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Introduction: Railway transportation is increasingly critical for modern urban 
and intercity mobility. However, the expanding scale and intensifying operational 
intensity of rail networks have elevated track defect detection to a key concern. 
Traditional inspection methods (manual, ultrasonic, eddy current, magnetic 
flux leakage testing) are limited by insufficient accuracy, low efficiency, or poor 
adaptability to complex environmental conditions.
Methods: An enhanced defect detection framework based on an improved YOLOv8 
algorithm was proposed, tailored for small targets and complex backgrounds. Three 
core improvements were integrated: 1) AVCStem module with variable convolution 
kernels to dynamically adapt to defects of different shapes and scales; 2) ADSPPF 
module using multi-scale pooling and multi-branch attention mechanisms to 
preserve fine-grained features across scales; 3) MSF module for enhanced multi-
scale feature fusion via partial convolution and hierarchical feature alignment.
Results and Discussion: Experiments on a real-world track defect dataset 
showed the proposed model achieved 90.2% detection precision, 90.2% 
mAP@0.5, and 73.2% mAP@0.5:0.95. Meanwhile, the model size was reduced 
to 5.2MB with 2.45M parameters. Comparative and ablation studies confirmed 
the complementary advantages of each module and the model’s superior 
performance over existing lightweight detectors. The proposed model provides 
a robust, accurate, and efficient solution for real-time railway defect detection. 
It exhibits strong potential for deployment in edge AI devices and mobile 
inspection robots, addressing the limitations of traditional inspection methods.
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1 Introduction

As an efficient and convenient mode of transportation in modern society, rail 
transportation has undergone rapid global development in recent years. Various types of rail 
systems, including urban subways, light railways, high-speed railways, and heavy-haul 
railways, have continually expanded their network mileage and enhanced transportation 
capacity to meet the growing demands for population mobility and economic exchange (Xiong 
et al., 2023; Guerrieri et al., 2018). However, with the expanding scale of rail transit networks 
and the increasing intensity of operations, ensuring safe and stable functioning has become a 
critical concern. As the foundational infrastructure that directly supports train movement, the 
track structure is subjected to prolonged exposure to dynamic and static loads, environmental 
degradation, and material fatigue, which frequently results in various structural defects (Kou, 
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2022; Fu et al., 2023). Without timely and accurate detection and 
repair, such defects can escalate into catastrophic failures, including 
increased track irregularities, train derailments, and overturns, 
thereby endangering passenger safety and causing substantial 
economic losses and adverse social impacts (Zhong and Chen, 2024). 
Currently, traditional railway inspection methods include manual 
inspection (Rahman et al., 2024), ultrasonic testing (Wang et al., 
2023), eddy current testing (Alvarenga et al., 2021), and magnetic flux 
leakage (MFL) testing (Tang et al., 2021). Although manual inspection 
is straightforward, it suffers from subjectivity and inspector fatigue, 
leading to inconsistent results and high labor costs (Yaodong et al., 
2024; Kumar and Harsha, 2025). Ultrasonic detection, while cost-
effective and technologically mature, operates slowly and requires 
coupling agents, resulting in limited effectiveness on coated or uneven 
surfaces (Yuan et al., 2024). Eddy current testing is highly sensitive to 
surface and near-surface defects and does not require a coupling 
agent, yet it performs poorly in detecting deep-seated defects (Wang 
et al., 2022). MFL detection features simple equipment and fast 
scanning but exhibits low accuracy and sensitivity to defect geometry.

In recent years, advancements in deep learning have brought 
substantial breakthroughs in computer vision algorithms. Object 
detection algorithms can be broadly categorized into two types: 
region-based fully convolutional networks (R-FCN)(Tang et al., 2020), 
and spatial pyramid pooling networks (SPPNet) (Han et al., 2020), 
and end-to-end detection frameworks such as single shot multibox 
detector (SSD) (Bai et al., 2021), You Only Look Once (YOLO) (Wang 
et al., 2024), and detection transformer (DETR) (Gibert et al., 2016). 
Region proposal-based approaches extract potential target regions 
within the image and process each region individually for classification 
and bounding box refinement (Chen et al., 2023). In contrast, 
end-to-end methods eliminate region proposals and directly predict 
object classes and positions from the entire image, significantly 
improving detection speed (Wu et al., 2020; Yin et al., 2022).

In this study, a dataset of track images collected from real-world 
railway environments was constructed, targeting surface damage, 
missing fasteners, missing bolts, and other anomalies for model 
training and evaluation. However, due to the small size of the defects, 
complex background interference, and limited feature representation, 
the YOLOv8 algorithm demonstrates a high false detection rate in this 
context. To address these issues, this study proposes an improved 
YOLOv8-based framework incorporating several 
architectural enhancements:

	(a)	 To improve the backbone network’s capacity to extract features 
from defects of varying sizes, a variable convolution kernel 
(AKConv) is embedded within the VoV-GSCSP module, 
forming a new AKConv-VoV-GSCSP Stem (AVCStem) to 
replace the original C2f module. This modification dynamically 
adjusts the receptive field during feature aggregation, effectively 
handling rail cracks of different orientations and accurately 
locating missing components under conditions of strong 
light reflection.

	(b)	 To mitigate fine feature loss caused by increased network depth 
and repeated downsampling, the SPPF module is extensively 
redesigned based on the SENetV2 architecture. A progressive 
multi-scale pooling strategy is introduced, resulting in the 
ADSPPF module, which retains features ranging from micro-
cracks to large-scale fastener loss.

	(c)	 To further enhance the transmission of small-scale features, 
this study proposes a refined multi-scale feature fusion neck 
network. By integrating a weighted feature fusion strategy with 
a bidirectional feature pyramid structure, a new multi-scale 
fusion module (MSF) is developed to improve the model’s 
ability to capture fine-grained defect details.

2 YOLOv8

As a well-recognized variant of the YOLO series proposed by 
Ultralytics, YOLOv8 achieves substantial improvements in accuracy 
and inference speed compared with earlier-generation models, 
making it a commonly used baseline in related studies. In terms of 
network architecture, it retains the classic three-stage structure of 
“Backbone-Neck-Head,” but has implemented multiple optimizations 
in module design and connection methods, further enhancing 
detection accuracy and speed. Its structure is as shown in Figure 1.

YOLOv8 accepts 3-channel color images with a resolution of  
640 × 640. The Backbone network consists of Conv, C2f, and SPPF 
modules. The Conv module is used for image feature extraction and 
dimension adjustment; the C2f module captures gradient flow 
information and enhances feature extraction capability through 
Bottleneck units. The SPPF module fuses contextual information of 
different scales through pooling layers of multiple scales, enhances the 
receptive field, and maintains computational efficiency at the same 
time. The Neck adopts the Path Aggregation Network-Feature 
Pyramid Network (PAN-FPN) structure to realize feature fusion, and 
finally outputs 3 feature maps of different scales to the Head part 
(Haroon et al., 2024). The Head uses an Anchor-Free design, whose 
core function is to directly predict the target’s location, confidence, 
and category based on the fused feature maps. These designs enable 
YOLOv8 to perform excellently in both real-time detection scenarios 
and high-precision demand scenarios, making it one of the 
mainstream models in the current object detection field (Aydin et 
al., 2021).

YOLOv8n, as the smallest model in the YOLOv8 series, boasts 
advantages such as fast detection speed and low resource consumption. 
However, if YOLOv8n is directly applied to the task of rail surface 
defect detection, the model will face problems such as occlusion, 
reflection, and poor detection performance for small targets. To 
address these issues, targeted adjustments to the model are required 
to enhance its ability to detect targets at different scales, thereby 
improving the overall performance of rail surface defect detection.

3 Improved algorithm design

3.1 Optimizing backbone networks

In the field of target detection algorithms, the design of the 
backbone network plays a key role in the performance of the model. 
As an efficient target detection model, the C2f module in the backbone 
network of YOLOv8n plays a certain role in the feature extraction 
process. However, in order to further improve the feature extraction 
ability of the model, reduce the number of parameters and enhance 
the adaptability to targets of different scales, this paper proposes to 
replace the C2f module in the YOLOv8n backbone network with the 
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AVCStem module. The AVCStem module, as shown in Figure 2a, is a 
feature extraction module for the backbone network of the target 
detection model. It combines multiple convolution operations and 
bottleneck structures to achieve effective extraction and fusion of 
multi-scale features (Yang et al., 2022; Acikgoz and Korkmaz, 2023). 
The design of this module aims to make full use of the information in 
the feature map, while reducing the model parameters and improving 
the model’s detection ability for targets of different sizes and shapes. 
The specific structure and workflow of the AVCStem module are as 
follows: The input feature map X first passes through two standard 
convolutional layers, which are used to perform preliminary feature 
transformation and extraction on the input feature map. Then the 
output feature map of a convolutional layer enters a sequence 
consisting of multiple grouped ghost bottleneck sequence layers 
(GSBottleneck). The GSBottleneck layer is a lightweight bottleneck 
structure, as shown in Figure 2b. It combines group shuffle convolution 

(GSConv) and residual connection, which can reduce the number of 
parameters while maintaining good feature extraction capabilities. In 
the GSBottleneck layer, a 1 × 1 GSConv is first used to reduce the 
dimension of the input feature map, and then a 3 × 3 GSConv is used 
for feature extraction (Li et al., 2022). Finally, the input feature map 
and the output feature map are added through the residual connection 
to enhance the feature expression ability. Among them, the GSConv 
structure is shown in Figure 2c, and its efficiency advantage stems 
from a “channel compression—depthwise enhancement—shuffle 
fusion” pipeline tailored for track defect feature extraction: (1) The 
input feature map (channels 1c ) is compressed to 1c /2 via standard 
1 × 1 convolution (retaining cross-channel information while 
reducing computation base); (2) The compressed feature map is 
processed by 3 × 3 depthwise convolution (enhancing local defect 
details like microcrack edges with minimal overhead); (3) The two 
feature maps from steps (1) and (2) are concatenated and 

FIGURE 1

The structure of YOLOv8 (Terven et al., 2023).
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channel-shuffled (eliminating information isolation without extra 
computation). To quantify this advantage, we compare GSConv with 
two mainstream lightweight convolutions—standard grouped 
convolution (SGC, G = 2) and depthwise separable convolution 
(DSConv)—using unified parameters: input feature map H × W × Cin, 
output channels Cout, and kernel size 3 × 3(consistent with track defect 
detection settings).

This design allows GSConv to significantly reduce computational 
overhead while maintaining cross-channel feature interaction—
critical for distinguishing tiny track defects (e.g., 1–2 pixel 
microcracks) from background noise—making it suitable for 
lightweight models deployed on edge inspection devices.

To address the problem that fixed convolution kernels cannot 
adapt to track defects of different shapes and scales (e.g., irregular 
cracks, scattered missing bolts, and directional surface damage), this 
paper proposes the AVCStem module, which integrates GSBottleneck 
and AKConv (Adaptive Convolution). As shown in Figure 3, AKConv 

realizes “dynamic adjustment” of sampling positions by learning pixel-
level offset vectors, thereby enhancing the extraction of multi-scale 
defect features.

Specifically, AKConv first constructs a hybrid sampling grid Pn​ 
consisting of “regular base points” and “irregular adaptive points”: the 
regular base points (e.g., 9 points for 3 × 3 kernel equivalence) ensure 
basic feature extraction capability, while the adaptive points (4 per 
base point, determined by track defect scale statistics) supplement 
flexibility for irregular defects. To generate dynamic offsets, a 
lightweight prediction branch is embedded in AKConv: after the input 
feature map is processed by 1 × 1 convolution (channel reduction) and 
BatchNorm2d, a 3 × 3 depthwise convolution outputs an offset tensor 

× ×∆ ∈ H W 2KP R  (where H × W is the feature map size, K is the total 
number of sampling points, and “2” corresponds to x/y-axis offsets). 
The tanh activation function restricts ∆P  to [−1, 1] pixel units to 
avoid excessive sampling deviations. The final adaptive sampling 
coordinates are calculated as = + + ∆0final nP P P P  ( 0P  is the center of 

FIGURE 2

Schematic diagram of the AVCStem structure: (a) Overall architecture of the AVCStem module; (b) Structure of the GSBottleneck layer; (c) Structure of 
the GSConv layer. In the YOLOv8n backbone network, the original C2f module is replaced by the AVCStem module, which integrates the AKConv 
variable convolution and the Ghost Bottleneck structure to enhance the robust feature extraction capability for multi-directional cracks and defects in 
highly reflective areas.
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the convolution window), and the convolution operation is defined as 
Formula 1:

	
( ) ( )ω= × + + ∆∑0 0nnConv P F P P P

	 (1)

where ω denotes trainable convolution weights, and F(·) is the 
feature value at the adjusted position (obtained via bilinear interpolation). 
The offset ∆P  is learned end-to-end through the model’s overall 
detection loss (classification loss + CIoU regression loss + confidence 
loss), which implicitly guides sampling points to align with defect regions.

Finally, the feature map output by AKConv is concatenated with the 
feature map output by a convolution layer in the channel dimension, and 
then a standard convolution is used to perform a convolution operation 
on the concatenated feature map to adjust the number of channels of the 
feature map. In summary, the AVCStem module achieves effective 
extraction and fusion of multi-scale features through a series of 
convolution operations, grouped convolution bottleneck structure and 
adaptive convolution. Applying it to the YOLOv8n backbone network to 
replace the C2f module can make full use of the information in the 
feature map, reduce model parameters, and improve the model’s feature 
extraction ability and detection performance for targets of different scales.

3.2 Fast aggregation of dense spatial 
pyramid modules

In the task of railway track defect detection, although the SPPF 
module of YOLOv8 enables multi-scale feature fusion, its application in 
real-world railway scenarios still encounters significant challenges. As 
network depth increases and downsampling operations are repeatedly 
applied, fine features of small defects (e.g., microcracks on the rail surface 
and missing bolts) are easily lost, particularly when detecting tiny cracks 
like rail head damage (Wang et al., 2022; Phaphuangwittayakul et al., 
2024). Simultaneously, the similarity between the complex metal texture 
background and surface damage on the track, combined with 
illumination interference caused by mirror reflections on the rail, 

complicates accurate feature extraction (Min et al., 2023). To address this, 
this study redesigns SPPF based on SENetV2 (Narayanan, 2023) to create 
the ADSPPF module (Figure 4), which integrates multi-scale progressive 
pooling, multi-branch attention, and illumination normalization.

3.2.1 Detailed design of ADSPPF
The ADSPPF module processes input feature maps (e.g., 

40 × 40 × 512 from P4 layer) in three stages:

	(1)	 Multi-scale progressive pooling. The “progressive” design of 
ADSPPF refers to applying incrementally sized pooling kernels 
to the same input feature map within a single module (rather 
than assigning different kernels to different network layers), 
ensuring unified capture of multi-scale defect features without 
cross-layer information loss. Specifically: First, the input 
feature map (e.g., 40 × 40 × 512 from P4 layer) undergoes a 
pre-pooling 1 × 1 Conv (Table 1) to compress channels from 
512 to 256—this reduces computational redundancy while 
retaining core defect information, providing a consistent 
foundation for multi-scale pooling. Next, the preprocessed 
40 × 40 × 256 feature map is fed into 5 parallel max-pooling 
branches with incrementally increasing kernel sizes: 
3 × 3 → 5 × 5 → 7 × 7 → 9 × 9 → 13 × 13. Each kernel size is 
optimized for railway track defect scales (statistically analyzed 
from the dataset in Section 4.2): small kernels (3 × 3, 5 × 5) 
preserve fine details of microcracks (1–3 pixels) and surface 
scratches; medium kernels (7 × 7, 9 × 9) capture moderate 
defects (e.g., missing buckles); large kernels (13 × 13) integrate 
contextual information of large-scale defects (e.g., missing 
fastener clusters). All pooling operations use a stride of 1 and 
zero-padding to ensure output size remains 1 × 1 (global 
pooling for each scale), avoiding local feature loss. Each 
pooling branch is followed by a 1 × 1 Conv layer to reduce 
channels from 256 to 128—this step filters redundant feature 
channels (e.g., background metal textures shared across scales) 
and aligns feature dimensions for subsequent fusion, outputting 
5 feature maps of 1 × 1 × 128 each.

FIGURE 3

The AKConv structure diagram.
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	(2)	 Multi-branch attention and feature reorganization. First, the 5 
pooled feature maps are fed into 8 parallel fully connected (FC) 
branches, with branch dimensions following a “base-4” rule: 4, 
8, 12, 16, 20, 24, 28, 32 neurons per branch (total 
dimension = 32). Each branch specializes in learning a specific 
feature type: e.g., Branch 1 (4 neurons) learns brightness 

variations, Branch 2 (8 neurons) learns texture features of 
surface cracks (responsive to small pooling kernels like 3 × 3), 
and Branch 8 (32 neurons) learns geometric features of missing 
bolts (responsive to large kernels like 13 × 13); Second, each FC 
branch uses LeakyReLU (α = 0.1) activation to retain negative 
gradient information (critical for low-contrast defects in 

FIGURE 4

ADSPPF structure. The red dashed boxes denote the progressive pooling branches (3 × 3 → 13 × 13), where pooling operations with incrementally 
increasing kernel sizes process the same preprocessed feature map (40 × 40 × 256) to capture multi-scale defects; the blue arrows indicate the flow 
direction of the feature maps after dimension reduction via 1 × 1 convolution (downsampled to 1 × 1 × 128), which are subsequently concatenated and 
refined by the attention mechanism (green box) to eliminate redundancy.

TABLE 1  ADSPPF module parameter and tensor size details.

Component Input tensor 
size

Output tensor 
size

Parameters (k) Activation Normalization

Conv (pre-pooling) 40 × 40 × 512 40 × 40 × 256 131.1 SiLU BatchNorm2d

Progressive Pooling 

(3 × 3–13 × 13)
40 × 40 × 256 1 × 1 × 128 (×5) 0 – –

Multi-branch FC (8 branches) 1 × 1 × 640 (5 × 128) 1 × 1 × 32 20.6 LeakyReLU (α = 0.1) BatchNorm1d

Attention weight Layer 1 × 1 × 32 1 × 1 × 32 0.032 Softmax –

Conv (post-fusion) 1 × 1 × 32 40 × 40 × 512 16.4 SiLU BatchNorm2d

Total – – 73.9 – –

The progressive pooling component (3 × 3 → 13 × 13) introduces no additional parameters (0 k) but requires 0.05G GFLOPs for 5 parallel branches—this computational overhead is offset by 
the pre-pooling Conv (reducing channels from 512 to 256, saving 0.08G GFLOPs) and post-fusion attention (suppressing redundant features), resulting in a net GFLOPs increase of only 0.15G 
vs. SPPF (Table 4).
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shadows) and BatchNorm1d to stabilize training; Last, a 
learnable attention vector α∈R8 (normalized via softmax) 
weights the output of each branch (Formula 2):

	 α
=

= ×∑8
1fusion i iiF F 	 (2)

This attention mechanism emphasizes defect-relevant features 
(e.g., crack edges from small kernels, fastener shapes from large 
kernels) and suppresses redundant background information—for 
example, when detecting microcracks, α assigns higher weights to 
texture-focused branches; when detecting missing fasteners, 
geometric-focused branches are prioritized.

	(3)	 Illumination invariance realization. GCN and multi-branch 
attention form a “preprocessing to refinement” synergy to 
eliminate illumination interference (e.g., rail glare, tunnel 
shadows) while preserving defect details. Before progressive 
pooling, the input feature map (40 × 40 × 512 from P4 layer) 
undergoes GCN (Formula 3):

	
( ) ( ) µ

σ ∈
−

=
+

,
,norm

F x y
F x y

	
(3)

where ( )=
× ∑x,y
1ì F x,y

H W  (global mean), 

( )( )σ = −µ
× ∑

2
x,y

1 F x,y
H W

 
(global standard deviation), −= 610 .

 

This normalizes the feature map to mean = 0 and standard 
deviation = 1, suppressing glare-induced brightness saturation and 
shadow-induced contrast loss—critical for ensuring consistent input 
to the attention branches.

GCN provides “illumination-invariant” input for the 8 FC branches: 
it reduces irrelevant illumination outliers (e.g., glare spots normalized 
from 255 to ~1.2) and enhances defect features (e.g., shadowed 
microcracks normalized from 50 to ~ − 0.8), allowing the branches to 
focus on learning defect features rather than compensating for lighting. 
The attention branches further refine this input by: (1) assigning low αi 
to residual illumination-related features (via Branches 1–2); (2) assigning 
high αi to texture/geometric defect features (via Branches 3–8). This 
synergy is reinforced during training: if residual illumination still 
interferes with detection, total  increases, and the attention branches are 
updated to suppress illumination-related iF  via gradient backpropagation.

3.2.2 Parameter and tensor size annotation
Table 1 summarizes the ADSPPF module’s components, tensor 

sizes, and parameters. The total parameter count of ADSPPF is 73.9 k, 
which is 9.2% higher than SPPF (67.7 k), but provides significant gains 
in feature retention and illumination robustness. These improvements 
enable the model to maintain stable detection performance in complex 
railway environments.

3.3 Improved multi-scale feature fusion 
module

In railway track defect detection, the traditional feature pyramid 
network (FPN) exhibits limited feature transfer capability for tiny 
defects—such as microcracks on the rail surface and missing 

bolts—resulting in insufficient accuracy in small target detection (He 
et al., 2024). Inspired by the YOLO framework based on attention 
scale sequence fusion (ASF-YOLO) (Kang et al., 2024), this study 
introduces a hierarchical feature enhancement mechanism in the neck 
network of YOLOv8. Simultaneously, to further optimize 
computational efficiency and reduce redundant feature extraction, 
partial convolution (PConv) replaces traditional convolution 
operations at both the front and back ends of the feature enhancement 
mechanism, and a multi-scale fusion module (MSF) is designed. As 
shown in Figure 5, this structure adopts a strategy of jointly 
optimizing spatial and scale features to effectively improve detection 
accuracy in complex track scenarios while reducing 
computational complexity.

The MSF module processes feature maps from the backbone (P2: 
160 × 160 × 128, P3: 80 × 80 × 256, P4: 40 × 40 × 512) as follows:

(a) Partial convolution (PConv) preprocessing: PConv replaces 
traditional Conv in FPN to reduce redundant feature 
extraction, with its core mechanism being “mask-guided 
partial pixel update”—only valid pixels (defect-related 
regions) are updated via convolution, while invalid regions 
(background with low feature relevance) are masked to 
retain original values. This design avoids mixing defect 
features with redundant background (e.g., rail ballast, surface 
reflections) and reduces GFLOPs by 18% compared to 
standard Conv. The specific implementation for an input 
feature map × ×∈ H W C

inF R  (e.g., P2 layer: 160 × 160 × 128) is 
as follows.

Step 1: Preliminary feature transformation: A 3 × 3 convolution 
kernel ω is applied to inF  to generate an intermediate feature map 

( ) ( ) ( )ω
=− =−

= × + +∑ ∑
1 1

inu 1 v 1
: , u,v F x u,y vmid midF F x y . This step is 

consistent with traditional convolution and provides a basis for 
subsequent valid region judgment.

Step 2: Invalid region identification via feature response: To avoid 
manual threshold tuning, invalid regions are adaptively identified 
based on the feature relevance of inF .

First, inF  is normalized to [0,1] via min-max normalization, 
eliminating scale differences between feature values (Formula 4):

	
( ) ( ) ( )

( ) ( )
−

=
−

, min
,

max min
in in

norm
in in

F x y F
F x y

F F 	
(4)

The “feature response intensity” S(x,y) (average value across all 
channels) is calculated to reflect pixel relevance to defects (Formula 5):

	
( ) ( )=

= ∑ 1
1, ,, ,,C

normcS x y F x y c
C 	

(5)

Higher S(x,y) indicates stronger correlation with defects (e.g., 
crack edges), while lower values indicate background. Last, An 
adaptive threshold T (optimized via cross-validation on the railway 
dataset) is used to generate a binary mask.

Step 3: Mask-guided partial update: The final output feature map 
outF  is obtained by fusing the intermediate feature and original feature 

under mask guidance (Formula 6):

	 ( ) ( ) ( ) ( )( ) ( )= × + − ×, , , 1 , ,out mid inF x y M x y F x y M x y F x y 	 (6)
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Valid regions (M = 1) retain refined defect features, while invalid 
regions (M = 0) retain original values to avoid redundant updates. For 
each input feature map (e.g., P2), PConv (k = 3, s = 1) outputs a refined 
feature map with the same size, ensuring compatibility with 
subsequent Gaussian scale smoothing.

(b) Gaussian scale smoothing: Each refined feature map is 
convolved with a series of Gaussian filters (σ = 0.5, 1.0, 1.5, 2.0) 
to generate multi-scale smoothed features, capturing defect 
details at different resolutions (Formulas 7, 8):

	 ( ) ( ) ( )σ σ= − − ×∑ ∑, , ,u vF i j f i u i v G u v 	 (7)

	
( ) ( ) σ

σ
πσ

− +=
2 2 2/2

2
1,

2
x yG x y e

	
(8)

Where f  is the input feature map, and σG  is the Gaussian filter 
with standard deviation σ.

(c) Hierarchical alignment and 3D convolution: Smoothed features 
from P2, P3, P4 are upsampled to the resolution of P4 (40 × 40) 
via nearest-neighbor interpolation, then stacked along the 
channel dimension (output: 40 × 40 × (128 + 256 + 512) × 4, 
where 4 is the number of Gaussian scales). A 3D Conv layer 
(k = 3, s = 1) extracts cross-scale and cross-level features, 
enhancing the representation of small defects.

(d) PConv post-processing: A final PConv layer adjusts the channel 
count to match the neck’s output requirement (e.g., 
40 × 40 × 512), ensuring compatibility with the YOLO Head.

3.4 Network structure

To address challenges related to fine-grained feature loss and 
multi-scale target recognition in rail defect detection, this study 
proposes an improved YOLOv8n network architecture. Figure 6 
presents the architecture specifically designed to resolve these 
problems. Due to limitations in the original YOLOv8n backbone in 
capturing microscopic defects and adapting to targets of varying 
sizes, this study introduces the AVCStem module to replace the 
standard C2f module. By integrating the AKConv deformable kernel 
into the VoV-GSCSP structure, the module dynamically adjusts the 
receptive field, thereby significantly enhancing the network’s ability 
to represent rail stress cracks and missing bolts. Specifically, the 
AVCStem modules substitute the original C2f components in the 
backbone, enabling effective adaptation to defects with diverse 
morphologies under noisy or cluttered background conditions. 
Furthermore, to mitigate feature degradation during downsampling, 
an ADSPPF module based on the SENetV2 architecture is developed 
to replace the standard SPPF module. This module employs a multi-
scale progressive pooling strategy, thereby achieving comprehensive 
feature preservation across a spectrum ranging from microscopic 
cracks to macroscopic fastener losses. Simultaneously, to enhance the 
transmission of minute defect features, a novel MSF fusion neck is 
designed. By combining the advantages of weighted feature fusion 
and a bidirectional pyramid architecture, it significantly improves the 
capability to capture fine-grained defect details. The proposed 
solution yields significant improvements in detection accuracy while 
preserving model compactness and computational efficiency, 
demonstrating its strong suitability for rail defect detection tasks in 
complex environments.

FIGURE 5

MSF structure. The “*” symbol in the figure represents the convolution operation, through which the input feature map is convolved with the filter to 
generate a new feature map.
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4 Experimental results and 
comparative analysis

4.1 Experimental environment

Experimental tests were carried out on two types of hardware to 
simulate the scenario of practical deployment: a server, which was 
used for model training, and edge devices, which served for real-time 
performance evaluation. Table 2 presents a summary of the specific 
configurations of the aforementioned hardware.

4.2 Network training

In this study, a dataset comprising 2,129 images was constructed 
using the open-source Roboflow Universe dataset, augmented with 
real-world images collected by users. Among them, 1,500 images 
were used for training, 500 for validation, and 129 for testing. The 
dataset was reviewed and re-labeled by domain experts. As shown 
in Figure 7, the dataset includes defect types such as surface 
damage, missing bolts, and missing buckles. Before training, the 
model’s hyperparameters were configured. The training input image 
size was set to 640 × 640, with an initial learning rate of 0.01, 
updated using stochastic gradient descent (SGD). The momentum 
was set to 0.937, and the weight decay was 0.0005. During training, 
Mosaic data augmentation was employed to read multiple images 

simultaneously, which were then combined through inversion, 
scaling, and other transformations to enrich the detection 
background. Label smoothing was applied to prevent overfitting 
and improve the model’s generalization ability. Training was 
conducted over 300 epochs, with a batch size of 32 and 16 
worker threads.

FIGURE 6

Improved YOLOv8 framework.

TABLE 2  Experimental environment configuration.

Hardware/
software

Server 
workstation

Edge 
hardware 
(NVIDIA 
Jetson Nano)

Edge 
hardware 
(raspberry 
Pi 5)

Operating 

system
Ubuntu 22.04

Ubuntu 20.04 LTS 

(JetPack 5.1.2)

Raspberry Pi OS 

(Bookworm)

CPU

Intel(R) 

Core(TM) i9-

14900KF 

@3.20 GHz

Quad-core ARM 

Cortex-A57 

@1.43 GHz

Hexa-core ARM 

Cortex-A76 

@2.4 GHz

GPU

NVIDIA GeForce 

RTX 4090 (24 GB 

VRAM)

NVIDIA Maxwell 

GPU (4 GB VRAM)

VideoCore VII 

NPU (1 

TFLOPs)

RAM 32 GB DDR5 4 GB LPDDR4 8 GB LPDDR4

Software Stack

PyTorch 1.6, 

CUDA 12.1, 

Python 3.10

PyTorch 2.0, 

TensorRT 8.5

PyTorch 2.1, 

ONNX Runtime
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4.3 Performance indicators

In the evaluation framework of YOLO, the evaluation metrics for 
YOLO models are not standalone; rather, they serve as an integrative 
link connecting the “performance-efficiency-deployment” triad. 
Specifically, these metrics avoid the issue of “failure to achieve real-
time inference” caused by focusing solely on detection accuracy while 
neglecting inference speed, and also prevent the problem of “hardware 
incompatibility” arising from prioritizing inference speed without 
considering model complexity. Consequently, when evaluating 
improved YOLO algorithms, the evaluation criteria are generally 
categorized into three dimensions: detection accuracy, model 
complexity, and real-time performance.

4.3.1 Detection accuracy
To evaluate detection accuracy, commonly used indicators include 

precision (P), recall (R), and mean average precision (mAP). 
Specifically, P reflects the rate of false positives, R indicates the extent 
of missed detections, AP represents the area under the precision-recall 
(P-R) curve, and mAP is the mean of AP values, serving as a 
comprehensive measure of detector accuracy. The calculation formula 
is as follows (Formulas 9–12):

	
=

+
TPP

TP FP 	
(9)

	
=

+
TPR

TP FN 	
(10)

	 ( )= ∫
1

0
AP P R dR

	
(11)

	 =
= ∑

1

1 C

i
i

mAP AP
C 	

(12)

Here, TP denotes the number of true positive samples, FP denotes 
the number of false positive samples, and FN denotes the number of 
false negative samples.

4.3.2 Model complexity
Model Complexity is the core metric connecting “model 

performance” and “practical deployment feasibility,” where its core 
directly determines the algorithm’s practicality in different hardware 
environments through Weight file size (MB), Trainable parameters 
(M), Floating-point operations per second (G) at 640 × 640 input 
(GFLOPs), and Peak GPU/CPU memory during inference (MB).

4.3.3 Real-time performance
Real-time performance serves as a core metric for evaluating the 

inference efficiency and temporal responsiveness of a model. Its 
essence lies in quantifying the processing speed and operational 
stability of the model when executing detection inference on input 
images or video frames under a specific hardware configuration. In 
this study, inference experiments were carried out on two typical edge 
computing platforms, namely NVIDIA Jetson Nano and Raspberry Pi 
5, with a consistent batch size of 1 configured to validate the frames 
per second (FPS) of the improved YOLO model.

4.4 Training curve

To intuitively visualize the enhancements achieved by the 
improved algorithm, the training curves are presented. Figure 8 
illustrates the training loss, mAP50, and validation loss curves for 
both the original and improved models after 300 training epochs. 
Notably, the training process for the original model terminates after 
200 epochs due to a lack of further improvement in accuracy. In 
contrast, the improved model demonstrates accelerated convergence, 
yielding predictions that are closer to the ground truth. Moreover, the 
mAP50 metric shows significant improvement, as clearly illustrated 
by the curves. These observed enhancements provide strong evidence 
of the effectiveness of the proposed algorithm. The validation loss 
curve reveals the model’s generalization capability. The original 
model’s validation loss gradually increases in the later training stage, 
which implies overfitting. In contrast, the improved model’s validation 
loss remains low and stable throughout training, demonstrating that 
the proposed improvements effectively mitigate overfitting and 
enhance the model’s robustness on unseen data.

FIGURE 7

Track defect dataset: (a) surface damage; (b) missing buckles; (c) missing bolts.
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4.5 Ablation experiment

To assess the performance improvements achieved by integrating 
three optimization strategies—the AVCStem module, ADSPPF 
module, and MSF module—into YOLOv8n, a series of ablation 
experiments was conducted on the dataset. The evaluation metrics 
included model size, parameter count, precision (P), recall (R), mean 
average precision at an IoU threshold of 0.5 (mAP@0.5), and mean 
average precision across the IoU range of 0.5–0.95 (mAP@0.5:0.95) 
(Ni et al., 2021). These experiments evaluated various combinations 
of the aforementioned modules to isolate their individual and 
collective contributions. The corresponding experimental results are 
summarized in Table 3.

According to Table 2, integrating the AVCStem module into the 
YOLOv8n framework results in a 0.8 and 0.9% increase in P and 
mAP@0.5, respectively, while the model size and parameter count 
decrease by 15 and 10.45%. However, R and mAP@0.5:0.95 show a slight 
decline, suggesting that while AVCStem improves localization accuracy, 
it may inadvertently filter out some positive samples. With the addition 
of the ADSPPF module, R increases significantly to 82.0%, accompanied 
by slight improvements in both mAP@0.5 and mAP@0.5:0.95, 
indicating broader object coverage and enhanced bounding box 
regression accuracy. However, a slight decrease in precision may result 
from an increase in false positives introduced by the more aggressive 
detection strategy. The MSF module significantly improves accuracy to 
88.9%, while maintaining comparable mAP@0.5 and mAP@0.5:0.95 
values relative to the baseline model. This suggests that the MSF module 
enhances feature representation, thereby reducing misclassification. The 
combination of AVCStem and MSF yields notable improvements in R 
(86.7%) and mAP@0.5 (88.1%). These improvements demonstrate that 
AVCStem enhances low-level feature extraction, whereas MSF improves 
multi-scale feature integration, contributing to more robust detection 
performance. Full integration of all three modules results in the best 
overall performance, achieving 90.2% precision, 90.2% mAP@0.5, and 
73.2% mAP@0.5:0.95, along with a reduced model size (5.2 MB) and a 
comparable parameter count. These results underscore the strong 
complementarity among the proposed modules.

As shown in Figure 8, the detection performance comparison 
demonstrates significant improvements. Figure 9a illustrates the 
original YOLOv8n algorithm, which exhibits limitations in detecting 
small or blurred targets, potentially resulting in missed or false 

detections. In contrast, Figure 9b showcases the enhanced YOLOv8n 
algorithm proposed in this study. This improved approach effectively 
addresses the aforementioned challenges, successfully identifying 
missing fasteners while simultaneously detecting minute defects on 
the rail surface with precision. Ablation studies confirm that each 
proposed module contributes to performance improvement when 
used independently, while their combination leads to substantial gains 
in both detection accuracy and efficiency. The improved YOLOv8n 
model not only surpasses the baseline across all major evaluation 
metrics but also maintains a lightweight architecture, making it well-
suited for deployment in resource-constrained railway 
detection environments.

4.6 Module-level complexity

To analyze the incremental complexity of each module, this study 
measure the parameters, GFLOPs, and inference latency of the 
original and improved modules (Jetson Nano, batch = 1) (Table 4).

As shown in Table 4, each AVCStem reduces parameters by 
0.09 M and latency by 1.4 ms, with total backbone savings of 0.27 M 
params and 4.2 ms latency—driven by GSConv and residual 
compression. ADSPPF increases parameters by 0.006 M and latency 
by 2.1 ms but provides critical gains in illumination robustness and 
fine-feature retention (justified by ablation results). Each MSF module 
reduces parameters by 0.04 M and latency by 1.2 ms, with total neck 
savings of 0.12  M params and 3.6 ms latency—due to PConv’s 
reduction of redundant computations. The overall model reduces 
parameters by 0.23 M (8.6%), GFLOPs by 0.42G (7.7%), and latency 
by 5.7 ms (13.5%)—confirming that the improved modules enhance 
accuracy without sacrificing efficiency.

4.7 Quantitative evaluation of real-time 
performance

To substantiate the “real-time” claim, this study measure 
end-to-end latency, FPS, GFLOPs, and memory usage on both server 
and edge hardware (Table 5).

As shown in Table 5, on Jetson Nano (a typical edge AI device), the 
improved model achieves 28.6 FPS—exceeding the real-time threshold 

FIGURE 8

Loss function curve.
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(≥20 FPS) for railway inspection robots. Latency is reduced by 16.9% 
compared to the baseline, thanks to the lightweight design of AVCStem 
and MSF. The improved model’s GFLOPs (4.8G) are 7.7% lower than 
the baseline (5.2G), and memory usage is reduced by 12.0–14.5% 
across all hardware—critical for resource-constrained edge devices.

4.8 Comparative experiment

To verify the performance advantages of the improved YOLOv8n 
(denoted as Our) in the task of orbital defect detection, as shown in 
Figure 10, seven types of mainstream lightweight object detection 
algorithms, namely SSD, YOLOv5n, YOLOv6n, YOLOv7-tiny, 
YOLOv8n, YOLOv11n, and YOLOv12n, were selected for comparison. 
Comparative experiments were conducted from six dimensions: 
Precision (P), Recall (R), mAP50, mAP50-95, model weight, and 
number of parameters, with the results presented in Table 6.

From the perspective of detection accuracy, the improved model 
exhibits significant advantages in core metrics: the mAP50 of the Our 
model reaches 90.2%, which is 2.1 percentage points higher than that of 
the second-best YOLOv11n (88.1%) and 4.9 percentage points higher 
than the original YOLOv8n (85.3%), making it the only algorithm 
among all comparative models that exceeds 90%. In terms of the 
mAP50-95 metric, the Our model leads substantially with a score of 
73.2%, which is 3.7 percentage points higher than YOLOv11n (69.5%) 
and 8.7 percentage points higher than the original YOLOv8n (64.5%), 

indicating that the improved model achieves optimal robustness in 
detecting orbital defects under different IoU thresholds. Regarding 
precision, the Our model achieves 90.2%, second only to YOLOv12n 
(91.0%), while its recall rate reaches 84.5%, far exceeding YOLOv12n’s 
74.2%. This effectively balances precision and recall, reducing the risks 
of missed detection and false detection of orbital defects.

From the perspective of lightweight deployment, the Our model 
balances performance and deployment efficiency: with only 2.45 million 
parameters, it has the smallest parameter count among all comparative 
models, representing a 2.39% reduction compared to YOLOv12n 
(2.51 M), an 8.58% decrease compared to the original YOLOv8n 
(2.68 M), and a 59.23% reduction compared to YOLOv7-tiny (6.01 M). 
The model weight is 5.2 MB, slightly lower than YOLOv11n/YOLOv12n 
(5.5 MB) and much lower than models such as SSD (15.3 MB) and 
YOLOv7-tiny (12.3 MB), meeting the lightweight deployment 
requirements of edge devices for orbital inspection.

Overall, as a traditional object detection algorithm, SSD is at a 
disadvantage in both performance and lightweight aspects and is no 
longer suitable for the orbital defect detection scenario. Among the 
lightweight models of the YOLO series, YOLOv11n achieves a 
preliminary balance between performance and lightweight design but 
is still inferior to the Our model. While maintaining lightweight 
advantages, the improved YOLOv8n breaks through the bottleneck of 
“high performance accompanied by high parameter count” in existing 
algorithms, achieving dual optimality of detection accuracy and 
deployment efficiency in the orbital defect detection task.

TABLE 3  Ablation experiment.

Methods Model 
size/
MB

Params/M P/% R/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv8n AVCStem ADSPPF MSF

√ 6 2.68 87.9 79.0 85.3 64.5

√ √ 5.1 2.4 88.7 78.0 86.2 61.6

√ √ 5.7 2.72 87.4 82.0 86.3 65.6

√ √ 5.7 2.7 88.9 78.2 86.2 64.6

√ √ √ 5.2 2.41 87.6 86.7 88.1 66.2

√ √ √ √ 5.2 2.45 90.2 84.5 90.2 73.2

Bold values indicate the optimal performance of the corresponding metrics in the ablation experiments.

FIGURE 9

Comparison of detection effects: (a) the original YOLOv8n algorithm; (b) improved YOLOv8n algorithm.
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FIGURE 10

Comparison chart of the effect of detection.
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The proposed improved YOLOv8n model significantly 
outperforms mainstream lightweight detection models with respect 
to accuracy, robustness, and computational efficiency. Its superior 
mAP metrics and compact architecture demonstrate strong potential 
for real-time deployment in railway track defect detection systems, 
where both accuracy and speed are critical.

5 Conclusion

This paper proposes a lightweight improved YOLOv8n 
detection model that integrates AVCStem, ADSPPF, and MSF 
modules, significantly enhancing the accuracy and efficiency of 
railway track defect detection. By incorporating variable 
convolution, a cross-scale feature retention mechanism, and a 
multi-branch fusion strategy, the model outperforms existing 
mainstream detection frameworks across multiple key metrics. The 
experimentally validated model not only maintains lightweight 
characteristics—including compact size and low parameter count—
but also demonstrates the capability to accurately detect tiny defects 

in complex environments. In the future, efforts will focus on 
deploying this model on track inspection robots and edge AI 
devices, as well as integrating it with video sequence modeling to 
enable dynamic defect analysis of continuous tracks.
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TABLE 4  Module-level complexity and timing profile.

Module type Original module Improved module ΔParams (M) ΔGFLOPs (G) ∆Latency (ms)

Backbone (per module) C2f (0.82 M) AVCStem (0.73 M) −0.09 −0.12 −1.4

Backbone (total 3 modules) 2.46 M 2.19 M −0.27 −0.36 −4.2

Neck (SPPF) SPPF (0.068 M) ADSPPF (0.074 M) +0.006 +0.15 +2.1

Neck (FPN, per module) FPN Conv (0.15 M) MSF PConv (0.11 M) −0.04 −0.07 −1.2

Neck (total 3 FPN modules) 0.45 M 0.33 M −0.12 −0.21 −3.6

Overall model – – −0.23 −0.42 −5.7

TABLE 5  Real-time performance metrics (640 × 640, batch = 1).

Hardware Model Latency (ms) FPS GFLOPs (G) Memory 
Usage (MB)

Size (MB) Params (M)

NVIDIA RTX 4090
YOLOv8n 9.5 105.3 5.2 486 5.6 2.68

Ours 8.2 121.9 4.8 423 5.2 2.45

NVIDIA Jetson Nano
YOLOv8n 42.1 23.7 5.2 392 5.6 2.68

Ours 35.0 28.6 4.8 345 5.2 2.45

Raspberry Pi 5 (NPU)
YOLOv8n 58.3 17.1 5.2 289 5.6 2.68

Ours 49.2 20.3 4.8 256 5.2 2.45

TABLE 6  Comparative experimental results.

Model P(%) R(%) mAP50(%) mAP50–95(%) Weights (MB) Parameters (M)

SSD 80.2 70.3 82.1 – 15.3 3.81

YOLOv5n 89.9 79.9 84.8 62.5 3.7 1.76

YOLOv6n 84.1 74.9 82.6 53.9 8.6 4.16

YOLOv7-tiny 85.0 85.4 85.9 63.3 12.3 6.01

YOLOv8n 87.9 79.0 85.3 64.5 5.6 2.68

YOLOv11n 86.7 86.3 88.1 69.5 5.5 2.58

YOLOv12n 91 74.2 84.7 60.9 5.5 2.51

Our 90.2 84.5 90.2 73.2 5.2 2.45

Bold values indicate the optimal performance of the corresponding metrics among all compared models.
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