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An improved YOLOv8n with
multi-scale feature fusion for real
time and high precision railway
track defect detection
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Feng Huang! and Sheng Zhong?

!Guangzhou Institute of Metrology and Testing Technology, Guangzhou, China, ?School of Artificial
Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China

Introduction: Railway transportation is increasingly critical for modern urban
and intercity mobility. However, the expanding scale and intensifying operational
intensity of rail networks have elevated track defect detection to a key concern.
Traditional inspection methods (manual, ultrasonic, eddy current, magnetic
flux leakage testing) are limited by insufficient accuracy, low efficiency, or poor
adaptability to complex environmental conditions.

Methods: An enhanced defect detection framework based on an improved YOLOv8
algorithm was proposed, tailored for small targets and complex backgrounds. Three
core improvements were integrated: 1) AVCStem module with variable convolution
kernels to dynamically adapt to defects of different shapes and scales; 2) ADSPPF
module using multi-scale pooling and multi-branch attention mechanisms to
preserve fine-grained features across scales; 3) MSF module for enhanced multi-
scale feature fusion via partial convolution and hierarchical feature alignment.
Results and Discussion: Experiments on a real-world track defect dataset
showed the proposed model achieved 90.2% detection precision, 90.2%
mMAP@O0.5, and 73.2% mAP@0.5:0.95. Meanwhile, the model size was reduced
to 5.2MB with 2.45M parameters. Comparative and ablation studies confirmed
the complementary advantages of each module and the model's superior
performance over existing lightweight detectors. The proposed model provides
a robust, accurate, and efficient solution for real-time railway defect detection.
It exhibits strong potential for deployment in edge Al devices and mobile
inspection robots, addressing the limitations of traditional inspection methods.

KEYWORDS

lightweight model, multi-scale feature fusion, rail defect detection, real-time
detection, YOLOvV8

1 Introduction

As an efficient and convenient mode of transportation in modern society, rail
transportation has undergone rapid global development in recent years. Various types of rail
systems, including urban subways, light railways, high-speed railways, and heavy-haul
railways, have continually expanded their network mileage and enhanced transportation
capacity to meet the growing demands for population mobility and economic exchange (Xiong
etal,, 2023; Guerrieri et al., 2018). However, with the expanding scale of rail transit networks
and the increasing intensity of operations, ensuring safe and stable functioning has become a
critical concern. As the foundational infrastructure that directly supports train movement, the
track structure is subjected to prolonged exposure to dynamic and static loads, environmental
degradation, and material fatigue, which frequently results in various structural defects (Kou,
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2022; Fu et al,, 2023). Without timely and accurate detection and
repair, such defects can escalate into catastrophic failures, including
increased track irregularities, train derailments, and overturns,
thereby endangering passenger safety and causing substantial
economic losses and adverse social impacts (Zhong and Chen, 2024).
Currently, traditional railway inspection methods include manual
inspection (Rahman et al., 2024), ultrasonic testing (Wang et al.,
2023), eddy current testing (Alvarenga et al., 2021), and magnetic flux
leakage (MFL) testing (Tang et al., 2021). Although manual inspection
is straightforward, it suffers from subjectivity and inspector fatigue,
leading to inconsistent results and high labor costs (Yaodong et al.,
2024; Kumar and Harsha, 2025). Ultrasonic detection, while cost-
effective and technologically mature, operates slowly and requires
coupling agents, resulting in limited effectiveness on coated or uneven
surfaces (Yuan et al., 2024). Eddy current testing is highly sensitive to
surface and near-surface defects and does not require a coupling
agent, yet it performs poorly in detecting deep-seated defects (Wang
et al., 2022). MFL detection features simple equipment and fast
scanning but exhibits low accuracy and sensitivity to defect geometry.

In recent years, advancements in deep learning have brought
substantial breakthroughs in computer vision algorithms. Object
detection algorithms can be broadly categorized into two types:
region-based fully convolutional networks (R-FCN)(Tang et al., 2020),
and spatial pyramid pooling networks (SPPNet) (Han et al., 2020),
and end-to-end detection frameworks such as single shot multibox
detector (SSD) (Bai et al., 2021), You Only Look Once (YOLO) (Wang
et al., 2024), and detection transformer (DETR) (Gibert et al., 2016).
Region proposal-based approaches extract potential target regions
within the image and process each region individually for classification
and bounding box refinement (Chen et al., 2023). In contrast,
end-to-end methods eliminate region proposals and directly predict
object classes and positions from the entire image, significantly
improving detection speed (Wu et al., 2020; Yin et al., 2022).

In this study, a dataset of track images collected from real-world
railway environments was constructed, targeting surface damage,
missing fasteners, missing bolts, and other anomalies for model
training and evaluation. However, due to the small size of the defects,
complex background interference, and limited feature representation,
the YOLOVS algorithm demonstrates a high false detection rate in this
context. To address these issues, this study proposes an improved
YOLOV8-based
architectural enhancements:

framework incorporating several

(a) To improve the backbone network’s capacity to extract features
from defects of varying sizes, a variable convolution kernel
(AKConv) is embedded within the VoV-GSCSP module,
forming a new AKConv-VoV-GSCSP Stem (AVCStem) to
replace the original C2f module. This modification dynamically
adjusts the receptive field during feature aggregation, effectively
handling rail cracks of different orientations and accurately
locating missing components under conditions of strong
light reflection.

(b) To mitigate fine feature loss caused by increased network depth
and repeated downsampling, the SPPF module is extensively
redesigned based on the SENetV2 architecture. A progressive
multi-scale pooling strategy is introduced, resulting in the
ADSPPF module, which retains features ranging from micro-
cracks to large-scale fastener loss.
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(c) To further enhance the transmission of small-scale features,
this study proposes a refined multi-scale feature fusion neck
network. By integrating a weighted feature fusion strategy with
a bidirectional feature pyramid structure, a new multi-scale
fusion module (MSF) is developed to improve the model’s
ability to capture fine-grained defect details.

2 YOLOvS8

As a well-recognized variant of the YOLO series proposed by
Ultralytics, YOLOV8 achieves substantial improvements in accuracy
and inference speed compared with earlier-generation models,
making it a commonly used baseline in related studies. In terms of
network architecture, it retains the classic three-stage structure of
“Backbone-Neck-Head,” but has implemented multiple optimizations
in module design and connection methods, further enhancing
detection accuracy and speed. Its structure is as shown in Figure 1.

YOLOV8 accepts 3-channel color images with a resolution of
640 x 640. The Backbone network consists of Conv, C2f, and SPPF
modules. The Conv module is used for image feature extraction and
dimension adjustment; the C2f module captures gradient flow
information and enhances feature extraction capability through
Bottleneck units. The SPPF module fuses contextual information of
different scales through pooling layers of multiple scales, enhances the
receptive field, and maintains computational efficiency at the same
time. The Neck adopts the Path Aggregation Network-Feature
Pyramid Network (PAN-FPN) structure to realize feature fusion, and
finally outputs 3 feature maps of different scales to the Head part
(Haroon et al., 2024). The Head uses an Anchor-Free design, whose
core function is to directly predict the target’s location, confidence,
and category based on the fused feature maps. These designs enable
YOLOVS to perform excellently in both real-time detection scenarios
and high-precision demand scenarios, making it one of the
mainstream models in the current object detection field (Aydin et
al., 2021).

YOLOVS8n, as the smallest model in the YOLOVS series, boasts
advantages such as fast detection speed and low resource consumption.
However, if YOLOV8n is directly applied to the task of rail surface
defect detection, the model will face problems such as occlusion,
reflection, and poor detection performance for small targets. To
address these issues, targeted adjustments to the model are required
to enhance its ability to detect targets at different scales, thereby
improving the overall performance of rail surface defect detection.

3 Improved algorithm design
3.1 Optimizing backbone networks

In the field of target detection algorithms, the design of the
backbone network plays a key role in the performance of the model.
As an efficient target detection model, the C2f module in the backbone
network of YOLOvV8n plays a certain role in the feature extraction
process. However, in order to further improve the feature extraction
ability of the model, reduce the number of parameters and enhance
the adaptability to targets of different scales, this paper proposes to
replace the C2f module in the YOLOv8n backbone network with the

frontiersin.org


https://doi.org/10.3389/frai.2025.1711309
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Zhang et al.

10.3389/frai.2025.1711309

l hxwx0.5¢_out

Bottleneck
Shortcut=?

I hxwx0.5¢_out

='| Concat

I hxwx0.5(n+2)c_out

! hxwxc_out

160X 160X 128 xw

]

160X 160X 128xw

C2f

shortcut=True, n=2*d

— [ v in Bottleneck SPPF Cmodd 4w
SMI
hxwxc v n 033 025 20
hxwx t
l wXc_ou e m 067 075 15
hxwx0.5¢_out 1 1.00 1.00 1.0
640x640x3 MaxPool2d
100 125 1.0
hxwx0.5¢_out hxwx0.5¢_out hxwXc )
MaxPool2d
Bottleneck 9
Shortcut=?
320%320x64xw hxwx0.5¢_out Bottleneck MaxPool2d

shortcut=False| 1o o0

BatchNorm2d

! hxwxc

Detect

1

Conv2d
k=1, s=1, p=0, c=4*reg_max
Conv2d
k=1, s=1, p=0, c=nc

I
I
I
I
I
I
I
I
I
I I hxwx0.5¢_out
I
I
I
I
I
I
I
I
I
I

(Concat | 14]

80X80X512xw
Upsample 13
40x40x512xw

shortcut=True, n=6*d

| Stride=8

80X80X256Xw |

C2f

shortcut=False, n=3*d

40x40x512Xw |

T |4()x40x5|2xw 40X40x512xwX(1+4r)

shortcut=True, n=6*d | Stride=16
40x40x512xw I

C2f
I_CZf B0X80X256xw
80X80X256XwW I shortcut=False, n=3*d 80X80X256le Detect
I 80x80X768xw
C2f 80X80X256Xw

12 | 40x40x512xw

20X20X512XwXr

40x40Xx256XwW

40x40X512xXw
shortcut=False, n=3*d

40X40X512Xw

20X20X512xw l

I
& 20X20X512XwXr I
I

C2f 8
shortcut=True, n=3*d

¥ 20X20X512XwXr

| 20%20%5125wxr
| Stride=32

! I

= ——————— — —————

Backbone

FIGURE 1
The structure of YOLOVS8 (Terven et al., 2023).
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AVCStem module. The AVCStem module, as shown in Figure 2a, is a
feature extraction module for the backbone network of the target
detection model. It combines multiple convolution operations and
bottleneck structures to achieve effective extraction and fusion of
multi-scale features (Yang et al., 2022; Acikgoz and Korkmaz, 2023).
The design of this module aims to make full use of the information in
the feature map, while reducing the model parameters and improving
the model’s detection ability for targets of different sizes and shapes.
The specific structure and workflow of the AVCStem module are as
follows: The input feature map X first passes through two standard
convolutional layers, which are used to perform preliminary feature
transformation and extraction on the input feature map. Then the
output feature map of a convolutional layer enters a sequence
consisting of multiple grouped ghost bottleneck sequence layers
(GSBottleneck). The GSBottleneck layer is a lightweight bottleneck
structure, as shown in Figure 2b. It combines group shuffle convolution
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(GSConv) and residual connection, which can reduce the number of
parameters while maintaining good feature extraction capabilities. In
the GSBottleneck layer, a 1 x 1 GSConv is first used to reduce the
dimension of the input feature map, and then a 3 x 3 GSConv is used
for feature extraction (Li et al., 2022). Finally, the input feature map
and the output feature map are added through the residual connection
to enhance the feature expression ability. Among them, the GSConv
structure is shown in Figure 2c, and its efficiency advantage stems
from a “channel compression—depthwise enhancement—shufile
fusion” pipeline tailored for track defect feature extraction: (1) The
input feature map (channels ¢;) is compressed to ¢;/2 via standard
1x1 convolution (retaining cross-channel information while
reducing computation base); (2) The compressed feature map is
processed by 3 x 3 depthwise convolution (enhancing local defect
details like microcrack edges with minimal overhead); (3) The two
feature maps from steps (1) and (2) are concatenated and
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FIGURE 2

highly reflective areas.

Schematic diagram of the AVCStem structure: (a) Overall architecture of the AVCStem module; (b) Structure of the GSBottleneck layer; (c) Structure of
the GSConv layer. In the YOLOv8n backbone network, the original C2f module is replaced by the AVCStem module, which integrates the AKConv
variable convolution and the Ghost Bottleneck structure to enhance the robust feature extraction capability for multi-directional cracks and defects in

channel-shuffled (eliminating information isolation without extra
computation). To quantify this advantage, we compare GSConv with
two mainstream lightweight convolutions—standard grouped
convolution (SGC, G =2) and depthwise separable convolution
(DSConv)—using unified parameters: input feature map H x W x C,,,
output channels C,,,, and kernel size 3 x 3(consistent with track defect
detection settings).

This design allows GSConv to significantly reduce computational
overhead while maintaining cross-channel feature interaction—
critical for distinguishing tiny track defects (e.g., 1-2 pixel
microcracks) from background noise—making it suitable for
lightweight models deployed on edge inspection devices.

To address the problem that fixed convolution kernels cannot
adapt to track defects of different shapes and scales (e.g., irregular
cracks, scattered missing bolts, and directional surface damage), this
paper proposes the AVCStem module, which integrates GSBottleneck
and AKConv (Adaptive Convolution). As shown in Figure 3, AKConv
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realizes “dynamic adjustment” of sampling positions by learning pixel-
level offset vectors, thereby enhancing the extraction of multi-scale
defect features.

Specifically, AKConv first constructs a hybrid sampling grid Pn
consisting of “regular base points” and “irregular adaptive points”: the
regular base points (e.g., 9 points for 3 x 3 kernel equivalence) ensure
basic feature extraction capability, while the adaptive points (4 per
base point, determined by track defect scale statistics) supplement
flexibility for irregular defects. To generate dynamic offsets, a
lightweight prediction branch is embedded in AKConv: after the input
feature map is processed by 1 x 1 convolution (channel reduction) and
BatchNorm2d, a 3 x 3 depthwise convolution outputs an offset tensor
AP e RIEXWx2K (where H x W is the feature map size, K is the total
number of sampling points, and “2” corresponds to x/y-axis offsets).
The tanh activation function restricts AP to [—1, 1] pixel units to
avoid excessive sampling deviations. The final adaptive sampling
coordinates are calculated as Pfinal =Py +Fo + AP (B, is the center of
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the convolution window), and the convolution operation is defined as
Formula 1:

Conv(Py)=)" @xF(P,+Py+AP) 1)

where @ denotes trainable convolution weights, and F(:) is the
feature value at the adjusted position (obtained via bilinear interpolation).
The offset AP is learned end-to-end through the models overall
detection loss (classification loss + CIoU regression loss + confidence
loss), which implicitly guides sampling points to align with defect regions.

Finally, the feature map output by AKConv is concatenated with the
feature map output by a convolution layer in the channel dimension, and
then a standard convolution is used to perform a convolution operation
on the concatenated feature map to adjust the number of channels of the
feature map. In summary, the AVCStem module achieves effective
extraction and fusion of multi-scale features through a series of
convolution operations, grouped convolution bottleneck structure and
adaptive convolution. Applying it to the YOLOv8n backbone network to
replace the C2f module can make full use of the information in the
feature map, reduce model parameters, and improve the model’s feature
extraction ability and detection performance for targets of different scales.

3.2 Fast aggregation of dense spatial
pyramid modules

In the task of railway track defect detection, although the SPPF
module of YOLOV8 enables multi-scale feature fusion, its application in
real-world railway scenarios still encounters significant challenges. As
network depth increases and downsampling operations are repeatedly
applied, fine features of small defects (e.g., microcracks on the rail surface
and missing bolts) are easily lost, particularly when detecting tiny cracks
like rail head damage (Wang et al., 2022; Phaphuangwittayakul et al.,
2024). Simultaneously, the similarity between the complex metal texture
background and surface damage on the track, combined with
illumination interference caused by mirror reflections on the rail,

Frontiers in Artificial Intelligence

complicates accurate feature extraction (Min et al., 2023). To address this,
this study redesigns SPPF based on SENetV2 (Narayanan, 2023) to create
the ADSPPF module (Figure 4), which integrates multi-scale progressive
pooling, multi-branch attention, and illumination normalization.

3.2.1 Detailed design of ADSPPF

The ADSPPF module processes input feature maps (e.g.,
40 x 40 x 512 from P4 layer) in three stages:

(1) Multi-scale progressive pooling. The “progressive” design of
ADSPPF refers to applying incrementally sized pooling kernels
to the same input feature map within a single module (rather
than assigning different kernels to different network layers),
ensuring unified capture of multi-scale defect features without
cross-layer information loss. Specifically: First, the input
feature map (e.g., 40 x 40 x 512 from P4 layer) undergoes a
pre-pooling 1 x 1 Conv (Table 1) to compress channels from
512 to 256—this reduces computational redundancy while
retaining core defect information, providing a consistent
foundation for multi-scale pooling. Next, the preprocessed
40 x 40 x 256 feature map is fed into 5 parallel max-pooling
branches with incrementally increasing kernel sizes:
3x3—>5%x5—7x7—9x%x9— 13 x 13. Each kernel size is
optimized for railway track defect scales (statistically analyzed
from the dataset in Section 4.2): small kernels (3 x 3, 5 x 5)
preserve fine details of microcracks (1-3 pixels) and surface
scratches; medium kernels (7 x 7, 9 x 9) capture moderate
defects (e.g., missing buckles); large kernels (13 x 13) integrate
contextual information of large-scale defects (e.g., missing
fastener clusters). All pooling operations use a stride of 1 and
zero-padding to ensure output size remains 1 x 1 (global
pooling for each scale), avoiding local feature loss. Each
pooling branch is followed by a 1 x 1 Conv layer to reduce
channels from 256 to 128—this step filters redundant feature
channels (e.g., background metal textures shared across scales)
and aligns feature dimensions for subsequent fusion, outputting
5 feature maps of 1 x 1 x 128 each.

frontiersin.org
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FIGURE 4
ADSPPF structure. The red dashed boxes denote the progressive pooling branches (3 x 3 — 13 x 13), where pooling operations with incrementally
increasing kernel sizes process the same preprocessed feature map (40 x 40 x 256) to capture multi-scale defects; the blue arrows indicate the flow
direction of the feature maps after dimension reduction via 1 x 1 convolution (downsampled to 1 x 1 X 128), which are subsequently concatenated and
refined by the attention mechanism (green box) to eliminate redundancy.

TABLE 1 ADSPPF module parameter and tensor size details.

Component Input tensor Output tensor Parameters (k) Activation Normalization
size size
Conv (pre-pooling) 40 x 40 x 512 40 x 40 x 256 1311 SiLU BatchNorm2d
Progressive Pooling
40 x 40 x 256 1x1x 128 (x5) 0 - -
(3x3-13x13)
Multi-branch FC (8 branches) 1x1x640 (5 x 128) 1x1x32 20.6 LeakyReLU (a = 0.1) BatchNorm1d
Attention weight Layer 1x1x32 1x1x32 0.032 Softmax -
Conv (post-fusion) 1x1x32 40 x 40 x 512 16.4 SiLU BatchNorm2d
Total - - 73.9 - -

The progressive pooling component (3 x 3 — 13 x 13) introduces no additional parameters (0 k) but requires 0.05G GFLOPs for 5 parallel branches—this computational overhead is offset by
the pre-pooling Conv (reducing channels from 512 to 256, saving 0.08G GFLOPs) and post-fusion attention (suppressing redundant features), resulting in a net GFLOPs increase of only 0.15G
vs. SPPF (Table 4).

(2) Multi-branch attention and feature reorganization. First, the 5 variations, Branch 2 (8 neurons) learns texture features of

pooled feature maps are fed into 8 parallel fully connected (FC)
branches, with branch dimensions following a “base-4” rule: 4,
8, 12, 16, 20, 24, 28, 32 neurons per branch (total
dimension = 32). Each branch specializes in learning a specific
feature type: e.g., Branch 1 (4 neurons) learns brightness

Frontiers in Artificial Intelligence

surface cracks (responsive to small pooling kernels like 3 x 3),
and Branch 8 (32 neurons) learns geometric features of missing
bolts (responsive to large kernels like 13 x 13); Second, each FC
branch uses LeakyReLU (ar = 0.1) activation to retain negative
gradient information (critical for low-contrast defects in
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shadows) and BatchNormld to stabilize training; Last, a
learnable attention vector «€R® (normalized via softmax)
weights the output of each branch (Formula 2):

8
Fision = Zi:]ai xF (2)

This attention mechanism emphasizes defect-relevant features
(e.g., crack edges from small kernels, fastener shapes from large
kernels) and suppresses redundant background information—for
example, when detecting microcracks, o assigns higher weights to
texture-focused branches; when detecting missing fasteners,
geometric-focused branches are prioritized.

(3) Illumination invariance realization. GCN and multi-branch
attention form a “preprocessing to refinement” synergy to
eliminate illumination interference (e.g., rail glare, tunnel
shadows) while preserving defect details. Before progressive
pooling, the input feature map (40 x 40 x 512 from P4 layer)
undergoes GCN (Formula 3):

F(xy)-u
Euorm (x,y) :% (3)

1
v F(x,
where 1 HxW z Xy (XY) (global mean),

o= \/HiW ZX,Y(F(X’Y) - u)z (global standard deviation), e = 1078

This normalizes the feature map to mean=0 and standard
deviation = 1, suppressing glare-induced brightness saturation and
shadow-induced contrast loss—critical for ensuring consistent input
to the attention branches.

GCN provides “illumination-invariant” input for the 8 FC branches:
it reduces irrelevant illumination outliers (e.g., glare spots normalized
from 255 to ~1.2) and enhances defect features (e.g., shadowed
microcracks normalized from 50 to ~ — 0.8), allowing the branches to
focus on learning defect features rather than compensating for lighting.
The attention branches further refine this input by: (1) assigning low ¢;
to residual illumination-related features (via Branches 1-2); (2) assigning
high ¢; to texture/geometric defect features (via Branches 3-8). This
synergy is reinforced during training: if residual illumination still
interferes with detection, £y, increases, and the attention branches are
updated to suppress illumination-related F; via gradient backpropagation.

3.2.2 Parameter and tensor size annotation

Table 1 summarizes the ADSPPF module’s components, tensor
sizes, and parameters. The total parameter count of ADSPPF is 73.9 k,
which is 9.2% higher than SPPF (67.7 k), but provides significant gains
in feature retention and illumination robustness. These improvements
enable the model to maintain stable detection performance in complex
railway environments.

3.3 Improved multi-scale feature fusion
module

In railway track defect detection, the traditional feature pyramid

network (FPN) exhibits limited feature transfer capability for tiny
defects—such as microcracks on the rail surface and missing
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bolts—resulting in insufficient accuracy in small target detection (He
et al., 2024). Inspired by the YOLO framework based on attention
scale sequence fusion (ASF-YOLO) (Kang et al., 2024), this study
introduces a hierarchical feature enhancement mechanism in the neck
network of YOLOV8. Simultaneously, to further optimize
computational efficiency and reduce redundant feature extraction,
partial convolution (PConv) replaces traditional convolution
operations at both the front and back ends of the feature enhancement
mechanism, and a multi-scale fusion module (MSF) is designed. As
shown in Figure 5, this structure adopts a strategy of jointly
optimizing spatial and scale features to effectively improve detection
accuracy in complex track scenarios while reducing
computational complexity.

The MSF module processes feature maps from the backbone (P2:

160 x 160 x 128, P3: 80 x 80 x 256, P4: 40 x 40 x 512) as follows:

(a) Partial convolution (PConv) preprocessing: PConv replaces
traditional Conv in FPN to reduce redundant feature
extraction, with its core mechanism being “mask-guided
partial pixel update’—only valid pixels (defect-related
regions) are updated via convolution, while invalid regions
(background with low feature relevance) are masked to
retain original values. This design avoids mixing defect
features with redundant background (e.g., rail ballast, surface
reflections) and reduces GFLOPs by 18% compared to
standard Conv. The specific implementation for an input
feature map F, € RIDWXC (e.g., P2 layer: 160 x 160 x 128) is
as follows.

Step 1: Preliminary feature transformation: A 3 x 3 convolution
kernel w is appliedlto E, to generate an intermediate feature map
Fyig : Byia (%) = Zu:_lzvz_la)(u,v) xE, (x+wy+v) . This step is
consistent with traditional convolution and provides a basis for
subsequent valid region judgment.

Step 2: Invalid region identification via feature response: To avoid
manual threshold tuning, invalid regions are adaptively identified
based on the feature relevance of F,.

First, B, is normalized to [0,1] via min-max normalization,
eliminating scale differences between feature values (Formula 4):

Eyn (y) —min (Fy,)
max(F,-n ) - min(Fm)

Eiorm (x,}’) = (4)

The “feature response intensity” S(x,y) (average value across all
channels) is calculated to reflect pixel relevance to defects (Formula 5):

1
S(x,y) :EzilF"O’m (x,,y,,c) (5)

Higher S(x,y) indicates stronger correlation with defects (e.g.,
crack edges), while lower values indicate background. Last, An
adaptive threshold T (optimized via cross-validation on the railway
dataset) is used to generate a binary mask.

Step 3: Mask-guided partial update: The final output feature map
F,, is obtained by fusing the intermediate feature and original feature
under mask guidance (Formula 6):

E, (x,y) = M(x,y) x Fpid (x,y) + (l - M(x,y)) x Fy, (x,y) (6)
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FIGURE 5
MSF structure. The "*" symbol in the figure represents the convolution operation, through which the input feature map is convolved with the filter to
generate a new feature map.

Valid regions (M = 1) retain refined defect features, while invalid
regions (M = 0) retain original values to avoid redundant updates. For
each input feature map (e.g., P2), PConv (k = 3, s = 1) outputs a refined
feature map with the same size, ensuring compatibility with
subsequent Gaussian scale smoothing.

(b) Gaussian scale smoothing: Each refined feature map is
convolved with a series of Gaussian filters (¢ = 0.5, 1.0, 1.5, 2.0)
to generate multi-scale smoothed features, capturing defect
details at different resolutions (Formulas 7, 8):

fo (i’j)ZZuZVf(i_u’i_v)xGo'(u’V) )
1 —(xz+yz)/20'2

Gy(xy)=—— 8

(xy) 271'0'28 ®

Where f is the input feature map, and G,; is the Gaussian filter
with standard deviation o.

(¢) Hierarchical alignment and 3D convolution: Smoothed features
from P2, P3, P4 are upsampled to the resolution of P4 (40 x 40)
via nearest-neighbor interpolation, then stacked along the
channel dimension (output: 40 x 40 x (128 + 256 + 512) x 4,
where 4 is the number of Gaussian scales). A 3D Conv layer
(k=3, s=1) extracts cross-scale and cross-level features,
enhancing the representation of small defects.

(d) PConv post-processing: A final PConv layer adjusts the channel
count to match the necKs output requirement (e.g.,
40 x 40 x 512), ensuring compatibility with the YOLO Head.
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3.4 Network structure

To address challenges related to fine-grained feature loss and
multi-scale target recognition in rail defect detection, this study
proposes an improved YOLOv8n network architecture. Figure 6
presents the architecture specifically designed to resolve these
problems. Due to limitations in the original YOLOv8n backbone in
capturing microscopic defects and adapting to targets of varying
sizes, this study introduces the AVCStem module to replace the
standard C2f module. By integrating the AKConv deformable kernel
into the VoV-GSCSP structure, the module dynamically adjusts the
receptive field, thereby significantly enhancing the network’s ability
to represent rail stress cracks and missing bolts. Specifically, the
AVCStem modules substitute the original C2f components in the
backbone, enabling effective adaptation to defects with diverse
morphologies under noisy or cluttered background conditions.
Furthermore, to mitigate feature degradation during downsampling,
an ADSPPF module based on the SENetV2 architecture is developed
to replace the standard SPPF module. This module employs a multi-
scale progressive pooling strategy, thereby achieving comprehensive
feature preservation across a spectrum ranging from microscopic
cracks to macroscopic fastener losses. Simultaneously, to enhance the
transmission of minute defect features, a novel MSF fusion neck is
designed. By combining the advantages of weighted feature fusion
and a bidirectional pyramid architecture, it significantly improves the
capability to capture fine-grained defect details. The proposed
solution yields significant improvements in detection accuracy while
preserving model compactness and computational efficiency,
demonstrating its strong suitability for rail defect detection tasks in
complex environments.
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Improved YOLOV8 framework.

4 Experimental results and
comparative analysis

4.1 Experimental environment

Experimental tests were carried out on two types of hardware to
simulate the scenario of practical deployment: a server, which was
used for model training, and edge devices, which served for real-time
performance evaluation. Table 2 presents a summary of the specific
configurations of the aforementioned hardware.

4.2 Network training

In this study, a dataset comprising 2,129 images was constructed
using the open-source Roboflow Universe dataset, augmented with
real-world images collected by users. Among them, 1,500 images
were used for training, 500 for validation, and 129 for testing. The
dataset was reviewed and re-labeled by domain experts. As shown
in Figure 7, the dataset includes defect types such as surface
damage, missing bolts, and missing buckles. Before training, the
model’s hyperparameters were configured. The training input image
size was set to 640 x 640, with an initial learning rate of 0.01,
updated using stochastic gradient descent (SGD). The momentum
was set to 0.937, and the weight decay was 0.0005. During training,
Mosaic data augmentation was employed to read multiple images

Frontiers in Artificial Intelligence

TABLE 2 Experimental environment configuration.

Hardware/ @ Server Edge Edge
software workstation hardware hardware
(NVIDIA (raspberry
Jetson Nano) Pi 5)
Operating Ubuntu 20.04 LTS Raspberry Pi OS
Ubuntu 22.04
system (JetPack 5.1.2) (Bookworm)
Intel(R)
Quad-core ARM Hexa-core ARM
Core(TM) i9-
CPU Cortex-A57 Cortex-A76
14900KF
@1.43 GHz @2.4 GHz
@3.20 GHz
NVIDIA GeForce VideoCore VII
NVIDIA Maxwell
GPU RTX 4090 (24 GB NPU (1
GPU (4 GB VRAM)
VRAM) TFLOPs)
RAM 32 GB DDR5 4 GB LPDDR4 8 GB LPDDR4
PyTorch 1.6,
PyTorch 2.0, PyTorch 2.1,
Software Stack CUDA 12.1,
TensorRT 8.5 ONNZX Runtime
Python 3.10

simultaneously, which were then combined through inversion,
scaling, and other transformations to enrich the detection
background. Label smoothing was applied to prevent overfitting
and improve the model’s generalization ability. Training was
conducted over 300 epochs, with a batch size of 32 and 16
worker threads.
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FIGURE 7

Track defect dataset: (a) surface damage; (b) missing buckles; (c) missing bolts.

4.3 Performance indicators

In the evaluation framework of YOLO, the evaluation metrics for
YOLO models are not standalone; rather, they serve as an integrative
link connecting the “performance-efficiency-deployment” triad.
Specifically, these metrics avoid the issue of “failure to achieve real-
time inference” caused by focusing solely on detection accuracy while
neglecting inference speed, and also prevent the problem of “hardware
incompatibility” arising from prioritizing inference speed without
considering model complexity. Consequently, when evaluating
improved YOLO algorithms, the evaluation criteria are generally
categorized into three dimensions: detection accuracy, model
complexity, and real-time performance.

4.3.1 Detection accuracy

To evaluate detection accuracy, commonly used indicators include
precision (P), recall (R), and mean average precision (mAP).
Specifically, P reflects the rate of false positives, R indicates the extent
of missed detections, AP represents the area under the precision-recall
(P-R) curve, and mAP is the mean of AP values, serving as a
comprehensive measure of detector accuracy. The calculation formula
is as follows (Formulas 9-12):

po TP ©)
TP + FP
R:L (10)
TP +FN
AP={ P(R)dR (1n)
0
1 C
mAP:EZAB (12)

i=1

Here, TP denotes the number of true positive samples, FP denotes
the number of false positive samples, and FN denotes the number of
false negative samples.
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4.3.2 Model complexity

Model Complexity is the core metric connecting “model
performance” and “practical deployment feasibility,” where its core
directly determines the algorithm’s practicality in different hardware
environments through Weight file size (MB), Trainable parameters
(M), Floating-point operations per second (G) at 640 x 640 input
(GFLOPs), and Peak GPU/CPU memory during inference (MB).

4.3.3 Real-time performance

Real-time performance serves as a core metric for evaluating the
inference efficiency and temporal responsiveness of a model. Its
essence lies in quantifying the processing speed and operational
stability of the model when executing detection inference on input
images or video frames under a specific hardware configuration. In
this study, inference experiments were carried out on two typical edge
computing platforms, namely NVIDIA Jetson Nano and Raspberry Pi
5, with a consistent batch size of 1 configured to validate the frames
per second (EPS) of the improved YOLO model.

4.4 Training curve

To intuitively visualize the enhancements achieved by the
improved algorithm, the training curves are presented. Figure 8
illustrates the training loss, mAP50, and validation loss curves for
both the original and improved models after 300 training epochs.
Notably, the training process for the original model terminates after
200 epochs due to a lack of further improvement in accuracy. In
contrast, the improved model demonstrates accelerated convergence,
yielding predictions that are closer to the ground truth. Moreover, the
mAP50 metric shows significant improvement, as clearly illustrated
by the curves. These observed enhancements provide strong evidence
of the effectiveness of the proposed algorithm. The validation loss
curve reveals the model’s generalization capability. The original
model’s validation loss gradually increases in the later training stage,
which implies overfitting. In contrast, the improved model’s validation
loss remains low and stable throughout training, demonstrating that
the proposed improvements effectively mitigate overfitting and
enhance the model’s robustness on unseen data.
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Loss function curve.

4.5 Ablation experiment

To assess the performance improvements achieved by integrating
three optimization strategies—the AVCStem module, ADSPPF
module, and MSF module—into YOLOv8n, a series of ablation
experiments was conducted on the dataset. The evaluation metrics
included model size, parameter count, precision (P), recall (R), mean
average precision at an IoU threshold of 0.5 (mAP@0.5), and mean
average precision across the IoU range of 0.5-0.95 (mAP@0.5:0.95)
(Ni et al., 2021). These experiments evaluated various combinations
of the aforementioned modules to isolate their individual and
collective contributions. The corresponding experimental results are
summarized in Table 3.

According to Table 2, integrating the AVCStem module into the
YOLOV8n framework results in a 0.8 and 0.9% increase in P and
mAP@0.5, respectively, while the model size and parameter count
decrease by 15 and 10.45%. However, R and mAP@0.5:0.95 show a slight
decline, suggesting that while AVCStem improves localization accuracy,
it may inadvertently filter out some positive samples. With the addition
of the ADSPPF module, R increases significantly to 82.0%, accompanied
by slight improvements in both mAP@0.5 and mAP@0.5:0.95,
indicating broader object coverage and enhanced bounding box
regression accuracy. However, a slight decrease in precision may result
from an increase in false positives introduced by the more aggressive
detection strategy. The MSF module significantly improves accuracy to
88.9%, while maintaining comparable mAP@0.5 and mAP@0.5:0.95
values relative to the baseline model. This suggests that the MSF module
enhances feature representation, thereby reducing misclassification. The
combination of AVCStem and MSF yields notable improvements in R
(86.7%) and mAP@0.5 (88.1%). These improvements demonstrate that
AVCStem enhances low-level feature extraction, whereas MSF improves
multi-scale feature integration, contributing to more robust detection
performance. Full integration of all three modules results in the best
overall performance, achieving 90.2% precision, 90.2% mAP@0.5, and
73.2% mAP@0.5:0.95, along with a reduced model size (5.2 MB) and a
comparable parameter count. These results underscore the strong
complementarity among the proposed modules.

As shown in Figure 8, the detection performance comparison
demonstrates significant improvements. Figure 9a illustrates the
original YOLOvS8n algorithm, which exhibits limitations in detecting
small or blurred targets, potentially resulting in missed or false
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detections. In contrast, Figure 9b showcases the enhanced YOLOv8n
algorithm proposed in this study. This improved approach effectively
addresses the aforementioned challenges, successfully identifying
missing fasteners while simultaneously detecting minute defects on
the rail surface with precision. Ablation studies confirm that each
proposed module contributes to performance improvement when
used independently, while their combination leads to substantial gains
in both detection accuracy and efficiency. The improved YOLOv8n
model not only surpasses the baseline across all major evaluation
metrics but also maintains a lightweight architecture, making it well-
suited  for in  resource-constrained

deployment railway

detection environments.

4.6 Module-level complexity

To analyze the incremental complexity of each module, this study
measure the parameters, GFLOPs, and inference latency of the
original and improved modules (Jetson Nano, batch = 1) (Table 4).

As shown in Table 4, each AVCStem reduces parameters by
0.09 M and latency by 1.4 ms, with total backbone savings of 0.27 M
params and 4.2 ms latency—driven by GSConv and residual
compression. ADSPPF increases parameters by 0.006 M and latency
by 2.1 ms but provides critical gains in illumination robustness and
fine-feature retention (justified by ablation results). Each MSF module
reduces parameters by 0.04 M and latency by 1.2 ms, with total neck
savings of 0.12 M params and 3.6 ms latency—due to PConv’s
reduction of redundant computations. The overall model reduces
parameters by 0.23 M (8.6%), GFLOPs by 0.42G (7.7%), and latency
by 5.7 ms (13.5%)—confirming that the improved modules enhance
accuracy without sacrificing efficiency.

4.7 Quantitative evaluation of real-time
performance

To substantiate the “real-time” claim, this study measure
end-to-end latency, FPS, GFLOPs, and memory usage on both server
and edge hardware (Table 5).

As shown in Table 5, on Jetson Nano (a typical edge Al device), the
improved model achieves 28.6 FPS—exceeding the real-time threshold
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TABLE 3 Ablation experiment.

10.3389/frai.2025.1711309

Methods Model Params/M R/% mAP@0.5/% mAP@0.5:0.95/%
YOLOVSN AVCStem ADSPPF  MSF ‘oo

v 6 2.68 87.9 79.0 85.3 64.5

v Vv 5.1 24 88.7 78.0 86.2 61.6

v v 57 2.72 87.4 82.0 86.3 65.6

Vv v 57 27 88.9 782 86.2 64.6

Vv Vv v 52 241 87.6 86.7 88.1 662

V V v v 52 245 90.2 84.5 90.2 73.2

Bold values indicate the optimal performance of the corresponding metrics in the ablation experiments.

FIGURE 9

Comparison of detection effects: (a) the original YOLOv8n algorithm; (b) improved YOLOv8n algorithm.

(>20 FPS) for railway inspection robots. Latency is reduced by 16.9%
compared to the baseline, thanks to the lightweight design of AVCStem
and MSE The improved model's GFLOPs (4.8G) are 7.7% lower than
the baseline (5.2G), and memory usage is reduced by 12.0-14.5%
across all hardware—critical for resource-constrained edge devices.

4.8 Comparative experiment

To verify the performance advantages of the improved YOLOv8n
(denoted as Our) in the task of orbital defect detection, as shown in
Figure 10, seven types of mainstream lightweight object detection
algorithms, namely SSD, YOLOv5n, YOLOv6n, YOLOvV7-tiny,
YOLOV8n, YOLOv11n, and YOLOvV12n, were selected for comparison.
Comparative experiments were conducted from six dimensions:
Precision (P), Recall (R), mAP50, mAP50-95, model weight, and
number of parameters, with the results presented in Table 6.

From the perspective of detection accuracy, the improved model
exhibits significant advantages in core metrics: the mAP50 of the Our
model reaches 90.2%, which is 2.1 percentage points higher than that of
the second-best YOLOv11n (88.1%) and 4.9 percentage points higher
than the original YOLOv8n (85.3%), making it the only algorithm
among all comparative models that exceeds 90%. In terms of the
mAP50-95 metric, the Our model leads substantially with a score of
73.2%, which is 3.7 percentage points higher than YOLOv11n (69.5%)
and 8.7 percentage points higher than the original YOLOv8n (64.5%),
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indicating that the improved model achieves optimal robustness in
detecting orbital defects under different IoU thresholds. Regarding
precision, the Our model achieves 90.2%, second only to YOLOv12n
(91.0%), while its recall rate reaches 84.5%, far exceeding YOLOv121s
74.2%. This effectively balances precision and recall, reducing the risks
of missed detection and false detection of orbital defects.

From the perspective of lightweight deployment, the Our model
balances performance and deployment efficiency: with only 2.45 million
parameters, it has the smallest parameter count among all comparative
models, representing a 2.39% reduction compared to YOLOv12n
(2.51 M), an 8.58% decrease compared to the original YOLOv8n
(2.68 M), and a 59.23% reduction compared to YOLOV7-tiny (6.01 M).
The model weight is 5.2 MB, slightly lower than YOLOv11n/YOLOvI2n
(5.5 MB) and much lower than models such as SSD (15.3 MB) and
YOLOvV7-tiny (12.3 MB), meeting the lightweight deployment
requirements of edge devices for orbital inspection.

Overall, as a traditional object detection algorithm, SSD is at a
disadvantage in both performance and lightweight aspects and is no
longer suitable for the orbital defect detection scenario. Among the
lightweight models of the YOLO series, YOLOvl1ln achieves a
preliminary balance between performance and lightweight design but
is still inferior to the Our model. While maintaining lightweight
advantages, the improved YOLOv8n breaks through the bottleneck of
“high performance accompanied by high parameter count” in existing
algorithms, achieving dual optimality of detection accuracy and
deployment efficiency in the orbital defect detection task.
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TABLE 4 Module-level complexity and timing profile.

10.3389/frai.2025.1711309

Module type Original module Improved module AParams (M) AGFLOPs (G) ALatency (ms)
Backbone (per module) C2f(0.82 M) AVCStem (0.73 M) —0.09 —0.12 -14
Backbone (total 3 modules) 246 M 219M —0.27 —0.36 —4.2
Neck (SPPF) SPPF (0.068 M) ADSPPF (0.074 M) +0.006 +0.15 +2.1
Neck (FPN, per module) FPN Conv (0.15 M) MSF PConv (0.11 M) —0.04 —0.07 -1.2
Neck (total 3 FPN modules) 0.45M 033 M —0.12 —0.21 -3.6
Overall model - - -0.23 —0.42 —5.7
TABLE 5 Real-time performance metrics (640 x 640, batch = 1).
Hardware Model Latency (ms) FPS GFLOPs (G) Memory Size (MB)  Params (M)
Usage (MB)

YOLOV8n 9.5 105.3 52 486 5.6 2.68
NVIDIA RTX 4090

Ours 8.2 121.9 4.8 423 52 245

YOLOv8n 42.1 23.7 52 392 5.6 2.68
NVIDIA Jetson Nano

Ours 35.0 28.6 4.8 345 52 2.45

YOLOv8n 58.3 17.1 52 289 5.6 2.68
Raspberry Pi 5 (NPU)

Ours 49.2 20.3 4.8 256 52 245

TABLE 6 Comparative experimental results.

Model P(%) R(%) mAP50(%) mAP50-95(%) Weights (MB) Parameters (M)
SSD 80.2 70.3 82.1 - 15.3 3.81
YOLOV5n 89.9 79.9 84.8 62.5 3.7 1.76
YOLOv6n 84.1 74.9 82.6 53.9 8.6 4.16
YOLOV7-tiny 85.0 85.4 85.9 63.3 12.3 6.01
YOLOv8n 87.9 79.0 85.3 64.5 5.6 2.68
YOLOvlIn 86.7 86.3 88.1 69.5 55 2.58
YOLOvI2n 91 74.2 84.7 60.9 5.5 2.51
Our 90.2 84.5 90.2 73.2 5.2 2.45

Bold values indicate the optimal performance of the corresponding metrics among all compared models.

The proposed improved YOLOvV8n model significantly
outperforms mainstream lightweight detection models with respect
to accuracy, robustness, and computational efficiency. Its superior
mAP metrics and compact architecture demonstrate strong potential
for real-time deployment in railway track defect detection systems,
where both accuracy and speed are critical.

5 Conclusion

This paper proposes a lightweight improved YOLOv8n
detection model that integrates AVCStem, ADSPPF, and MSF
modules, significantly enhancing the accuracy and efficiency of
railway track defect detection. By incorporating variable
convolution, a cross-scale feature retention mechanism, and a
multi-branch fusion strategy, the model outperforms existing
mainstream detection frameworks across multiple key metrics. The
experimentally validated model not only maintains lightweight
characteristics—including compact size and low parameter count—
but also demonstrates the capability to accurately detect tiny defects
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in complex environments. In the future, efforts will focus on
deploying this model on track inspection robots and edge Al
devices, as well as integrating it with video sequence modeling to
enable dynamic defect analysis of continuous tracks.
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