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Graph Neural Networks (GNNs) have transformed multimodal healthcare
data integration by capturing complex, non-Euclidean relationships across
diverse sources such as electronic health records, medical imaging, genomic
profiles, and clinical notes. This review synthesizes GNN applications in
healthcare, highlighting their impact on clinical decision-making through
multimodal integration, advanced fusion strategies, and attention mechanisms.
Key applications include drug interaction and discovery, cancer detection and
prognosis, clinical status prediction, infectious disease modeling, genomics,
and the diagnosis of mental health and neurological disorders. Various GNN
architectures demonstrate consistent applications in modeling both intra- and
intermodal relationships. GNN architectures, such as Graph Convolutional
Networks and Graph Attention Networks, are integrated with Convolutional
Neural Networks (CNNs), transformer-based models, temporal encoders, and
optimization algorithms to facilitate robust multimodal integration. Early,
intermediate, late, and hybrid fusion strategies, enhanced by attention
mechanisms like multi-head attention, enable dynamic prioritization of critical
relationships, improving accuracy and interpretability. However, challenges
remain, including data heterogeneity, computational demands, and the need
for greater interpretability. Addressing these challenges presents opportunities to
advance GNN adoption in medicine through scalable, transparent GNN models.
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1 Introduction

Graphs serve as fundamental mathematical structures for representing and analyzing
the complex relationships inherent in multimodal datasets. In the healthcare domain,
nodes in a graph can represent medical entities such as patients, diseases, genes,
proteins, medications, and healthcare providers, while edges capture the associations or
interactions among them (Paul et al., 2024). Node and edge features may incorporate
additional attributes, including patient demographic details, disease states, medical notes,
or medication properties (Li et al., 2023a). Traditional machine learning and deep
learning techniques, designed primarily for Euclidean data, often struggle to accommodate
the non-Euclidean nature of relational medical data. GNNs address this limitation by
extending deep neural networks to graph-structured data by aggregating and propagating
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information from neighboring nodes to learn high-order
interactions through methods such as contrastive, generative,
and explainable GNNs (Kumar et al., 2023b; Sefer, 2025b,a;
Cetin and Sefer, 2025). This enables GNNs to generate graph-
level representations that capture the structural and semantic
complexity of medical data (Lee et al., 2024a; Kumar et al.,
2023b). GNNs have proven effective in a wide range of healthcare
applications, from disease diagnosis and comorbidity prediction to
patient referral optimization and emotional intelligence modeling
in clinical settings (Sangeetha et al., 2024; Pablo et al., 2024; Wang,
2022; Xu et al., 2024).

Healthcare data is inherently diverse and often available
in multiple modalities, including structured data like EHRs,
unstructured data like clinical notes, and complex forms like
medical images (MRI, CT, PET, EEG, MEG), chemical, laboratory,
temporal, and genomic data. Integrating and analyzing these
heterogeneous data sources is crucial for a holistic understanding
of disease and patient conditions. Multimodal learning, which aims
to leverage complementary information from different modalities,
is a logical tool for incorporating these disparate data sources
(Waqas et al., 2024; Stahlschmidt et al., 2022; Teoh et al., 2024;
Dumyn et al., 2024). GNNs are particularly well suited for
multimodal healthcare applications, as they can model the intricate
relationships within and between these diverse data streams and
can be fused together with other deep learning or machine learning
models (Dawn et al., 2024; Paul et al., 2024; Johnson et al.,
2024).

This paper provides a review of the recent applications of GNNs
in healthcare, with a specific focus on approaches that incorporate
multimodal data. We structure the review by grouping applications
into key themes: pharmacology, oncology, epidemiology,
neuropsychiatry, clinical risk prediction, and genomics. By
examining the methodologies, findings, and challenges within each
area, this review aims to offer a comprehensive overview of the
current landscape and potential future directions for GNNs in
computational healthcare.

We defined the scope in advance to include primary studies
that (1) apply a graph neural network to a biomedical or
clinical task and (2) integrate at least two data modalities or
combine graph learning with other encoders within an explicit
fusion scheme. We searched PubMed, Google Scholar, and arXiv
for studies published between January 2020 and August 2025
using combinations of graph-learning terms (e.g., GNN, GCN,
GraphSAGE, GAT, heterogeneous graph), multimodality terms
(e.g., multimodal, fusion), and health-domain terms (e.g., clinical,
oncology, pharmacology, genomics). Titles and abstracts were
screened against predefined inclusion and exclusion criteria,
followed by full-text assessment. We included studies that
reported the fusion strategy and described the architectural
components used; single-modality GNNs, non-health domains,
and papers lacking full text were excluded. The search identified
121 records, of which 85 studies met the eligibility criteria
and were included in the review. Because reporting practices
and evaluation metrics vary widely across domains, we used
descriptive synthesis rather than quantitative meta-analysis.
Complete search strings and eligibility details are provided in
Supplementary Tables S1–S3.

2 Pharmacology

Pharmacology-focused multimodal GNN frameworks unify
molecular, biological, and clinical signals under predominantly
intermediate, attention-aware fusion, with early fusion used when
EHR/image or graph features are concatenated prior to graph
convolutions (Table 1). Heterogeneous graphs (drugs–targets–
diseases–genes–adverse events), patient/population graphs, meta-
path encoders with explainable decoders, and attention are
common graph modeling approaches (Gao Y. et al., 2025; Huang
et al., 2023; Zhou et al., 2024; Dawn et al., 2024). Drug-drug
interaction models integrate drug–protein–disease multiplexes
with multi-head attention, temporal or GNN/DNN pipelines, and
graph transformers (Yu et al., 2023; Gan et al., 2023; Al-Rabeah
and Lakizadeh, 2022; ChandraUmakantham et al., 2024; Wang G.
et al., 2024; Xiong et al., 2023). Drug–target affinity prediction
tasks fuse molecular graphs with knowledge-graph embeddings
and attention modules (Yella et al., 2022; Zhang et al., 2023b;
Xiang et al., 2025). Drug repurposing leverages knowledge-graph
VAEs/GraphSAGE over drug databases to prioritize candidates,
while adversarial designs extend to adverse events prediction and
drug recommendations (Hsieh et al., 2020, 2021; Artiñano-Muñoz
et al., 2024; Lin et al., 2023; Abdeddaiem et al., 2025). Time series
and causal structure are explicit in models that learn temporal
edges or motif-level constraints (e.g., CT-GNN/MDTCKGNN) and
in prescription prediction with time-aware modules (T-LSTM)
(Kalla et al., 2023; Liu et al., 2020). Vision-centric tasks (pill
classification) add ConvNet/RPN with graph topology learning.
Protein localization alteration and colonization-risk models adapt
GraphSAGE/GCN/GAT to dynamic clinical graphs (Nguyen et al.,
2023; Wang R. H. et al., 2023; Gouareb et al., 2023).

GraphSAGE/GCN/GAT/RGCN provide the backbone of drug-
related multimodal GNN approaches, with attention (often multi-
head) capturing neighbor weighting and modality selection.
VGAE/GAN variants aid representation learning and robustness
(Yu et al., 2023; Wang G. et al., 2024; Xiang et al., 2025; Abdeddaiem
et al., 2025). Datasets span FAERS, SIDER/OFFSIDES/TWOSIDES,
DrugBank, KEGG, STRING, CCLE/GDSC, KIBA/DAVIS, RepoDB,
and MIMIC-III/MIMIC-IV, enabling cross-domain evaluation
from molecules to bedside (Gao Y. et al., 2025; Dawn et al., 2024; Al-
Rabeah and Lakizadeh, 2022; Yella et al., 2022; Zhang et al., 2023b;
Liu et al., 2020). Recent surveys have argued that multimodal,
knowledge-graph-aware, and temporally grounded GNNs tend to
improve property prediction, DDI/ADE surveillance, repurposing,
and recommendation while enhancing mechanistic insight and
scalability (Paul et al., 2024; Tabatabaei et al., 2025; Yao et al., 2024;
Wang Y. et al., 2024; Li et al., 2023a).

3 Oncology

Oncology-focused multimodal graph frameworks fuse
histopathology, radiology, omics, and clinical covariates to
support diagnosis, risk stratification, and treatment planning tasks
(Table 2). Most systems pair modality-specific encoders, such as
CNNs/ViTs or radiomics for images, text encoders for reports, and
pathway/interaction graphs for omics, with graph layers under
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TABLE 1 Graph-based models across pharmacology-related tasks.

Task Model Fusion Dataset Layers AUC F1 Accuracy

Adverse drug event (Gao Y. et al.,
2025)

PreciseADR Early FAERS adverse drug
events, demographics,
diseases, drugs

HGNN 0.54–0.84 NR NR

Adverse drug event (Kalla et al., 2023) MDTCKGNN Intermediate ade_corpus_v2;
PHEE

HGNN with
attention

NR NR NR

Adverse drug event (Zhou et al., 2024) Patient-centric
GNN

Early Australian CBHS GraphSAGE with
attention

0.88–0.96 0.53–0.90 0.89–0.94

Adverse drug event (Huang et al.,
2023)

HHAN-DSI Intermediate SIDER, OFFSIDE,
GO

HGNN + TransE 0.84–0.94 NR NR

Adverse drug event (Dawn et al.,
2024)

MI-GNN Intermediate Decagon DDI HGNN 0.81–0.95 NR NR

Drug Repurposing (Artiñano-Muñoz
et al., 2024)

DRAGON Intermediate DISNET GraphSAGE 0.91–0.95 NR NR

Drug repurposing (Hsieh et al., 2020) COVID-19
KG

Intermediate Literature, CTD VGAE,
GraphSAGE

0.78–0.90 NR NR

Drug repurposing (Hsieh et al., 2021) SARS-CoV2
KG

Intermediate Literature, CTD VGAE,
GraphSAGE

0.77–0.90 NR NR

Drug repurposing (Abdeddaiem et al.,
2025)

AGMR Early MIMIC-III GNN, GAN NR 0.85–0.88 0.86–0.88

Drug repurposing (Lin et al., 2023) AD Drug
Repurposing

Early STRING, GO, CTD GraphSAGE 0.84–0.99 NR NR

Drug–Drug Interaction (Gan et al.,
2023)

DMFDDI Intermediate Zhang, ChCh-Mine,
DeepDDI

Temporal HGNN 0.95–0.99 0.93–0.97 NR

Drug–drug interaction (Yu et al.,
2023)

ACDGNN Intermediate Gene/disease/pathway
KG

HGNN with
attention

0.71–0.99 0.67–0.94 0.67–0.97

Drug–drug interaction (Al-Rabeah
and Lakizadeh, 2022)

GNN-DDI Intermediate DrugBank, KEGG HGNN 0.99–1.00 0.41–0.86 0.67–0.92

Drug–drug interaction
(ChandraUmakantham et al., 2024)

DeepSide Intermediate TwoSides; DrugBank GraphSAGE with
attention

NR 0.83–0.99 0.77–0.99

Drug–drug interaction (Wang G.
et al., 2024)

MMDDI-
MGPFF

Intermediate DrugBank GINConv with
attention

NR 0.96 0.88

Drug–drug interaction (Xiong et al.,
2023)

MRCGNN Intermediate Deng, Ryu datasets TrimNet + GNN NR 0.78–0.89 0.89–0.90

Drug–target prediction (Zhang et al.,
2023b)

DrugAI Intermediate DrugBank AttentiveFP, LINE,
DeepWalk,
node2vec, SDNE

0.88–0.97 0.87–0.89 0.85–0.93

Drug–target prediction (Xiang et al.,
2025)

ExplainMIX Intermediate CCLE, GDSC,
PubChem

RGCN 0.00–1.0 0.73–0.97 NR

Drug–target prediction (Yella et al.,
2022)

GraMDTA Intermediate DrugBank, RepoDB,
DisGeNET

CNN, GraphSAGE
with attention

0.88–0.92 0.69–0.80 NR

Pill classification (Nguyen et al., 2023) PGPNet Intermediate User-captured pill
images

ConvNet, RPN,
GTN

NR NR 0.70–0.90

Prescription prediction (Liu et al.,
2020)

RGNN Intermediate MIMIC-III T-LSTM, Temporal
GNN

0.82–0.84 NR NR

Protein localization alteration (Wang
R. H. et al., 2023)

PLA-GNN Early GEO GraphSAGE NR NR 0.410–
0.41

NR, Not reported by the original study.

intermediate fusion, frequently using attention for weighting
(Kulandaivelu et al., 2024; Kim et al., 2023; Alzoubi et al., 2024;
Pratap Joshi et al., 2025; Yan et al., 2024; Gowri et al., 2024).
Population graphs connect patients via various similarity measures

in imaging and clinical embeddings (head and neck, ovarian
cancers), while pathways and knowledge graphs encode gene–gene
or entity relations for subtype and survival modeling (Peng
et al., 2024; Ghantasala et al., 2024; Li et al., 2023b). Lesser used,
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TABLE 2 Graph-based models across oncology-related tasks.

Task Model Fusion Dataset Layers AUC F1 Accuracy

Breast cancer (Gao et al., 2022) MGNN Late 2,500 breast cancer
patients with gene
expression, CNA, and
clinical data

Temporal GNN on
bipartite graphs,
CCA fusion

0.98 NR 0.95

Breast cancer (Kulandaivelu
et al., 2024)

ABCD-HAHGNN-
MI

Intermediate DDSM and
CBIS-DDSM

DNPGF, QOLCT,
GLCM, SCL, CAL,
GNN with attention

0.94–0.97 0.95–0.97 0.97–0.98

Breast cancer (Kim et al., 2023) HetMed Intermediate Duke-Breast and
CMMD

ResNet, CNN, GCN
with attention

NR 0.70–0.86 NR

Glioma (Alzoubi et al., 2024) PathoFusion Intermediate WSI pathology
images

CNN, GCN with
attention

NR NR 0.83–0.85

Glioma (Pratap Joshi et al., 2025) VSA-GCNN Intermediate BraTS 2019, 2020,
2021

AlexNet, VSA,
GCN with attention

NR 0.97–0.98 0.92–1.00

Lung cancer (Li et al., 2023b) Lung
adenocarcinoma
multiclassification
model

Early Zhongshan Hospital;
Shanghai Public
Health Clinical
Center

CNN, GIN, GNN
with attention

0.92–0.95 NR 0.87–0.95

Head and neck cancer (Peng
et al., 2024)

MLF-GNN Intermediate TCIA GraphSAGE, GNN
with attention

NR NR 0.85–0.94

Liver cancer (Moharana et al.,
2025)

FML-LDP Early Clinical,
demographic, genetic,
and imaging data

CNN, GNN with
attention, federated
meta-learning

NR 0.85–0.93 0.92–0.97

Ovarian cancer (Ghantasala
et al., 2024)

Temporal Analysis
+ GNN

intermediate OCD and NCI SEER RNN, GNN with
attention

0.60–0.82 0.56–0.78 0.56–0.79

Skin cancer (Yan et al., 2024) MSF-CNN Intermediate ISIC dataset CNN, GNN with
attention

0.66–0.76 0.55–0.63 0.77–0.82

Multi-cancer detection Gowri
et al. (2024)

Vision transformers
+ GNNs +
LayoutLM

Intermediate IQ-OTH/NCCD
Lung Cancer Dataset;
PLCO Lung Dataset

ViTs, GNN,
LayoutLM

NR NR NR

Oncology Misinformation
Detection (Cui et al., 2020)

DETERRENT Early KnowLife, Healthline,
ScienceDaily, NIH,
MNT, Mayo Clinic,
Cleveland Clinic,
WebMD

BiGRU, RGCN with
attention

0.54–0.83 0.28–0.67 0.44–0.70

NR, Not reported by the original study.

late fusion is applied when independently learned patient–gene
bipartite embeddings are aligned for survival (MGNN) (Gao et al.,
2022), whereas early fusion concatenates raw/image features before
graph reasoning in lung and federated liver cancer models (Li
et al., 2023b; Moharana et al., 2025). Beyond core oncology tasks,
misinformation detection integrates text encoders with R-GCN
over medical knowledge graphs under early fusion (Cui et al.,
2020). These architectures standardize heterogeneous inputs,
learn structure-aware patient and pathway representations, and
improve generalization via similarity graphs and attention-based
aggregation across modalities and fusion types (Li et al., 2023a;
Paul et al., 2024; Waqas et al., 2024).

4 Neuropsychiatry

Multimodal GNN frameworks extended to neurological
domains have been applied to conditions such as Alzheimer’s
disease, Parkinson’s disease, depression, autism spectrum disorder,
Schizophrenia, and even emotion recognition and sentiment

analysis by integrating diverse linguistic, genomic, behavioral,
imaging, and physiological data (Teoh et al., 2024; Zhang et al.,
2023a; Xu et al., 2024; Sangeetha et al., 2024; Khemani et al., 2024).

Neuropsychiatry multimodal GNN pipelines unify imaging
(fMRI/sMRI/DTI/PET), electrophysiology (EEG), speech/text, and
omics within subject or population-level graphs (Table 3). A
common approach in Alzheimer’s disease prediction integrates
imaging-driven fusion with cross-attention Transformers (CsAGP,
GCNCS), dual hypergraphs (DHFWLSL), multiplex subject graphs
(HetMed), and hypergraph attention fusion (HCNN-MAFN) (Tang
C. et al., 2023; Luo et al., 2024; Kim et al., 2023; Kumar et al., 2023a;
Lee et al., 2024b). Parkinson’s studies pair connectomic encoders
with omics via attention (JOIN-GCLA) and patient-similarity
graphs (AdaMedGraph) (Chan et al., 2022; Lian et al., 2023).
Autism Spectrum Disorder models treat rs-fMRI as signals on DTI
graphs (M-GCN) to intermediate spatio-temporal/demographic
fusion (IFC-GNN) and VAE-aligned Transformer/Graph-U-Net
encoders (MM-GTUNets) (Dsouza et al., 2021; Wang X. et al., 2024;
Cai et al., 2025). For Major Depressive Disorder, interview-centric
systems employ heterogeneous attention over audio–video–text
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TABLE 3 Graph-based models across neuro/psychiatric tasks.

Task Model Fusion Dataset Layers AUC F1 Accuracy

Alzheimer’s (Cai et al., 2023) AD-GNN Intermediate Augmented Pitt
Cookie-Theft dataset

BERT, GraphSAGE,
BiLSTM, GGNN

NR NR 0.77–0.85

Alzheimer’s (Wang Z. et al., 2024) Knowledge-
infused
MM-GNN

Intermediate OASIS; ADNI-D LLMs, GNN 0.46–0.67 0.46–0.68 0.55–0.82

Alzheimer’s (Tang C. et al., 2023) CsAGP Intermediate ADNI (ADNI1/GO
and ADNI2)

CNN, Vision
Transformers,
GNN with attention

0.99–1.00 NR 0.94–0.99

Alzheimer’s (Luo et al., 2024) DHFWLSL Intermediate ADNI (ADNI1/GO
and ADNI2)

Dual HGNN with
Laplacian
regularization

NR 0.42–0.93 0.51–0.94

Alzheimer’s (Kim et al., 2023) HetMed Intermediate ADNI HGNN, CNN
(ResNet), GNN
with attention

NR 0.70–0.86 NR

Alzheimer’s (Kumar et al., 2023a) HCNN-MAFN Intermediate ADNI HGNN with
attention

0.98–0.99 0.94–0.96 0.94–0.96

Alzheimer’s (Lee et al., 2024b) GCNCS Intermediate ADNI and DAUH CNN, GNN 0.92–0.97 0.90–0.99 0.88–0.94

Alzheimer’s (Tripathy et al., 2025) GNNRAI Intermediate ROSMAP, MSBB,
Mayo

GNN with attention 0.95–1.00 0.95–1.00 0.76–1.00

Parkinson’s (Lian et al., 2023) AdaMedGraph Early PPMI and PDBP GNN 0.65–0.76 NR NR

Parkinson’s (Chan et al., 2022) JOIN-GCLA Intermediate PPMI GNN with attention NR NR 0.90–1.00

Neurodegenerative (Vijay Anand
et al., 2024)

IMNMAGN Intermediate BioGPS and BrainLat ICA, Correlation
Analysis, TFA,
Beamforming,
CNN, GNN with
attention

0.95–0.97 NR 0.91–0.97

Autism (ASD) (Dsouza et al., 2021) M-GCN Early HCP and KKI GCN NR NR NR

Autism (ASD) (Wang X. et al., 2024) IFC-GNN Intermediate ABIDE I Temporal GNN NR NR 0.64–0.81

Autism (ASD) (Cai et al., 2025) MM-GTUNets Intermediate ABIDE I and
ADHD000

VAE CNN, RL
Q-Learning, GNN
with attention

0.88–0.91 NR 0.82–0.83

Major depressive disorder (Li et al.,
2025)

AVS-GNN Intermediate DAIC-WOZ and
DVlog

LSTM, GNN, MLP NR 0.74–0.88 0.75–0.86

Major depressive disorder (Xing
et al., 2024)

EMO-GCN Intermediate MODMA GraphSAGE, GNN
with attention

NR 0.89–0.96 0.90–0.97

Major depressive disorder (Liu et al.,
2024)

LGMF-GNN Intermediate SRPBS and
REST-meta-MDD

BiGRU, Snowball
GNN

0.73–0.81 0.65–0.91 0.70–0.79

Major depressive disorder
(Venkatapathy et al., 2023)

Ensemble GNN Intermediate REST-meta-MDD GNN with attention
and GraphSAGE

0.71–0.77 NR 0.70–0.72

Major depressive disorder (Gu et al.,
2025)

FC-HGNN Intermediate ABIDE and
REST-meta-MDD

GNN with attention 0.95–1.00 0.93–1.00 0.92–1.00

Major depressive disorder (Lee
et al., 2024a)

Spectral GNN Early/Late REST-meta-MDD Spectral GNNs 0.66–0.74 NR 0.67–0.73

Major depressive disorder (Li et al.,
2024)

DSE-HGAT Intermediate DAIC-WOZ BiLSTM, GNN with
attention

NR 0.79 NR

Schizophrenia (Jiang et al., 2023) Multimodal
GNN for EEG

Early/
Intermediate

Chengdu, Hangzhou,
Moscow datasets

GNN 0.70–0.85 NR 0.70–0.88

Schizophrenia (Gao et al., 2025) GNN and
Multimodal DTI

Intermediate 7 sites across China GNN with attention NR 0.74–0.76 0.71–0.74

NR, Not reported by the original study.

(AVS-GNN, DSE-HGAT), while imaging/population approaches
(LGMF-GNN, FC-HGNN, Ensemble GNN) couple local ROI
graphs to global subject graphs (Li et al., 2025, 2024; Liu

et al., 2024; Gu et al., 2025; Venkatapathy et al., 2023;
Lee et al., 2024a). Schizophrenia pipelines tend to model
EEG channel-graphs and dual-branch DTI attention networks
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TABLE 4 Graph-based models for epidemic forecasting and outcomes.

Task Model Fusion Dataset Layers AUC F1 Accuracy

Epidemic forecasting (Qiu et al., 2024) MSGNN Intermediate JHU CSSE Temporal CNN,
GNN with attention

NR NR NR

Epidemic forecasting (Xie et al., 2023) EpiGNN Intermediate COVID
Japan-Prefectures,
ILINet, ILI,
JHU-CSSE,
Spain-COVID

CNN,
AutoregressiveDNN,
and GNN with
attention

NR NR NR

Epidemic forecasting (Tran et al.,
2024)

MGLEP Intermediate JHU CSSE, OxCGRT,
COVID-19 Twitter
chatter

BertTweet, RNN,
GNN with attention

NR NR NR

Epidemic forecasting (Luo et al., 2025) Dual-Topo-
STGCN

Intermediate CDC ILI surveillance RNN, GNN NR NR NR

HAI transmission (Gouareb et al.,
2023)

MDRE-
TransGraph

Early MIMIC-III GNN with
attention,
GraphSAGE

0.89–0.96 NR 0.84–0.97

COVID-19 outcomes (Keicher et al.,
2023)

Multimodal
GAT

Intermediate iCTCF and KRI U-Net and
KNN-based, GNN
with attention

0.57–0.77 0.18–0.78 0.73–0.74

COVID-19 outcomes (Tariq et al.,
2023)

GCNN for
clinical event
prediction

Intermediate COVID-19 Emory
University Hospital
(EUH)

CNN, GNN, LSTM 0.50–0.91 NR NR

COVID-19 outcomes (Tariq et al.,
2025)

Adaptable
GCNN for
clinical event
prediction

Intermediate COVID-19 Emory
University Hospital
(EUH)

DenseNet-121,
GraphSAGE, LSTM

0.58–0.92 NR NR

NR, Not reported by the original study.

integrating FA/FN features (Jiang et al., 2023; Gao et al., 2025).
Attention weights filter population graphs based on their similarity,
and learn multi-scale spatial–temporal patterns by combining
CNN/Transformer encoders with GNN message passing inside the
fusion stack.

5 Epidemiology

Recent epidemic-forecasting and COVID-19 outcome models
fuse temporal sequence encoders with structure-aware GNNs
(Table 4). For population-level spread, architectures stack temporal
CNN/DNN modules with attention-based GNN layers to capture
local and global transmission patterns (MSGNN, EpiGNN) and
augment signals with LLM-derived social media features or dual
topologies to improve influenza forecasts (MGLEP, Dual-Topo-
STGCN) (Qiu et al., 2024; Xie et al., 2023; Tran et al., 2024;
Luo et al., 2025). Within hospitals, contact graphs linking patients
and healthcare workers use GraphSAGE and attention to model
hospital-acquired infection transmission (Gouareb et al., 2023). For
COVID-19 prognosis, multimodal pipelines use attention to fuse
CT-derived features with KNN population graphs (Keicher et al.,
2023), while edge-flexible GCNN frameworks integrate imaging,
tabular, and temporal signals (CNN/LSTM and population GNN)
to allow post-training edge adaptability (Tariq et al., 2023,
2025). These models emphasize spatiotemporal message passing,
attention for weighting neighbors and signals, and adaptable graph
construction to handle dynamic data.

6 Clinical

EHR-based multimodal graph frameworks aim to support
clinical prediction and treatment planning through merging
diverse medical data modalities (Li et al., 2022; Xu et al., 2024).
When combined with knowledge graphs, these models offer
flexibility in terms of both inputs and prediction tasks (Nye,
2023; Rajabi and Kafaie, 2022). Most models integrate structured
EHR (diagnoses, procedures, meds, labs, vitals) with at least one
unstructured or high-dimensional stream, be it clinical notes,
medical images (CXR, fundus), genomics, or wearable/sensor
data, often via CNNs for imaging, TF-IDF/BioBERT for text,
and temporal trajectory layers for labs/vitals (AL-Sabri et al.,
2024; Tang S. et al., 2023; Zedadra et al., 2025; Pablo et al.,
2024; Wang et al., 2025). The graph connectivity tends to be
modeled as patient–patient similarity graphs, knowledge graphs
linking encounters to conditions, and heterogeneous graphs
(e.g., sensor and metapath views) (Table 5). Dynamic network
edges implemented in conjunction with learned message-passing
connectivity from static KGs allow graphs to adapt to new
information without the need for retraining (Liu et al., 2021; Valls
et al., 2023; Gao et al., 2024; Wang et al., 2025; Christos Maroudis
et al., 2025).

In terms of multimodal fusion strategies, the majority
of models start with modality-specific encoders (CNNs for
images, BiGRU/LSTM/Transformers for sequences/text), which are
then integrated into GNN backbones (GraphSAGE, GNN/GAT,
heterogeneous GNN), with attention used both for cross-modal
weighting and within graph layers (AL-Sabri et al., 2024; Tang
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TABLE 5 Graph-based models for clinical prediction, pathways, and hospital operations.

Task Model Fusion Dataset Layers AUC F1 Accuracy

Tuberculosis (D’Souza et al.,
2023)

MaxCorr-MGNN Intermediate Tuberculosis Data
Exploration Portal

Hirschfeld–Gebelein–
Rényi maximal
correlation and GNN

0.77–0.78 NR NR

Care pathway prediction (Liu
et al., 2021)

Multitask
Healthcare
Management
System

Intermediate 600,000 multimodal
samples (structured,
text, images)

CNN (ResNet), GNN,
Word2Vec, RNN

NR NR NR

Clinical risk prediction
(AL-Sabri et al., 2024)

M3GNAS Intermediate MIMIC-III BiGRU, BioBERT, GNN
with attention

0.70–0.91 NR NR

Hospital readmission (Tang S.
et al., 2023)

MM-STGNN Intermediate MIMIC-IV; 9,958
admissions/44,084
radiographs/9,162
patients

GraphSAGE, RNN,
GNN

0.58–0.91 NR NR

Federated diagnosis (Begum,
2024)

FH-MMA Intermediate MIMIC-III CNN, Transformers,
and GNN with
attention

NR NR 0.93–0.95

Multitask longitudinal
modeling (Boschi et al., 2024)

funGCN Intermediate SHARE and synthetic
dataset

GNN NR NR 0.58–0.93

Clinical triage (Valls et al.,
2023)

Masked-
Connectivity
Triage GNN

Intermediate Synthea GNN, KG, Temporal
GNN

NR NR 0.40–0.85

Comorbidity prediction
(Pablo et al., 2024)

Multitask
Comorbidity
GCN

Intermediate Imaging + genomics
+ clinical notes

CNN, BERT, GNN 0.96 0.93 0.95

Sleep apnea diagnosis (Wang
et al., 2025)

HeteroGCFNet Intermediate OSAHS BiLSTM, GNN with
attention

NR 0.80–0.84 0.84–0.88

Sepsis trajectory modeling
(Ghanvatkar and Rajan, 2023)

Dynamic
Clinician-in-the-
Loop
GNN

Intermediate MIMIC-IV GNN, Temporal
HGNN with attention

0.74 0.36 0.87

Ophthalmology auxiliary
diagnosis (Gao et al., 2024)

CGAT-ADM Intermediate Ophthalmic EMRs
(Beijing Tongren
Hospital)

BERT, metapath2vec,
GNN with attention

NR NR NR

Diabetic retinopathy (Zedadra
et al., 2025)

DRdiag Intermediate APTOS 2019;
MESSIDOR0

CNN, GNN NR 0.96 0.96–0.98

Heart disease (Boll et al.,
2025)

Patient-KNN
Graph

Early MIMIC-III GraphSAGE, KNN,
Graph Transformers,
GNN with attention

0.75–0.79 0.47–0.53 0.70–0.80

ICU albumin prediction
(Zhang et al., 2023)

DyG-HAP Intermediate ANIC Disentangled dynamic
graph with attention

NR NR NR

ICU length of stay
(Christos Maroudis et al.,
2025)

Fairness-Aware
Dynamic
ST-GNN

Intermediate MIMIC-IV LSTM, GNN with
attention

0.82–0.91 NR NR

NR, Not reported by the original study.

S. et al., 2023; Begum, 2024; Boschi et al., 2024; Ghanvatkar
and Rajan, 2023). Temporal structure can be modeled at the
node level (RNN/Transformer encoders per patient), edge level
(temporal embeddings that define adaptive edges), and graph
level (dynamic GNNs that rebuild neighborhoods by top-k
similarity each step). Disentangled dynamic attention separates
invariant vs. shifting patterns and fairness-aware designs (Tang
S. et al., 2023; Zhang et al., 2023; Christos Maroudis et al.,
2025).

MIMIC-III and MIMIC-IV are two of the most used datasets
for mortality and length-of-stay prediction, as well as readmission,
sepsis trajectory modeling, and heart-disease graphs, integrated

with similarity-based measures, temporal encoders, dynamic graph
update strategies, and privacy-preserving architectures (AL-Sabri
et al., 2024; Tang S. et al., 2023; Ghanvatkar and Rajan, 2023;
Christos Maroudis et al., 2025; Begum, 2024). Imaging-heavy
models join population graphs with CNN/radiomics for tasks such
as ophthalmology and DR screening (APTOS, MESSIDOR) (Gao
et al., 2024; Zedadra et al., 2025), while sensor-centric pipelines
exploit heterogeneous sensor-and-knowledge graphs (Wang et al.,
2025). SHARE, Synthea, and ANIC datasets support multitask
longitudinal modeling, ER triage, and out-of-distribution ICU
biomarker forecasting (Boschi et al., 2024; Valls et al., 2023; Zhang
et al., 2023).
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By uniting EHR, imaging, genomic, temporal, and sensor-
derived information within attention-based graph representations,
diagnostics and prognostic models capture both the relational and
temporal complexities inherent in patient care (Oss Boll et al.,
2024). Their reliance on attention-based fusion and invariant
pattern learning reflects a shift toward systems capable of modeling
data heterogeneity and distribution shifts, resulting in scalable and
generalizable clinical decision-support systems.

7 Genomics

Across lncRNA–miRNA interaction prediction, GNN models
implement sequence-aware fusion with attention, built over

heterogeneous similarity graphs (Table 6). Modalities and features
typically combine primary sequence (k-mers), similarity networks
(sequence/functional/disease), and structural or physicochemical
descriptors into unified node–edge representations (Wang Z.
et al., 2023; Wang et al., 2022; Wang and Chen, 2023; Zhang et al.,
2022). Sequence embeddings are often initialized via unsupervized
objectives (e.g., k-mer Doc2Vec) before graph learning, then
refined with inductive backbones such as GraphSAGE and
attention layers to weight informative neighbors (Wang Z.
et al., 2023; Zhang et al., 2022). Heterogeneous/bipartite graphs
integrate lncRNA–miRNA and miRNA–disease with similarity
measures, structured probabilistic layers, or multi-channel
attention (Wang et al., 2022; Wang and Chen, 2023). Datasets
such as LncACTdb, LNCipedia, miRBased, ncRNASNP, and

TABLE 6 Graph-based models for ncRNA–miRNA interaction prediction.

Task Model Fusion Dataset Layers AUC F1 Accuracy

lncRNA–miRNA interaction (Wang
Z. et al., 2023)

SPGNN Intermediate LncACTdb 3.0;
LNCipedia; miRBase

k-mer Doc2Vec,
GraphSAGE, GNN
with attention

0.84 0.75–0.76 NR

lncRNA–miRNA interaction (Wang
et al., 2022)

GCNCRF Intermediate lncRNASNP2;
LncACTdb 3.0;
LNCipedia; miRBase

Conditional
Random Fields,
GNN with attention

0.88–0.95 0.13–0.14 0.97–0.98

lncRNA–miRNA interaction (Wang
and Chen, 2023)

MAGCN Intermediate ncRNASNP v2.0;
HMDD v3.0

CNN, GNN with
attention

0.90 0.50–0.51 0.94

ncRNA–miRNA interaction (Zhang
et al., 2022)

ncRNAInter Intermediate lncRNASNP2;
miRBase v22.1;
GENCODE v38

GraphSAGE with
neighbor sampling

0.97–0.99 0.93–0.96 0.93–0.96

NR, Not reported by the original study.

FIGURE 1

Conceptual workflow of multimodal fusion strategies. Early, intermediate, and late fusion integrate heterogeneous inputs for downstream prediction
tasks. In early fusion, modalities are concatenated or pooled up front and passed to a unified encoder. In intermediate fusion, each modality is first
processed by a modality-specific encoder, and features are combined mid-model via attention/GNN layers. In late fusion, separate modality/GNN
branches are trained, and their scores are combined only at the decision stage. Prediction layers are dominated by fully connected layers,
multiple-layer perceptrons, or machine learning classifiers.
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FIGURE 2

Multimodal fusion strategies and encoder usage across research areas. (A) Overall distribution of fusion strategies across all models. (B) Fusion
distribution by area. (C) Share of models that include a temporal encoder by area. (D) Share of models that include an attention mechanism by area.

HMDD are integrated into pretrained sequence embeddings,
heterogeneous similarity graphs, and attention-based GNNs to
improve link prediction fidelity and mechanistic interpretability of
gene expression.

8 Discussion

Healthcare data is inherently multimodal, and integrating
information from different sources can provide a more
comprehensive view of a patient’s health status or disease
characteristics. Graph Neural Networks facilitate this by providing
a framework to model relationships between and within each
modality. The strengths of GNNs lie in their integration with other
deep learning models by taking advantage of advanced fusion
strategies, particularly those employing attention mechanisms.
GNN integrations with CNNs, RNNs, autoencoders, language
transformers, machine learning classification or regression
models, and optimization algorithms facilitate multimodal data
preprocessing and merging, as illustrated in the workflow of fusion
types in Figure 1.

Across research areas and prediction tasks, intermediate fusion
is the prevailing design (Figures 2A, B, 3B). In epidemic forecasting,
temporal encoders fuse data via attention-based graph layers to
capture local and global spread (Qiu et al., 2024; Xie et al., 2023;
Tran et al., 2024; Luo et al., 2025). Hospital-acquired infection
models combine contact graphs with attention inside the graph
pipeline (Gouareb et al., 2023). COVID-19 outcome prediction
uses intermediate fusion that joins CT features with population
graphs with adaptable edges (Keicher et al., 2023; Tariq et al., 2023,

2025). Clinical prediction and operations also favor intermediate
fusion, where modality-specific encoders precede GraphSAGE,
GCN, GAT, or heterogeneous GNN layers (AL-Sabri et al., 2024;
Tang S. et al., 2023; Begum, 2024; Boschi et al., 2024; Valls
et al., 2023; Zhang et al., 2023; Christos Maroudis et al., 2025).
Oncology mostly follows the same pattern, with late fusion used
when independent embeddings are aligned after training and early
fusion used when features are concatenated before graph reasoning
(Gao et al., 2022; Li et al., 2023b; Moharana et al., 2025; Alzoubi
et al., 2024; Pratap Joshi et al., 2025; Peng et al., 2024; Yan
et al., 2024). Gene expression studies implement sequence-aware
intermediate fusion that mixes pretrained sequence embeddings
with similarity graphs and attention (Wang Z. et al., 2023;
Wang et al., 2022; Wang and Chen, 2023; Zhang et al.,
2022).

Across the 85 studies reviewed, intermediate fusion accounts
for 81% of models (n = 69), with the highest use in neuropsychiatry
(83%) and pharmacology (74%), and attention layers are present
in over 60% of systems. Early fusion constitutes 15% (n = 13),
largely in oncology for raw feature concatenation. Late fusion
appears in 1% (n = 1) for embedding alignment in genomics and
hybrid fusion in 2% (n = 2), both in neuropsychiatry. Intermediate
fusion is associated with the strongest outcomes, with top models
reaching mean AUC values near 0.95 and accuracies near 0.92
(Table 7). Early fusion supports simpler feature integration with
broader performance ranges (AUC 0.84–0.99), while late fusion
suits alignment-driven tasks such as MGNN, where modality-
specific embeddings are correlated only after independent training
(AUC 0.98). Intermediate fusion consistently yields the most
discriminative models, including Alzheimer’s systems achieving
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FIGURE 3

Architectural patterns across tasks. (A) Gap chart comparing the share of models using attention versus temporal encoders for the top tasks. (B)
Normalized (100%) stacked bars showing the fusion strategy mix. Values are the proportion of models per task that use each fusion scheme. (C)
Heatmap of layer types extracted from model descriptions.
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TABLE 7 Summary comparison of top-performing multimodal GNN models across biomedical domains, selected based on highest AUC, accuracy, and
F1 scores, highlighting architectures, datasets, fusion types, and performance outcomes to identify effective strategies.

Domain Task Model Fusion Dataset Architecture
(layers)

Performance
outcomes

Pharmacology Drug–drug
interaction

ACDGNN (Yu et al.,
2023)

Intermediate Gene, disease, pathway
KG

HGNN with
attention

AUC: 0.99–1.00; F1:
0.41–0.86; Acc: 0.67–0.92

Pharmacology Drug repurposing AD drug repurposing
(Lin et al.)

Early STRING, GO, CTD GraphSAGE AUC: 0.95–0.99; F1:
0.93–0.97; Acc: NR

Oncology Glioma VSA-GCNN
(Pratap Joshi et al., 2025)

Intermediate BraTS 2019/2020/2021 AlexNet, VSA, GCN
with attention

AUC: NR; F1: 0.97–0.98;
Acc: 0.92–1.00

Oncology Breast cancer MGNN (Gao et al., 2022) Late 2,500 patients (gene
expression, CNA, clinical
data)

Temporal GNN on
bipartite graphs;
CCA fusion

AUC: 0.98; F1: NR; Acc:
0.95

Neuropsychiatry Major depressive
disorder

FC-HGNN (Gu et al.,
2025)

Intermediate ABIDE;
REST-meta-MDD

GNN with attention AUC: 0.95–1.00; F1:
0.93–1.00; Acc: 0.92–1.00

Neuropsychiatry Alzheimer’s disease CsAGP (Tang C. et al.,
2023)

Intermediate ADNI1/GO; ADNI2 CNN; vision
transformers; GNN
with attention

AUC: 0.99–1.00; F1: NR;
Acc: 0.94–0.99

Epidemiology HAI transmission MDRE-TransGraph
(Gouareb et al., 2023)

Early MIMIC-III GNN with attention;
GraphSAGE

AUC: 0.89–0.96; F1: NR;
Acc: 0.84–0.97

Epidemiology COVID-19
outcomes

Adaptable GCNN (Tariq
et al., 2025)

Intermediate EUH COVID-19 cohort DenseNet-121;
GraphSAGE; LSTM

AUC: 0.58–0.92; F1: NR;
Acc: NR

Clinical Comorbidity
prediction

Multitask comorbidity
GCN

Intermediate Imaging + genomics +
clinical notes

CNN; BERT; GNN AUC: 0.96; F1: 0.93; Acc:
0.95

Clinical Diabetic
Retinopathy

DRdiag (Zedadra et al.,
2025)

Intermediate APTOS 2019; MESSIDOR CNN; GNN AUC: NR; F1: 0.96; Acc:
0.96–0.98

Genomics ncRNA–miRNA
interaction

ncRNAInter (Zhang
et al., 2022)

Intermediate lncRNASNP2; miRBase
v22.1; GENCODE v38

GraphSAGE with
neighbor sampling

AUC: 0.97–0.99; F1:
0.93–0.96; Acc: 0.93–0.96

Genomics lncRNA–miRNA
Interaction

GCNCRF (Wang et al.,
2022)

Intermediate lncRNASNP2; LncACTdb
3.0; LNCipedia; miRBase

CRF + GNN with
attention

AUC: 0.88–0.95; F1:
0.13–0.14; Acc: 0.97–0.98

NR, Not reported by the original study.

AUC values up to 1.00, consistent with prior analyses of multimodal
GNNs (Paul et al., 2024; Li et al., 2023a).

In terms of datasets, population-level forecasting relies on
datasets such as JHU CSSE, ILINet, OxCGRT, and social media
signals (Qiu et al., 2024; Xie et al., 2023; Tran et al., 2024; Luo
et al., 2025). Clinical prediction is often validated on MIMIC
III and MIMIC IV for mortality, readmission, sepsis, and length
of stay, and on institutional cohorts for triage and dynamic
biomarker prediction (AL-Sabri et al., 2024; Tang S. et al., 2023;
Ghanvatkar and Rajan, 2023; Christos Maroudis et al., 2025;
Begum, 2024; Zhang et al., 2023). Imaging-heavy ophthalmology
and retinal screening use APTOS and MESSIDOR and report
gains when CNN features are integrated into patient similarity
or knowledge graphs (Gao et al., 2024; Zedadra et al., 2025).
Oncology combines TCIA archive and disease-specific collections
for radiology, whole slide pathology, and multi-omic cohorts for
survival modeling (Peng et al., 2024; Alzoubi et al., 2024; Yan
et al., 2024; Gao et al., 2022). Gene regulatory and interaction
studies rely on LncACTdb, LNCipedia, miRBase, ncRNASNP,
HMDD, and GENCODE, which support sequence pretraining and
heterogeneous graph construction (Wang Z. et al., 2023; Wang
et al., 2022; Wang and Chen, 2023; Zhang et al., 2022).

The most prevalent layer types include GraphSAGE, GCN,
GAT, and heterogeneous GNNs. Temporal encoders at the node
level include LSTM, GRU, and temporal GNNs. Attention is

used to weight neighbors and modalities. In epidemic forecasting,
temporal encoders feed attention-based graph layers (Qiu et al.,
2024; Xie et al., 2023; Tran et al., 2024; Luo et al., 2025). In clinical
prediction, GraphSAGE and heterogeneous GNNs are combined
with BiGRU or Transformer text encoders and time-aware designs
(AL-Sabri et al., 2024; Tang S. et al., 2023; Begum, 2024; Boschi
et al., 2024). In oncology, attention GNNs integrate imaging and
omics (Alzoubi et al., 2024; Peng et al., 2024; Yan et al., 2024).
Gene interaction models pair GraphSAGE with Doc2Vec k-mer
embeddings, CRF layers, and multi-channel attention (Wang Z.
et al., 2023; Wang et al., 2022; Wang and Chen, 2023; Zhang
et al., 2022). Alzheimer’s, COVID-19 Outcomes, and Drug-Target
Prediction exhibit the highest layer type diversity, with 90%,
70%, and 60% of the models respectively combining multiple
layer types, reflecting their complex multimodal requirements,
as illustrated in the varied fusion strategies of Figure 3C. GNN
+ attention has the highest prevalence across included studies
(63%), with CNN/Conv following closely with an incidence of
40% across studies, particularly in tasks like Alzheimer’s and
COVID-19 outcomes.

Forecasting tasks tend to model spatiotemporal data using
intermediate fusion that aligns mobility and case signals with
graph dynamics (Qiu et al., 2024; Xie et al., 2023; Tran et al.,
2024; Luo et al., 2025). Operational and clinical tasks embed
structured EHR, notes, images, and vitals with modality-specific
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encoders, which are fused in graph layers with attention (AL-Sabri
et al., 2024; Tang S. et al., 2023; Valls et al., 2023; Ghanvatkar
and Rajan, 2023; Zhang et al., 2023; Christos Maroudis et al.,
2025). Neuropsychiatric tasks combine temporal encoders with
imaging, electrophysiology, language, and omics within subject or
population graphs with attention mechanisms (Cai et al., 2025; Liu
et al., 2024; Li et al., 2024). Temporal encoders concentrate on
time-dependent problems, including epidemic forecasting (75%)
and COVID-19 outcomes (67%). A large overlap between attention
mechanisms and temporal encoders has been observed in epidemic
forecasting (75% attention; 75% temporal), ICU length of stay,
ovarian cancer, prescription prediction, sepsis trajectory modeling,
and neurodegenerative disease (Figures 2C, D, 3A).

Attention mechanisms and modality-specific encoders such
as CNNs, RNNs, and graph layers that retain spatial, temporal,
and relational structure correspond to higher predictive reliability
across biomedical settings (Table 7). Attention-based intermediate
fusion appears in most high-performing systems, particularly
in tasks requiring integration of structured molecular features,
clinical text, and imaging. Architectures combining GraphSAGE,
GCN, or heterogeneous GNN layers with temporal or vision
encoders achieve the strongest AUC and accuracy ranges in
genomics, neuropsychiatry, and oncology. Domains with well-
defined structural priors, such as ncRNA–miRNA prediction
and drug–drug interaction modeling, show tighter performance
bounds, whereas models operating on heterogeneous EHR or
epidemiological data exhibit broader variability.

This review has several limitations. Marked heterogeneity in
cohorts and nomenclature limits cross-study comparability
and meta-analytic potential. Our harmonized taxonomy
(early/intermediate/late fusion, layer families) may introduce
classification error for mixed or sparsely described architectures,
and many abstractions rely on self-reported methods without
code or full graph-construction details. External validity is often
weak, since numerous studies lack external validation. Widely used
datasets (e.g., MIMIC, ADNI, ABIDE, and public KGs) may carry
sampling biases that may hinder generalization. Finally, we did not
apply a formal risk-of-bias tool or rerun models, as the main scope
of this review is to build an understanding of how multimodal
medical data is being integrated in GNNs.

9 Conclusion

GNNs offer a robust framework for modeling complex
relationships across diverse modalities such as electronic health
records, medical imaging, genomic profiles, and clinical notes. By
synthesizing advancements in drug discovery, cancer detection,
mental health diagnosis, epidemiology, clinical risk prediction,
and gene expression analysis, this review has highlighted GNNs’
ability to enhance clinical decision-making by leveraging graph-
structured representations to capture intricate relationships among
patients, diseases, drugs, imaging, text, and biological entities.
The integration of GNNs with deep learning models, such as
CNN, LSTM, RNN, dimensionality reduction, machine learning,
and optimization algorithms, enhances their ability to process
diverse data modalities. Multiple fusion strategies, such as
early, intermediate, late, and hybrid, are employed to fuse

multimodal data into a unified prediction framework. However,
data heterogeneity across modalities, varying in structure and noise
levels, complicates graph construction and fusion, while resource-
intensive computations pose scalability issues. Interpretability
and causality are essential for clinical adoption, with attention-
based mechanisms offering partial solutions but requiring further
development. Real-world use of multimodal GNNs also faces
regulatory and operational barriers. Many models rely on complex
graph-construction choices and stochastic training procedures
that limit reproducibility across institutions, while the absence
of standardized evaluation criteria complicates regulatory review.
Deployment requires attention to data governance, privacy
compliance, and integration with existing clinical workflows.
Ensuring model generalizability across diverse datasets, addressing
data availability, and complying with ethical, privacy, and
security regulations are additional constraints that are yet to be
fully addressed.

Several research directions follow from the patterns identified
in this review. First, causal GNNs are needed to disentangle
mechanistic relations from observational correlations in
multimodal biomedical graphs, particularly for tasks such
as treatment effect modeling, disease progression, and drug
interaction inference. Second, privacy-preserving federated graph
learning is essential for cross-institutional multimodal datasets.
Third, the field lacks standardized explainability benchmarks for
subgraph attribution, modality-specific contribution, and stability
under perturbation, which would allow systematic comparison
across fusion architectures. Lastly, future benchmarks should
evaluate fusion strategies under controlled data heterogeneity to
determine when early, late, or hybrid designs offer measurable
advantages to ensure that multimodal GNNs are mechanistically
informative, privacy-aligned, and reproducible at clinical scale.
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Glossary

ABIDE, Autism Brain Imaging Data Exchange; ADNI,
Alzheimer’s Disease Neuroimaging Initiative; ADHD-200,
ADHD-200 Consortium neuroimaging dataset; ANIC, Australian
National Intensive Care dataset (as cited); APTOS, Asia Pacific
Tele-Ophthalmology Society diabetic retinopathy dataset; CBIS-
DDSM, Curated Breast Imaging Subset of DDSM; CBHS,
Commonwealth Bank Health Society (private insurer cohort);
CCLE, Cancer Cell Line Encyclopedia; CDC ILI ILINet, CDC
Influenza-Like Illness/Outpatient ILI Surveillance Network;
CMMD, Chinese Mammography Database (as cited); CTD,
Comparative Toxicogenomics Database; DAIC-WOZ, Distress
Analysis Interview Corpus—Wizard of Oz; DAUH, Dong-
A University Hospital (as cited); DAVIS, Kinase inhibitor
binding benchmark (Davis et al.); DDSM, Digital Database
for Screening Mammography; DISNET, Disease Networks
knowledge base; EUH, Emory University Hospital; FAERS, FDA
Adverse Event Reporting System; GENCODE, Comprehensive
gene annotation resource; GEO, Gene Expression Omnibus;
GDSC, Genomics of Drug Sensitivity in Cancer; HCP, Human
Connectome Project; HMDD, Human microRNA Disease
Database; iCTCF, International COVID-19 CT dataset (as
cited); IQ-OTHNCCD, IQ-OTH/NCCD lung cancer imaging
datasets; JHU CSSE, Johns Hopkins University CSSE COVID-19
repository; KEGG, Kyoto Encyclopedia of Genes and Genomes;
KIBA, Kinase Inhibitor BioActivity benchmark; KRI, Korea
Research Institute COVID-19 cohort (as cited); LncACTdb,
Long Non-coding RNA–Associated Competing Endogenous
RNA Database; LNCipedia, Long Non-Coding RNA knowledge
base; MESSIDOR-2, Retinal fundus dataset for DR screening;
miRBase, microRNA sequence database; MIMIC–IIIMIMIC–IV,
Medical Information Mart for Intensive Care v3 / v4; MODMA,
Multimodal Depression Dataset; MSBB, Mount Sinai Brain Bank;
ncRNASNP, Non-coding RNA Single Nucleotide Polymorphisms
database; OASIS, Open Access Series of Imaging Studies; OCD
(Ovarian), Ovarian Cancer Dataset; OxCGRT, Oxford COVID-
19 Government Response Tracker; PDBP, Parkinson’s Disease
Biomarkers Program; PLCO, Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial; PPMI, Parkinson’s Progression
Markers Initiative; RepoDB, Drug repurposing database; REST-
meta-MDD, REST-meta-MDD Consortium dataset; ROSMAP,
Religious Orders Study and Memory and Aging Project; SEER,
Surveillance, Epidemiology, and End Results (NCI); SPAIN-
COVID, Spain COVID epidemiological dataset (as cited);
STITCH, Search Tool for Interactions of Chemicals; STRING,
Search Tool for the Retrieval of Interacting Genes/Proteins;
Synthea, Synthetic patient EHR generator; TCIA, The Cancer

Imaging Archive; TWOSIDES, Large drug–drug interaction
side-effect dataset; WSI, Whole-Slide Images (pathology); DTI
(imaging), Diffusion Tensor Imaging (distinct from Drug–
Target Interaction); EEG, Electroencephalography; fMRI, sMRI,
Functional, Structural Magnetic Resonance Imaging; PET,
Positron Emission Tomography; WSI, WholeSlide Images
(pathology); ADE, Adverse Drug Event; ASD, Autism Spectrum
Disorder; DDI, Drug–Drug Interaction; DTI (task), Drug–
Target Interaction (disambiguated from imaging DTI); DR,
Diabetic Retinopathy; HAI, Healthcare-Associated Infection; ICU,
Intensive Care Unit; LOS, Length of Stay; MDD, Major Depressive
Disorder; BERT, Bidirectional Encoder Representations from
Transformers; BioBERT, Biomedical BERT; BiGRU, Bidirectional
Gated Recurrent Unit; BiLSTM, Bidirectional Long Short-Term
Memory; CAL, Content-Aware Layer (paper-specific); CNN,
Convolutional Neural Network; CRF, Conditional Random Field;
DNPGF, Dual-Nonlocal Pyramid Graph Filter (paper-specific);
GAT, Graph Attention Network; GCN, Graph Convolutional
Network; GCNN, Graph Convolutional Neural Network (generic);
GGNN, Gated Graph Neural Network; GIN, GINConv, Graph
Isomorphism Network/convolutional layer; GNN, Graph Neural
Network; GNNRAI, GNN with Region-Aware Integration
(paper-specific); GraphSAGE, Graph Sample and Aggregate;
Graph Transformer, Transformer architecture on graphs; GTN,
Graph Transformer Network (define in text; some papers vary);
HGAT, Heterogeneous Graph Attention Network; HCNN-MAFN,
Hypergraph CNN with Multimodal Attention Fusion Network
(paper-specific); HGNN, Heterogeneous Graph Neural Network;
HeteroGCN, Heterogeneous Graph Convolutional Network; ICA,
Independent Component Analysis; KNN, k-Nearest Neighbors;
LAYOUTLM, Document layout–aware Transformer; LINE,
Large-scale Information Network Embedding; LLM, Large
Language Model; LSTM, Long Short-Term Memory; MacBERT,
Chinese BERT variant; MLP, Multi-Layer Perceptron; RGCN,
Relational Graph Convolutional Network; RNN, Recurrent
Neural Network; RPN, Region Proposal Network; SCL, Semantic
Convolutional Layer (paper-specific); SDNE, Structural Deep
Network Embedding; ST-GNN/STGCN, Spatio-Temporal
GNN/Spatio-Temporal GCN; Transformer, Self-attention neural
network; U-Net, U-shaped convolutional encoder–decoder; VAE,
Variational Autoencoder; VGAE, Variational Graph Autoencoder;
ViT, Vision Transformer; VSA, Variational Spatial Attention
(paper-specific); Early, Intermediate, Late Fusion, Fusion timing
categories used in this review; GAN, Generative Adversarial
Network; GAT (attention), Graph attention mechanism/layer;
KG, Knowledge Graph; KGE, Knowledge Graph Embedding;
Q-Learning (RL), Reinforcement Learning Q-learning; RL,
Reinforcement Learning; ROI, Region of Interest.
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