
Frontiers in Artificial Intelligence 01 frontiersin.org

Health state prediction with
reinforcement learning for
predictive maintenance
Anastasis Aglogallos , Alexandros Bousdekis *, Stefanos Kontos 
and Gregoris Mentzas 

Information Management Unit (IMU), Institute of Communication and Computer Systems (ICCS),
School of Electrical and Computer Engineering, National Technical University of Athens (NTUA),
Athens, Greece

Introduction: Predictive maintenance has emerged as a critical strategy
in modern manufacturing, in the frame of Industry 4.0, enabling proactive
intervention before equipment failure. However, traditional machine learning
approaches require extensive labeled data and lack adaptability to evolving
operational conditions. On the other hand, Reinforcement Learning (RL) enables
agents to learn optimal policies through interaction with the environment,
eliminating the need for labeled datasets and naturally capturing the sequential,
uncertain dynamics of equipment degradation.
Methods: In this paper, we propose an approach that incorporates four model-
free RL algorithms, namely Proximal Policy Optimization (PPO), Advantage
Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG), and Soft Actor-
Critic (SAC). We formulate the problem as a Markov Decision Process (MDP),
which is solved with the aforementioned RL algorithms.
Results: The proposed approach is validated in the context of CNC machine tool
wear prediction, using sensor data from the 2010 PHM Society Data Challenge.
We examine algorithmic performance across four custom made environments,
corrective and non-corrective environments both with and without delay correction
mechanisms in order to compare learning dynamics, convergence behavior, and
generalization aspects. Our results reveal that PPO and SAC achieve the most stable
and efficient performance, with SAC excelling in structured environments and PPO
demonstrating robust generalization. A2C shows consistent long-term learning,
while DDPG underperforms due to insufficient exploration.
Discussion: The findings highlight the potential of RL for predictive maintenance
applications and underscore the importance of aligning algorithm design with
environment characteristics and reward structures.

KEYWORDS

deep learning, degradation prediction, Industry 4.0, machine learning, predictive
maintenance, reinforcement learning

1 Introduction

In the era of Industry 4.0, predictive maintenance has become a foundational component
of intelligent manufacturing, aiming to reduce unexpected downtime, optimize maintenance
scheduling, and extend equipment life through data-driven insights (Aivaliotis et al., 2019;
Fordal et al., 2023). The integration of high-frequency sensors and advanced data acquisition
systems has enabled real-time condition monitoring, but the inherent complexity and
variability of industrial environments continue to challenge traditional Machine Learning
(ML) techniques (Turner et al., 2019; Lepenioti et al., 2020). These models often rely on large

OPEN ACCESS

EDITED BY

Chao Zhang,
Shanxi University, China

REVIEWED BY

Luis Osvaldo Rojas Valdivia,
Pontificia Universidad Católica de Valparaíso,
Chile
Chao Yang,
China University of Petroleum, China
Christos Tsallis,
University of West Attica, Greece

*CORRESPONDENCE

Alexandros Bousdekis
 albous@mail.ntua.gr

RECEIVED 07 October 2025
REVISED 02 December 2025
ACCEPTED 22 December 2025
PUBLISHED 12 January 2026

CITATION

Aglogallos A, Bousdekis A, Kontos S and
Mentzas G (2026) Health state prediction with
reinforcement learning for predictive
maintenance.
Front. Artif. Intell. 8:1720140.
doi: 10.3389/frai.2025.1720140

COPYRIGHT

© 2026 Aglogallos, Bousdekis, Kontos and
Mentzas. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  12 January 2026
DOI  10.3389/frai.2025.1720140

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1720140&domain=pdf&date_stamp=2026-01-12
https://www.frontiersin.org/articles/10.3389/frai.2025.1720140/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1720140/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1720140/full
mailto:albous@mail.ntua.gr
https://doi.org/10.3389/frai.2025.1720140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1720140

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 02 frontiersin.org

volumes of labeled failure data, assume stationary behavior, and
struggle to generalize across diverse operational contexts (Bousdekis
et al., 2021).

Reinforcement learning (RL) offers a compelling alternative, as it
enables agents to learn optimal policies through interaction with the
environment, eliminating the need for labeled datasets and naturally
capturing the sequential, uncertain dynamics of equipment degradation
(Siraskar et al., 2023). Recent studies have demonstrated the viability of
RL in predictive maintenance tasks such as fault detection, health index
estimation, and direct maintenance scheduling (Siraskar et al., 2023;
Feng and Li, 2022; Ong et al., 2022). However, real-world applications
remain limited, and comprehensive evaluations of RL algorithms under
realistic conditions are still scarce (Siraskar et al., 2023).

In this paper, we propose an approach that incorporates four
model-free RL algorithms, namely Proximal Policy Optimization
(PPO), Advantage Actor-Critic (A2C), Deep Deterministic Policy
Gradient (DDPG), and Soft Actor-Critic (SAC). To do this, we
formulate the problem as a Markov Decision Process (MDP), which
is solved with the aforementioned RL algorithms. The proposed
approach is validated in the context of CNC machine tool wear
prediction, using sensor data from the 2010 PHM Society Data
Challenge. We examine algorithmic performance across corrective
and non-corrective environments, both with and without delay
correction mechanisms in order to compare learning dynamics,
convergence behavior, and generalization aspects.

The rest of the paper is organized as follows. Section 2 presents the
literature review on the use of RL in predictive maintenance. Section
3 describes our proposed approach for health state prediction with
RL. Section 4 presents the application of the proposed approach to a
CNC milling machine and the experimental results. Section 5
concludes the paper and outlines our plans for future work.

2 Literature review

Predictive maintenance has become a pillar of Industry 4.0, with
the goal of minimizing unplanned downtime, optimizing maintenance
schedules, and extending equipment life by forecasting degradation
and impending failures (Aivaliotis et al., 2019; Bousdekis et al., 2019).
The sensory technologies support real-time condition monitoring
using continuous sensor signals such as vibration, acoustic emissions,
force, and temperature (Huang et al., 2017; Pech et al., 2021).

The first predictive maintenance systems were mainly rule-based
and deterministic, limiting their effectiveness in dynamic and
nonlinear industrial environments (Bousdekis et al., 2018). The
introduction of ML represented a major advancement, enabling the
modeling of complex degradation patterns (Carvalho et al., 2019).
Supervised ML techniques, such as decision trees (Frangopol et al.,
1997), Support Vector Machines (SVM) (Ding et al., 2008; Susto et al.,
2013), random forests (Kabir et al., 2018), gradient-boosted trees (e.g.,
XGBoost) (Ma et al., 2020), and Bayesian Networks (Yang et al., 2023a;
Yang et al., 2023b) have been widely used for fault classification and
prognostics (Dalzochio et al., 2020). Other techniques such as
Principal Component Analysis (PCA) (Eke et al., 2017) and
regression-based ML models (Susto et al., 2014) have also contributed
to predictive maintenance by reducing dimensionality and supporting
flexible diagnostic systems (Sun et al., 2007). Deep learning has
further improved predictive maintenance performance by enabling
models to learn directly from raw time-series data. Long Short-Term

Memory (LSTM) networks (Zheng et al., 2017; Sayyad et al., 2022)
and Convolutional Neural Networks (CNNs) (Sateesh Babu et al.,
2016) have been effectively applied to degradation modeling and
regression tasks (Serradilla et al., 2022).

However, these approaches and algorithms face notable
limitations. They typically require large amounts of labeled data,
particularly historical failure records, which are often unavailable or
expensive to collect (Shakya et al., 2023). Moreover, they assume
stationary input–output mappings, making their application to real-
world settings challenging, because the equipment behavior evolves
over time (Dalzochio et al., 2020). Retraining models to adapt to new
machines or operational conditions is time-consuming and often
suffers from concept drift (Lehmann et al., 2020). In this realm, RL has
emerged as a promising alternative to traditional ML for predictive
maintenance (Ogunfowora and Najjaran, 2023). Unlike supervised
learning, RL does not depend on labeled data; instead, it learns
optimal decision policies through interaction with the environment
(Shakya et al., 2023). In predictive maintenance applications, RL
agents monitor system states (e.g., sensor measurements or health
indicators), take actions such as predicting wear or scheduling
maintenance, and receive rewards based on objectives like minimizing
repair costs or downtime (Siraskar et al., 2023).

This trial-and-error learning paradigm naturally captures the
sequential and uncertain characteristics of maintenance decision-
making, where current actions influence future system outcomes
(Lewis et al., 2012; Sutton and Barto, 1998). Siraskar et al. (2023) have
reviewed RL applications across tasks such as early fault detection,
health index estimation, and direct maintenance decision support.
Ogunfowora and Najjaran (2023) further highlight RL’s capacity to
integrate short-term equipment states with long-term maintenance
cost considerations, something traditional deep learning models
struggle with under shifting conditions. However, these works typically
focus on single algorithms or single-task environments. In contrast, our
study contributes a multi-environment, multi-algorithm experimental
framework that reveals how RL performance depends on problem
formulation, reward structure, and environment corrective behavior.

Several RL algorithms have been applied to the predictive
maintenance domain. Value-based methods, such as Q-learning and
Deep Q-Networks (DQN), are well-suited for discrete action spaces.
According to (Ogunfowora and Najjaran, 2023), more than 70% of
reviewed studies utilized Q-learning variants. For instance, Latifi et al.
(2021) employed DQN and PPO for infrastructure asset management,
effectively balancing cost and performance. Some works have shifted
towards policy-gradient and actor-critic methods for their effectiveness
in continuous state-action spaces (Khadka and Tumer, 2018).
Algorithms such as PPO, A2C, DDPG, and SAC combine value
estimation with policy learning for enhanced decision control. Wang et
al. (2024) demonstrated that a CNN–BiLSTM-enhanced DDPG model
outperformed conventional methods in bearing RUL prediction. SAC,
notable for its entropy-based exploration, has shown effectiveness in
high-stakes applications like aircraft engine maintenance, where sample
efficiency is critical. These findings suggest that while model-free
methods like Q-learning and DQN perform well in discrete domains,
actor-critic algorithms offer greater control precision and adaptability
in complex industrial scenarios. Recent studies have also explored
advanced RL-based frameworks for predictive maintenance. Abbas et
al. (2024) propose a hierarchical approach that combines an Input–
Output Hidden Markov Model with DRL to improve interpretability
and sample efficiency in safety-critical applications. Zhao et al. (2024)

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 03 frontiersin.org

introduce TranDRL, which integrates Transformer-based RUL
prediction with DRL-driven maintenance recommendations and
human-in-the-loop feedback. In the machining domain, Kaliyannan et
al. (2024) evaluate RL algorithms for tool-condition monitoring and
show that SARSA outperforms both deep learning and other RL
baselines for classifying tool wear from vibration signals. Furthermore,
literature reviews by Ogunfowora and Najjaran (2023) and Siraskar et
al. (2023) support the conclusion that well-calibrated deep RL models
can exceed traditional ML baselines in simulated environments.

Despite their potential, many RL-based predictive maintenance
approaches remain at the proof-of-concept stage, often relying on
synthetic data or simplified simulation environments (Siraskar et al.,
2023). The lack of real-world benchmarks and standardized evaluation
protocols limits cross-study comparability. Moreover, safe deployment
in industrial settings is constrained by the need for robust, cautious
exploration mechanisms, particularly in high-risk systems where
untested policies could cause costly failures (Çınar et al., 2020). These
challenges underscore the need for ongoing research focused on
developing generalizable, scalable, and real-time RL frameworks that
can adapt to evolving operational conditions in industrial predictive
maintenance applications.

3 The proposed approach for health
state prediction with reinforcement
learning

This Section describes the proposed approach for health state
assessment of manufacturing equipment with RL in order to realize
the predictive maintenance paradigm. The proposed approach consists
of the following steps: (i) Data Structuring (Section 3.1); (ii) Data
Preprocessing (Section 3.2); (iii) MDP Modelling (Section 3.3); (iv)
Solving with RL (Section 3.4); and, (v) Evaluation (Section 3.5).

Initially, data collected from sensors are processed and
subsequently transformed into a MDP model. Through the MDP, a
suitable environment is developed for the implementation of various
RL algorithms, which is trained on the processed dataset. The last step
is, after the training, the algorithms will be evaluated to determine
their effectiveness. If their performance is satisfactory, they can be
utilized to perform predictions about the equipment degradation. The
end goal is to develop an RL-based Predictive maintenance agent
capable of making autonomous decisions to predict the health state
and the wear. Table 1 presents the steps of the proposed approach
along with their inputs and outputs throughout the data pipeline. The
proposed approach incorporates model-free RL algorithms.

Unlike previous studies that examine single RL algorithms or
simplified maintenance scenarios, this work introduces a unified and
reproducible RL evaluation framework specifically tailored for
equipment wear prediction. Our contributions are fourfold: (i) we
propose a novel 2 × 2 environment design (corrective/non-corrective
× delayed/non-delayed rewards) that enables systematic investigation
of how RL agents interpret different degradation formulations; (ii) we
integrate domain-informed reward shaping by adapting the PHM
competition score as an RL reward function; (iii) we provide the first
comprehensive cross-algorithm comparison of PPO, A2C, SAC, and
DDPG on the Li, 2021 dataset using a unified pipeline; (iv) we present
open-source implementations and reveal empirical insights—such as
differential sensitivity to reward delay and overfitting tendencies—that

have not been documented in prior RL-based predictive maintenance
studies.

3.1 Data structuring

In this step, the sensor-generated time-series data is formulated in
a table form with each row corresponding to a sensor value at a
specific timeframe. These sensors capture critical parameters such as
vibrations, force, spin, temperature, pressure over time and other
related functional characteristics. The input parameters include not
only the raw sensor readings but also derived features that help in
capturing the underlying patterns and trends in the data. The output
of this step is structured data that provides a better understanding of
the use case and can be subsequently processed in an effective manner.

3.2 Data preprocessing

Through data preprocessing, it becomes possible to create a more
manageable and informative dataset. This step takes as input the
structured data and includes the following steps: (a) data visualization:
Exploratory Data Analysis (EDA) supporting understanding of the
data’s characteristics, distributions, anomalies, inconsistencies, and
irregularities; (b) data cleaning: removing noise and errors to ensure
consistency and robustness; (c) feature extraction: transforming raw
data into meaningful features in order to handle the high-dimensional
nature of sensor data. As far as feature extraction is concerned, the
proposed approach adopts a set of time-domain features, characteristics
derived from analyzing time-series data-data points collected or
observed at different time intervals, which have been proved effective
in various manufacturing settings, particularly in the presence of
vibration sensors (Wilson, 2017; Kumar et al., 2022). The proposed
approach incorporates the features presented in Table 2. The output of
this step is the transformed data that feeds into the MDP modelling step.

3.3 MDP modelling

This step receives the transformed data and creates the MDP model
that represents the degradation process of the equipment. In this way, it
defines the observation space, the action space, the reward function,

TABLE 1  The steps of the proposed approach along with their inputs and
outputs.

Section Step Input Output

3.1 Data Structuring Sensor Signals Structured Data

3.2 Data

Preprocessing

Structured Sensor

Data

Transformed Data

3.3 MDP Modelling Transformed Data Observation Space,

Action Space,

Reward Function,

Episode Information

3.4 Solving with RL Observation,

Reward

Action

3.5 Evaluation Trained RL Model Evaluation Metrics

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 04 frontiersin.org

and the episode information, that will be subsequently used by the RL
algorithms, thus defining the environment in which the agent will take
actions. The MDP consists of the following components: States Space,
Action Space, Transition Model, Reward Function and the starting state
distribution ρ0. Therefore, an MDP is a 5-tuple, (S, A, R, P, ρ0), where: S
is the set of all valid states; A is the set of all valid actions;

× × →:R S A S R is the reward function, with ()+= 1, ,t t t tr R s a s ;
()× →:P S A P S is the transition probability function, with ()′|, |,P s s a

being the probability of transitioning into state ′s if you start in state s
and take action a; ρ0 is the starting state distribution (Garcia and
Rachelson, 2013).

Below, we describe in detail the MDP model specifically crafted
for equipment Health State Prediction:

	•	 State tS : The state at any time step t is represented by the condition
of the machine parts that is represented by the value of the
sensors attached to the machines at t. The vector containing all
the information of the environment is called the state of the
environment. The set S contains all the valid states ∀,tS t of the
environment, therefore it contains all the different wear states and
values the examined equipment may attain.

	•	 Action ta : The action space consists of a n-dimensional space
representing the wear of the n components of the equipment, i.e.,

= …  1 2, , ,t na action action action , where: ()1 1action prediction :
is the prediction of the agent for the additional wear of the
component 1 at timestep t, ()2 2action prediction is the prediction
of the agent for the additional wear of the component 2 at
timestep t, and ()n naction prediction is the prediction of the
agent for the additional wear of the component n at timestep t.
The action is the corresponding additional wear that the agent
predicts for the component. This vector can be either discrete or
continuous; however, a continuous action space is more fitting,
since the wear is not a discrete metric.

	•	 Transition Probabilities (P): The transition probabilities define
how the state changes in response to actions. Depending on how
the machine operates, the resulting induced wear is a stochastic
phenomenon. Therefore, the way predictions are managed is
through calculating the probability of the given wear occurring
given the current state. Due to the Markov property, the
transitions only depend on the most recent state and action, and
not on prior history. The probability of transitioning to state +1ts
given the current state ts and action ta is denoted by ()+1|, |,t t tP s s a .

	•	 Reward tR : The reward function is designed to provide feedback
to the agent based on the accuracy of its predictions. Depending
on the objective, a different reward function will be used,
penalizing bad behavior and rewarding good behavior-actions.
The reward can be computed based on the difference between
the predicted wear and the actual wear observed. Although this
is a credible method, more advanced ways of scoring the reward
are usually used, called score functions. The score functions
behave differently in the case of a bad action and a good action
in order to help the agent learn more effectively. The way a score
function evaluates actions determines what and how the agent
learns. Typically, defining the score function is a challenging
step that requires a deep understanding of the
problem we aim to solve. The general formula of a
reward is: ()= − t fR Score predicted value actual value .

	•	 Starting state distribution ρ0 defines the probability distribution
over the initial states from which the agent begins. This
distribution is crucial as it sets the initial conditions and
significantly influences the early stages of learning and
exploration. Therefore, ρ0 represents the likelihood of various
initial wear conditions and sensor readings of the machine at the
start of the monitoring period. The initial state could be
determined based on historical data, reflecting common starting
conditions observed in past machine operations. A well-defined
ρ0 ensures that the agent experiences a realistic range of initial
conditions during training, promoting robust learning and better
generalization to real-world scenarios. It is bad practice to always
have the same initial condition since it does not reflect real life
conditions.

	•	 Trajectories / Episodes: A trajectory τ consists of a sequence of
states and actions: ()τ α= …0 0 1 1, , , ,s a s . The initial state s0 is
randomly drawn from the start-state distribution, often
represented by ρ0: ()ρ∼0 0 ·s . State transitions, which describe
changes in the world from state ts at time t to state +1ts at time
+1t , are influenced by the most recent action ta . Trajectories are

often referred to as episodes or rollouts.

TABLE 2  The time-domain features of the proposed approach.

Feature Definition Formula

Mean It is derived from the

average value over a given

time period. It provides a

sense of central tendency.

µ ι= =
Ν

Ν
=∑1
1Mean xi

Root Mean

Square (RMS)

It is a signal processing

feature which measures the

square root of the mean of

the squares of all values in

the time series.

=
Ν =∑1 2

1RMS xN
ii

Crest Factor It is a signal processing

feature and is calculated by

the ratio between the peak

value and the RMS value,

indicating the dynamic

range of a signal.

[]
=

max

x
Crest Factor

RMS
i

Average power It is the average quantity of

work done or energy

utilised per unit of time.

=
Ν =∑1

. 2
1avg power xN
ii

Skewness It is a high-order statistical

feature which indicates the

asymmetry of the data

distribution. A skewed

time series may suggest

trends or biases.

() −  =

3

3

E x x
Skewness

RMS

i

Kurtosis It is a high-order statistical

feature which reflects the

“tailedness” of the data

distribution, which can

reveal the presence of

outliers or extreme events.

()−
= =∑1 4

1
4

x x
NKurtosis

RMS

N
ii

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 05 frontiersin.org

The MDP model results in a solution specifying the agent’s actions
for any state it may encounter, i.e., a policy. The policy is denoted by
π , and ()π s is the action that policy π recommends for state s.
Regardless of the outcome of the action, the resulting state will belong
to the policy, and the agent will know what to do next. The quality of
a policy is measured in terms of the expected utility of the possible
histories of the environment generated by the policy. An optimal
policy is a policy that gives the highest expected utility. The utility
function allows the agent to choose actions using the maximum
expected utility principle, to choose the action that maximizes the
reward for the next step plus the expected utility of the subsequent
state of the environment. The output observation space, action space,
reward function, and episode information that are derived from the
MDP model feed into the subsequent step to be solved with the use of
RL algorithms.

3.4 Solving with RL

The MDP model is solved with RL, which selects a policy that
maximizes the expected return when the agent acts according to it.
Therefore, RL consists of the agent and the environment. The
environment represents the world in which the agent resides and with
which it interacts. During each interaction step, the agent observes a
(potentially partial) view of the world’s state and then decides on an
action to take. The environment changes in response to the agent’s
actions but can also change independently. The agent receives a reward
signal from the environment, which measures the value of the current
state. The agent’s objective is to maximize its cumulative reward,
known as the return.

Our proposed approach incorporates PPO, A2C, DDPG, and
SAC, These algorithms are categorized into off-policy and on-policy
methods, as shown in Table 3. An off-policy learner learns the value
of the optimal policy independently of the agent’s actions, while an
on-policy learner learns the value of the policy being carried out by
the agent including the exploration steps (Gu et al., 2017). The
algorithms are described below.

3.4.1 PPO
The PPO Algorithm (Schulman et al., 2017) is designed to take the

largest possible improvement step on a policy using the available data
without risking performance collapse. The main idea is to keep the
new policy not too far from the old policy after an update, using
clipping to prevent large updates. PPO is an on-policy algorithm
suitable for environments with both discrete and continuous action
spaces. The PPO algorithm trains a stochastic policy in an on-policy
method, meaning it explores by sampling actions based on the current
stochastic policy. The randomness in action selection depends on

initial conditions and the training process. Over time, the policy
becomes less random as the update rule encourages exploiting
previously discovered rewards. This reduction in randomness can lead
to the policy within a local minimum. PPO was selected for this task
due to its stability and reliable performance in continuous control
tasks. As an on-policy algorithm, its core design, which uses a clipped
objective function, prevents large, destabilizing policy updates. This
characteristic is highly desirable for a predictive maintenance problem,
where erratic predictions or policy collapse would be detrimental.

3.4.2 A2C
The A2C Algorithm (Mnih et al., 2016) is a synchronous RL

algorithm that enhances the Asynchronous Advantage Actor-Critic
(A3C) by synchronizing data collection across multiple parallel
workers. This approach mitigates the high variance and noisy
gradients seen in vanilla policy gradients by incorporating a baseline,
typically the value function, which stabilizes learning. In A2C, the
Actor updates the policy distribution based on feedback from the
Critic, who estimates the value function. The advantage function
() () ()= −, ,A s a Q s a V s quantifies how much better taking action a in

state s is compared to the average action. This advantage function
helps calculate the policy gradient, ensuring policy parameters are
updated to maximize expected returns. The synchronous nature of
A2C ensures efficient and stable training, suitable for various complex
environments. This method effectively balances exploring new actions
with exploiting known rewards, leading to robust and efficient policy
learning. A2C was chosen for this evaluation as it represents a
synchronous and more stable implementation of the foundational
actor-critic framework.

3.4.3 DDPG
The DDPG (Silver et al., 2014; Lillicrap et al., 2016) is an algorithm

that simultaneously learns a Q-function and a policy. Using off-policy
data and the Bellman equation, it learns the Q-function, and this
Q-function is then used to optimize the policy. DDPG is closely
related to Q-learning, sharing the motivation that if the optimal
action-value function ()∗ ,Q s a is known, the optimal action ()∗a s in
any given state can be found by solving: () ()∗ ∗= ,aa s argmax Q s a . In
DDPG, a deterministic policy is trained in an off-policy manner. Due
to its deterministic nature, the policy might not initially explore a
sufficient range of actions to gather valuable learning signals if
explored on-policy. To enhance exploration, noise is added to the
actions during training. To improve the quality of training data, the
noise scale can be gradually reduced as training progresses. During
testing, no noise is added to the actions, allowing the policy to fully
exploit what it has learned. As a foundational off-policy algorithm for
continuous control, DDPG was selected to serve as a critical baseline
in this paper. The inclusion of DDPG enables the comparison of the
effectiveness of a deterministic policy gradient approach against the
stochastic policy methods (PPO and SAC) and the synchronous actor-
critic (A2C) in the context of the health state prediction problem.

3.4.4 SAC
The SAC Algorithm (Haarnoja et al., 2018a; Haarnoja et al.,

2018b) optimizes a stochastic policy using an off-policy approach,
creating a bridge between stochastic policy optimization and DDPG-
style methods. The stochastic nature of SAC’s policy benefits from an
effect similar to target policy smoothing. Entropy regularization is a

TABLE 3  The classification of the implemented RL algorithms to learning
policies.

Learning policy RL Algorithms

On-policy PPO

A2C

Off-policy DDPG

SAC

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 06 frontiersin.org

key feature. The policy is trained to balance expected return with
entropy, which measures the randomness in the policy. This balance
is closely related to the exploration-exploitation trade-off: higher
entropy promotes more exploration, potentially accelerating learning
in later stages. Additionally, it helps prevent the policy from
prematurely converging to suboptimal solutions. SAC was included in
algorithm stack as it represents a state-of-the-art off-policy algorithm
for continuous action spaces. Its key feature, maximum entropy
regularization, fundamentally changes the objective by encouraging
the agent to explore as widely and randomly as possible while still
maximizing rewards. SAC was chosen in order to investigate whether
this advanced, built-in exploration mechanism would enable the agent
to discover more effective and sample-efficient policies for health state
prediction compared to the other methods.

3.5 Evaluation

This step evaluates and compares the trained RL models by
computing various evaluation metrics. The RL optimization problem
is solved within a custom environment which simulates a system
where an agent makes predictions about the wear on certain
components in a manufacturing process. To evaluate the RL
algorithms in each environment, we use the following metrics:

	•	 Mean Episode Length (Bojun, 2020). It indicates the average
duration of an episode before a terminal state is reached. In the
context of predictive maintenance, an episode could represent the
operational period of a machine before a maintenance
intervention is required. A longer mean episode length could
suggest that the learned policy is effective at preventing failures
and prolonging the operational time of the equipment.

	•	 Mean Episode Reward (Ladosz et al., 2022). It represents the
average cumulative reward obtained per episode. In the context
of predictive maintenance, the reward function can be designed
to encapsulate various factors such as operational efficiency,
maintenance costs, downtime, and the occurrence of failures. A
higher mean episode reward indicates that the policy is effective
in balancing the trade-offs between these factors.

4 Implementation and results

4.1 Technical implementation

The implementation utilizes a technology stack centered
around Python, using various libraries and frameworks to perform
data manipulation and RL. The primary helper libraries used for
general tasks include NumPy for numerical computations and
array handling, Pandas for data manipulation and analysis of table
data, and Matplotlib for data visualization. Stable Baselines 3 is
employed for RL. Stable Baselines 3 is a library based on OpenAI
Baselines. It is built on top of the PyTorch framework and offers a
big arsenal of tools designed to help with the development and
deployment of RL models. The library features an API that
simplifies the setup, training, and evaluation of RL models. In
addition, Stable Baselines 3 offers a range of utilities that streamline
the RL development process. These include tools for environment

checking, vectorized environment handling, policy evaluation, and
results plotting. To support file system operations, the project uses
the os library for interacting with the operating system and Pathlib
for handling file paths for object-oriented purposes. The time
library is also included to manage time-related functions and
measure execution time.

TensorBoard was used for the real-time monitoring and
visualization of model training metrics. Tensorboard is a visualization
toolkit included with TensorFlow and is designed to help users
understand and debug ML models. It allows the visualization of
various training metrics and provides insights into model performance
helping in the optimization process. TensorBoard operates through a
logging process during model training. The TensorBoard user
interface comprises several dashboards and tools for the detailed
monitoring and analysis of model training. The Scalars Dashboard
(Figure 1) displays plots of metrics such as average reward and average
episode length over time, which is useful for tracking the model’s
improvement with respect to the number of training iterations. The
Time Series tab in TensorBoard allows for a more detailed examination
of metrics over time, providing thorough insights into how specific
values change throughout the training process.

4.2 Application to a CNC milling machine

The dataset used to train the models is taken from the 2010 PHM
Society Conference Data Challenge (Li, 2021). It was derived from a
high-speed CNC milling machine, including 6 mm ball nose tungsten
carbide cutters, using dynamometer, accelerometer, and acoustic
emission sensors (Figure 2). The dataset consists of 6 individual cutter
records, c1 to c6. Records c1, c4 and c6 are training data, and records
c2, c3, and c5 are test data. Each training record contains one “wear”
file that lists wear after each cut in 10^-3 mm, and a folder with 315
individual data acquisition files (one for each cut). The data acquisition
files are in .csv format, with seven columns, corresponding to: Force
(N) in X dimension, Force (N) in Y dimension, Force (N) in Z
dimension, Vibration (g) in X dimension, Vibration (g) in Y
dimension, Vibration (g) in Z dimension, AE-RMS (V). The spindle
speed of the cutter was 10,400 RPM; feed rate was 1,555 mm/min; Y
depth of cut (radial) was 0.125 mm; Z depth of cut (axial) was 0.2 mm.
Data was acquired at 50 KHz/channel.

Each cut file in the dataset consists of approximately 250,000
rows, with each row containing 7 data parameters, leading to a
highly complex observation space of 1,750,000 dimensions for the
agent to work with. To address the curse of dimensionality and
extract meaningful features, the focus was on deriving the time-
domain features for each input parameter recorded by the sensors.
By extracting these 6 features (mean, rms, crest factor, average
power, skewness, kurtosis) for each of the 7 sensor parameters
(Force in X, Y, Z axis; Vibration in X, Y, Z axis; and AE-RMS), the
dimensionality of the data was reduced to 42 features per cut. After
extracting the time-domain features, normalization was performed
to a range of 0 to 1 to ensure uniformity and improve the
performance of the learning algorithms. Normalization was
conducted using min-max scaling, which adjusts the values in each
feature to fall within the specified range, enhancing the
convergence rate of the training process. Then, the wear flute
values were included into the dataset, ensuring a complete dataset

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 07 frontiersin.org

that includes both the extracted features and the wear
measurements.

Additionally, to better understand the data and the progression of
flute degradation after each cut, the wear files provided in the dataset
were analyzed. A function was developed to traverse each cutter
machine’s wear files and identify the maximum wear difference
between sequential cuts. This information is crucial and will be
utilized in the prediction process of the reinforcement learning agent.
The maximum wear difference recorded was used as a hyperparameter
in every MDP model. Further, an EDA was conducted to uncover
patterns and relationships within the dataset. Figure 3 depicts some
indicative visualizations.

Using the Gymnasium (formerly OpenAI Gym) library, we
designed a custom environment for solving the RL optimization
problem. It simulates a system where an agent makes predictions
about the wear on certain components (referred to as “flutes”) in a
manufacturing process.

The environments simulate the CNC machine’s wear prediction
problem. The agent’s objective is to accurately predict the wear on

three specific components (flutes) based on curated historical sensor
data, with rewards and penalties assigned based on prediction
accuracy.

The environments created for the training of the RL algorithm in
this implementation are four. They are split into two major categories
based on the Prediction Model and the Reward Calculation. All the
environments work similarly but differ in the two major categories
mentioned. The similar features are the State Space, Action Space and
the Initial State Distribution:

The State Space is completely represented by the observation space
(fully observable environment) and consists of 42 time-domain
features derived from sensor data (7 sensors with 6 time domain
features each), offering a detailed manufactured snapshot of the
machine’s condition after each cut. All the data is derived from the
dataframe that we provide to the environment class as an argument,
which is the processed dataset we have created after completing the
feature extraction.

Observations are constructed from the current step’s sensor data.
An observation is part of a row of the dataframe (df) which is the
PHM dataset we have processed. For each step in every episode,
meaning for each cut we examine, we pick from the data frame all the
time domain features corresponding to the cut (the current step). This
observation will be used to determine the action by the policy in the
current step.

The Action space is a continuous space with three dimensions,
each ranging from 0 to 1. These actions represent the agent’s
predictions for the additional wear on three flutes of the CNC
machine. The prediction of the additional wear of each flute will be
used to calculate the overall wear.

The Initial state is set up from the first observation of the machine
coupled with some noise, initializing the environment with the
machine wear values.

The Reward function evaluates the accuracy of the agent’s
predictions. The closer the predictions are to the actual wear values,

FIGURE 1

Scalars tab TensorBoard UI.

FIGURE 2

The high-speed CNC milling machine along with its installed sensors
(Li, et al., 2009).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 08 frontiersin.org

the higher the reward. The reward is calculated using the Score
Function (Li, 2021) described below:

	

δ

δ

δ

δ

 − 
 

 − 
 


 − <= 

 − >

10

4.5

1 , 0

1 , 0.

e
Score Function

e

Where δ represents the difference between the predicted
maximum wear and the actual maximum wear:

	 δ = −Wear Prediction Value Wear Actual Value

The score function is the negation of the original score function
used in the 2010 PHM Data Challenge competition. The reason why
the negation version of the function is used is that the agent wants to
maximize its reward and the original version is a minimization
function. It is designed to provide feedback to the agent based on the
accuracy of its predictions, specifically focusing on penalizing
overestimations more severely than underestimations. This design
ensures that the agent learns to avoid predicting excessively low wear
values, which can be more costly and disruptive. The use of
exponential functions provides a smooth gradient for learning,
allowing the agent to adjust its predictions incrementally and
effectively.

Also, in order to remain consistent with the scoring methodology
used in the 2010 PHM Data Challenge, as described in (Chen, 2011)
we also implemented the original score function. This function is
used solely as an evaluation metric to assess the performance of the
models we develop, and it is not used as a training metric by the
policy. We refer to this metric as the PHM Score, and we will use it
to compare the performance of our model both internally and
against other types of predictors, such as a dummy baseline model
and supervised machine-learning methods, including logistic
regression.

The environment resets to its starting state at the beginning of
each episode, ensuring a consistent baseline for the agent’s learning
process. The step function executes one-time step in the environment,
updating the state, calculating the reward, and determining whether
the episode should terminate or truncate.

The environment terminates when the current step exceeds the
maximum number of steps (MAX_STEPS). In all the cut files provided

by the PHM dataset, the maximum number of steps is 315, so the
maximum episode length is 314.

The environment can also be truncated if the episode reward is
smaller than −200 million. This is done to speed up the training
process by cutting short poorly performing training episodes, allowing
the agent to focus on more productive actions. Models that fail that
consistently get truncated and never reach the maximum episode
length are flagged are marked as “Did Not Finish” (DNF).

The differences between the four environments are the Prediction
Method (Corrective, Non-Corrective) and Reward Calculation (Delay,
No-Delay). Each combination of these categories defines a distinct
environment within the MDP framework.

The “Corrective Prediction” is an approach where the agent’s
predictions are corrected based on the actual wear values observed.
This means that the agent adjusts its predictions by considering the
current actual wear, providing a more accurate and real-time
adjustment to the state of the environment.

The “Non-Corrective Prediction” involves updating the
predictions incrementally based on previous predictions without
immediate correction based on actual wear values. It relies on the
agent’s previous predictions to inform future predictions.

Under the “No Delay” method the reward is calculated directly
based on the difference between predicted and actual wear values,
without any scaling factor related to the current step. This method
focuses on immediate accuracy without considering the long-term
impact of actions.

In contrast the “With Delay” method adjusts the reward using a
“delay modifier,” which scales the reward based on the current step
within the episode. This method aims to emphasize actions that
provide long-term benefits by rewarding actions that have a positive
effect later in the episode.

Combining the two categories, the four distinct environments are
described in Table 4.

4.3 Experimental results of RL model
training and health state prediction

In this Section, we present the experimental results from the RL
model training process. The framework produces a wear estimate at
every step of an episode comprising 315 sequential identical cuts.
Although the environments differ in terms of prediction method and
reward calculation, they all aim to guide the agent toward accurately

FIGURE 3

EDA visualization.

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 09 frontiersin.org

modeling the wear evolution throughout the cutting sequence. The
score function associated with each environment is used as the
primary performance metric and quantifies the alignment between
the agent’s predictions and the true wear behavior. The results are
derived from the four algorithms (PPO, SAC, DDPG, A2C) applied
within the four different environments (Corrective-with Delay,
Corrective-No Delay, Non-Corrective-with Delay, Non-Corrective-No
Delay), thus having 16 distinct models. All models use the default
hyper parameters provided by the Stable Baselines library. The training
was conducted on the processed dataset of cutter 1 (train set). For each
Prediction Method (i.e., Non-Corrective, Corrective), we demonstrate
and compare the results for each RL algorithm for the two methods of
Reward Calculation (No Delay, With Delay). For the Non-Corrective
prediction method (Section 4.3.1), for each algorithm, we present the
results of Mean Episode Length, Mean Episode Reward, and PHM
Score per timestep in a graph. For the Corrective prediction method
(Section 4.3.2), for each algorithm, we present the results of Mean
Episode Reward, and PHM Score per timestep.

An increase in the numerical value of the mean episode length per
timestep graph indicates that the agent is learning to act in a way that
allows episodes to continue for longer without being truncated. In our
environment, each cutting-file episode has a maximum possible
length of 314 steps. Therefore, when the mean episode length reaches
314, it signifies that the agent successfully predicts the tool wear for all
cuts in every episode and no longer encounters early truncation. The
speed of increase in this curve reflects the rate of effective learning. A
steeper rise means that the RL algorithm requires fewer timesteps to
reach a level of performance where it can complete full episodes.
Although a rapid learning rate does not necessarily imply that the
resulting model is the best in overall performance, it can be
advantageous in scenarios where fast adaptation is important, such as
real-time applications and learning.

Mean Episode Score and PHM Score per Timestep are
performance metrics. In the case of mean episode score the higher the
score the better, since the agent tries to maximize it. The opposite is
true for the Phm score which follows the logic of the PHM Data
Challenge. The speed of increase in the Mean Episode Reward per
Timestep graph represents how quickly the agent is improving its
decision-making policy with respect to the reward function defined
in the environment. A faster rise indicates that the agent is rapidly

learning which actions lead to higher cumulative reward. Although
rapid reward improvement suggests efficient learning, it does not
necessarily imply the best final performance; some models may learn
more slowly but ultimately achieve higher stability or better asymptotic
results. In contrast, for the PHM Score, the interpretation depends on
the direction of improvement. Since lower PHM Scores correspond to
better performance (following the PHM Data Challenge scoring
framework), a fast decrease in this metric reflects faster learning. A
rapid decline means that the agent quickly reduces prediction errors
associated with wear estimation.

The training process begins by creating an instance of the
simulated environment using the preprocessed dataset. Each
environment allows the RL agent to interact with it and learn to
predict the wear of the machine. Then, the environment is
initialized and sets up a logging mechanism to track the progress
and performance of the models. A key aspect of this setup is
defining the number of timesteps for training and creating a
directory structure to store the training logs and model files. A
callback function was implemented to log the score during training
and to monitor the performance of the agent at various steps. To
ensure efficient and organized training, a function was developed
to manage the creation and naming of model files. This function
also can load previously trained models, enabling the continuation
of training from the last saved state. During the training loop,
models are periodically saved, and their performance is evaluated
to ensure they are learning effectively. The training process is
executed in iterations, with each iteration involving a specified
number of timesteps. For each episode, the model predicts the next
action based on the current observation. After each iteration, the
models are evaluated, and their performance metrics are logged.
The hyper parameters used for each RL algorithm are shown in
Table 5.

The experiments were conducted on a personal workstation,
specifically an Asus TUF DASH F15 equipped with an Intel 12th
Gen Core i5-12450H processor, 16 GB DDR5 RAM, and an
NVIDIA GeForce RTX 3050 GPU. This configuration provides
sufficient computational resources for training and evaluating the
approach’s RL agents, while remaining relatively entry-level
compared to hardware commonly available in research or industrial
settings. This makes the proposed approach computationally
feasible even on modest hardware, such as a standard high-
performance laptop, and highlights its suitability for real-time
industrial applications where access to server-grade resources may
be limited.

4.3.1 Non-corrective prediction

4.3.1.1 The PPO algorithm
Figure 4 indicates that the model “with delay” reaches episode

length of 314 faster than the “no delay” model, suggesting more
efficient learning early on. Despite this, both models ultimately
achieve the same final performance, which is reasonable. The model
“with delay” exhibits significantly larger fluctuations, including deep
spikes. Over time, both models improve. The model “with delay”
shows higher initial PHM scores and greater fluctuations compared
to the model “no delay.” Over time, both models reduce the PHM
scores. We observe that delay correction may accelerate learning

TABLE 4  The four distinct environments.

Environments

Corrective with

Delay

The agent’s predictions are corrected based on actual wear

values, and the rewards are adjusted by a delay modifier to

emphasize long-term benefits.

Corrective No

Delay

The agent’s predictions are corrected based on actual wear

values, and the rewards are calculated directly based on

immediate prediction accuracy.

Non-Corrective

with Delay

The agent’s predictions are incrementally updated based

on previous predictions, and the rewards are adjusted by a

delay modifier to emphasize long-term benefits.

Non-Corrective No

Delay

The agent’s predictions are incrementally updated based

on previous predictions, and the rewards are calculated

directly based on immediate prediction accuracy.

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 10 frontiersin.org

initially, it results in higher variability and less optimal final
performance in minimizing PHM scores.

4.3.1.2 The SAC algorithm
Neither the “no delay” model not the ‘with delay’ model reached

the 314-cut mark so the PHM score cannot be examined. The models
were constantly truncated due to poor performance. A shown in
Figure 5, the comparison of SAC shows that both exhibit a downward
trend in mean episode length and rewards and both models have not
reached the max episode length of 314. The “no delay” model starts at
118.98 and ends at 35.33, while the ‘with delay’ model starts at 194.38
and ends at 34.83, indicating that both struggle to maintain longer
episodes. Both models have highly negative rewards, highlighting
their poor performance.

4.3.1.3 The DDPG algorithm
As shown in Figure 6, the comparison of DDPG models reveals

significant differences in performance. The “no delay” model quickly
achieves and maintains the maximum mean episode length of 314,
while the ‘with delay’ model shows only a minor increase from 20.75
to 23. Overall, the “no delay” model is better, but it fails to optimize
the reward metrics. The deterministic nature of the algorithm
prohibits the improvement in terms of reward.

4.3.1.4 The A2C algorithm
As shown in Figure 7, the “no delay” model initially shows

significant variance in mean episode length but stabilizes at the
maximum value of 314, indicating that it eventually learns to
maximize episode duration although slower. Its mean episode reward
graph, however, reveals large negative rewards, reflecting high
variance and instability throughout the training process. Also, the
corresponding PHM score graph shows substantial variability,
indicating that the model often deviates from optimal behavior. On
the contrary, the ‘with delay model’, while showing similar initial
fluctuations, converges more steadily and faster. The PHM score also
indicates more consistent performance with fewer extreme values
compared to the “no delay” model.

4.3.2 Corrective prediction

4.3.2.1 The PPO algorithm
Figure 8 depicts the comparison of the “no delay” and “with delay”

models for the PPO algorithm in terms of Mean Episode Reward per
Timestep and PHM Score per Timestep. The “no delay” model
converges quickly into the max episode length, with a significant
increase observed within the first 100,000 steps. The mean episode
reward increases by 95% from its initial value, indicating successful
training. The PHM Score also follows a similar trend, rapidly
decreasing to a near-zero value within the same timeframe, which
aligns with the reduction in variance and stabilization of the policy.
This behavior highlights the model’s efficiency in reaching optimal
performance quickly and reliably. The “with delay” model
demonstrates a rapid increase in mean episode reward, reaching
stability early and maintaining it throughout the training period. The
reward improves from −122.3 to −6.0, representing a positive change
of +116.3 (95%). The PHM score also shows a significant reduction
from its peak, settling at around 10.05 with a decrease of 260 (96%).
Both models exhibit efficient learning, quickly stabilizing their
rewards and PHM scores, indicating successful convergence and
effective training in the corrective environment. The only slight
difference is that the “with delay” model is slightly faster in converging.

4.3.2.2 The SAC algorithm
Figure 9 depicts the comparison of the “no delay” and “with delay”

models for the SAC algorithm in terms of Mean Episode Reward per
Timestep and PHM Score per Timestep. The “no delay” model
demonstrates a rapid convergence in terms of mean episode reward,
with a significant increase up to around 237.4. The reward stabilizes
quickly, indicating efficient learning. The PHM score also shows a
rapid decrease. Overall, this model shows effective and stable
performance throughout the training period. The “with delay” model
shows a faster increase in the mean episode length per timestep, but a
slower and more gradual increase in mean episode reward, peaking at
around −1.76 (perfect score). The learning process appears to be
slowed by the “with delay” model, has slightly less efficient learning

TABLE 5  The hyper parameters used for each RL algorithm.

Hyper Parameters for all RL Algorithms Used

PPO policy = MlpPolicy, learning_rate = 0.0003, n_steps = 2048, batch_size = 64, n_epochs = 10, gamma = 0.99, gae_lambda = 0.95, clip_range = 0.2,

clip_range_vf = None, normalize_advantage = True, ent_coef = 0.0, vf_coef = 0.5, max_grad_norm = 0.5, use_sde = False, sde_sample_freq = 1,

rollout_buffer_class = None, rollout_buffer_kwargs = None, target_kl = None, stats_window_size = 100, tensorboard_log = logdir, policy_

kwargs = None, verbose = 1, seed = None, device = ‘auto’, _init_setup_model = True

A2C policy = MlpPolicy, learning_rate = 0.0007, n_steps = 5, gamma = 0.99, gae_lambda = 1.0, ent_coef = 0.0, vf_coef = 0.5, max_grad_norm = 0.5, rms_

prop_eps = 1e-05, use_rms_prop = True, use_sde = False, sde_sample_freq = −1, rollout_buffer_class = None, rollout_buffer_kwargs = None,

normalize_advantage = False, stats_window_size = 100, tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _

init_setup_model = True

DDPG policy = MlpPolicy, learning_rate = 0.001, buffer_size = 1,000,000, learning_starts = 100, batch_size = 256, tau = 0.005, gamma = 0.99, train_freq = 1,

gradient_steps = 1, action_noise = None, replay_buffer_class = None, replay_buffer_kwargs = None, optimize_memory_usage = False, n_steps = 1,

tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _init_setup_model = True

SAC policy = MlpPolicy, learning_rate = 0.0003, buffer_size = 1,000,000, learning_starts = 100, batch_size = 256, tau = 0.005, gamma = 0.99, train_freq = 1,

gradient_steps = 1, action_noise = None, replay_buffer_class = None, replay_buffer_kwargs = None, optimize_memory_usage = False, n_steps = 1,

ent_coef = ‘auto’, target_update_interval = 1, target_entropy = ‘auto’, use_sde = False, sde_sample_freq = −1, use_sde_at_warmup = False, stats_

window_size = 100, tensorboard_log = None, policy_kwargs = None, verbose = 0, seed = None, device = ‘auto’, _init_setup_model = True

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 11 frontiersin.org

and lower overall rewards compared to the ‘no delay’ model. The PHM
score similarly decreases but stabilizes at a higher level of uncertainty
than the “no delay” model, indicating less efficient convergence.

4.3.2.3 The DDPG algorithm
Figure 10 depicts the comparison of the “no delay” and “with

delay” models for the DDPG algorithm in terms of Mean Episode

FIGURE 4

Comparison of PPO in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis); (c) PHM
score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 12 frontiersin.org

Reward per Timestep and PHM Score per Timestep. The “no delay”
model exhibits a significant increase in mean episode reward,
improving from −75.1 to −8.46, representing an 89% improvement.
However, the PHM Score shows minimal improvement, with a
change of −37%. This model manages to perform better over time but
does not reach the optimal performance level of other models, as
indicated by the relatively small decrease of PHM Score. The “with
delay” model demonstrates a severe drop in performance. The mean
episode reward heavily decreases, and the PHM Score increases
dramatically. This model appears to be stuck in a bad policy, leading
to poor performance.

Comparing the two DDPG corrective models, the” no delay”
model shows better performance with a higher mean episode reward
improvement and a decent PHM Score. The” with delay” model
indicates poor performance overall with significant drops in mean
episode rewards and increased actor loss variability. The comparison
highlights that the discounted rewards as the” with delay” model is not
good in a DDPG algorithm.

4.3.2.4 The A2C algorithm
Figure 11 depicts the comparison of the “no delay” and “with

delay” models for the A2C algorithm in terms of Mean Episode
Reward per Timestep and PHM Score per Timestep. The “no delay”
model is the only Corrective model that does not reach the max
episode length on the first few timesteps. It shows significant
fluctuations in the mean episode length initially, stabilizing after
around three million timesteps. The mean episode reward graph
indicates substantial variations in reward values and the PHM score
also demonstrates considerable variability, reflecting a challenging

learning environment. The “with delay” model shows a consistent
mean episode length near the maximum limit, with minor early
fluctuations. The mean episode reward graph indicates a stable
performance with minor improvements over time. The PHM score
graph remains flat, indicating that the model did not significantly
improve in this metric, but it still has a good score.

4.4 Overview of the training results

In this Section, we present an overview of the training results,
summarizing the RL models performance for equipment health state
prediction. Figure 12 depicts the overview of the results from the four
RL algorithms training embedded in the “no delay” and “with delay”
models for the Corrective Prediction Method (8 models per Category)
as well as the overview of the results from the four RL algorithms
embedded in the “no delay” and “with delay” models for the
Non-Corrective Prediction Method.

The graph showcasing the mean episode reward per timestep
clearly displays the A2C “no delay” model attempt of big exploration.
While most models eventually stabilize, they show varying levels of
performance improvement. The A2C model “no delay” experiences
significant negative rewards, reflecting its difficulty in learning
initially. Over time, other models, particularly those “with delay”
correction, show more consistent improvements in rewards. With
DDPG showing the best performance early on and PPO showing
consistent improvement and surpasses other models.

Once again in the PHM Score per timestep graph, A2C “no
delay” fluctuates greatly, while A2C “with delay” remains stable. The

FIGURE 5

Comparison of SAC in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 13 frontiersin.org

DDPG “no delay” model initially fluctuates but then remains steady,
and DDPG “with delay” shows increased exploitation remaining
almost constant after the initial exploration. Both PPO models
consistently maintain low, stable scores, indicating strong
performance. SAC models also perform well with stable, low scores.
Overall, PPO and SAC are the most robust, “with delay” correction
improving stability for A2C and DDPG.

Figure 13 provides a comparison of the performance of the RL
algorithms (A2C, DDPG, PPO, SAC) “with delay” and “no delay”
correction in terms of mean episode length over training steps. PPO
stands out for its consistent and strong performance. Both PPO
models, “with delay” and “no delay” correction, demonstrate
significant improvements and stable learning trajectories, stabilizing
around the maximum episode length of 314. This indicates that PPO

is highly effective for the task at hand, with or without the additional
reward scaling introduced by the “with delay” correction.

For A2C, the models show notable improvements in episode
length, with the version” no delay” correction achieving a slightly
better episode length of 311.87 compared to the version “with
delay” correction (308.91). The “with delay” correction helps the
A2C model stabilize more quickly, suggesting that while it aids in
the learning process, the final performance is slightly better
without it.

DDPG models exhibit more alternation in performance. The
DDPG model” no delay” correction reaches the max episode length
of 314, indicating effective learning, though it has minimal fluctuations
during training. In contrast, the DDPG model “with delay” correction
struggles, showing minimal improvement and achieving only a slight

FIGURE 6

Comparison of DDPG in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) Mean episode reward (Y-axis) per timestep (X-axis); (c)
PHM score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 14 frontiersin.org

increase from 20.75 to 23, suggesting that “with delay” correction does
not benefit DDPG in this context.

SAC models perform poorly compared to the other
algorithms. Both SAC models, “with delay” and “no delay”
correction, show a significant decline in episode length over time.
The SAC model” no delay” correction starts at 118.98 and drops
to 22.51, while the SAC model “with delay” correction starts at
84.08 and drops to 28.69. This suggests that SAC struggles with

this particular task and the “with delay” correction aids in the
decline in performance.

4.5 Discussion of evaluation results

These are the results from evaluating the 16 RL models on the test
set, which consists of cutters 4 and 6 from the PHM dataset. Table 6

FIGURE 7

Comparison of A2C in terms of: (a) Mean episode length (Y-axis) per timestep (X-axis); (b) mean episode reward (Y-axis) per timestep (X-axis); (c) PHM
score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 15 frontiersin.org

presents the aggregated performance metrics for the models in the
Corrective environments, while Table 7 presents the corresponding
aggregated metrics for the Non-Corrective environments.

The comparative evaluation of the four RL algorithms—PPO,
SAC, A2C, and DDPG—demonstrates distinct performance
characteristics across training efficiency, convergence behavior,
adaptability to delay, and generalization across environments.

PPO consistently proves to be the most robust and reliable
algorithm. It shows high and stable performance across all
environments, with fast training times per timestep and efficient
convergence. Its ease of implementation and low computational
demand further reinforce its practical utility. PPO excels particularly
in Corrective environments, demonstrating stable episode lengths and
rewards across time. The “with delay” correction improves adaptability
to long-term rewards, as evident from the improved performance in
delayed environments, especially for dataset C6. However, saturation
occurs early in training, suggesting overfitting risk if the process is not
monitored. In Non-Corrective environments, PPO models—with and
without delay—maintain strong performance and stable episode
lengths near the maximum (314), with minimal sensitivity to reward
delay correction.

SAC, although computationally more intensive and complex due
to the need for multiple network structures (policy, Q-function, and

value function), shows exceptional adaptability in Corrective
environments. The algorithm converges the fastest and requires the
fewest timesteps, with entropy-based exploration enabling it to find
optimal policies quickly. However, despite its strong early-stage
performance and robustness against overfitting in the Corrective
setting, SAC underperforms in the Non-Corrective environment. The
results show a steady decline in mean episode length over time for
both SAC variants. Reward plots indicate a lack of consistent policy
improvement, and Phm scores show high instability and spikes,
reflecting reduced learning effectiveness. This contrast highlights that
while SAC is powerful in structured environments, it struggles with
more chaotic or loosely defined tasks, possibly due to exploration
strategies that become less effective without clear corrective signals.

A2C shows consistent, though slower, improvement over time. In
Corrective environments, especially without delay, the algorithm
exhibits significant variance in reward and episode length, with
notable negative scores early in training. With delay correction, A2C
becomes more stable but still lags behind PPO and SAC in overall
performance. Nevertheless, A2C is the only model across all cases
where performance consistently improves over time rather than
peaking early. In the Non-Corrective environment, A2C displays
improved mean episode lengths, especially without delay correction
(311.87 vs. 308.91), showing that delay correction stabilizes the model

FIGURE 8

Comparison of PPO in terms of: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 16 frontiersin.org

faster, though ultimate performance may be better without it.
However, A2C still suffers from high reward variability and instability
in Phm scores, suggesting limited generalization in noisy or unstable
conditions.

DDPG is the most problematic among the four algorithms.
Although theoretically suitable for continuous action spaces, its
deterministic policy and poor exploration lead to consistently poor
results. In all environments, DDPG converges to local optima early
and fails to improve over time. Particularly in the Non-Corrective
environment with delay, the model completely fails to reach the
episode length of 314 and is terminated early due to extremely low
rewards. Reward and Phm score plots confirm stagnant behavior with
high negative values and flat trajectories, indicating a lack of
meaningful learning. DDPG without delay performs marginally
better, reaching maximum episode length in some cases, but still
suffers from high Phm scores and erratic reward patterns.

Across all algorithms, it is noteworthy that best results are often
achieved mid-training rather than at the end. This suggests
potential overfitting as training continues—models begin to
memorize training data patterns including noise, reducing
generalization capacity. This trend is especially pronounced in SAC
and PPO, both of which show strong early performance but limited
improvement or even regression with prolonged training.

Regarding delay correction, its impact varies significantly. While it
aids A2C by stabilizing training and improves PPO’s long-term
reward adaptation, it negatively affects DDPG, likely due to
compounding its already poor exploration capabilities. For SAC,
delay correction slightly mitigates performance decline but does
not reverse the general trend of degradation in Non-Corrective
environments.

To better interpret the evaluation results, a supervised ML
baseline was incorporated for comparison with the RL algorithms.
An XGBoost regressor was incorporated as a supervised learning
baseline due to its strong performance in modeling nonlinear
degradation patterns and its established effectiveness in predictive
maintenance applications. The XGBoost Python library was used, and
the model was implemented with all hyperparameters set to their
default values, consistent with the approach taken for the RL models.
A linear predictor was also implemented, incrementing the wear
value by a fixed amount at each time step (e.g., +1 mm). This
predictor exhibited substantially inferior performance, even when
tested on different fixed increment values it had on average
approximately 230% worse and was therefore excluded from the
figures to maintain clarity.

Figures 14, 15 report the mean performance of each RL model,
including both the With Delay and No Delay variants, across the

FIGURE 9

Comparison of SAC in terms of: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 17 frontiersin.org

two test cutters (Cutter 4 and Cutter 6). The XG Boost baseline is
included for reference. In the Corrective Environment, we observe
that the RL models significantly outperform the XG Boost
baseline. This provides strong evidence that our structured RL
approach is more effective for this task and highlights the
advantages of learning decision policies rather than relying solely
on supervised prediction. On the Non-Corrective Environment,
the RL models again achieve superior performance, only those
capable of reaching the maximum allowable number of steps
within an episode without being designated as Did Not Finish
(DNF). This outcome reflects the robustness of the RL approach,
especially the RL Algorithms PPO and A2C and suggests that they
provide a strong foundation for further methodological
enhancement.

5 Conclusions and future work

This study demonstrated the potential of RL for equipment health
state prediction within the context of predictive maintenance. By
formulating the wear-estimation task as an MDP and evaluating four
model-free RL algorithms (PPO, A2C, DDPG, and SAC) across
corrective and non-corrective environments, we provided a systematic

assessment of their learning behavior, convergence characteristics, and
generalization performance on CNC machine data from the 2010
PHM Society Data Challenge.

The results highlight PPO as the most stable and
computationally efficient method, achieving consistent
convergence and strong generalization across all environments.
SAC exhibited rapid and robust performance in structured
corrective settings but struggled in non-corrective ones, indicating
a sensitivity to environment design. A2C showed gradual, steady
learning, making it suitable for applications requiring long-term
stability. In contrast, DDPG consistently underperformed due to
limited exploration and instability, especially in delayed-reward
and unstructured scenarios. Overall, the findings confirm that RL
can effectively capture the sequential and uncertain nature of
machine degradation without relying on labeled failure data. They
also emphasize the importance of aligning algorithm choice with
environment characteristics—particularly regarding reward
shaping and delay handling—to ensure reliable predictive
performance.

Future work will extend this framework toward multi-agent RL
for coordinated maintenance of multiple assets, as well as investigate
adaptive reward mechanisms and online learning strategies for
deployment in dynamic industrial settings.

FIGURE 10

Comparison of DDPG in terms of: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep (X-axis).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 18 frontiersin.org

FIGURE 11

Comparison of A2C corrective “with delay” and “no delay” models for: (a) Mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (log scale)
(Y-axis) per timestep (X-axis).

TABLE 6  Performance of RL algorithms in corrective environments.

Corrective prediction

RL algorithm Environment and
dataset (cutters)

Max reward Min PHM score Training time
and total
timestepsValue Timestep Value Timestep

PPO No Delay c4 −17.21 40,000 16.99 40,000 3 h

1,117,000 stepsc6 −16.21 70,000 18 70,000

With Delay c4 −8.98 20,000 15.73 20,000 2 h

2,160,000 stepsc6 −8.23 1,460,000 17.85 670,000

SAC No Delay c4 −37.37 90,000 45.76 90,000 6.2 h

349,420 stepsc6 −14.8 30,000 16.36 30,000

With Delay c4 −10.94 20,000 23.07 20,000 5.3 h

279,374 stepsc6 −8.21 110,000 16.22 110,000

DDPG No Delay c4 −18.84 20,000 19.32 20,000 12.67 h

629,256 stepsc6 −17.04 250,000 18.55 520,000

With Delay c4 −10.75 20,000 19.36 20,000 11.5 h

452,160 stepsc6 −8.83 20,000 18.12 20,000

A2C No Delay c4 −17.84 700,000 18.33 700,000 13.7 h

19,120,000 stepsc6 −16.33 7,000,000 18.12 7,000,000

With Delay c4 −10.75 14,640,000 19.36 14,640,000 17.2 h

14,640,000 stepsc6 −8.83 14,640,000 18.12 14,640,000

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 19 frontiersin.org

FIGURE 12

Overview of the training results for the corrective prediction: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per timestep
(X-axis).

TABLE 7  Performance of RL algorithms in non-corrective environment.

Non-Corrective Prediction

RL algorithm Environment and
dataset (Cutters)

Max reward Min PHM score Training time
and total
timestepsValue Timestep Value Timestep

PPO No Delay c4 −25,255,715 38,730,000 35,497,029 38,730,000 17 h

39,833,600 stepsc6 −163,762,286 20,000 233,645,404 20,000

With Delay c4 −544,135,308 20,000 726,430,945 20,000 19,2 h

16,967,680 stepsc6 −583,253,362 20,000 876,304,975 20,000

SAC No Delay c4 −643 400,000 752 390,000 43.3 h

3,819,951 stepsc6 −5,679 410,000 3,140 460,000

With Delay c4 −23,455 200,000 11,418 200,000 32.1 h

2,639,889 stepsc6 −15,048 470,000 7,712 190,000

DDPG No Delay c4 −563,092,188 1,050,000 735,266,738 1,050,000 19.5 h

1,064,325 stepsc6 −637,838,860 1,050,000 910,064,743 1,050,000

With Delay c4 DNF - DNF - 13.5 h

510,251 stepsc6 DNF - DNF -

A2C No Delay c4 −50,834,200 30,000 3,469,607 30,000 26.1 h

26,750,000 stepsc6 −28,469,419 30,000 39,536,971 30,000

With Delay c4 −550,755,354 19,110,000 735,266,790 19,110,000 22.8 h

19,120,000 stepsc6 −606,030,553 19,110,000 910,064,743 19,110,000

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 20 frontiersin.org

FIGURE 13

Overview of the training results for the non-corrective prediction: (a) mean episode reward (Y-axis) per timestep (X-axis); (b) PHM score (Y-axis) per
timestep (X-axis).

FIGURE 14

Corrective PHM score of each RL model, including both the with delay and no delay variants, across the two test cutters (cutter 4 and cutter 6).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 21 frontiersin.org

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

AA: Data curation, Methodology, Visualization, Validation,
Writing – review & editing, Software, Writing – original draft. AB:
Formal analysis, Writing – original draft, Writing – review & editing,
Conceptualization, Methodology. SK: Conceptualization,
Methodology, Writing – original draft, Software, Writing – review &
editing. GM: Supervision, Methodology, Writing – review & editing,
Conceptualization, Writing – original draft, Formal analysis.

Funding

The author(s) declared that financial support was received for this
work and/or its publication. This work is funded by the European
Union’s Horizon Europe project Mine.io “A Holistic Digital Mine 4.0
Ecosystem” (Grant agreement No. 101091885) (https://mineio-
horizon.eu/). The work presented here reflects only the authors’ view
and the European Commission is not responsible for any use that
may be made of the information it contains.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that Generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References
Abbas, A. N., Chasparis, G. C., and Kelleher, J. D. (2024). Hierarchical framework for

interpretable and specialized deep reinforcement learning-based predictive
maintenance. Data Knowl. Eng. 149:102240. doi: 10.1016/j.datak.2023.102240

Aivaliotis, P., Georgoulias, K., and Chryssolouris, G. (2019). The use of digital twin
for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 32,
1067–1080. doi: 10.1080/0951192X.2019.1686173

FIGURE 15

Non-corrective PHM score of each RL model, including both the with delay and no delay variants, across the two test cutters (Cutter 4 and Cutter 6).

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://mineio-horizon.eu/
https://mineio-horizon.eu/
https://doi.org/10.1016/j.datak.2023.102240
https://doi.org/10.1080/0951192X.2019.1686173

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 22 frontiersin.org

Bojun, H. (2020). Steady state analysis of episodic reinforcement learning. Adv. Neural
Inf. Proces. Syst. 33, 9335–9345.

Bousdekis, A., Apostolou, D., and Mentzas, G. (2019). Predictive maintenance in the
4th industrial revolution: benefits, business opportunities, and managerial implications.
IEEE Eng. Manag. Rev. 48, 57–62. doi: 10.1109/EMR.2019.2958037

Bousdekis, A., Lepenioti, K., Apostolou, D., and Mentzas, G. (2021). A review of data-
driven decision-making methods for industry 4.0 maintenance applications. Electronics
10:828. doi: 10.3390/electronics10070828

Bousdekis, A., Magoutas, B., Apostolou, D., and Mentzas, G. (2018). Review, analysis
and synthesis of prognostic-based decision support methods for condition based
maintenance. J. Intell. Manuf. 29, 1303–1316. doi: 10.1007/s10845-015-1179-5

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., and
Alcalá, S. G. (2019). A systematic literature review of machine learning methods
applied to predictive maintenance. Comput. Ind. Eng. 137:106024. doi: 10.1016/j.
cie.2019.106024

Chen, H. (2011). A multiple model prediction algorithm for CNC machine wear
PHM. Int. J. Progn. Health Manag. 2:129. doi: 10.36001/ijphm.2011.v2i2.1353

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., and
Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable
smart manufacturing in industry 4.0. Sustainability 12:8211. doi: 10.3390/su12198211

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., et al. (2020).
Machine learning and reasoning for predictive maintenance in industry 4.0: current
status and challenges. Comput. Ind. 123:103298. doi: 10.1016/j.compind.2020.103298

Ding, F., He, Z., Zi, Y., Chen, X., Tan, J., Cao, H., et al. (2008). “Application of support
vector machine for equipment reliability forecasting.” In 2008 6th IEEE international
conference on industrial informatics. pp. 526–530. IEEE.

Eke, S., Aka-Ngnui, T., Clerc, G., and Fofana, I. (2017). “Characterization of the
operating periods of a power transformer by clustering the dissolved gas data.” In 2017
IEEE 11th international symposium on diagnostics for electrical machines, power
electronics and drives (SDEMPED). pp. 298–303. IEEE.

Feng, M., and Li, Y. (2022). Predictive maintenance decision making based on
reinforcement learning in multistage production systems. IEEE Access 10, 18910–18921.
doi: 10.1109/ACCESS.2022.3151170

Fordal, J. M., Schjølberg, P., Helgetun, H., Skjermo, T. Ø., Wang, Y., and Wang, C.
(2023). Application of sensor data based predictive maintenance and artificial neural
networks to enable industry 4.0. Adv. Manuf. 11, 248–263. doi: 10.1007/
s40436-022-00433-x

Frangopol, D. M., Lin, K. Y., and Estes, A. C. (1997). Life-cycle cost design of
deteriorating structures. J. Struct. Eng. 123, 1390–1401. doi: 10.1061/
(ASCE)0733-9445(1997)123:10(1390)

Garcia, F., and Rachelson, E. (2013). Markov decision processes. Markov decision
processes in artificial intelligence, 1–38.

Gu, S. S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., and Levine, S.
(2017). Interpolated policy gradient: merging on-policy and off-policy gradient
estimation for deep reinforcement learning. Adv. Neural Inf. Proces. Syst. 30, 3846–3855.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). “Soft actor-critic: off-policy
maximum entropy deep reinforcement learning with a stochastic actor.” In International
conference on machine learning. pp. 1861–1870. Pmlr.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018b). Soft
actor-critic algorithms and applications. arXiv:arXiv:1812.05905. doi: 10.48550/
arXiv.1812.05905

Huang, B., Di, Y., Jin, C., and Lee, J. (2017). Review of data-driven prognostics and
health management techniques: lessions learned from PHM data challenge competitions.
Mach. Failure Prevent. Technol. 1, 1–17.

Kabir, F., Foggo, B., and Yu, N. (2018). “Data driven predictive maintenance of
distribution transformers.” In 2018 China international conference on electricity
distribution (CICED). pp. 312–316. IEEE.

Kaliyannan, D., Thangamuthu, M., Pradeep, P., Gnansekaran, S., Rakkiyannan, J., and
Pramanik, A. (2024). Tool condition monitoring in the milling process using deep learning
and reinforcement learning. J. Sens. Actuator Netw. 13:42. doi: 10.3390/jsan13040042

Khadka, S., and Tumer, K. (2018). Evolution-guided policy gradient in reinforcement
learning. Adv. Neural Inf. Proces. Syst. 31, 1188–1200.

Kumar, J. P., Chauhan, P. S., and Pandit, P. P. (2022). Time domain vibration analysis
techniques for condition monitoring of rolling element bearing: a review. Mater Today
Proc 62, 6336–6340. doi: 10.1016/j.matpr.2022.02.550

Ladosz, P., Weng, L., Kim, M., and Oh, H. (2022). Exploration in deep reinforcement
learning: a survey. Inf. Fusion 85, 1–22. doi: 10.1016/j.inffus.2022.03.003

Latifi, M., Darvishvand, F. G., Khandel, O., and Nowsoud, M. L. (2021). A deep
reinforcement learning model for predictive maintenance planning of road assets:
integrating LCA and LCCA. arXiv:arXiv:2112.12589. doi: 10.48550/arXiv.2112.12589

Lehmann, C., Goren Huber, L., Horisberger, T., Scheiba, G., Sima, A. C., and Stockinger, K.
(2020). Big data architecture for intelligent maintenance: a focus on query processing and
machine learning algorithms. J. Big Data 7:61. doi: 10.1186/s40537-020-00340-7

Lepenioti, K., Bousdekis, A., Apostolou, D., and Mentzas, G. (2020). Prescriptive
analytics: literature review and research challenges. Int. J. Inf. Manag. 50, 57–70. doi:
10.1016/j.ijinfomgt.2019.04.003

Lewis, F. L., Vrabie, D., and Vamvoudakis, K. G. (2012). Reinforcement learning and
feedback control: using natural decision methods to design optimal adaptive controllers.
IEEE Control. Syst. Mag. 32, 76–105. doi: 10.1109/MCS.2012.2214134

Li, X. (2021). 2010 PHM society conference data challenge. IEEE Dataport.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016). Continuous
control with deep reinforcement learning. arXiv:ICLR 2016. doi: 10.48550/
arXiv.1509.02971

Ma, Z., Guo, J., Mao, S., and Gu, T. (2020). “An interpretability research of the Xgboost
algorithm in remaining useful life prediction.” In 2020 International Conference on Big
Data & Artificial Intelligence & Software Engineering (ICBASE). pp. 433–438. IEEE.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
“Asynchronous methods for deep reinforcement learning.” In International Conference
on Machine Learning. pp. 1928–1937. PmLR.

Ogunfowora, O., and Najjaran, H. (2023). Reinforcement and deep reinforcement
learning-based solutions for machine maintenance planning, scheduling policies, and
optimization. J. Manuf. Syst. 70, 244–263. doi: 10.1016/j.jmsy.2023.07.014

Ong, K. S. H., Wang, W., Hieu, N. Q., Niyato, D., and Friedrichs, T. (2022). Predictive
maintenance model for IIoT-based manufacturing: a transferable deep reinforcement
learning approach. IEEE Internet Things J. 9, 15725–15741. doi: 10.1109/JIOT.2022.3151862

Pech, M., Vrchota, J., and Bednář, J. (2021). Predictive maintenance and intelligent
sensors in smart factory. Sensors 21:1470. doi: 10.3390/s21041470

Sateesh Babu, G., Zhao, P., and Li, X. L. (2016). “Deep convolutional neural network based
regression approach for estimation of remaining useful life.” In Database systems for
advanced applications: 21st international conference, DASFAA 2016, Dallas, TX, USA, April
16–19, 2016, proceedings, part i 21 (pp. 214–228). Springer International Publishing.

Sayyad, S., Kumar, S., Bongale, A., Kotecha, K., Selvachandran, G., and Suganthan, P. N.
(2022). Tool wear prediction using long short-term memory variants and hybrid feature
selection techniques. Int. J. Adv. Manuf. Technol. 121, 6611–6633. doi: 10.1007/
s00170-022-09784-y

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv:arXiv:1707.06347. doi: 10.48550/arXiv.1707.06347

Serradilla, O., Zugasti, E., Rodriguez, J., and Zurutuza, U. (2022). Deep learning
models for predictive maintenance: a survey, comparison, challenges and prospects.
Appl. Intell. 52, 10934–10964. doi: 10.1007/s10489-021-03004-y

Shakya, A. K., Pillai, G., and Chakrabarty, S. (2023). Reinforcement learning
algorithms: a brief survey. Expert Syst. Appl. 231:120495. doi: 10.1016/j.
eswa.2023.120495

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
“Deterministic policy gradient algorithms.” In International Conference on Machine
Learning. pp. 387–395. Pmlr.

Siraskar, R., Kumar, S., Patil, S., Bongale, A., and Kotecha, K. (2023). Reinforcement
learning for predictive maintenance: a systematic technical review. Artif. Intell. Rev. 56,
12885–12947. doi: 10.1007/s10462-023-10468-6

Sun, W., Chen, J., and Li, J. (2007). Decision tree and PCA-based fault diagnosis of rotating
machinery. Mech. Syst. Signal Process. 21, 1300–1317. doi: 10.1016/j.ymssp.2006.06.010

Susto, G. A., Schirru, A., Pampuri, S., Pagano, D., McLoone, S., and Beghi, A. (2013).
“A predictive maintenance system for integral type faults based on support vector
machines: an application to ion implantation.” In 2013 IEEE international conference on
automation science and engineering (CASE). pp. 195–200. IEEE.

Susto, G. A., Wan, J., Pampuri, S., Zanon, M., Johnston, A. B., O'Hara, P. G., et al.
(2014). “An adaptive machine learning decision system for flexible predictive
maintenance.” In 2014 IEEE international conference on automation science and
engineering (CASE). pp. 806–811. IEEE.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge: MIT press, 9–11.

Turner, C. J., Emmanouilidis, C., Tomiyama, T., Tiwari, A., and Roy, R. (2019).
Intelligent decision support for maintenance: an overview and future trends. Int. J.
Comput. Integr. Manuf. 32, 936–959. doi: 10.1080/0951192X.2019.1667033

Wang, Y., Li, Y., Lu, H., and Wang, D. (2024). Method for remaining useful life
prediction of rolling bearings based on deep reinforcement learning. Rev. Sci. Instrum.
95:5277. doi: 10.1063/5.0225277

Wilson, S. J. (2017). Data representation for time series data mining: time domain
approaches. WIREs Comput. Stat. 9:e1392. doi: 10.1002/wics.1392

Yang, C., Cai, B., Wu, Q., Wang, C., Ge, W., Hu, Z., et al. (2023b). Digital twin-driven
fault diagnosis method for composite faults by combining virtual and real data. J. Ind.
Inf. Integr. 33:100469. doi: 10.1016/j.jii.2023.100469

Yang, C., Cai, B., Zhang, R., Zou, Z., Kong, X., Shao, X., et al. (2023a). Cross-validation
enhanced digital twin driven fault diagnosis methodology for minor faults of subsea
production control system. Mech. Syst. Signal Process. 204:110813. doi: 10.1016/j.
ymssp.2023.110813

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1109/EMR.2019.2958037
https://doi.org/10.3390/electronics10070828
https://doi.org/10.1007/s10845-015-1179-5
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.36001/ijphm.2011.v2i2.1353
https://doi.org/10.3390/su12198211
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1109/ACCESS.2022.3151170
https://doi.org/10.1007/s40436-022-00433-x
https://doi.org/10.1007/s40436-022-00433-x
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.3390/jsan13040042
https://doi.org/10.1016/j.matpr.2022.02.550
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.48550/arXiv.2112.12589
https://doi.org/10.1186/s40537-020-00340-7
https://doi.org/10.1016/j.ijinfomgt.2019.04.003
https://doi.org/10.1109/MCS.2012.2214134
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1016/j.jmsy.2023.07.014
https://doi.org/10.1109/JIOT.2022.3151862
https://doi.org/10.3390/s21041470
https://doi.org/10.1007/s00170-022-09784-y
https://doi.org/10.1007/s00170-022-09784-y
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1007/s10489-021-03004-y
https://doi.org/10.1016/j.eswa.2023.120495
https://doi.org/10.1016/j.eswa.2023.120495
https://doi.org/10.1007/s10462-023-10468-6
https://doi.org/10.1016/j.ymssp.2006.06.010
https://doi.org/10.1080/0951192X.2019.1667033
https://doi.org/10.1063/5.0225277
https://doi.org/10.1002/wics.1392
https://doi.org/10.1016/j.jii.2023.100469
https://doi.org/10.1016/j.ymssp.2023.110813
https://doi.org/10.1016/j.ymssp.2023.110813

Aglogallos et al.� 10.3389/frai.2025.1720140

Frontiers in Artificial Intelligence 23 frontiersin.org

Zhao, Y., Yang, J., Wang, W., Yang, H., and Niyato, D. (2024). TranDRL: a transformer-
driven deep reinforcement learning enabled prescriptive maintenance framework. IEEE
Internet Things J. 11, 35432–35444. doi: 10.1109/JIOT.2024.3436110

Zheng, S., Ristovski, K., Farahat, A., and Gupta, C. (2017). “Long short-term memory
network for remaining useful life estimation.” In 2017 IEEE international conference on
prognostics and health management (ICPHM). pp. 88–95. IEEE.

https://doi.org/10.3389/frai.2025.1720140
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1109/JIOT.2024.3436110

	Health state prediction with reinforcement learning for predictive maintenance
	1 Introduction
	2 Literature review
	3 The proposed approach for health state prediction with reinforcement learning
	3.1 Data structuring
	3.2 Data preprocessing
	3.3 MDP modelling
	3.4 Solving with RL
	3.4.1 PPO
	3.4.2 A2C
	3.4.3 DDPG
	3.4.4 SAC
	3.5 Evaluation

	4 Implementation and results
	4.1 Technical implementation
	4.2 Application to a CNC milling machine
	4.3 Experimental results of RL model training and health state prediction
	4.3.1 Non-corrective prediction
	4.3.1.1 The PPO algorithm
	4.3.1.2 The SAC algorithm
	4.3.1.3 The DDPG algorithm
	4.3.1.4 The A2C algorithm
	4.3.2 Corrective prediction
	4.3.2.1 The PPO algorithm
	4.3.2.2 The SAC algorithm
	4.3.2.3 The DDPG algorithm
	4.3.2.4 The A2C algorithm
	4.4 Overview of the training results
	4.5 Discussion of evaluation results

	5 Conclusions and future work

	References

