumulative reward obtained per episode. In the context 
of predictive maintenance, the reward function can be designed 
to encapsulate various factors such as operational efficiency, 
maintenance costs, downtime, and the occurrence of failures. A 
higher mean episode reward indicates that the policy is effective 
in balancing the trade-offs between these factors.

4 Implementation and results

4.1 Technical implementation

The implementation utilizes a technology stack centered 
around Python, using various libraries and frameworks to perform 
data manipulation and RL. The primary helper libraries used for 
general tasks include NumPy for numerical computations and 
array handling, Pandas for data manipulation and analysis of table 
data, and Matplotlib for data visualization. Stable Baselines 3 is 
employed for RL. Stable Baselines 3 is a library based on OpenAI 
Baselines. It is built on top of the PyTorch framework and offers a 
big arsenal of tools designed to help with the development and 
deployment of RL models. The library features an API that 
simplifies the setup, training, and evaluation of RL models. In 
addition, Stable Baselines 3 offers a range of utilities that streamline 
the RL development process. These include tools for environment 

checking, vectorized environment handling, policy evaluation, and 
results plotting. To support file system operations, the project uses 
the os library for interacting with the operating system and Pathlib 
for handling file paths for object-oriented purposes. The time 
library is also included to manage time-related functions and 
measure execution time.

TensorBoard was used for the real-time monitoring and 
visualization of model training metrics. Tensorboard is a visualization 
toolkit included with TensorFlow and is designed to help users 
understand and debug ML models. It allows the visualization of 
various training metrics and provides insights into model performance 
helping in the optimization process. TensorBoard operates through a 
logging process during model training. The TensorBoard user 
interface comprises several dashboards and tools for the detailed 
monitoring and analysis of model training. The Scalars Dashboard 
(Figure 1) displays plots of metrics such as average reward and average 
episode length over time, which is useful for tracking the model’s 
improvement with respect to the number of training iterations. The 
Time Series tab in TensorBoard allows for a more detailed examination 
of metrics over time, providing thorough insights into how specific 
values change throughout the training process.

4.2 Application to a CNC milling machine

The dataset used to train the models is taken from the 2010 PHM 
Society Conference Data Challenge (Li, 2021). It was derived from a 
high-speed CNC milling machine, including 6 mm ball nose tungsten 
carbide cutters, using dynamometer, accelerometer, and acoustic 
emission sensors (Figure 2). The dataset consists of 6 individual cutter 
records, c1 to c6. Records c1, c4 and c6 are training data, and records 
c2, c3, and c5 are test data. Each training record contains one “wear” 
file that lists wear after each cut in 10^-3 mm, and a folder with 315 
individual data acquisition files (one for each cut). The data acquisition 
files are in .csv format, with seven columns, corresponding to: Force 
(N) in X dimension, Force (N) in Y dimension, Force (N) in Z 
dimension, Vibration (g) in X dimension, Vibration (g) in Y 
dimension, Vibration (g) in Z dimension, AE-RMS (V). The spindle 
speed of the cutter was 10,400 RPM; feed rate was 1,555 mm/min; Y 
depth of cut (radial) was 0.125 mm; Z depth of cut (axial) was 0.2 mm. 
Data was acquired at 50 KHz/channel.

Each cut file in the dataset consists of approximately 250,000 
rows, with each row containing 7 data parameters, leading to a 
highly complex observation space of 1,750,000 dimensions for the 
agent to work with. To address the curse of dimensionality and 
extract meaningful features, the focus was on deriving the time-
domain features for each input parameter recorded by the sensors. 
By extracting these 6 features (mean, rms, crest factor, average 
power, skewness, kurtosis) for each of the 7 sensor parameters 
(Force in X, Y, Z axis; Vibration in X, Y, Z axis; and AE-RMS), the 
dimensionality of the data was reduced to 42 features per cut. After 
extracting the time-domain features, normalization was performed 
to a range of 0 to 1 to ensure uniformity and improve the 
performance of the learning algorithms. Normalization was 
conducted using min-max scaling, which adjusts the values in each 
feature to fall within the specified range, enhancing the 
convergence rate of the training process. Then, the wear flute 
values were included into the dataset, ensuring a complete dataset 
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that includes both the extracted features and the wear 
measurements.

Additionally, to better understand the data and the progression of 
flute degradation after each cut, the wear files provided in the dataset 
were analyzed. A function was developed to traverse each cutter 
machine’s wear files and identify the maximum wear difference 
between sequential cuts. This information is crucial and will be 
utilized in the prediction process of the reinforcement learning agent. 
The maximum wear difference recorded was used as a hyperparameter 
in every MDP model. Further, an EDA was conducted to uncover 
patterns and relationships within the dataset. Figure 3 depicts some 
indicative visualizations.

Using the Gymnasium (formerly OpenAI Gym) library, we 
designed a custom environment for solving the RL optimization 
problem. It simulates a system where an agent makes predictions 
about the wear on certain components (referred to as “flutes”) in a 
manufacturing process.

The environments simulate the CNC machine’s wear prediction 
problem. The agent’s objective is to accurately predict the wear on 

three specific components (flutes) based on curated historical sensor 
data, with rewards and penalties assigned based on prediction 
accuracy.

The environments created for the training of the RL algorithm in 
this implementation are four. They are split into two major categories 
based on the Prediction Model and the Reward Calculation. All the 
environments work similarly but differ in the two major categories 
mentioned. The similar features are the State Space, Action Space and 
the Initial State Distribution:

The State Space is completely represented by the observation space 
(fully observable environment) and consists of 42 time-domain 
features derived from sensor data (7 sensors with 6 time domain 
features each), offering a detailed manufactured snapshot of the 
machine’s condition after each cut. All the data is derived from the 
dataframe that we provide to the environment class as an argument, 
which is the processed dataset we have created after completing the 
feature extraction.

Observations are constructed from the current step’s sensor data. 
An observation is part of a row of the dataframe (df) which is the 
PHM dataset we have processed. For each step in every episode, 
meaning for each cut we examine, we pick from the data frame all the 
time domain features corresponding to the cut (the current step). This 
observation will be used to determine the action by the policy in the 
current step.

The Action space is a continuous space with three dimensions, 
each ranging from 0 to 1. These actions represent the agent’s 
predictions for the additional wear on three flutes of the CNC 
machine. The prediction of the additional wear of each flute will be 
used to calculate the overall wear.

The Initial state is set up from the first observation of the machine 
coupled with some noise, initializing the environment with the 
machine wear values.

The Reward function evaluates the accuracy of the agent’s 
predictions. The closer the predictions are to the actual wear values, 

FIGURE 1

Scalars tab TensorBoard UI.

FIGURE 2

The high-speed CNC milling machine along with its installed sensors 
(Li, et al., 2009).
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the higher the reward. The reward is calculated using the Score 
Function (Li, 2021) described below:
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Where δ represents the difference between the predicted 
maximum wear and the actual maximum wear:

	 δ = −Wear Prediction Value Wear Actual Value

The score function is the negation of the original score function 
used in the 2010 PHM Data Challenge competition. The reason why 
the negation version of the function is used is that the agent wants to 
maximize its reward and the original version is a minimization 
function. It is designed to provide feedback to the agent based on the 
accuracy of its predictions, specifically focusing on penalizing 
overestimations more severely than underestimations. This design 
ensures that the agent learns to avoid predicting excessively low wear 
values, which can be more costly and disruptive. The use of 
exponential functions provides a smooth gradient for learning, 
allowing the agent to adjust its predictions incrementally and 
effectively.

Also, in order to remain consistent with the scoring methodology 
used in the 2010 PHM Data Challenge, as described in (Chen, 2011) 
we also implemented the original score function. This function is 
used solely as an evaluation metric to assess the performance of the 
models we develop, and it is not used as a training metric by the 
policy. We refer to this metric as the PHM Score, and we will use it 
to compare the performance of our model both internally and 
against other types of predictors, such as a dummy baseline model 
and supervised machine-learning methods, including logistic 
regression.

The environment resets to its starting state at the beginning of 
each episode, ensuring a consistent baseline for the agent’s learning 
process. The step function executes one-time step in the environment, 
updating the state, calculating the reward, and determining whether 
the episode should terminate or truncate.

The environment terminates when the current step exceeds the 
maximum number of steps (MAX_STEPS). In all the cut files provided 

by the PHM dataset, the maximum number of steps is 315, so the 
maximum episode length is 314.

The environment can also be truncated if the episode reward is 
smaller than −200 million. This is done to speed up the training 
process by cutting short poorly performing training episodes, allowing 
the agent to focus on more productive actions. Models that fail that 
consistently get truncated and never reach the maximum episode 
length are flagged are marked as “Did Not Finish” (DNF).

The differences between the four environments are the Prediction 
Method (Corrective, Non-Corrective) and Reward Calculation (Delay, 
No-Delay). Each combination of these categories defines a distinct 
environment within the MDP framework.

The “Corrective Prediction” is an approach where the agent’s 
predictions are corrected based on the actual wear values observed. 
This means that the agent adjusts its predictions by considering the 
current actual wear, providing a more accurate and real-time 
adjustment to the state of the environment.

The “Non-Corrective Prediction” involves updating the 
predictions incrementally based on previous predictions without 
immediate correction based on actual wear values. It relies on the 
agent’s previous predictions to inform future predictions.

Under the “No Delay” method the reward is calculated directly 
based on the difference between predicted and actual wear values, 
without any scaling factor related to the current step. This method 
focuses on immediate accuracy without considering the long-term 
impact of actions.

In contrast the “With Delay” method adjusts the reward using a 
“delay modifier,” which scales the reward based on the current step 
within the episode. This method aims to emphasize actions that 
provide long-term benefits by rewarding actions that have a positive 
effect later in the episode.

Combining the two categories, the four distinct environments are 
described in Table 4.

4.3 Experimental results of RL model 
training and health state prediction

In this Section, we present the experimental results from the RL 
model training process. The framework produces a wear estimate at 
every step of an episode comprising 315 sequential identical cuts. 
Although the environments differ in terms of prediction method and 
reward calculation, they all aim to guide the agent toward accurately 

FIGURE 3

EDA visualization.
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modeling the wear evolution throughout the cutting sequence. The 
score function associated with each environment is used as the 
primary performance metric and quantifies the alignment between 
the agent’s predictions and the true wear behavior. The results are 
derived from the four algorithms (PPO, SAC, DDPG, A2C) applied 
within the four different environments (Corrective-with Delay, 
Corrective-No Delay, Non-Corrective-with Delay, Non-Corrective-No 
Delay), thus having 16 distinct models. All models use the default 
hyper parameters provided by the Stable Baselines library. The training 
was conducted on the processed dataset of cutter 1 (train set). For each 
Prediction Method (i.e., Non-Corrective, Corrective), we demonstrate 
and compare the results for each RL algorithm for the two methods of 
Reward Calculation (No Delay, With Delay). For the Non-Corrective 
prediction method (Section 4.3.1), for each algorithm, we present the 
results of Mean Episode Length, Mean Episode Reward, and PHM 
Score per timestep in a graph. For the Corrective prediction method 
(Section 4.3.2), for each algorithm, we present the results of Mean 
Episode Reward, and PHM Score per timestep.

An increase in the numerical value of the mean episode length per 
timestep graph indicates that the agent is learning to act in a way that 
allows episodes to continue for longer without being truncated. In our 
environment, each cutting-file episode has a maximum possible 
length of 314 steps. Therefore, when the mean episode length reaches 
314, it signifies that the agent successfully predicts the tool wear for all 
cuts in every episode and no longer encounters early truncation. The 
speed of increase in this curve reflects the rate of effective learning. A 
steeper rise means that the RL algorithm requires fewer timesteps to 
reach a level of performance where it can complete full episodes. 
Although a rapid learning rate does not necessarily imply that the 
resulting model is the best in overall performance, it can be 
advantageous in scenarios where fast adaptation is important, such as 
real-time applications and learning.

Mean Episode Score and PHM Score per Timestep are 
performance metrics. In the case of mean episode score the higher the 
score the better, since the agent tries to maximize it. The opposite is 
true for the Phm score which follows the logic of the PHM Data 
Challenge. The speed of increase in the Mean Episode Reward per 
Timestep graph represents how quickly the agent is improving its 
decision-making policy with respect to the reward function defined 
in the environment. A faster rise indicates that the agent is rapidly 

learning which actions lead to higher cumulative reward. Although 
rapid reward improvement suggests efficient learning, it does not 
necessarily imply the best final performance; some models may learn 
more slowly but ultimately achieve higher stability or better asymptotic 
results. In contrast, for the PHM Score, the interpretation depends on 
the direction of improvement. Since lower PHM Scores correspond to 
better performance (following the PHM Data Challenge scoring 
framework), a fast decrease in this metric reflects faster learning. A 
rapid decline means that the agent quickly reduces prediction errors 
associated with wear estimation.

The training process begins by creating an instance of the 
simulated environment using the preprocessed dataset. Each 
environment allows the RL agent to interact with it and learn to 
predict the wear of the machine. Then, the environment is 
initialized and sets up a logging mechanism to track the progress 
and performance of the models. A key aspect of this setup is 
defining the number of timesteps for training and creating a 
directory structure to store the training logs and model files. A 
callback function was implemented to log the score during training 
and to monitor the performance of the agent at various steps. To 
ensure efficient and organized training, a function was developed 
to manage the creation and naming of model files. This function 
also can load previously trained models, enabling the continuation 
of training from the last saved state. During the training loop, 
models are periodically saved, and their performance is evaluated 
to ensure they are learning effectively. The training process is 
executed in iterations, with each iteration involving a specified 
number of timesteps. For each episode, the model predicts the next 
action based on the current observation. After each iteration, the 
models are evaluated, and their performance metrics are logged. 
The hyper parameters used for each RL algorithm are shown in 
Table 5.

The experiments were conducted on a personal workstation, 
specifically an Asus TUF DASH F15 equipped with an Intel 12th 
Gen Core i5-12450H processor, 16 GB DDR5 RAM, and an 
NVIDIA GeForce RTX 3050 GPU. This configuration provides 
sufficient computational resources for training and evaluating the 
approach’s RL agents, while remaining relatively entry-level 
compared to hardware commonly available in research or industrial 
settings. This makes the proposed approach computationally 
feasible even on modest hardware, such as a standard high-
performance laptop, and highlights its suitability for real-time 
industrial applications where access to server-grade resources may 
be limited.

4.3.1 Non-corrective prediction

4.3.1.1 The PPO algorithm
Figure 4 indicates that the model “with delay” reaches episode 

length of 314 faster than the “no delay” model, suggesting more 
efficient learning early on. Despite this, both models ultimately 
achieve the same final performance, which is reasonable. The model 
“with delay” exhibits significantly larger fluctuations, including deep 
spikes. Over time, both models improve. The model “with delay” 
shows higher initial PHM scores and greater fluctuations compared 
to the model “no delay.” Over time, both models reduce the PHM 
scores. We observe that delay correction may accelerate learning 

TABLE 4  The four distinct environments.

Environments

Corrective with 

Delay

The agent’s predictions are corrected based on actual wear 

values, and the rewards are adjusted by a delay modifier to 

emphasize long-term benefits.

Corrective No 

Delay

The agent’s predictions are corrected based on actual wear 

values, and the rewards are calculated directly based on 

immediate prediction accuracy.

Non-Corrective 

with Delay

The agent’s predictions are incrementally updated based 

on previous predictions, and the rewards are adjusted by a 

delay modifier to emphasize long-term benefits.

Non-Corrective No 

Delay

The agent’s predictions are incrementally updated based 

on previous predictions, and the rewards are calculated 

directly based on immediate prediction accuracy.
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initially, it results in higher variability and less optimal final 
performance in minimizing PHM scores.

4.3.1.2 The SAC algorithm
Neither the “no delay” model not the ‘with delay’ model reached 

the 314-cut mark so the PHM score cannot be examined. The models 
were constantly truncated due to poor performance. A shown in 
Figure 5, the comparison of SAC shows that both exhibit a downward 
trend in mean episode length and rewards and both models have not 
reached the max episode length of 314. The “no delay” model starts at 
118.98 and ends at 35.33, while the ‘with delay’ model starts at 194.38 
and ends at 34.83, indicating that both struggle to maintain longer 
episodes. Both models have highly negative rewards, highlighting 
their poor performance.

4.3.1.3 The DDPG algorithm
As shown in Figure 6, the comparison of DDPG models reveals 

significant differences in performance. The “no delay” model quickly 
achieves and maintains the maximum mean episode length of 314, 
while the ‘with delay’ model shows only a minor increase from 20.75 
to 23. Overall, the “no delay” model is better, but it fails to optimize 
the reward metrics. The deterministic nature of the algorithm 
prohibits the improvement in terms of reward.

4.3.1.4 The A2C algorithm
As shown in Figure 7, the “no delay” model initially shows 

significant variance in mean episode length but stabilizes at the 
maximum value of 314, indicating that it eventually learns to 
maximize episode duration although slower. Its mean episode reward 
graph, however, reveals large negative rewards, reflecting high 
variance and instability throughout the training process. Also, the 
corresponding PHM score graph shows substantial variability, 
indicating that the model often deviates from optimal behavior. On 
the contrary, the ‘with delay model’, while showing similar initial 
fluctuations, converges more steadily and faster. The PHM score also 
indicates more consistent performance with fewer extreme values 
compared to the “no delay” model.

4.3.2 Corrective prediction

4.3.2.1 The PPO algorithm
Figure 8 depicts the comparison of the “no delay” and “with delay” 

models for the PPO algorithm in terms of Mean Episode Reward per 
Timestep and PHM Score per Timestep. The “no delay” model 
converges quickly into the max episode length, with a significant 
increase observed within the first 100,000 steps. The mean episode 
reward increases by 95% from its initial value, indicating successful 
training. The PHM Score also follows a similar trend, rapidly 
decreasing to a near-zero value within the same timeframe, which 
aligns with the reduction in variance and stabilization of the policy. 
This behavior highlights the model’s efficiency in reaching optimal 
performance quickly and reliably. The “with delay” model 
demonstrates a rapid increase in mean episode reward, reaching 
stability early and maintaining it throughout the training period. The 
reward improves from −122.3 to −6.0, representing a positive change 
of +116.3 (95%). The PHM score also shows a significant reduction 
from its peak, settling at around 10.05 with a decrease of 260 (96%). 
Both models exhibit efficient learning, quickly stabilizing their 
rewards and PHM scores, indicating successful convergence and 
effective training in the corrective environment. The only slight 
difference is that the “with delay” model is slightly faster in converging.

4.3.2.2 The SAC algorithm
Figure 9 depicts the comparison of the “no delay” and “with delay” 

models for the SAC algorithm in terms of Mean Episode Reward per 
Timestep and PHM Score per Timestep. The “no delay” model 
demonstrates a rapid convergence in terms of mean episode reward, 
with a significant increase up to around 237.4. The reward stabilizes 
quickly, indicating efficient learning. The PHM score also shows a 
rapid decrease. Overall, this model shows effective and stable 
performance throughout the training period. The “with delay” model 
shows a faster increase in the mean episode length per timestep, but a 
slower and more gradual increase in mean episode reward, peaking at 
around −1.76 (perfect score). The learning process appears to be 
slowed by the “with delay” model, has slightly less efficient learning 

TABLE 5  The hyper parameters used for each RL algorithm.

Hyper Parameters for all RL Algorithms Used

PPO policy = MlpPolicy, learning_rate = 0.0003, n_steps = 2048, batch_size = 64, n_epochs = 10, gamma = 0.99, gae_lambda = 0.95, clip_range = 0.2, 

clip_range_vf = None, normalize_advantage = True, ent_coef = 0.0, vf_coef = 0.5, max_grad_norm = 0.5, use_sde = False, sde_sample_freq = 1, 

rollout_buffer_class = None, rollout_buffer_kwargs = None, target_kl = None, stats_window_size = 100, tensorboard_log = logdir, policy_

kwargs = None, verbose = 1, seed = None, device = ‘auto’, _init_setup_model = True

A2C policy = MlpPolicy, learning_rate = 0.0007, n_steps = 5, gamma = 0.99, gae_lambda = 1.0, ent_coef = 0.0, vf_coef = 0.5, max_grad_norm = 0.5, rms_

prop_eps = 1e-05, use_rms_prop = True, use_sde = False, sde_sample_freq = −1, rollout_buffer_class = None, rollout_buffer_kwargs = None, 

normalize_advantage = False, stats_window_size = 100, tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _

init_setup_model = True

DDPG policy = MlpPolicy, learning_rate = 0.001, buffer_size = 1,000,000, learning_starts = 100, batch_size = 256, tau = 0.005, gamma = 0.99, train_freq = 1, 

gradient_steps = 1, action_noise = None, replay_buffer_class = None, replay_buffer_kwargs = None, optimize_memory_usage = False, n_steps = 1, 

tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _init_setup_model = True

SAC policy = MlpPolicy, learning_rate = 0.0003, buffer_size = 1,000,000, learning_starts = 100, batch_size = 256, tau = 0.005, gamma = 0.99, train_freq = 1, 

gradient_steps = 1, action_noise = None, replay_buffer_class = None, replay_buffer_kwargs = None, optimize_memory_usage = False, n_steps = 1, 

ent_coef = ‘auto’, target_update_interval = 1, target_entropy = ‘auto’, use_sde = False, sde_sample_freq = −1, use_sde_at_warmup = False, stats_

window_size = 100, tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _init_setup_model = True

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 11 frontiersin.org

and lower overall rewards compared to the ‘no delay’ model. The PHM 
score similarly decreases but stabilizes at a higher level of uncertainty 
than the “no delay” model, indicating less efficient convergence.

4.3.2.3 The DDPG algorithm
Figure 10 depicts the comparison of the “no delay” and “with 

delay” models for the DDPG algorithm in terms of Mean Episode 

FIGURE 4

Comparison of PPO in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis); (c) PHM 
score (Y-axis) per timestep (X-axis).
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Reward per Timestep and PHM Score per Timestep. The “no delay” 
model exhibits a significant increase in mean episode reward, 
improving from −75.1 to −8.46, representing an 89% improvement. 
However, the PHM Score shows minimal improvement, with a 
change of −37%. This model manages to perform better over time but 
does not reach the optimal performance level of other models, as 
indicated by the relatively small decrease of PHM Score. The “with 
delay” model demonstrates a severe drop in performance. The mean 
episode reward heavily decreases, and the PHM Score increases 
dramatically. This model appears to be stuck in a bad policy, leading 
to poor performance.

Comparing the two DDPG corrective models, the” no delay” 
model shows better performance with a higher mean episode reward 
improvement and a decent PHM Score. The” with delay” model 
indicates poor performance overall with significant drops in mean 
episode rewards and increased actor loss variability. The comparison 
highlights that the discounted rewards as the” with delay” model is not 
good in a DDPG algorithm.

4.3.2.4 The A2C algorithm
Figure 11 depicts the comparison of the “no delay” and “with 

delay” models for the A2C algorithm in terms of Mean Episode 
Reward per Timestep and PHM Score per Timestep. The “no delay” 
model is the only Corrective model that does not reach the max 
episode length on the first few timesteps. It shows significant 
fluctuations in the mean episode length initially, stabilizing after 
around three million timesteps. The mean episode reward graph 
indicates substantial variations in reward values and the PHM score 
also demonstrates considerable variability, reflecting a challenging 

learning environment. The “with delay” model shows a consistent 
mean episode length near the maximum limit, with minor early 
fluctuations. The mean episode reward graph indicates a stable 
performance with minor improvements over time. The PHM score 
graph remains flat, indicating that the model did not significantly 
improve in this metric, but it still has a good score.

4.4 Overview of the training results

In this Section, we present an overview of the training results, 
summarizing the RL models performance for equipment health state 
prediction. Figure 12 depicts the overview of the results from the four 
RL algorithms training embedded in the “no delay” and “with delay” 
models for the Corrective Prediction Method (8 models per Category) 
as well as the overview of the results from the four RL algorithms 
embedded in the “no delay” and “with delay” models for the 
Non-Corrective Prediction Method.

The graph showcasing the mean episode reward per timestep 
clearly displays the A2C “no delay” model attempt of big exploration. 
While most models eventually stabilize, they show varying levels of 
performance improvement. The A2C model “no delay” experiences 
significant negative rewards, reflecting its difficulty in learning 
initially. Over time, other models, particularly those “with delay” 
correction, show more consistent improvements in rewards. With 
DDPG showing the best performance early on and PPO showing 
consistent improvement and surpasses other models.

Once again in the PHM Score per timestep graph, A2C “no 
delay” fluctuates greatly, while A2C “with delay” remains stable. The 

FIGURE 5

Comparison of SAC in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis).
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DDPG “no delay” model initially fluctuates but then remains steady, 
and DDPG “with delay” shows increased exploitation remaining 
almost constant after the initial exploration. Both PPO models 
consistently maintain low, stable scores, indicating strong 
performance. SAC models also perform well with stable, low scores. 
Overall, PPO and SAC are the most robust, “with delay” correction 
improving stability for A2C and DDPG.

Figure 13 provides a comparison of the performance of the RL 
algorithms (A2C, DDPG, PPO, SAC) “with delay” and “no delay” 
correction in terms of mean episode length over training steps. PPO 
stands out for its consistent and strong performance. Both PPO 
models, “with delay” and “no delay” correction, demonstrate 
significant improvements and stable learning trajectories, stabilizing 
around the maximum episode length of 314. This indicates that PPO 

is highly effective for the task at hand, with or without the additional 
reward scaling introduced by the “with delay” correction.

For A2C, the models show notable improvements in episode 
length, with the version” no delay” correction achieving a slightly 
better episode length of 311.87 compared to the version “with 
delay” correction (308.91). The “with delay” correction helps the 
A2C model stabilize more quickly, suggesting that while it aids in 
the learning process, the final performance is slightly better 
without it.

DDPG models exhibit more alternation in performance. The 
DDPG model” no delay” correction reaches the max episode length 
of 314, indicating effective learning, though it has minimal fluctuations 
during training. In contrast, the DDPG model “with delay” correction 
struggles, showing minimal improvement and achieving only a slight 

FIGURE 6

Comparison of DDPG in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) Mean episode reward (Y-axis) per timestep (X-axis); (c) 
PHM score (Y-axis) per timestep (X-axis).
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increase from 20.75 to 23, suggesting that “with delay” correction does 
not benefit DDPG in this context.

SAC models perform poorly compared to the other 
algorithms. Both SAC models, “with delay” and “no delay” 
correction, show a significant decline in episode length over time. 
The SAC model” no delay” correction starts at 118.98 and drops 
to 22.51, while the SAC model “with delay” correction starts at 
84.08 and drops to 28.69. This suggests that SAC struggles with 

this particular task and the “with delay” correction aids in the 
decline in performance.

4.5 Discussion of evaluation results

These are the results from evaluating the 16 RL models on the test 
set, which consists of cutters 4 and 6 from the PHM dataset. Table 6 

FIGURE 7

Comparison of A2C in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis); (c) PHM 
score (Y-axis) per timestep (X-axis).
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presents the aggregated performance metrics for the models in the 
Corrective environments, while Table 7 presents the corresponding 
aggregated metrics for the Non-Corrective environments.

The comparative evaluation of the four RL algorithms—PPO, 
SAC, A2C, and DDPG—demonstrates distinct performance 
characteristics across training efficiency, convergence behavior, 
adaptability to delay, and generalization across environments.

PPO consistently proves to be the most robust and reliable 
algorithm. It shows high and stable performance across all 
environments, with fast training times per timestep and efficient 
convergence. Its ease of implementation and low computational 
demand further reinforce its practical utility. PPO excels particularly 
in Corrective environments, demonstrating stable episode lengths and 
rewards across time. The “with delay” correction improves adaptability 
to long-term rewards, as evident from the improved performance in 
delayed environments, especially for dataset C6. However, saturation 
occurs early in training, suggesting overfitting risk if the process is not 
monitored. In Non-Corrective environments, PPO models—with and 
without delay—maintain strong performance and stable episode 
lengths near the maximum (314), with minimal sensitivity to reward 
delay correction.

SAC, although computationally more intensive and complex due 
to the need for multiple network structures (policy, Q-function, and 

value function), shows exceptional adaptability in Corrective 
environments. The algorithm converges the fastest and requires the 
fewest timesteps, with entropy-based exploration enabling it to find 
optimal policies quickly. However, despite its strong early-stage 
performance and robustness against overfitting in the Corrective 
setting, SAC underperforms in the Non-Corrective environment. The 
results show a steady decline in mean episode length over time for 
both SAC variants. Reward plots indicate a lack of consistent policy 
improvement, and Phm scores show high instability and spikes, 
reflecting reduced learning effectiveness. This contrast highlights that 
while SAC is powerful in structured environments, it struggles with 
more chaotic or loosely defined tasks, possibly due to exploration 
strategies that become less effective without clear corrective signals.

A2C shows consistent, though slower, improvement over time. In 
Corrective environments, especially without delay, the algorithm 
exhibits significant variance in reward and episode length, with 
notable negative scores early in training. With delay correction, A2C 
becomes more stable but still lags behind PPO and SAC in overall 
performance. Nevertheless, A2C is the only model across all cases 
where performance consistently improves over time rather than 
peaking early. In the Non-Corrective environment, A2C displays 
improved mean episode lengths, especially without delay correction 
(311.87 vs. 308.91), showing that delay correction stabilizes the model 

FIGURE 8

Comparison of PPO in terms of: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).
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faster, though ultimate performance may be better without it. 
However, A2C still suffers from high reward variability and instability 
in Phm scores, suggesting limited generalization in noisy or unstable 
conditions.

DDPG is the most problematic among the four algorithms. 
Although theoretically suitable for continuous action spaces, its 
deterministic policy and poor exploration lead to consistently poor 
results. In all environments, DDPG converges to local optima early 
and fails to improve over time. Particularly in the Non-Corrective 
environment with delay, the model completely fails to reach the 
episode length of 314 and is terminated early due to extremely low 
rewards. Reward and Phm score plots confirm stagnant behavior with 
high negative values and flat trajectories, indicating a lack of 
meaningful learning. DDPG without delay performs marginally 
better, reaching maximum episode length in some cases, but still 
suffers from high Phm scores and erratic reward patterns.

Across all algorithms, it is noteworthy that best results are often 
achieved mid-training rather than at the end. This suggests 
potential overfitting as training continues—models begin to 
memorize training data patterns including noise, reducing 
generalization capacity. This trend is especially pronounced in SAC 
and PPO, both of which show strong early performance but limited 
improvement or even regression with prolonged training. 

Regarding delay correction, its impact varies significantly. While it 
aids A2C by stabilizing training and improves PPO’s long-term 
reward adaptation, it negatively affects DDPG, likely due to 
compounding its already poor exploration capabilities. For SAC, 
delay correction slightly mitigates performance decline but does 
not reverse the general trend of degradation in Non-Corrective 
environments.

To better interpret the evaluation results, a supervised ML 
baseline was incorporated for comparison with the RL algorithms. 
An XGBoost regressor was incorporated as a supervised learning 
baseline due to its strong performance in modeling nonlinear 
degradation patterns and its established effectiveness in predictive 
maintenance applications. The XGBoost Python library was used, and 
the model was implemented with all hyperparameters set to their 
default values, consistent with the approach taken for the RL models. 
A linear predictor was also implemented, incrementing the wear 
value by a fixed amount at each time step (e.g., +1 mm). This 
predictor exhibited substantially inferior performance, even when 
tested on different fixed increment values it had on average 
approximately 230% worse and was therefore excluded from the 
figures to maintain clarity.

Figures 14, 15 report the mean performance of each RL model, 
including both the With Delay and No Delay variants, across the 

FIGURE 9

Comparison of SAC in terms of: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).
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two test cutters (Cutter 4 and Cutter 6). The XG Boost baseline is 
included for reference. In the Corrective Environment, we observe 
that the RL models significantly outperform the XG Boost 
baseline. This provides strong evidence that our structured RL 
approach is more effective for this task and highlights the 
advantages of learning decision policies rather than relying solely 
on supervised prediction. On the Non-Corrective Environment, 
the RL models again achieve superior performance, only those 
capable of reaching the maximum allowable number of steps 
within an episode without being designated as Did Not Finish 
(DNF). This outcome reflects the robustness of the RL approach, 
especially the RL Algorithms PPO and A2C and suggests that they 
provide a strong foundation for further methodological 
enhancement.

5 Conclusions and future work

This study demonstrated the potential of RL for equipment health 
state prediction within the context of predictive maintenance. By 
formulating the wear-estimation task as an MDP and evaluating four 
model-free RL algorithms (PPO, A2C, DDPG, and SAC) across 
corrective and non-corrective environments, we provided a systematic 

assessment of their learning behavior, convergence characteristics, and 
generalization performance on CNC machine data from the 2010 
PHM Society Data Challenge.

The results highlight PPO as the most stable and 
computationally efficient method, achieving consistent 
convergence and strong generalization across all environments. 
SAC exhibited rapid and robust performance in structured 
corrective settings but struggled in non-corrective ones, indicating 
a sensitivity to environment design. A2C showed gradual, steady 
learning, making it suitable for applications requiring long-term 
stability. In contrast, DDPG consistently underperformed due to 
limited exploration and instability, especially in delayed-reward 
and unstructured scenarios. Overall, the findings confirm that RL 
can effectively capture the sequential and uncertain nature of 
machine degradation without relying on labeled failure data. They 
also emphasize the importance of aligning algorithm choice with 
environment characteristics—particularly regarding reward 
shaping and delay handling—to ensure reliable predictive 
performance.

Future work will extend this framework toward multi-agent RL 
for coordinated maintenance of multiple assets, as well as investigate 
adaptive reward mechanisms and online learning strategies for 
deployment in dynamic industrial settings.

FIGURE 10

Comparison of DDPG in terms of: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).
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FIGURE 11

Comparison of A2C corrective “with delay” and “no delay” models for: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (log scale) 
(Y-axis) per timestep (X-axis).

TABLE 6  Performance of RL algorithms in corrective environments.

Corrective prediction

RL algorithm Environment and 
dataset (cutters)

Max reward Min PHM score Training time 
and total 
timestepsValue Timestep Value Timestep

PPO No Delay c4 −17.21 40,000 16.99 40,000 3 h

1,117,000 stepsc6 −16.21 70,000 18 70,000

With Delay c4 −8.98 20,000 15.73 20,000 2 h

2,160,000 stepsc6 −8.23 1,460,000 17.85 670,000

SAC No Delay c4 −37.37 90,000 45.76 90,000 6.2 h

349,420 stepsc6 −14.8 30,000 16.36 30,000

With Delay c4 −10.94 20,000 23.07 20,000 5.3 h

279,374 stepsc6 −8.21 110,000 16.22 110,000

DDPG No Delay c4 −18.84 20,000 19.32 20,000 12.67 h

629,256 stepsc6 −17.04 250,000 18.55 520,000

With Delay c4 −10.75 20,000 19.36 20,000 11.5 h

452,160 stepsc6 −8.83 20,000 18.12 20,000

A2C No Delay c4 −17.84 700,000 18.33 700,000 13.7 h

19,120,000 stepsc6 −16.33 7,000,000 18.12 7,000,000

With Delay c4 −10.75 14,640,000 19.36 14,640,000 17.2 h

14,640,000 stepsc6 −8.83 14,640,000 18.12 14,640,000
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FIGURE 12

Overview of the training results for the corrective prediction: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep 
(X-axis).

TABLE 7  Performance of RL algorithms in non-corrective environment.

Non-Corrective Prediction

RL algorithm Environment and 
dataset (Cutters)

Max reward Min PHM score Training time 
and total 
timestepsValue Timestep Value Timestep

PPO No Delay c4 −25,255,715 38,730,000 35,497,029 38,730,000 17 h

39,833,600 stepsc6 −163,762,286 20,000 233,645,404 20,000

With Delay c4 −544,135,308 20,000 726,430,945 20,000 19,2 h

16,967,680 stepsc6 −583,253,362 20,000 876,304,975 20,000

SAC No Delay c4 −643 400,000 752 390,000 43.3 h

3,819,951 stepsc6 −5,679 410,000 3,140 460,000

With Delay c4 −23,455 200,000 11,418 200,000 32.1 h

2,639,889 stepsc6 −15,048 470,000 7,712 190,000

DDPG No Delay c4 −563,092,188 1,050,000 735,266,738 1,050,000 19.5 h

1,064,325 stepsc6 −637,838,860 1,050,000 910,064,743 1,050,000

With Delay c4 DNF - DNF - 13.5 h

510,251 stepsc6 DNF - DNF -

A2C No Delay c4 −50,834,200 30,000 3,469,607 30,000 26.1 h

26,750,000 stepsc6 −28,469,419 30,000 39,536,971 30,000

With Delay c4 −550,755,354 19,110,000 735,266,790 19,110,000 22.8 h

19,120,000 stepsc6 −606,030,553 19,110,000 910,064,743 19,110,000
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FIGURE 13

Overview of the training results for the non-corrective prediction: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per 
timestep (X-axis).

FIGURE 14

Corrective PHM score of each RL model, including both the with delay and no delay variants, across the two test cutters (cutter 4 and cutter 6).
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