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Introduction: The growing prevalence of fraud and malware, fueled by increased
online activity and digital transactions, has exposed the shortcomings of
conventional detection systems, particularly in handling novel or obfuscated
threats, class imbalance, and high-dimensional data with many irrelevant
features. This underscores the need for robust and adaptive detection
methodologies.

Methods: This study proposes an advanced Fraud Detection (FD) methodology,
BKOA-GOBL, that enhances the Binary Kepler Optimization Algorithm (BKOA)
by integrating Ghost Opposition-Based Learning (GOBL) to improve Feature
Selection (FS). The BKOA dynamically models gravitational attraction, planetary
motion mechanics, and cyclic control to maintain a balance between exploration
and exploitation. At the same time, the GOBL enhances broader search
diversification and prevents early convergence, allowing the local optimum to
be avoided. The Random Under-Sampling (RUS) technique is utilized to mitigate
the class imbalance in fraud benchmarks.

Results and discussion: Experimental validation is conducted on five real-
world benchmarks, including the Australian, European, CIC-MalMem-2022,
Synthetic Financial Transaction Log, and Real vs Fake Job Postings datasets,
using k-Nearest Neighbors (K-NN) and XGBoost (Xgb-tree) classifiers. The BKOA-
GOBL achieves outstanding performance, reaching classification accuracies up
to 99.96% in some benchmarks and corresponding feature reduction rates
up to 81.82%. Precision, recall, ROC_AUC, and Fl-scores were consistently
high across most benchmarks, demonstrating reliable and balanced detection.
However, some challenging benchmarks—such as the Real vs Fake Job Postings
dataset using k-NN classifier—returned lower scores (Precision = 76.14%,
Recall = 66.55%, F1-score = 71.00%, and ROC_AUC = 74.15%), reflecting the
difficulty of the problem. Comparative analyses against 12 recent Metaheuristic
Algorithms (MHAs) and Machine Learning (ML) classifiers confirmed BKOA-
GOBL's dominance in terms of accuracy and computational efficiency. Its
statistical superiority is confirmed by the Wilcoxon rank-sum test, underscoring
its robustness, adaptability, and effectiveness in high-dimensional fraud and
malware detection tasks and real-world fraud and malware detection scenarios.

KEYWORDS

feature selection, fraud detection, ghost opposition-based learning (GOBL), Kepler
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1 Introduction

The rise in the number of computers and mobile devices in
recent years has resulted in improvements in computer network
processes. Accordingly, there has been an alarming uptick in the
frequency of network attacks. The ingenuity and intricacy of the
attacks have been increasing, leading to a rise in the profile of
network security (Adil et al., 2020; Almaiah and Almomani, 2020).

There are three primary strategies for network security:
prevention, detection, and mitigation. The primary focus is on
prevention. This proactive approach aims to make it hard for
attacks to succeed. If prevention fails to protect the network, we use
detection strategies to watch for potential threats. Finally, we have
implemented mitigation strategies to ensure that devices continue
to function, even during an attack. Detection strategies can be
split into two types: network-based, which monitors the entire
network, and host-based, which focuses on individual devices.
We can also employ two methods for detection: signature-based,
which identifies known threats, and anomaly-based, which detects
unusual behavior (Rajadurai and Gandhi, 2022).

Intrusion Detection Systems (IDS) and malware detection are
key applications that rely on network traffic classification. Host-
based detection monitors a computer’s internal activities, while
network-based systems analyze real-time traffic logs for potential
intrusions. One effective method is signature detection, which
identifies known attack patterns but struggles to detect new threats
(Singh A. P. et al., 2022).

Anomaly-based detection sets a threshold for expected network
behavior and triggers an alarm for any deviations. It classifies data
as normal or abnormal, but current Intrusion Detection Systems
(IDSs) struggle with low detection accuracy and high false alarm
rates (Chiba et al., 2019).

The COVID-19 pandemic has led to a significant increase in
demand for online purchases of essential goods, which in turn
has driven greater use of online payment methods and increased
fraud and malware. With the expansion of online commerce, many
enterprises have switched to credit cards for transactions. However,
this increase in credit card use for online shopping has opened new
avenues for criminals to exploit and steal customers™ credit card
information (Fanai and Abbasimehr, 2023).

Fraud in economic activities poses significant challenges
across education, regulation, and business. It harms both service
providers and their customers. This issue is particularly critical
in the financial industry, as it affects daily financial transactions
worldwide. Fraud involves using money or assets illegally for
personal gain, eroding trust in financial institutions, and raising
living costs. Economic fraud encompasses various harmful
practices, including bank fraud, financial statement manipulation,
insurance fraud, communications fraud, and illicit actions in
commodity and stock markets. These fraudulent activities disrupt
the global economy, push services online, and reveal recent
weaknesses in the sector (Singh A. et al., 2022; Wahid et al., 2023).

Between 2000 and 2015, losses from debit and Credit Card
Fraud (CCF) increased significantly. Although unauthorized
transactions and fake cards accounted for only a small number
of cases, they accounted for the majority of the financial losses.
This issue has led both public and private sectors to invest more
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in advanced FD systems. These trends highlight the pressing need
for robust FD strategies in the financial and e-commerce industries
(Rodrigues et al., 2022).

Fraud is an illegal act, and CCF occurs when someone
illegally obtains cardholder information through means such as
phone calls, letters, or cyberattacks to commit financial crimes.
These fraudulent activities are usually carried out using special
software controlled by the perpetrator. The CCF identification
process begins when a customer makes a transaction that requires
verification of their credentials (Alamri and Ykhlef, 2022; Asha and
KR, 2021).

The increasing prevalence of Android malware poses
significant challenges for effective, efficient detection. Although
traditional detection techniques, including static and dynamic
analyses, have been essential for identifying malicious applications,
cybercriminals have adopted evasion methods such as encryption,
polymorphism, code obfuscation, and dynamic code loading
them. While
some protection against obfuscation, it struggles to scale to

to circumvent dynamic analysis provides
keep pace with the rapidly increasing volume of malicious
Android applications.

As the use of Android devices increases, enhancing their
security against malware threats has become critical. To address
this problem, ML techniques were applied, focusing on both
dynamic behaviors and static properties to detect malware. Despite
this progress, there remains a need for more effective features
to further enhance detection accuracy. Recently, researchers have
begun exploring sonification techniques, which convert data into
audio signals to reveal unique acoustic fingerprints. This innovative
approach may reveal malicious features that are difficult to detect
using traditional analysis methods. Additionally, sonification offers
advantages such as increased processing speed, improved code
coverage, and reduced resource consumption (Firdaus et al., 2018).

With the advent of big data and large datasets, in areas
such as fraud and malware detection, additional problems often
involve many features that individually have low discriminative
power, making it difficult to achieve satisfactory classification
accuracy. Classifiers tend to perform sub-optimally when faced
with high-dimensional, low-quality features. Besides using highly
representative features, it is also necessary to improve features
through techniques such as FS and hyperparameter optimization.
FS addresses the challenges of data classification in high-
dimensional environments, particularly in areas such as fraud and
malware detection, where many features have low discriminative
power. Classifiers often perform poorly with these low-quality
features, underscoring the need for efficient FS methods to identify
the most relevant features and discard irrelevant or redundant
ones. Traditional exhaustive search methods for determining
optimal feature sets are often inefficient, prompting research
into wrapper-based, biologically inspired MHAs that can simplify
this process. Although these algorithms have proven effective
across various applications, there is a noticeable lack of studies
evaluating their performance, especially in fraud and malware
detection. Ensures effective discrimination between benign and
malicious transactions. FS is a method for determining the best
combination of features that gives optimal results. It reduces the
input feature space by removing irrelevant, redundant, or noisy
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features (El-Mageed et al., 2025). Using exhaustive search methods
to find the best feature sets is not always practical with high-
dimensional feature spaces. Biologically inspired wrapper-based
MHASs have been proposed to reduce the time required to find
the optimal solution (Hussien et al., 2024; El-Mageed et al,
2024; Abd El-Mageed et al., 2023). However, there is a lack of
literature available on evaluating the performance of fraud and
malware detection.

Taken together, financial fraud prevention, Android malware
analysis, and intrusion detection all exemplify the broader
challenge of high-dimensional imbalanced classification. Every
domain requires models to sift through vast feature spaces
dominated by benign activity, while rare but critical malicious
events must be accurately identified. By framing these diverse
applications under a shared methodological foundation, we
highlight the continuity of challenges across domains and
emphasize the importance of advanced FS and optimization
strategies to improve detection accuracy and reduce false alarms.

1.1 Motivations

The FS plays a pivotal role in ML and data mining, especially
when dealing with high-dimensional datasets, as it significantly
improves classification model performance by identifying the
most relevant features. The inherent complexity and large search
spaces associated with FS require the use of efficient optimization
algorithms (Abdel-Basset et al., 2023a). The Kepler optimization
algorithm (KOA) stands out as a notable solution, which uses
concepts from planetary motion to model gravitational interactions
between potential features (Russell, 1964; Stephenson, 2012). This
enables the KOA to skillfully balance exploration of the search space
and exploitation of promising solutions (Hu et al., 2024; Houssein
et al., 2024).

The most noteworthy constraint in FS is scalability, due
to the challenges posed by dimensionality, which can hinder
traditional search methods. The KOA excels at tackling large-
scale FS issues due to its innovative structure, which enables it
to navigate large search areas via typical gravitational interactions
efficiently. The KOA has proven its effectiveness in tackling a
variety of optimization challenges, making it a valuable tool
for FS, reliably delivering high-quality solutions (Hu et al,
2024; Russell, 1964; Stephenson, 2012). The performance of
KOA is characterized by fast convergence and high accuracy,
which are essential for FS tasks that aim to reduce the
feature set while maintaining classification accuracy (Mohamed
et al, 2024). Moreover, the dynamic search mechanism in
the KOA plays a pivotal role in mitigating the risk of
overfitting, as it enhances feature diversity (Abdel-Basset et al.,
2024).

The KOA has proven exceptionally effective in solving FS
optimization problems, inspired by celestial mechanics (Abdel-
Basset et al., 2023b). Its unique ability to simultaneously explore
globally and exploit locally makes it a strong candidate for tackling
large search spaces and high-dimensional optimization tasks. The
KOA exhibits remarkable robustness in terms of solution quality
and is flexible enough to adapt to various FS challenges. KOA is
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superior in accurately detecting a limited set of suitable attributes.
But optimizing binaries and FS with a KOA requires adjustments
to mitigate issues such as premature convergence and ensure
ensemble diversity.

1.2 Contributions

This study proposes a novel BKOA-GOBL to address the
FD problem by enhancing the capabilities of FS. This algorithm
leverages planetary motion mechanics and integrates GOBL to
escape local optima. The contribution of this study extends
beyond a simple integration. The novelty of the proposed BKOA-
GOBL approach lies in several methodological and conceptual
enhancements that significantly improve optimization behavior,
exploration-exploitation balance, and FD performance. The
primary contributions of this study, which highlight the innovation
of the proposed BKOA-GOBL methodology for tackling FD via FS,
are summarized as follows:

e An enhanced solution updating mechanism is introduced
in the proposed BKOA-GOBL, which dynamically models a
gravitational-orbital updating rule that integrates planetary
motion parameters (gravitational attraction, orbital velocity,
and planetary distance) to refine feature subset selection.
The incorporation of a cyclic control parameter and a local
escaping operator boosts convergence stability and search
efficiency, prevents oscillations, and improves FS accuracy-an
advancement over the standard KOA.

e The class unbalance problem inherent in FD datasets is
addressed through integrating the RUS technique with the
proposed BKOA-GOBL methodology to achieve scalable
and real-time FD. This ensures balanced training without
excessive preprocessing, mitigates model bias toward the
majority class, and improves the sensitivity in detecting
fraudulent transactions.

e The integration of the GOBL strategy within BKOA
differs from traditional opposition-based learning methods,
which enhance global exploration by generating ghost-based
solutions beyond the central search region using adaptive
relations among the present, best, and proposed solutions.
This approach enables broader and more flexible exploration,
mitigates premature convergence to escape local optima, and
diversifies the population, leading to more robust solutions.

BKOA-GOBL model was

for binary FS tasks via an effective threshold-based

e The continuous redesigned
transformation and a multi-objective fitness function
that simultaneously reduces the number of selected
features while increasing classification accuracy-tailored
for high-dimensional fraud datasets.

e Extensive evaluation across five diverse benchmarks

(Australian, European, Synthetic Financial Transaction

Log, CIC-MalMem-2022, and Real vs. Fake Job Postings

proposed BKOA-GOBLs

superiority in terms of various evaluation metrics, including

Prediction) demonstrates the

classification accuracy, fitness, feature reduction, precision,
recall, F-score and ROC_AUC.
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e Statistical validation based on the test of Wilcoxon rank-
sum (5% significance level) confirms the significant
superiority of BKOA-GOBL over state-of-the-art MHAs.
Its consistent performance across diverse scenarios and
observed improvements in convergence rate, robustness,
and accuracy affirm its adaptability, robustness, and practical
effectiveness for real-world FD challenges.

1.3 Structure

This is how the remainder of the paper is organized. Section
2 analyzes the current research in the area of fraud and malware
classifications using MHTs. Section 3 explains and outlines the steps
of the proposed BKOA-GOBL method to address FS issues related
to fraud and malware detection; Section 4 presents the empirical
findings of the recommended BKOA-GOBL and its peers, and the
conclusions, in addition to problems for future investigation in
Section 6.

2 Literature review

This section presents recent ML, DL, and metaheuristics
techniques for classifying fraud and malware.

Tarwireyi et al. (2024) investigated the use of audio features
for detecting Android malware. Their study involved extracting
191 static audio features from Android micro APK datasets and
evaluating fourteen different MHAs to ensure the efficiency of FS.
These selected features were then used to train a light gradient-
boosted classification model. The results showed that this method
had high discriminatory power, with the genetic MHA achieving
a significant 50.26% feature reduction and boosting classification
accuracy to 99.72%.

Togagar and Ergen (2024) utilized the CIC-Evasive-
PDFMal2022 dataset designed by the Canadian Cybersecurity
Institute, which classified PDFs into benign and malicious classes.
During the preprocessing phase, parameters from text-based
PDFs were transformed into 2D barcode representations. Several
2D Convolutional Neural Network (CNN) models, including
ShuffleNet, ResNetl8, and MobileNetV2, were trained on this
data to extract distinct feature sets. The Honey Badger optimizer
was employed to identify the most effective feature set, which was
then classified using the softmax method, yielding a remarkable
accuracy of 99.73%.

Kaplan and Babalik (2025) employed various MHAs, including
Artificial Bee Colony optimizer, Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), while also introducing a novel GA-
PSO algorithm aimed at improving task scheduling efliciency
within cloud computing, particularly under adversarial conditions
such as DDoS attacks that could compromise system performance.
The findings underscored the potential of advanced scheduling
methods to enhance the sustainability of cloud computing while
providing practical solutions to real-world security threats.

Alashjaee (2023) proposed a new technique to improve
intrusion detection (ID) called the Remora Optimization
Algorithm-Levy Flight (ROA-LF). This method aims to enhance
the original ROA by using Levy Flights for better performance.
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To test the effectiveness of ROA-LF, the researchers used various
performance measures on five benchmark datasets for ID. These
datasets come from data mining competitions, the ID Evaluation
benchmark, and network security labs. Besides ID, ROA-LF was
also applied to solve three engineering problems: pressure vessel
design, three-bar truss, and cantilever beam design. Comparison
showed that their proposed methodology outperformed its peers,
including Particle Swarm Optimization (PSO), the Salp Swarm
Algorithm (SSA), the original ROA, and the snake optimizer.

Kale et al. (2024) developed a method that combines Black
(BWO)
Networks (GANs) to enhance cryptojacking detection. By

Widow Optimization with Generative Adversarial
optimizing features with Hybrid BWO and augmenting the
dataset using GANs, they enriched the training data, resulting
in a detection accuracy of 98.02%. Their approach significantly
outperformed existing methods and provides a valuable framework
for addressing digital security challenges.

Ghaleb et al. developed a spam detection system that combines
six types of Advanced Grasshopper Optimization Algorithms
(AGOA) with a Multilayer Perceptron (MLP). This system, called
AGOAMLPs, effectively classifies emails as spam or not spam.
Using datasets such as UK-2011 Webspam, SpamAssassin, and
SpamBase, the results showed that the MLP with AGOA techniques
outperformed other methods in terms of detection rate, accuracy,
and reducing false alarms (Ghaleb et al., 2021).

Ramesh et al. (2025) presented an innovative approach
to cybersecurity through Enhanced Threat Intelligence for
Cybersecurity Using an Ensemble of DL Models with MHAs
(ETIC-EDLMHAs). It aimed to detect and effectively address
network attacks. The process began with data preprocessing,
which involved preparing the input data for analysis using the
Word2vec model for feature extraction. In the classification phase,
an ensemble of DL models was employed, notably recurrent neural
networks, long short-term memory networks, and conditional
variational autoencoders. Hyperparameter tuning was performed
using the Wolverine optimization algorithm. Extensive simulations
demonstrated that the ETIC-EDLMHAs model surpassed existing
methods, achieving a remarkable accuracy of 98.51% on the
CybAttT dataset.

Mosa et al. (2024) created a framework that integrates MHAs
with ML models to enhance the accuracy of fraud prediction
while tackling data imbalances. They utilized 15 MHTs for
FS and evaluated predictive performance using Random Forest
(RF) and Support Vector Machine (SVM). Working with a
Kaggle dataset containing 284,807 European card transactions,
they implemented an under-sampling technique to achieve data
balance. Their findings indicated that the Sailfish Optimizer, in
combination with RFE, achieved a classification accuracy of 97%,
significantly reducing the feature set by up to 90% and improving
computational efficiency.

Prabhakaran and Nedunchelian (2023) introduced an FS
method for CCF detection based on oppositional cat swarm
optimization. This approach combines ML and DL techniques to
improve accuracy. They employed the Oppositional Cat Swarm
Optimization (OCSO) for FS. They utilized a bidirectional gated
recurrent unit model for classification, along with the chaotic
krill herd algorithm for hyperparameter tuning. Their research
analyzed a Kaggle dataset comprising 284,807 transactions, with
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only 0.172% identified as fraudulent. This effectively addressed the
significant class imbalance using the SMOTE technique. The results
demonstrated a remarkable classification accuracy of 99.97%,
surpassing traditional approaches such as Decision Trees (DTs)
and RFs.

Sorour et al. (2024) developed a CCF detection framework that
utilizes the Brown Bear Optimization (BBO) algorithm to improve
FS and classification accuracy while reducing dimensionality.
They introduced a Binary BBO Algorithm designed to optimize
feature dimensionality and used three ML classifiers-SVM,
K-NN, and XGBoost-to detect fraudulent transactions. The
framework was assessed using the Australian Credit Approval
dataset and further validated on ten benchmark datasets,
achieving a classification accuracy of up to 91% and reducing
feature dimensionality by 67%, which significantly improved
computational efficiency. Performance evaluations demonstrated
that the method significantly outperformed ten other multi-
hypothesis testing methods.

Mniai et al. (2023) developed a framework designed to
improve CCF detection by addressing the issue of imbalanced
data and optimizing classification through FS and hyperparameter
tuning. They implemented an undersampling technique to
create a balanced dataset and used the Support Vector Data
Description (SVDD) algorithm for classification. To enhance
the hyperparameters of SVDD, they introduced a modified
Polynomial Self-Learning PSO (PSLPSO) algorithm. Utilizing the
Kaggle European Credit Card dataset, which consisted of 284,807
transactions with only 0.172% being fraudulent, the framework
achieved a classification accuracy of 93%, outperforming models
like RE, DTs, Logistic Regression (LR), and K-Nearest Neighbors
(K-NN). This framework not only provided effective FD but
also lowered computational complexity and enhanced model
generalization. However, it had some drawbacks, including
dataset limitations and the risk of overfitting due to the
undersampling approach.

3 The suggested BKOA-GOBL
methodology to improve FD via FS

Several interconnected stages determine this BKOA-GOBL
methodology’s ability to enhance FD, including managing
KOA-driven
enhancement, hybridization with the GOBL strategy, and binary

unbalanced data, solution initialization and
alteration and fitness assessment. The subsequent subsections

describe these stages.

3.1 FD’s unbalanced data addressing by
RUS technique

FD datasets typically suffer from severe class unbalance, where
the number of samples in non-fraud transactions overwhelmingly
outnumbers the fraud ones. Typical classifiers may be biased to
forecast the largest class (non-fraud transactions) as a result of
this class unbalance, which could result in inadequate detection
of the critical minority class (fraud transactions). Resampling
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techniques (Elsoud et al., 2024) are frequently employed to balance
class distributions to overcome class imbalance. RUS is the most
popular resampling technique chosen for this study due to its
computational simplicity, effectiveness, scalability, and suitability
for large-scale financial datasets. In FD, where the number of
legitimate transactions can exceed that of fraudulent ones by several
orders of magnitude, efficient preprocessing becomes crucial to
maintaining real-time detection capabilities.

RUS (Yap et al., 2014) is a procedure to balance the dataset and
equalize class distributions by randomly removing samples from
the largest class (non-fraud transactions) to equal the samples in the
minority class (fraud transactions). This helps reduce the bias that
classifiers often develop toward the majority class in unbalanced
datasets. By balancing the data, the model can better learn to detect
fraudulent transactions. Although RUS may discard some useful
non-fraud data, it is effective when working with large datasets
where the majority class dominates. Overall, RUS enhances the
system’s ability to detect infrequent instances of fraud by increasing
its sensitivity to the minority class. RUS is a sensible option in this
case, as it minimizes the size of the largest class, which accelerates
model training and eliminates unnecessary complexity. Its major
advantages include:

e Computational efficiency and dataset size: the dataset
utilized in this study is massive and high-dimensional.
RUS substantially reduces the overall size of the training
dataset, accelerating the training process of classifiers
and metaheuristic optimization algorithms. This makes
the training of complex models (such as BKOA-GOBL)
computationally feasible and efficient without compromising
the ability to identify the complex patterns of the
minority class.

e Memory economy: by working on a smaller dataset, RUS
minimizes storage and memory requirements, which is
essential when dealing with big data environments.

e Reduction of model bias: by balancing the class proportions,
RUS helps mitigate the bias of classifiers toward the dominant
(non-fraud) class.

e Preventing noise and distribution shift: RUS uses only real,
observed instances from the dataset, ensuring that the model
is trained on genuine data points, thus mitigating the risk of
introducing synthetic noise or overfitting.

e Ease of integration: RUS can be directly applied before
FS or model training without introducing additional
parameters or synthetic data generation, making it robust and
implementation-friendly. when paired RUS with FS, yielded
superior or comparable results compared to implementing
hybrid sampling methods. This empirical evidence confirmed
RUS as the most practical and effective balancing technique
for our specific problem and model architecture.

RUS has the drawback of discarding some informative majority-
class instances, which can slightly limit model generalization. To
mitigate this limitation, several enhanced sampling techniques
(Altalhan et al., 2025; Nguyen et al., 2024) have been developed,
including Synthetic Minority Oversampling Technique (SMOTE),
and Ensemble-based resampling techniques such as EasyEnsemble
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and BalancedBaggingClassifier. Despite these synthetic and
ensemble techniques enhancing data diversity and learning
balance, they require greater computational resources, increased
memory usage, and more extensive parameter tuning-factors
that substantially increase complexity when applied to high-
dimensional and large-scale fraud datasets. Consequently, RUS
was adopted in this study as a practical and computationally
lightweight technique that allows the proposed BKOA-GOBL
framework to focus on feature optimization and classification
accuracy without incurring excessive preprocessing overhead. This
choice achieves a well-balanced trade-off between computational
efficiency and FD sensitivity, supporting the frameworK’s objective
of building a scalable and real-time FD system.

3.2 Solution initialization and
enhancement using the suggested KOA

This stage is carried out using KOA (Abdel-Basset et al., 2023a),
which is a physics-inspired MHA founded on Keplers laws of
planetary motion (Russell, 1964). The search region is modeled as a
solar system, where the Sun represents the KOA’s optimal solution
and planets symbolize the KOA’s potential solutions. The KOA is
guided by Kepler’s three rules: The planets’ elliptical orbits around
the Sun are stated in the first rule with a single focus. The second
rule describes the variation in the Earth’s speed as it revolves around
the Sun: it moves quickly when it is nearer the Sun and slowly when
it is farther away. The third rule states that the square of the orbital
period is directly proportional to the cube of its semi-major axis,
establishing a connection between a planet’s orbital period and the
size of its orbit. According to these rules, a planet’s trajectory is
influenced by its mass, position, orbital speed, and gravitational
force. To properly balance exploration and exploitation during
optimization, these factors form the foundation of the KOA’s
mathematical modeling. Theoretically, planetary locations and
speeds can be predicted using Kepler’s laws. The anticipated KOA’s
proceedings are described in depth in the subsequent subsections.

3.2.1 Solution initialization

Every planet in KOA stands for a solution within the
algorithm’s population. A set of N planets, representing the
population size, are created at the start of the search process to act
as potential solutions in the search space. A d-dimensional vector,
where d signifies the dataset’s feature count, is used to represent
each solution. These potential solutions are initialized randomly
within their defined lower and upper boundaries. The random
initialization is performed using the following formula:

Xij = X{? +rand x (X{* — X;P). (1)

Here, X;; refers to the i initial solution for decision variables
(i=1,2,...,d), while rand is a value that is created at random inside
the interval [0, 1]. The terms XjUB and X]-LB represent the upper and
lower boundaries for each j variable, respectively. Additionally, the
normal distribution is used to select the orbit period of each planet
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randomly. From the [0, 1], the eccentricity e; of each planet’s orbit
is arbitrarily selected.

3.2.2 Attraction of gravity computation

This step calculates the gravitational attraction between each
planet and the Sun. Each planet has a unique gravitational pull,
influenced by its volume and the distance between the Sun and the
planet. As the planet’s orbital speed increases, it gets closer to the
Sun, and vice versa. The Sun’s gravity as the optimal solution and
planets as prospective, can be estimated as follows:

MBest X ﬁ"i

= + rand,, 2
e 1 (2)

t t
Fi=e xpu x

where t is the existing generation’s number, and e; is an arbitrary
value inside [0, 1] that indicates a planet’s eccentricity of orbit. To
prevent the error of dividing by zero, € represents a tiny value, and
rand; is an arbitrary value within [0, 1], which gives the gravity
values more variation throughout the optimization process. The
masses of the Sun Xp. and every planet X; are denoted by Mpes:
and mj, respectively, and are determined as follows:

ﬁt(Xgest) - ﬁt(X{/Vorst)

, (3)
ch\jzl (ﬁt(Xli) - ﬁt(ngarst))

Mpesy = rand, x

ﬁt(th) _ﬁt(XiA/orst)

= ) (4)
Z;j:l (ﬁt(X]i) - ﬁt(ng\/orst))

i

The normalized mass values of Mg,y and m; are denoted by
Mpes and 7, respectively. A random number rand, in [0,1] is
introduced to diversify the mass values among different planets.
The " generation’s worst and optimal solutions are X!,  and
X;Sest’
i solution at the " generation is X!. The worst highest and the

respectively, while the k™ solution is X]i, and the current

optimal minimum fitness function values at generation ¢ is given by
Sit(Xy,,) and fit(Xh,,), respectively. Ri is the Euclidean distance
among Xpesr and Xj, and is calculated by:

d

2
RE =| Xlgest - Xf 2= Z (X]gest,j - Xit,j) > ©)
j=1

The normalized value of R; is R;. To assure the precision of the
search, u' represents the global gravity constant, which decreases
exponentially with each generation t. This u' is calculated as
follows:

n' = o x exp(—y x ). (6)

Tﬂ’l ax

where Ty,qy is the allowed generations’ number, y is a constant
value, and 4 is a premier value.
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3.2.3 Planet’ speed measurement

A planet’s position in relation to the Sun determines its speed.
For a planet near the Sun, the gravitational pull is exceedingly
powerful. To avoid being drawn toward the Sun, the Earth attempts
to speed away from it. Conversely, a planet’s speed diminishes as
the distance from the Sun increases, which decreases the Sun’s
gravitational influence. The mathematical formulation applied
to measure the planets speed V! around the Sun at the ¥
generation is shown in Equation 7. The evaluation of planetary
speed in KOA can be understood through two complementary
search scenarios inspired by planetary motion around the Sun,
as follows:

1. Planets close to the Sun: if the normalized distance R} < 0.5,
the planet is considered to be near the Sun. In this scenario,
due to the Sun’s gravitational pull, the planet attempts to
accelerate and push itself away in an effort to escape being
pulled inward. In optimization terms, this condition represents
a situation where a solution is in a dense or critical region
of the search space, and stronger movement is needed to
discover better areas. Mathematically, the speed in this scenario
is influenced by either the distance between two randomly
chosen solutions or the distance between the current solution
and a randomly selected solution. This scenario serves to
diversify the search behavior of KOA and corresponds to an
exploration-oriented behavior, ensuring the algorithm does not
become trapped early. However, this strategy may result in
reduced speed for the planets when population diversity is
limited, potentially hindering the search process. To counteract
this effect and maintain adequate movement throughout the
optimization, this component incorporates the distinction
between the search space’s upper and lower bounds, which
helps maintain speed and prevents the local optimum from
converging prematurely.

2. Planets away from the Sun: if Rl > 0.5, the planet is considered
to be far from the Sun. In this scenario, the gravitational
force is weaker, and the planet correspondingly reduces its
speed. In optimization terms, this condition reflects that a
solution is in a relatively stable and less critical region of
the search space. Mathematically, depending on the distance
between the present solution and a randomly selected one,
the speed is decreased in this scenario. While this scenario
promotes exploitation, its primary drawback is that solutions
remain unchanged, which may make it harder for the algorithm
to break out of the local optimum. To address this issue, the
distinction between the search space’s upper and lower bounds
is also integrated, thereby enhancing planet mobility even in
low-diversity settings.

ZX(mend4 xifj}}é)+5x(i;—i2)+(l—ﬁf)

. X[ x Uy x rands x (5(UB —S(LB), szf < 0.5, )
e rand4><{x()?;—)?f)-k(l—f{f)><f><Uz><rand5
x (Tﬂﬂd3 x XUB — XLB), otherwise,

Here, X! and f(é represent two arbitrary chosen candidate
solutions (the a and b') at generation t. The scalars rand;
and rand, are random values drawn uniformly from the interval
[0,1], while m_;tds is a random vector with elements in the
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same range. The parameters ¢, 3, and ¢ are calculated using the
following expressions:

C=Ux Mx¢, (8)

S=(1-0)xMxg, ©)

To determine the proportion of movement or step size for each
planet, Equation 10 is employed.

= [0 e x| o= o115 0
7= 0, if ra;zd? < ra;tdé, (11

1, otherwise,
M = (rand3 x (1 — randy) + randy), (12)
M= (rands x (1 — rands) + ra71d5), (13)

rande means a random vector between 0 and 1. At generation ¢,
the orbital semi-major axis of planet i is denoted by af, which was
calculated using:

I'Lt X (Mpest + mi)]%

14
4 x 72 (14)

a§ = rands x [le X
The orbital period of planet i, denoted as Tj, is computed as the
absolute value of a randomly generated number, i.e., Tj=|rand|. The

values of the control parameters (71 and U, are defined as follows:

0, = 0, if m;d? < randy, (15)
1, otherwise,

U, — 0, if mnd.3 < randy, (16)
1, otherwise.

To lessen the possibility that planets get stuck in a local
optimum, a directional flag F is introduced. This flag alters
the search direction, thereby enhancing the algorithm’s ability
to explore the search region thoroughly. Here is a definition of
the mechanism.

1, if randy < 0.5,

F = .
—1, otherwise,

(17)
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3.2.4 Exploration and exploitation optimization

The KOA simulates how planets move through space as they
move closer and farther from the Sun by alternating between
exploration and exploitation capabilities. By investigating planets
farther from the Sun to detect new candidate solutions (exploration
case) and intensifying the search close to the Sun to refine and
improve existing solutions (exploitation case), the KOA imitates
this pattern.

The following mathematical equation represents the improved
solution for each planet i farther from the Sun )?f“ in the
exploration case:

5(;“ =X\ 4+ x VI + (Fi+ | rand |) x U x (X4, — X)).
(18)

In KOA, a planet’s speed enables exploration when it is farther
from the Sun, while the Sun’s gravity encourages a planet to exploit
regions near the Sun (the optimal). If the Sun represents a local
optimum, the Earth can increase its speed to escape, helping the
algorithm avoid a local optimum. Thus, the Sun’s gravity drives
exploitation, and the planet’s speed ensures balanced exploration.
Furthermore, to enhance the KOA’s exploration and exploitation
capabilities, the dynamic variation in distance between planets and
the Sun is simulated. The KOA promotes exploration while planets
are further from the Sun and exploitation when they are closer.
This behavior is adjusted by a dynamic controlling parameter
h-larger value enhance exploration, while smaller value favor
exploitation. The stochasticity alternation between this behavior
and Equation 18 strengthens the capacity of the KOA to move
away from local optimum and toward global solutions. This
phenomenon is represented mathematically below.

501 I, -
Xt =X x U +(1-0p)
( X! Xpest+ X, X! Xpest+X,

50— Thx (=3 _XZ))’ (19)

1

h= e((uzfl)xmnd4+l)><mnd’ (20)
T,
1% —Hax
4= —1—1x (515, 1)
o

During the optimization process, the cyclic control parameter
a drops by gradual from —1 to —2 for TC cycles.

3.3 GOBL strategy incorporation

To enhance the KOAs capacity to escape local optima, this
paper incorporates a GOBL strategy. Unlike traditional opposition-
based learning methods (Tizhoosh, 2005; Mahdavi et al., 2018),
which rely on a fixed central point within the search space and
generate opposite solutions confined to the midpoint region, GOBL
introduces greater flexibility and spatial diversity. Traditional
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opposition-based learning is centered around a fixed midpoint
within the search space. In this framework, opposite solutions are
generated based on a static rule that reflects the current position
around the center of the exploration range. As a result, the newly
generated solutions tend to cluster near this midpoint, and their
spatial extent typically does not surpass the distance between the
present solution and the central point, making it challenging for
the algorithm to investigate regions distant from the central area
where the global optimum is located and may struggle to escape
local optima.

In contrast, GOBL dynamically combines information from the
present individual, a proposed individual, and the best individual
found so far to replace poor proposed positions with newly
generated ghost possible solutions. These ghost solutions are
designed to extend beyond the conventional bounds set by the
midpoint, thereby enabling broader and more adaptive exploration
and increasing the chances of escaping local optima, especially
when the global optimum is far from the search center. To better
illustrate the GOBL strategy, suppose a space with two dimensions
defined by the X-axis and Y-axis. The X-axis defines the search
boundaries [LB, UB]. Within this space, let X,,,,, denote the position
of a newly generated possible solution with a height #,,,. The
best solution discovered is projected onto the X-axis at Xpey
position with a hp.y height. Also, the present possible solution has
a projection X; with height h;. Using these reference points, the
position of the ghost x; with height h; is calculated, as follows:

Xi = Xpew — Xi + XBest- (22)

Let P;=(x;, h;) represent the ghost position, where x; represents
the X-axis projection and h; is the height. In this context, the Y-
axis is used metaphorically as a convex lens to simulate optical

imaging. When P; passes through the lens, it produces a genuine
*
i
of x;. Hence, the relationship between the ghost position and its

image P{=(x}, h}), where x corresponds to the opposite solution

genuine image is defined by:

(UB+LB)
PO R —. (23)
T T ¥ — (UB+LB)
i i 2
As a result, the GOBL calculation can be derived from the
previous equation to generate opposition-based solutions that go

beyond traditional midpoint reflections, as follows:

e (UB + LB) N (UB+LB) xi
P 2 2k Kk’

(24)

3.4 Binary alteration and assessment of
continuous solution

In FS, the goal is to lessen the number of features while retaining
classification effectiveness. Achieving this requires careful selection
of the most relevant features and discarding those that negatively
impact the classification accuracy. In binary optimization, FS
problems require encoding solution representations as binary
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vectors. Since the KOA operates in a continuous domain, which
is incompatible with binary FS problems, it must be adapted by
altering the continuous values to a binary format. Each solution is
represented as a one-dimensional binary vector, where 1 mentions
a picked feature and 0 mentions exclusion. The transformation of a
continuous solution X! into its binary counterpart (X! Ybinary> Using
arandom threshold thr,,,  in [0, 1], is defined by the following rule:

0 ifX] < thrana

25
1 otherwise. 25)

(Xit)binary =

thtanq should be chosen with consideration of the problem
context, as this directly influences the FS behavior. Different
problem scenarios may require different threshold settings to
achieve optimal performance.

To assess a solution’s quality, two conflicting objectives must be
balanced: increasing the accuracy of classification and minimizing
the number of chosen features. While high accuracy ensures reliable
predictive performance and utility of models, aggressive feature
reduction can lead to performance degradation. Therefore, a well-
balanced fitness function is essential. It incorporates both the size of
the feature subset and the accuracy of classification, and is described
mathematically as:

|d¥|

DI

Fitness = w1 x (1 — classification accuracy) + wy x , (26)

where (1 — classification accuracy) denotes the misclassification
error rate, D refers to the features’ count, and d* means the
features chosen’s count. w; and w; signify the contribution from the
accuracy and the cardinality of the feature sets, respectively, with
wy € [0,1], and wp=1 — wy.

After presenting the fundamental stages of the suggested
BKOA-GOBL in the previous subsections, the BKOA-GOBLs
pseudo-code is summarized in Algorithm 1. Additionally, the
whole process and key stages of the BKOA-GOBL are also
illustrated in the flowchart in Figure 1.

3.5 Computational complexity of the
BKOA-GOBL methodology

3.5.1 Time computational complexity of the
BKOA-GOBL methodology

The time computational complexity of the proposed BKOA-
GOBL methodology can be evaluated by analyzing its core
stages that collectively contribute to its performance improvement
in FD. These stages include addressing class imbalance using
the RUS technique, generating and refining solutions via the
KOA, incorporating the GOBL strategy, and performing binary
alterations on solutions, as well as evaluating the fitness function.
The total time computational complexity, expressed in big-O
notation, Oy, (BKOA — GOBL), is derived as follows:

e RUS technique: balances the dataset by randomly removing

samples from the majority class to equalize the number of
minority and majority samples. This process operates linearly
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with respect to the number of instances S in the dataset,
resulting in a time complexity of Oyiye(S).

e Solution generation and refinement: Generates an initial
population of N candidate solutions, each represented in a d-
dimensional search space. The time complexity of this process
is Otime(N X d). After that, each candidate’s position is updated
iteratively based on gravitational and orbital dynamics across
Gmax generations. The time complexity of this iterative update
is Otime(Gmax X N x d).

e GOBL strategy: generates ghost-based opposition solutions
to replace inferior candidates and maintain diversity. The
computational cost of this step is proportional to both the
population size and the problem dimension, resulting in a time
complexity of Ogime(N X d).

e Binary alteration and fitness function assessment: converts
continuous feature representations into binary form during
each iteration for all individuals to adapt the continuous
KOA for discrete FS. This step has a time complexity of
Otime(Gmax X N x d). Then, the classification-based fitness
for each solution has been computed at every iteration.
Assuming each fitness computation depends primarily on
model accuracy using M classifier evaluations, this step has a
time complexity of Oyime(Gmax X N x M), which simplifies to
Otime(Gmax X N) when M is constant.

Where N means the number of individuals in the population,
Gpax is the maximum iterations allowed, and d identifies the
dimensionality of the problem space. After that, the overall time
computational complexity of the BROA-GOBL can be determined
by combining all stages as follows:

Otime(BKOA — GOBL)
= Ofime(RUS technique)

~+ Ogime(Solution generation and refinement) +
+ Otime(GOBL strategy)

+ Ovime(Binary alteration and fitness function assessment).

Osime(BKOA — GOBL)
= Otime(S) + Orime(N x d)
+ Otime(Gmax X N x d) + Otime(N x d)
+ Otime(Gmax X N X d) + Otime(Gimax X N).

After simplification, the overall time computational complexity
is dominated by the iterative BROA-GOBL-driven solution update
and binary conversion processes, resulting in:

Otime(Gmax x N x d)

This time complexity Ofime(Gmax X N X d) is consistent
with other population-based metaheuristic algorithms used
for FS. While the inclusion of GOBL and binary alteration
increases computational demand, these additions significantly
enhance exploration and exploitation balance, reducing the
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Input:
N — Population size
Tmax — Maximum generations’ number
d — Dimensionality of the problem
LB — Variables’ lower boundary
UB — Variables’ upper boundary
Output:
Xgest — The best solution found during the search
fit(Xgest) — The minimum best fitness value obtained
1: Start
2 Handle the issue of FD’s unbalanced data using the RUS technique;
3: Initialize the algorithm parameters: ug, vy, TC;
4 Generate an initial population of N planets, where each position of planet X is provided based on
Equation 1;
5 Employ Equation 26 to compute the fitness value fit(X) for each planet’s solution;
6 Sort the solutions in ascending order according to their computed fit(X) values;
7: Identify the initial best solution XJ., with the smallest fit(X3.,);
8: t <« 1;
9 while t < Tyax do
0 Determine the current best solution Xt

Y

and its fitness fit(Xémt), together with the current worst

Best

solution Xj .. and its fitness fit(Xj,,.);
11: Estimate the wp! value by Equation 6;
12: for i=1:N do
13: Compute Mgest, m;, and R§ utilizing Equations 3, 4, 5 respectively;
14: Evaluate the F§ according to Equation 2;
15: Generate two arbitrary values rand, rand, € [0, 1];
16 if rand > rand; then
17: if Rl <0.5 then
18: Apply Equations 8, 9, 15, 17 to get the ¢,3, U, and F values respectively;
19: Measure the speed of planet V§ via the first condition of Equation 7;
20: else
21: Apply Equations 10, 16, 17 to get the ¢, Up, and f values respectively;
22: Measure the speed of planet V§ via the second condition of Equation 7;
23: end if
24 Update the solution Xi*' using Equation 18;
25: else
26: Use Equations 15, 20 to obtain Uy and h, respectively;
27: Upgrade the solution X§+1 employing Equation 19;
28: end if
29: Evaluate the fitness fit(X§+1) through Equation 26;
30: if fit(X) < fit(X!) then
31: FIt(XE) « Fit(XH); Xt <X
32: end if
33: end for
34: Sort the solutions again in the order of ascending with respect to their fit(X);
35: At t+1 generation, identify the best solution XiI! With its associated fit(X[l);
36: Optimize the value of Xé;; through incorporating the GOBL strategy (Equation 24);
37: Fit(Xpest) < FIt(XEH1); Xpest < X5idy;
38: t<—t+1;
39: end while
40: End

Algorithm 1. The recommended BKOA-GOBL methodology.
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Handle the FD’s unbalanced data by the RUS technique.

\Z

Initialize the algorithm parameters: (o, ¥, TC), t < 1.

\Z

Generate an initial population based on Eq. (1) to provide a position X, and compute fit(X) for each planet's solution.

%

Sort solutions ascendingly according to their fit(X), and identify the initial best solution X3, with the smallest fit(X$est).

No

£ <Tmax ?

Yes

Determine the best solution X2 . with its fit(XJ__.), and the worst solution X2 with its fit(XJ , also estimate the
Best Best. Worst

Worst>
ut value by Eq. (6).

Compute Mg, m;, R: by Eqs. (3), (4), (5) , and the value of F! by Eq. (2). Generate two random values
rand,rand, € [0,1].

rand > rand,

%
Use Egs. (15), (20) to obtain Uy, h, and
upgrade X¢+1 by Eq. (19).

Apply Egs. (10), (16), (17) to get ¢, ﬁz, F and Apply Egs. (8), (9), (15), (17) to get £,J, ﬁl, F,
V! by the second condition of Eq. (7). and V! by the first condition of Eq. (7).

| |
v

Update X¢*1 based on Eq. (18).
|

\Z

Evaluate the fitness value fit(Xt*1) for Xt*1.

. No Yes . _ N
ici+1 fitXY) « fit(Xe1) |, Xt < X+

1 |

Re-sort the solutions based on fit(X), and identify the best solution X451, with its fit(X4hL,) atz+ 1.

%

Optimize the X45%, through incorporating the GOBL strategy (Eq. (24)).

\%
t—t+1 <  fitXpese) & fit(X55e) » Xpese — Xbbu: -
End

FIGURE 1
Flowchart of the suggested BKOA-GOBL methodology.

risk of premature convergence and improving FS quality. The  FD. Additionally, the algorithm can benefit from parallel and
trade-off between computational cost and detection accuracy  distributed implementations, where the evaluation of candidate
is justified, as BKOA-GOBL achieves superior convergence, solutions can be executed concurrently, effectively mitigating
robustness, and scalability across high-dimensional datasets for =~ computational overhead in large-scale applications.
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3.5.2 Space computational complexity of the
BKOA-GOBL methodology

The space computational complexity reflects the memory usage
or storage space required for the BROA-GOBL algorithm to handle
a problem as the input size grows. It includes the memory required
to store all input variables, internal vectors, temporary structures,
and auxiliary states used during the optimization process. The
following analysis divides the total required memory into two
main components:

e Memory space complexity of input parameters: this refers to
the memory needed to store the algorithm’s input parameters
to operate. The proposed BKOA-GOBL framework (as shown
in Algorithm 1) utilizes eight input variables: N, Trax, d, [0, V>
TC, LB, and UB. Each variable is stored as a single numerical
value requiring 4 bytes of memory. Thus, the total memory
footprint for the input variables is: (8 x 4 = 32 bytes), and
therefore the input values space complexity contributes only
constant memory.

e Memory space complexity of contributory parameters: this
refers to the additional temporary storage required by the
algorithm during optimization for internal computations. It
consists of the following components:

- Population vector X: the BKOA-GOBL maintains a
population of N continuous candidate solutions, each
of dimension d. Each solution is a floating-point value
requires 4 bytes; therefore, the memory space required is:
(4 x N x d) bytes. This contributes linear space complexity
in terms of N x d.

- Binary population vector Xp;,4y,: After binarization, each
candidate solution is represented as a binary vector
of dimension d, consuming 1 byte per entry, but
approximated by standard 4-byte allocation for uniformity.
Thus, the memory space for binary vectors: (4 x N x d)
bytes, which is linear in N x d.

— Fitness values and scalar variables: the algorithm stores the
fitness of all individuals (fit(X;), fit(Xx)), optimal and worst
solutions (fit(Xgest), fit(Xworst)), orbital quantities (Mpest,
mi, Fi, Ri, ai, €, T,', €, Vi, S, F, ;, (Z, M, f], U], Uz),
control parameters (i, (o> ¥> Tmax> LB, UB, h, TC, ay),
and random coeflicients (rand, rand,, rand,, rands, randy,
ra;td5, ra;zd6). In total, the algorithm uses 37 such scalar
variables, each requiring 4 bytes: (37 x 4 bytes = 148 bytes),
which corresponds to constant space.

- Population vectors: the population in the algorithm consists
of eight vectors: Xj, X, Xpest> Xworst» Xa» Xp» Xnew X}
Each vector has a dimensionality of d. Since every position
requires 4 bytes of memory, each vector occupies (4 x d)
bytes. Therefore, the total complexity of the memory space
required for all eight vectors is: 8 x 4 x d bytes =32 x d
bytes. This results in a linear space complexity with respect
to dimensionality d.

Thus, the total complexity of memory space for the previous
contributory parameters is:

(4 X N xd)+ (4 x N x d)+ 148 4 (32 x d)bytes.
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Putting everything together, the total memory space complexity
of the BKOA-GOBL methodology is:

Memory space complexity (BKOA-GOBL)
= Space complexity of input parameters
+ Space complexity of contributory parameters
= 32+ (4 xNxd) +(4xNxd)+ 148 + (32 x d)) bytes.

Ignoring all constants, the big-O notation Ogpaee(BKOA —
GOBL) for the total memory space complexity of the BROA-GOBL
becomes:

Ogpace(BKOA — GOBL)
= Ogpace(Space complexity of input parameters)
+ Ospace(Space complexity of contributory parameters)
= Ogace(1) + (Ospace(N x d) + Ogpace(N x d)
+ Ogpace(1) + Ogpace(d)) = Ogpace(N x d).

Therefore, the overall space computational complexity of the
BKOA-GOBL methodology is:

Ospace(N x d)

4 Experimental results and analysis

The experimental results for the proposed BKOA-GOBL
methodology, in comparison to various alternative algorithms, are
described in detail in this section. The presented technique is
verified utilizing three distinct benchmark datasets from multiple
sources. The average and Standard Deviation (STD) of the
evaluation metrics were estimated and presented. Information
regarding the benchmark datasets and the parameters for MHTs
can be found in Sections 4.1, 4.2, respectively. Performance metrics
are explained in Subsection 4.3. The results of the recommended
BKOA-GOBL via k-NN, and Xgb-tree classifiers are discussed in
Subsection 4.4. The findings of the BROA-GOBL against its peers
are studied in Sections 4.6, 4.7. The convergence graphs are also
depicted in Section 4.8. Finally, Wilcoxon’s test determines the
differences in the values of fitness between the proposed BKOA-
GOBL and its competitors.

4.1 Benchmarks description

In this section, we examine five publicly accessible datasets
that are frequently utilized in the creation and assessment
of classification models for FD, cybersecurity, and financial
decision-making. These datasets encompass a range of domains,
including credit approval, transaction fraud, malware analysis,
economic simulation, and employment fraud. Each dataset
is distinguished by its complexity of features, number of
records, class distribution, domain specificity, and availability.
Table 1 provides a summary of the key attributes of each
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TABLE 1 Comparison of five datasets utilized in this study.

10.3389/frai.2025.1710387

1 Australian 14 (6 numeric, 690 2 (approved, 52% approved, 48% Credit approval UCI
8 categorical) not approved) denied decision-making Repository
2 European 30 (PCA: 284,807 2 (legitimate, Extremely imbalanced Financial transaction FD Kaggle (2013)
V1-V28, time, fraud) (0.17% fraud)
amount)
3 Synthetic 11 (step, type, 100,000+ 2 (legitimate, Highly imbalanced Mobile money fraud Kaggle (2016)
financial amount, fraud) (0.1%-0.2% fraud) simulation
transaction log balances, etc.)
4 CIC-MalMem- | 55-56 58,596 4 (Benign, Balanced binary; Cybersecurity/obfuscated Canadian
2022 Trojan, malware families malware detection Institute for
Spyware, 16%-17% each Cybersecurity
Ransomware) (CIC),
University of
New
Brunswick
(UNB) (2022)
5 Real vs. Fake 18 (text + 17,880 2 (real, fake) 4.5% fake Employment scam/job FD Kaggle (2020)
Job Postings metadata (800 fraudulent)
Prediction fields)

dataset, along with direct access links for reproducibility and
further investigation.

4.2 Parameters configuration

The BKOA-GOBL was assessed alongside several binary
versions of different MHTs, which included the original BKOA
and ten recent MHTSs. Each algorithm was tested thirty times per
dataset to account for variability, and average performance metrics
were provided for equitable comparisons. To achieve equity, all
MHTs were governed by a 10 size of population and a limit of 100
generations. The attributes of the datasets indicated the scale of the
problem, while the continuous search domain was set to [—1, 1] to
create a broad yet controlled search space.

A 10-fold cross-validation method was employed for evaluating
the generalizability and robustness of the BROA-GOBL and its
competitors. The datasets were split into 80% training and 20%
testing subsets. The training subset was utilized to fine-tune
the classifiers, while the testing subset was used to assess the
effectiveness of the chosen features. Parameter configurations for
each technique adhered to the original specifications established
in foundational studies, with a summary presented in Table 2. The
experiments were conducted in a Python environment on a high-
performance computing system equipped with 256 GB of RAM and
a Dual Intel Xeon Gold 5115 CPU, running on Microsoft Windows
Server 2022.

Table 3 presents the main coefficients of the ML classifiers
employed in this study.

4.3 Evaluation measures

We utilize a wide range of evaluation measures to measure
the efficacy of the suggested BKOA-GOBL for fraud and malware
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detection. These measures are essential for evaluating the model’s
predictive ability, stability, and effectiveness.

e Accuracy (AC): accuracy evaluates how correct the model is
by determining the ratio of instances that have been classified
correctly, as in Equation 27.

TN + TP
TN + TP + FN + FP

ACC = 27)

where:

- True positives (TP): unauthorized transactions accurately
recognized as Fraud.

- True negatives (TN): trustworthy transactions accurately
recognized as authentic.

- False positives (FP): trustworthy transactions inaccurately
recognized as fraud.

unauthorized  transactions

- False (FN):

inaccurately recognized as trustworthy.

negatives

An increased accuracy reflects improved model performance.

e Fitness function: the fitness function of the KOA optimizer
estimated the performance of the model by finding a balance
between classification accuracy and FS.

e Size of chosen attributes: this metric reflects the total number
of features retained after the SBO algorithm performs FS.
Reducing the number of features while maintaining high
accuracy improves the model’s efficiency and interpretability.

This measure estimates the size of features contained after
applying the KOA for FS. Minimizing the size of selected
features while preserving increased accuracy enhances both
the efficiency and interpretability of the model.

e Precision (P): precision (De Medeiros et al., 2007) measures
the percentage of accurately identified fraudulent transactions
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benchmark
BKOA-GOBL Premier value po = 0.1
Parameter y = 15
Cycles’ number during the entire optimization
process TC =3
Minimum value of the decision variables =-
Maximum value of the decision variables =1
Binary Meerkat Sentry = 0.3
Optimization Algorithm
(BMOA)
P=05
B=15
r=1
Binary Salp Swarm Safety threshold ST = 0.8
Optimizer (BSSO)
Scroungers’ number SD = 0.1*N
Producers’ number PD = 0.2*N
Binary Aquila Optimizer Search cycles’ number t; = 10
(BAO)
=0.005
U=0.00565
Aquila’s flying slope Q, € [2,0]
Adjustment coefficients for exploitation phase
§=0.1,
and o = 0.1
Aquila’s arbitrary motions Q; € [—1,1]
Binary Atom Search Depth weight « = 50
Optimization (BASO)
Multiplier weight 8 = 0.2
Binary Harris Hawks Rabbit energy E € [—1,1]
Optimization (BHHO)
Binary Henry Gas B = 0.1=aandK=1

Solubility Optimization
(BHGSO)

Clusters’ number is 1

Iy, =5E—03,l, =1E+02,and 5 = 1E — 02

Binary Bat Algorithm
(BBA)

Pulse emission rate r = 0.95

Loudness A = 0.8

Minimum and Maximum pulse frequencies = 0, 10

Binary Sailfish Optimizer
(BSFO)

A=1

Ratio between sailfish and sardines pp = 0.1

& =0.0001

(Continued)
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TABLE 2 Parameter settings for used optimizers. TABLE 2 (Continued)
‘ Optimizer Coefficients ‘ ‘ Optimizer Coefficients ‘
All MHTS Runs’ number = 30 Binary Grasshopper Cmax = 1 and Cpin = 0.00004
Optimization Algorithm
Generations’ number Ty, = 100 (BGOA)
Population Size N = 10 Binary Sparrow Search Acceleration coefficients (¢; = ¢, = 1.2)
Dimensions d = The number of features in the Algorithm (BPSO)
employed Inertia weight (wmin = 0.4, ®max = 0.9)

TABLE 3 The primary parameters of the ML models.

‘ Classifier Parameters

Xgb-Tree Boosting rounds’ number nrounds = 100

Min loss reduction gamma = 0

Max depth max_depth = 3

Learning rate eta = 0.4

Min sum of instance weight min_child_weight = 1

Sub-sample ratio of learning sub_sample = 0.75

Sub-sample ratio of columns
colsample_bytree = 0.8

k-NN Euclidean distance k = 5

out of all transactions that were classified as fraudulent, as in
Equation 28.

TP

P= —— (28)
TP + FP

e Recall (R): recall (Amigé et al., 2009) estimates the ability
of the model to identify fraud transactions accurately, as in
Equation 29.

TP

R= —— (29)
TP + FN

e F1-Score: the Fl-score (Amigé et al.,, 2011) is the harmonic
average of recall and precision, providing a specific measure
that balances both, as in Equation 30.

P xR
P+R

F1=2x (30)

In the following subsections, we will thoroughly review and
investigate the experimental outcomes, highlighting the significant
results in bold.

4.4 Empirical outcomes of two ML models
(Xgb-tree, and K-NN) and the suggested
BKOA-GOBL

This section compares the results of the K-NN and Xgb-tree
models with the proposed BKROA-GOBL. It focuses on assessing
their effectiveness by examining average classification accuracy and
the average number of features selected, enabling us to gauge the
impact of the BROA-GOBL method.
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TABLE 4 Outcomes of the basic K-NN classifier and the suggested BKOA-GOBL concerning mean accuracy and size of picked features.

Dataset Classification accuracy Size of chosen features (decrease rate =
Original Features—Selected Features % 100%)
Original Features i
BKOA-GOBL Increase rate K-NN BKOA-GOBL Decrease
(%) rate (%)
Australian 0.8116 0.9051 11.52% 14.00 05.80 58.57%
European 0.6548 0.9523 44.76% 30.00 10.27 62.77%
Synthetic financial 0.9512 0.9851 03.56% 11.00 02.00 81.82%
transaction log
CIC-MalMem-2022 0.9991 0.9996 0.0500%% 55.00 11.00 80.00%
Real vs. Fake Job 0.5642 0.7412 31.37% 1426 727.83 48.96%
Postings Prediction

Bold values indicate the best-performing results for each evaluation measure.

TABLE 5 Outcomes of the basic Xgb-tree classifier and the suggested BKOA-GOBL concerning mean accuracy and size of picked features.

Benchmark Accuracy Size of chosen features (decrease rate =
Original Features—Selected Features x 100%)
Original Features i
Xgb-tree BKOA-GOBL  Increaserate = BKOA-GOBL BSBO-MUT Decrease
(%) rate (%)
Australian 0.8623 0.9135 05.94% 14.00 06.27 55.50%
European 0.9239 0.9489 02.70% 30.00 12.10 53.33%
Synthetic financial 0.9912 0.9917 0.0504% 11.00 04.30 60.91%
transaction log
CIC-MalMem-2022 0.9991 0.9997 0.0600% 55.00 09.10 83.45%
Real vs. Fake Job 0.7838 0.8158 4.08% 1426 709.83 50.22%
Postings Prediction

Bold values indicate the best-performing results for each evaluation measure.

Table 4 illustrates the performance metrics for the proposed
BKOA-GOBL alongside the primary K-NN, focusing on mean
accuracy and the size of the selected features. As depicted in Table 4,
the proposed BKOA-GOBL combined with K-NN has significantly
enhanced classification accuracy across five benchmark datasets,
achieving an increase of 11.52% in the Australian dataset, 44.76% in
the European dataset, 3.56% in the Synthetic Financial Transaction
Log dataset, 31.37% in the Real vs. Fake Job Postings Prediction
dataset, and a slight improvement of 0.05% in the CIC-MalMem-
2022 dataset. Furthermore, the BROA-GOBL method has led to a
reduction in the number of features selected from the benchmark
datasets, with decrease rates of 58.57% in the Australian dataset,
62.77% in the European dataset, 80.00% in the CIC-MalMem-2022
dataset, 81.82% in the Synthetic Financial Transaction Log dataset,
and 48.96% in the Real vs. Fake Job Postings Prediction dataset.

Additionally, Table 5 illustrates the performance metrics for the
proposed BKOA-GOBL alongside the primary Xgb-tree, focusing
on mean accuracy and the size of the selected features. As shown
in Table 5, the suggested BKOA-GOBL combined with Xgb-tree
has significantly improved accuracy across five benchmark datasets,
achieving an increase of 05.94% in the Australian dataset, 02.70%
in the European dataset, 4.08% in the Real vs. Fake Job Postings
Prediction dataset, and a slight improvement of 0.0600% in the
CIC-MalMem-2022 dataset and 0.0504% in the Synthetic Financial
Transaction Log dataset. Furthermore, the BROA-GOBL method
has led to a reduction in the number of features selected from
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the benchmark datasets, with decrease rates of 55.50% in the
Australian dataset, 53.33% in the European dataset, 83.45% in
the CIC-MalMem-2022 dataset, 60.91% in the Synthetic Financial
Transaction Log dataset, and 50.22% in the Real vs. Fake Job
Postings Prediction dataset.

Finally, the BKOA-GOBL method surpassed the basic ML
models, K-NN, and XGB-Tree in terms of mean accuracy and
the number of selected attributes across the five datasets. This
demonstrates its potential effectiveness for FS in comparison to
these basic ML models.

4.5 Comparative evaluation of the
suggested BKOA-GOBL under various
resampling techniques

To further validate the robustness and adaptability of the
proposed BKOA-GOBL framework,
several

additional experiments
were performed using
handle the class imbalance challenge commonly observed in
FD datasets. Specifically, the RUS technique adopted in the
primary BKOA-GOBL framework was compared with two

resampling techniques to

Ensemble-based resampling techniques, namely EasyEnsemble
and BalancedBaggingClassifier. Each resampling method was
applied at the preprocessing stage before FS and classification to
ensure a fair comparative assessment across all experiments.
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Table 6 presents the comparative performance metrics obtained
across the examined datasets, including accuracy, fitness score,
number of selected features, precision, recall, Fl-score, and
ROC_AUC. The results clearly show that RUS delivers the
strongest and most consistent performance across the majority
of the evaluation measures. When paired with the BROA-GOBL
optimization framework, RUS achieves the highest or near-
highest accuracy and ROC_AUC values on most datasets, while
also generating smaller feature subsets and lower fitness values,
indicating more efficient and effective feature selection. These
findings demonstrate that RUS provides a robust balance between
predictive performance and computational efficiency. Although the
Ensemble-based methods yield competitive results in specific cases,
they do not consistently outperform the RUS configuration and
typically introduce additional computational cost due to increased
sample size or multiple resampling stages. Overall, the comparative
analysis confirms that BROA-GOBL coupled with RUS represents
the most effective configuration for addressing class imbalance
within the tested fraud detection datasets.

The comparative findings demonstrate that ensemble-based
resampling techniques can enhance minority-class sensitivity
and classification stability, yet they do so at the expense of
increased computational and memory complexity. Conversely, the
RUS-based implementation of BKOA-GOBL presents a strategic
compromise, delivering reliable performance with minimal
preprocessing overhead.

This efficiency allows the proposed BKOA-GOBL framework to
maintain scalability, fast convergence, and real-time applicability
while preserving balanced FD performance. Therefore, the choice
of RUS in this study reflects a deliberate trade-off between
generalization and computational economy, aligning with the
overarching goal of developing a robust and deployable FD system
for big data financial environments. Future research directions
may investigate hybrid resampling schemes that combine RUS
with adaptive ensemble techniques to further improve detection
sensitivity without sacrificing runtime efficiency.

4.6 Experimental outcomes of the
proposed BKOA-GOBL vs. various recent
MHTs employing K-NN classifier

Table 7 shows an evaluation of the proposed BKOA-GOBL
algorithm performance via considerable MHTs utilizing a K-NN
classifier regarding five benchmark datasets (Australian, European,
Synthetic Financial Transaction Log, Real vs. Fake Job Postings
Prediction, and CIC-MalMem-2022). Essential measures examined
contain classification accuracy, fitness, selected features, precision,
recall, F-score and ROC_AUC.

Table 7 presents the outcomes of the BKOA-GOBL based
on K-NN and its peers regarding classification accuracy across
five datasets used (Australian, European, Synthetic Financial
Transaction Log, Real vs. Fake Job Postings Prediction, and
CIC-MalMem-2022). The performance of each algorithm is
evaluated based on average accuracy and SD from multiple runs,
shedding light on their reliability and effectiveness. The proposed
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BKOA-GOBL ranked first, achieving the highest average accuracy
and smallest SD across all datasets, which reflects its stability
and exceptional performance. For instance, in the Australian
benchmark, BKOA-GOBL records a mean accuracy of 0.9051 with
an SD of 0.0022, while on CIC-MalMem-2022, it achieves a perfect
score of 0.9996 with an SD of just 0.0002. The BAVO comes closely
behind, consistently ranked second in average accuracy across most
datasets and providing competitive SD values, including an average
accuracy of 0.9024 on the Australian dataset and 0.9460 on the
European dataset.

In addition, the proposed BKOA-GOBL ranked first, achieving
the highest average precision, recall, F1-measures, and smallest
SD across most benchmark datasets, which reflects its stability
and exceptional performance. The BAVO comes closely behind,
consistently ranked second in average precision, recall, and F1
measures across most datasets and provides competitive SD
values. These measures emphasize that the proposed BKOA-
GOBL has a balanced performance and strong reliability. Precision
demonstrates its success in minimizing false positives, while
recall estimates its sensitivity to true positives. The Fl-score
presents a combined assessment of both precision and recall,
reflecting overall classification quality. The consistently low SD
values indicate BKOA-GOBLs stability and effectiveness across
numerous runs, resulting in minimal variability and reduced risk
of performance decline.

Moreover, the proposed BKOA-GOBL achieves the smallest
feature reduction size across four of the five benchmark datasets,
demonstrating its effectiveness in selecting the most appropriate
attributes while ensuring high classification accuracy. BKOA-
GOBL achieves the smallest mean feature size in Australian (5.80),
European (11.17), Synthetic Financial Transaction Log (2.00),
and CIC-MalMem-2022 (11.00), significantly reducing the size
of the chosen attributes compared to other MHTs. The ranking
demonstrates BROA-GOBLSs superiority with three wins, one tie,
and one loss, making it one of the most effective techniques for FS
across all benchmark datasets. Finally, the proposed BKOA-GOBL
ranked first, achieving the smallest fitness values and smallest
SD across all benchmark datasets, which reflects its stability and
exceptional performance.

The ROC_AUC results further confirm the superiority and
consistency of the proposed BKOA-GOBL among other competing
MHTs across all benchmark datasets. It achieves the highest
mean AUC with the lowest standard deviation in nearly all
cases, demonstrating exceptional ability to distinguish fraudulent
from legitimate instances under varying decision thresholds.
For example, on the Synthetic Financial Transaction Log
(0.9935) and CIC-MalMem-2022 (0.9998) datasets, BROA-GOBL
reaches near-perfect AUC values with extremely small variability,
reflecting remarkable reliability and robustness. Even on the more
challenging Real vs. Fake Job Postings dataset, it still secures the
highest mean AUC while maintaining competitive SD values. Its
low SD demonstrates strong reliability and minimal sensitivity
to data variation. Competing algorithms such as BMOA and
BAVO rank closely behind but consistently show higher variability,
further reinforcing the strong stability and discriminative capability
of the proposed approach. The ranking clearly confirms the
superiority of BROA-GOBL, achieving three wins, two ties, and no
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TABLE 6 Outcomes of the suggested BKOA-GOBL under different resampling techniques in terms of the average classification accuracy, fitness,
selected features, precision, recall, F-score and ROC_AUC.

Measure Datasets RUS-K- RUS-Xgb- EasyEnsemble BalancedBaggingClassifier
NN tree
Australian 0.9051 0.9135 0.8406 0.8406
Accuracy European 0.9479 0.9594 0.9862 0.9883
CIC-MalMem-2022 0.9996 0.9997 0.9966 0.9976
Real vs. Fake Job Postings 0.7412 0.8158 0.8405 0.8440
Prediction
Ranking (W|T|L) 0[0|4 2[0[2 0[0]4 2[0]2
Fitness Australian 0.0984 0.0910 0.1588 0.1593
European 0.0556 0.0446 0.0159 0.0136
CIC-MalMem-2022 0.0027 0.0021 0.0055 0.0057
Real vs. Fake Job Postings 0.2613 0.1874 0.1627 0.1636
Prediction
Ranking (W|T|L) 00[4 2002 1/0]3 1/0]3
Features’ Size Australian 05.80 06.27 01.30 01.40
European 11.17 13.13 06.70 06.00
CIC-MalMem-2022 11.00 09.10 11.10 11.80
Real vs. Fake Job Postings 727.8 709.8 683.8 695.6
Prediction
Ranking (W|T|L) 0[0]4 110[3 2[0]2 110(3
Precision Australian 0.9033 0.9053 0.7377 0.7377
European 0.9755 0.9751 0.9240 0.9573
CIC-MalMem-2022 0.9995 0.9996 0.9955 0.9965
Real vs. Fake Job Postings 0.7614 0.8029 0.7611 0.7902
Prediction
Ranking (W|T|L) 1/0[3 301 0]0[4 0]0[4
Recall Australian 0.8320 0.8601 0.8824 0.8850
European 0.9184 0.9463 0.7959 0.8059
CIC-MalMem-2022 0.9996 0.9997 0.9976 0.9976
Real vs. Fake Job Postings 0.6655 0.8149 0.7695 0.8014
Prediction
Ranking (W|T|L) 0014 30]1 00]4 1103
F1-Score Australian 0.8660 0.8795 0.8036 0.8560
European 0.9460 0.9585 0.9456 09118
CIC-MalMem-2022 0.9996 0.9997 0.9965 0.9965
Real vs. Fake Job Postings 0.7100 0.8079 0.5369 0.5435
Prediction
Ranking (W/|T|L) 0[0]4 4)0]0 0[0]4 0[0]4
ROC_AUC Australian 0.9107 0.9162 0.8492 0.8492
European 0.9654 0.9795 0.8950 0.8949
CIC-MalMem-2022 0.9998 1.0000 0.9966 0.9969
Real vs. Fake Job Postings 0.7415 0.8648 0.6529 0.6565
Prediction
Ranking (W|T|L) 00[4 4]0/0 0]0}4 0]0}4

Bold values indicate the best-performing results for each evaluation measure.
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TABLE 7 Outcomes of the suggested BKOA-GOBL and various MHTs using the K-NN classifier concerning the average classification accuracy, fitness, selected features, precision, recall, F-score, and ROC_AUC.

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
Australian Mean 0.9051 0.8935 0.8845 0.9024 0.9014 0.8780 0.8865 0.8986 0.8935 0.8870 0.9010 0.8944
SD 0.0022 0.0065 0.0079 0.0036 0.0044 0.0075 0.0063 0.0059 0.0042 0.0091 0.0047 0.0055
European Mean 0.9479 0.9384 0.9315 0.9460 0.9450 0.9308 0.9342 0.9450 0.9372 0.9321 0.9418 0.9377
SD 0.0028 0.0031 0.0064 0.0036 0.0035 0.0062 0.0035 0.0047 0.0033 0.0048 0.0031 0.0035
Accuracy Synthetic financial transaction log Mean 0.9851 0.9851 0.9849 0.9851 0.9851 0.9814 0.9850 0.9851 0.9851 0.9841 0.9851 0.9851
SD 0.0000 0.0000 0.0003 0.0000 0.0000 0.0091 0.0002 0.0000 0.0000 0.0046 0.0000 0.0000
CIC-MalMem-2022 Mean 0.9996 0.9993 0.9993 0.9995 0.9995 0.9994 0.9992 0.9995 0.9993 0.9992 0.9994 0.9993
SD 0.0002 0.0004 0.0004 0.0002 0.0002 0.0003 0.0004 0.0003 0.0002 0.0004 0.0003 0.0003
Real vs. Fake Job Postings Mean 0.7412 0.7341 0.6926 0.7338 0.7279 0.7180 0.7136 0.7266 0.7239 0.7056 0.7324 0.7284
Prediction
SD 0.0070 0.0090 0.0408 0.0164 0.0243 0.0252 0.0299 0.0315 0.0215 0.0370 0.0173 0.0219
Ranking WIT|L 4110 0[1]4 0[0[5 0[1]4 0[1]4 0/0[5 0/0]5 0|14 0]1]4 0l0]5 0|14 0|14
Australian Mean 0.0984 0.1105 0.1196 0.1011 0.1020 0.1261 0.1178 0.1051 0.1103 0.1169 0.1030 0.1095
SD 0.0024 0.0069 0.0077 0.0034 0.0041 0.0072 0.0059 0.0058 0.0042 0.0087 0.0048 0.0057
European Mean 0.0556 0.0655 0.0725 0.0574 0.0587 0.0733 0.0703 0.0583 0.0666 0.0717 0.0620 0.0660
SD 0.0027 0.0032 0.0063 0.0037 0.0034 0.0064 0.0035 0.0048 0.0028 0.0047 0.0031 0.0034
Fitness Synthetic financial transaction log Mean 0.0177 0.0177 0.0190 0.0177 0.0177 0.0230 0.0189 0.0177 0.0177 0.0197 0.0177 0.0179
SD 0.0000 0.0003 0.0015 0.0000 0.0000 0.0101 0.0006 0.0000 0.0000 0.0050 0.0000 0.0005
CIC-MalMem-2022 Mean 0.0027 0.0043 0.0044 0.0027 0.0027 0.0040 0.0049 0.0029 0.0040 0.0045 0.0038 0.0044
SD 0.0002 0.0003 0.0004 0.0004 0.0005 0.0003 0.0002 0.0004 0.0002 0.0003 0.0004 0.0002
Real vs. Fake Job Postings Mean 0.2613 0.2682 0.3096 0.2688 0.2744 0.2842 0.2896 0.2759 0.2790 0.2964 0.2701 0.2740
Prediction
SD 0.0070 0.0089 0.0403 0.0161 0.0240 0.0249 0.0296 0.0313 0.0210 0.0368 0.0172 0.0217
Ranking WIT|L 3210 0[1]4 0[0[5 0[2[3 0/2[3 0/0[5 0/0]5 0]1]4 0]1]4 0]0J5 0|14 0]0|5
Australian Mean 05.80 07.10 07.43 06.30 06.27 07.43 07.63 06.47 06.80 06.97 07.00 06.97
SD 00.91 01.22 01.28 01.07 00.73 01.86 01.22 00.81 00.91 01.22 01.18 01.38
European Mean 11.17 13.67 13.97 11.90 12.67 14.40 15.37 11.60 13.33 13.57 13.10 13.00
SD 02.41 02.44 02.81 02.24 03.12 03.19 02.44 02.67 02.81 02.65 02.49 02.32
(Continued)
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TABLE 7 (Continued)

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
Features’ Size Synthetic Financial Transaction Mean 02.00 02.03 02.87 02.00 02.00 03.17 02.87 02.00 02.00 02.80 02.00 02.17
Log
SD 00.00 00.18 00.88 00.00 00.00 01.07 00.43 00.00 00.00 00.65 00.00 00.37
CIC-MalMem-2022 Mean 11.00 18.87 19.13 11.27 11.77 17.57 21.37 12.67 17.37 19.33 16.57 19.60
SD 02.03 02.22 02.51 02.08 02.38 01.82 02.24 02.44 01.66 02.44 02.36 01.98
Real vs. Fake Job Postings Mean 727.8 716.6 745.8 742.1 717.8 722.5 862.2 750.1 806.2 705.2 744.1 726.3
Prediction
SD 043.5 059.0 078.8 055.2 039.1 063.2 041.6 069.0 094.5 082.2 019.4 030.4
Ranking WIT|L 31111 0[0[5 0[0[5 0[1]4 0[114 0]0[5 00]5 0]1]4 0]1]4 1]0[4 0|14 0]0]5
Australian Mean 0.9033 0.8767 0.8550 0.9029 0.8997 0.7722 0.8679 0.8896 0.8805 0.8630 0.8972 0.8814
SD 0.0152 0.0149 0.0225 0.0193 0.0198 0.1514 0.0202 0.0232 0.0161 0.0264 0.0242 0.0183
European Mean 0.9755 0.9708 0.9646 0.9730 0.9743 0.8761 0.9675 0.9740 0.9732 0.9687 0.9718 0.9691
SD 0.0053 0.0067 0.0087 0.0069 0.0066 0.1987 0.0068 0.0063 0.0065 0.0077 0.0072 0.0080
Precision Synthetic Financial Transaction Mean 0.9856 0.9749 0.9752 0.9749 0.9749 0.9749 0.9751 0.9749 0.9749 0.9742 0.9749 0.9749
Log
SD 0.1496 0.0000 0.0003 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0049 0.0000 0.0001
CIC-MalMem-2022 Mean 0.9995 0.9994 0.9994 0.9995 0.9995 0.9994 0.9993 0.9995 0.9995 0.9994 0.9995 0.9994
SD 0.0002 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 0.0003
Real vs. Fake Job Postings Mean 0.7614 0.7514 0.7063 0.7504 0.7473 0.7040 0.7281 0.7430 0.7423 0.7241 0.7541 0.7472
Prediction
SD 0.0104 0.0185 0.0546 0.0268 0.0305 0.1282 0.0458 0.0419 0.0246 0.0484 0.0267 0.0312
Ranking WIT|L 4110 0[0[5 0[0[5 0[1]4 0[1]4 0/0[5 0/0]5 0]1]4 0|14 0]0]5 0|14 0]0|5
Australian Mean 0.8320 0.8288 0.8294 0.8255 0.8261 0.8183 0.8183 0.8294 0.8242 0.8268 0.8281 0.8261
SD 0.0149 0.0208 0.0254 0.0163 0.0141 0.0361 0.0208 0.0184 0.0186 0.0254 0.0180 0.0150
European Mean 0.9184 0.9034 0.8952 0.9170 0.9136 0.8925 0.8980 0.9139 0.8986 0.8925 0.9095 0.9037
SD 0.0070 0.0078 0.0134 0.0094 0.0105 0.0101 0.0075 0.0094 0.0064 0.0101 0.0082 0.0086
Recall Synthetic Financial Transaction Mean 0.9957 0.9957 0.9951 0.9957 0.9957 0.9918 0.9954 0.9957 0.9957 0.9945 0.9957 0.9957
Log
SD 0.0000 0.0000 0.0008 0.0000 0.0000 0.0086 0.0005 0.0000 0.0000 0.0043 0.0000 0.0002
CIC-MalMem-2022 Mean 0.9996 0.9992 0.9993 0.9995 0.9995 0.9993 0.9991 0.9995 0.9992 0.9990 0.9993 0.9993
(Continued)
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TABLE 7 (Continued)

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
SD 0.0003 0.0006 0.0005 0.0003 0.0003 0.0005 0.0007 0.0004 0.0005 0.0006 0.0005 0.0006
Real vs. Fake Job Postings Mean 0.6655 0.6622 0.6151 0.6636 0.6504 0.6416 0.6463 0.6548 0.6444 0.6229 0.6525 0.6530
Prediction
SD 0.0175 0.0299 0.0717 0.0277 0.0552 0.0661 0.0709 0.0478 0.0424 0.0664 0.0217 0.0354
Ranking WI|T|L 4110 0[1]4 B 0l1]4 0l1]4 0l0/5 00/5 0]1]4 01/4 00J5 0]1]4 0]1/4
Australian Mean 0.8660 0.8518 0.8415 0.8621 0.8611 0.8320 0.8419 0.8580 0.8511 0.8439 0.8608 0.8526
SD 0.0036 0.0100 0.0107 0.0043 0.0050 0.0118 0.0086 0.0074 0.0065 0.0122 0.0050 0.0071
European Mean 0.9460 0.9359 0.9285 0.9441 0.9429 0.9277 0.9314 0.9430 0.9344 0.9290 0.9396 0.9352
SD 0.0037 0.0034 0.0070 0.0039 0.0039 0.0065 0.0030 0.0051 0.0035 0.0052 0.0034 0.0037
F1-Score Synthetic Financial Transaction Mean 0.9852 0.9852 0.9851 0.9852 0.9852 0.9815 0.9852 0.9852 0.9852 0.9843 0.9852 0.9852
Log
SD 0.0000 0.0000 0.0003 0.0000 0.0000 0.0090 0.0002 0.0000 0.0000 0.0046 0.0000 0.0000
CIC-MalMem-2022 Mean 0.9996 0.9993 0.9993 0.9995 0.9995 0.9994 0.9992 0.9995 0.9993 0.9992 0.9994 0.9993
SD 0.0002 0.0004 0.0004 0.0002 0.0002 0.0003 0.0004 0.0003 0.0002 0.0004 0.0003 0.0003
Real vs. Fake Job Postings Mean 0.7100 0.7032 0.6546 0.7036 0.6938 0.6827 0.6812 0.6948 0.6892 0.6672 0.6991 0.6959
Prediction
SD 0.0098 0.0133 0.0515 0.0161 0.0363 0.0412 0.0392 0.0377 0.0297 0.0480 0.0162 0.0231
Ranking WI|T|L 4110 0[1]4 0[0/5 0[1]4 0l1]4 G 0]1/4 014 01/4 00/5 0]1/4 01/4
Australian Mean 0.9107 0.9071 0.9011 0.9086 0.9083 0.8933 0.9000 0.9083 0.9044 0.9011 0.9091 0.9068
SD 0.0045 0.0114 0.0132 0.0055 0.0068 0.0139 0.0136 0.0078 0.0122 0.0139 0.0088 0.0102
European Mean 0.9654 0.9576 0.9550 0.9636 0.9627 0.9566 0.9573 0.9631 0.9608 0.9567 0.9598 0.9600
SD 0.0067 0.0072 0.0068 0.0074 0.0067 0.0073 0.0067 0.0071 0.0068 0.0089 0.0077 0.0070
ROC_AUC Synthetic Financial Transaction Mean 0.9935 0.9934 0.9935 0.9934 0.9934 0.9922 0.9935 0.9934 0.9934 0.9932 0.9934 0.9934
Log
SD 0.0002 0.0000 0.0002 0.0000 0.0000 0.0032 0.0002 0.0000 0.0000 0.0017 0.0000 0.0001
CIC-MalMem-2022 Mean 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 0.9998 0.9997
SD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001
Real vs. Fake Job Postings Mean 0.7415 0.7341 0.7082 0.7358 0.7298 0.7297 0.7223 0.7295 0.7341 0.7106 0.7359 0.7370
Prediction
SD 0.0129 0.0123 0.0417 0.0170 0.0240 0.0240 0.0276 0.0308 0.0200 0.0378 0.0200 0.0165
Ranking WI|T|L 31200 0[1]4 0[2/3 0[1]4 01]4 0l1]4 012/3 01]4 0]1/4 00J5 0]1/4 00/5

Bold values indicate the best-performing results for each evaluation measure.
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losses, positioning it as the most effective FS technique across all
benchmark datasets.

4.7 Experimental outcomes of the
proposed BKOA-GOBL vs. various recent
MHTs employing Xgb-tree classifier

Table 8 shows an evaluation of the proposed BKOA-GOBL
algorithm performance via considerable MHTs utilizing an
Xgb-tree classifier regarding five benchmark datasets (Australian,
European, Synthetic Financial Transaction Log, Real vs. Fake Job
Postings Prediction, and CIC-MalMem-2022). Essential measures
examined classification accuracy, fitness, selected features,
precision, recall, F-score and ROC_AUC.

Table 8 presents the outcomes of the BKOA-GOBL based on
Xgb-tree and its peers concerning classification accuracy across
five utilized datasets (Australian, European, Synthetic Financial
Transaction Log, Real vs. Fake Job Postings Prediction, and CIC-
MalMem-2022). The performance of each algorithm is evaluated
based on average accuracy and SD from multiple runs, shedding
light on their reliability and effectiveness. The proposed BKOA-
GOBL with Xgb-tree ranked first, achieving the highest average
accuracy and smallest SD across all datasets, which reflects
its stability and exceptional performance. For instance, in the
Australian benchmark, BROA-GOBL records a mean accuracy of
0.9135 with an SD of 0.0061, while on CIC-MalMem-2022, it
achieves a perfect score of 0.9997 with an SD of just 0.0001. The
BAVO comes closely behind, consistently ranked second in average
accuracy across most datasets and providing competitive SD values,
including an average accuracy of 0.0.9582 on the Australian dataset
and 0.9460 on the European dataset.

In addition, the proposed BKOA-GOBL with Xgb-tree ranked
first, achieving the highest average precision, recall, F1-measures,
and smallest SD across most benchmark datasets, which reflects
its stability and exceptional performance. The BAVO comes
closely behind, consistently ranked second in average precision,
recall, and F1 measures across most datasets and provides
competitive SD values. These measures emphasize that the
proposed BKOA-GOBL with Xgb-tree has a balanced performance
and strong reliability. Precision demonstrates its success in
minimizing false positives, while recall estimates its sensitivity
to true positives. The Fl-score presents a combined assessment
of both precision and recall, reflecting overall classification
quality. The consistently low SD values indicate that BKOA-
GOBL exhibits stability and effectiveness, as demonstrated by
numerous runs, resulting in minimal variability and reduced risk of
performance decline.

Moreover, the proposed BKOA-GOBL with Xgb-tree achieves
the smallest size of feature reduction in all benchmark datasets,
establishing its effectiveness in selecting the most appropriate
attributes while ensuring high classification accuracy. BKOA-
GOBL with Xgb-tree obtains the smallest mean size of features
in Australian (06.27), European (13.13), Synthetic Financial
Transaction Log (04.00), Real vs. Fake Job Postings Prediction
(709.8), and CIC-MalMem-2022 (09.10), significantly decreasing
the size of chosen attributes compared to other MHTs. The
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ranking demonstrates BROA-GOBLs superiority over Xgb-tree,
with four wins, one tie, and zero losses, making it one of the
most effective techniques for FS across all benchmark datasets.
Finally, the proposed BKOA-GOBL with Xgb-tree ranked first,
achieving the smallest fitness values and smallest SD across
all benchmark datasets, which reflects its stability, exceptional
performance, and balancing capability between accuracy and
number of selected features.

Regarding the ROC_AUC results, the proposed BKOA-GOBL
with Xgb-tree consistently achieves the highest ROC_AUC scores
and the lowest SD across most benchmark datasets, reflecting its
strong ability to distinguish fraudulent from legitimate instances
under varying threshold settings. For example, it secures an
almost perfect AUC of 1.0000 with an SD of 0.0001 on the CIC-
MalMem-2022 dataset and records leading performance across
the Synthetic Financial Transaction Log (0.9990) and European
(0.9795) datasets as well. Competing algorithms rank noticeably
lower, with fewer wins and higher variability, reinforcing the
superior and stable discriminative power of the BKOA-GOBL with
XGB-Tree classifier. The ranking clearly confirms the superiority
of BKOA-GOBL, achieving three wins, two ties, and no losses,
positioning it as the most effective FS technique across all
benchmark datasets.

4.8 Convergence investigation

The asymptotic capabilities of the proposed approaches
(BKOA-GOBL with k-NN and BKOA-GOBL with Xgb-tree) are
examined in this section for addressing fraud and malware
classification using five datasets. The aim is to evaluate the
performance of convergence, as shown in Figures2, 3. These
figures demonstrate that the suggested BKOA-GOBL with
K-NN and Xgb-tree classifiers achieves both optimal and
rapid convergence with all datasets, outperforming other MHTs
under the same conditions of population size and number
of iterations.

4.9 Precision-recall analysis

The precision-recall curves provide a detailed view of
the classification performance of the proposed BKOA-GOBL
framework under varying discrimination thresholds. Unlike
accuracy, which can be misleading in highly imbalanced datasets,
precision-recall curves focus on two critical measures for
FD-precision (the ability to avoid false alarms) and recall
(the ability to detect true fraud). As shown in Figures4, 5,
the superiority of the suggested BKOA-GOBL with K-NN
and Xgb-tree classifiers is especially pronounced with most
datasets, where most alternative approaches show sharp
declines in precision as recall increases. The consistently
smooth and high-positioned curves reinforce that the suggested
BKOA-GOBL effectively avoids local optima and yields reliable
features that distinguish fraudulent patterns even under difficult

data conditions.
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TABLE 8 Outcomes of the suggested BKOA-GOBL and various MHTs using Xgb-tree classifier concerning the average classification accuracy, fitness, selected features, precision, recall, F-score and ROC_AUC.

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
Australian Mean 0.9135 0.8973 0.8833 0.9068 0.9053 0.8778 0.8870 0.9022 0.8949 0.8853 0.9027 0.8969
SD 0.0061 0.0075 0.0094 0.0061 0.0075 0.0091 0.0078 0.0074 0.0079 0.0075 0.0072 0.0081
European Mean 0.9594 0.9526 0.9459 0.9582 0.9567 0.9489 0.9492 0.9548 0.9508 0.9479 0.9558 0.9525
SD 0.0023 0.0044 0.0042 0.0039 0.0034 0.0043 0.0035 0.0040 0.0027 0.0051 0.0030 0.0033
Accuracy Synthetic financial transaction log Mean 0.9917 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915
SD 0.0008 0.0002 0.0000 0.0000 0.0000 0.0013 0.0004 0.0000 0.0000 0.0012 0.0000 0.0002
CIC-MalMem-2022 Mean 0.9997 0.9996 0.9996 0.9997 0.9997 0.9996 0.9996 0.9997 0.9996 0.9996 0.9996 0.9996
SD 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002
Real vs. Fake Job Postings Mean 0.8158 0.8002 0.7868 0.8097 0.8095 0.7908 0.7930 0.8111 0.7988 0.7907 0.8047 0.8003
Prediction
SD 0.0060 0.0073 0.0093 0.0074 0.0078 0.0061 0.0068 0.0081 0.0067 0.0088 0.0060 0.0084
Ranking WITIL 4110 0/0|5 0/0|5 0[1]4 0[1]4 0/0]5 00|5 01]4 00/5 00/5 00/5 00/5
Australian Mean 0.0910 0.1066 0.1206 0.0970 0.0984 0.1264 0.1179 0.1016 0.1094 0.1183 0.1011 0.1066
SD 0.0056 0.0071 0.0093 0.0059 0.0071 0.0095 0.0078 0.0072 0.0075 0.0070 0.0070 0.0079
European Mean 0.0446 0.0516 0.0586 0.0457 0.0473 0.0555 0.0558 0.0494 0.0537 0.0563 0.0484 0.0518
SD 0.0020 0.0043 0.0040 0.0039 0.0034 0.0039 0.0032 0.0039 0.0020 0.0048 0.0027 0.0033
Fitness Synthetic financial transaction log Mean 0.0142 0.0142 0.0148 0.0142 0.0142 0.0155 0.0143 0.0142 0.0142 0.0146 0.0142 0.0142
SD 0.0000 0.0001 0.0010 0.0000 0.0000 0.0013 0.0003 0.0000 0.0000 0.0010 0.0000 0.0001
CIC-MalMem-2022 Mean 0.0021 0.0037 0.0036 0.0021 0.0021 0.0034 0.0042 0.0024 0.0033 0.0037 0.0031 0.0038
SD 0.0002 0.0003 0.0004 0.0004 0.0003 0.0002 0.0002 0.0004 0.0002 0.0004 0.0003 0.0002
Real vs. Fake Job Postings Mean 0.1874 0.2028 0.2166 0.1935 0.1937 0.2123 0.2109 0.1921 0.2052 0.2124 0.1986 0.2028
Prediction
SD 0.0060 0.0071 0.0091 0.0073 0.0078 0.0060 0.0066 0.0080 0.0066 0.0086 0.0060 0.0083
Ranking WITIL 312/0 0/1]4 0/0]5 0[2/3 012/3 0/0|5 00|5 01]4 01]4 00/5 01]4 01]4
Australian Mean 06.27 07.00 07.20 06.57 06.47 07.53 08.33 06.60 07.47 06.63 06.57 06.50
SD 01.86 01.83 01.90 01.80 01.77 02.26 01.49 01.99 01.67 01.54 01.50 01.67
European Mean 13.13 14.20 15.03 14.00 13.33 14.60 16.63 14.00 14.73 14.20 13.90 14.30
SD 01.78 02.29 02.89 02.52 02.45 03.31 02.37 02.70 02.42 02.50 02.80 02.15
Features’ size Synthetic financial transaction log Mean 04.00 04.07 04.67 04.00 04.00 04.90 04.30 04.00 04.00 04.33 04.00 04.07
(Continued)
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TABLE 8 (Continued)

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
SD 00.00 00.25 00.70 00.00 00.00 00.87 00.46 00.00 00.00 00.54 00.00 00.25
CIC-MalMem-2022 Mean 09.10 17.37 16.93 09.53 09.47 15.73 19.80 10.97 15.37 17.37 14.33 17.70
SD 01.74 01.62 02.53 01.78 01.63 01.12 01.40 01.89 00.88 01.99 01.47 01.39
Real vs. Fake Job Postings Mean 709.8 718.6 789.6 730.3 723.5 730.5 855.0 730.7 846.0 735.6 750.3 727.2
Prediction
SD 023.7 036.6 084.2 051.6 047.4 075.4 039.2 041.7 063.5 080.9 046.8 036.8
Ranking WITIL 4110 0/0|5 0/0|5 0/1]4 0/1]4 0/0|5 00|5 0]1]4 0/1]4 00/5 01]4 00/5
Australian Mean 0.9053 0.8722 0.8629 0.8931 0.8849 0.7513 0.8659 0.8851 0.8769 0.8616 0.8850 0.8755
SD 0.0269 0.0223 0.0241 0.0215 0.0236 0.1574 0.0211 0.0189 0.0246 0.0268 0.0226 0.0236
European Mean 0.9751 0.9668 0.9627 0.9692 0.9696 0.9737 0.9646 0.9696 0.9654 0.9641 0.9689 0.9668
SD 0.0060 0.0074 0.0095 0.0094 0.0064 0.0433 0.0096 0.0079 0.0081 0.0080 0.0065 0.0088
Precision Synthetic financial transaction log Mean 0.9884 0.9880 0.9882 0.9879 0.9879 0.9879 0.9880 0.9879 0.9879 0.9879 0.9879 0.9880
SD 0.0008 0.0004 0.0018 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0021 0.0000 0.0004
CIC-MalMem-2022 Mean 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996
SD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Real vs. Fake Job Postings Mean 0.8029 0.7855 0.7741 0.7921 0.7943 0.7166 0.7830 0.7972 0.7855 0.7762 0.7878 0.7867
Prediction
SD 0.0117 0.0117 0.0133 0.0138 0.0147 0.1424 0.0127 0.0137 0.0150 0.0148 0.0126 0.0122
Ranking WITIL 4l0/1 0/0|5 0/0|5 0/0|5 0/0|5 1/0]4 00|5 00/5 00/5 00/5 00/5 00/5
Australian Mean 0.8601 0.8477 0.8150 0.8503 0.8562 0.8105 0.8222 0.8458 0.8340 0.8235 0.8477 0.8418
SD 0.0172 0.0285 0.0302 0.0172 0.0211 0.0279 0.0208 0.0194 0.0219 0.0300 0.0213 0.0263
European Mean 0.9463 0.9371 0.9272 0.9363 0.9425 0.9303 0.9323 0.9388 0.9347 0.9299 0.9415 0.9367
SD 0.0098 0.0099 0.0094 0.0098 0.0089 0.0127 0.0110 0.0099 0.0094 0.0082 0.0095 0.0103
Recall Synthetic financial transaction log Mean 0.9954 0.9951 0.9952 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951
SD 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0005 0.0000 0.0000
CIC-MalMem-2022 Mean 0.9997 0.9996 0.9996 0.9997 0.9997 0.9996 0.9996 0.9997 0.9997 0.9996 0.9997 0.9996
(Continued)
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TABLE 8 (Continued)

Measure Datasets Metric BKOA-GOBL BKOA BMOA BAVO BSSO BASO BHGSO BHHO BSFO BBA BGOA BPSO
SD 0.0002 0.0003 0.0005 0.0003 0.0002 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004
Real vs. Fake Job Postings Mean 0.8149 0.7993 0.7806 0.8149 0.8104 0.7915 0.7830 0.8102 0.7955 0.7884 0.8083 0.7974
Prediction
SD 0.0180 0.0203 0.0186 0.0200 0.0181 0.0256 0.0207 0.0192 0.0236 0.0214 0.0199 0.0152
Ranking WIT|L 3210 0[0|5 0[0|5 023 014 0[0|5 0[0|5 0[1]4 0[1]4 0[0]5 0[1]4 0[0]5
Australian Mean 0.8795 0.8591 0.8376 0.8708 0.8699 0.8305 0.8431 0.8647 0.8544 0.8413 0.8655 0.8577
SD 0.0070 0.0109 0.0140 0.0078 0.0099 0.0128 0.0108 0.0104 0.0101 0.0104 0.0096 0.0114
European Mean 0.9585 0.9516 0.9446 0.9575 0.9558 0.9477 0.9481 0.9539 0.9497 0.9467 0.9550 0.9514
SD 0.0024 0.0046 0.0043 0.0040 0.0036 0.0047 0.0037 0.0042 0.0028 0.0052 0.0032 0.0035
F1-Score Synthetic financial transaction log Mean 0.9915 0.9915 0.9918 0.9915 0.9915 0.9915 0.9917 0.9915 0.9915 0.9915 0.9915 0.9915
SD 0.0000 0.0002 0.0008 0.0000 0.0000 0.0013 0.0004 0.0000 0.0000 0.0012 0.0000 0.0002
CIC-MalMem-2022 Mean 0.9997 0.9996 0.9996 0.9997 0.9997 0.9996 0.9996 0.9997 0.9996 0.9996 0.9996 0.9996
SD 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002
Real vs. Fake Job Postings Mean 0.8079 0.7921 0.7772 0.8031 0.8020 0.7827 0.7827 0.8034 0.7901 0.7820 0.7976 0.7919
Prediction
SD 0.0068 0.0088 0.0103 0.0082 0.0081 0.0084 0.0084 0.0088 0.0083 0.0100 0.0072 0.0089
Ranking WITIL 311 00]5 1/0[4 014 01]4 00J5 00/5 0|14 00|5 0015 0015 005
Australian Mean 0.9162 0.9056 0.9061 0.9132 0.9122 0.9010 0.9034 0.9099 0.9063 0.9070 0.9070 0.9071
SD 0.0050 0.0101 0.0113 0.0051 0.0085 0.0104 0.0090 0.0089 0.0106 0.0116 0.0121 0.0108
European Mean 0.9795 0.9772 0.9774 0.9789 0.9780 0.9757 0.9771 0.9780 0.9765 0.9755 0.9795 0.9777
SD 0.0053 0.0046 0.0043 0.0045 0.004 0.0049 0.0049 0.0044 0.0047 0.0052 0.0042 0.0038
ROC_AUC Synthetic financial transaction log Mean 0.9990 0.9986 0.9989 0.9985 0.9985 0.9990 0.9987 0.9985 0.9985 0.9987 0.9985 0.9986
SD 0.0004 0.0002 0.0004 0.0000 0.0000 0.0004 0.0003 0.0000 0.0000 0.0004 0.0000 0.0002
CIC-MalMem-2022 Mean 1.0000 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
SD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Real vs. Fake Job Postings Mean 0.8648 0.8576 0.8490 0.8602 0.8586 0.8488 0.8493 0.8612 0.8552 0.8436 0.8575 0.8509
Prediction
SD 0.0113 0.0124 0.0106 0.0093 0.0103 0.0134 0.0118 0.0135 0.0119 0.0175 0.0113 0.0120
Ranking WIT|L 31210 0/0|5 0]1]4 00/5 0|14 012|3 00/5 00/5 00/5 0015 0[0|5 0/0|5

Bold values indicate the best-performing results for each evaluation measure.
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Number of iterations

Real vs Fake Job Postings Prediction Dataset

4.10 Wilcoxon's rank-sum test

The Wilcoxon signed-rank test was used to perform a statistical
analysis comparing the fitness function values from the BKOA-
GOBL and other algorithms, as shown in Tables 9, 10 (Derrac et al.,
2011). The aim was to determine if there were any significant
differences between them.

The Wilcoxon signed-rank test is a non-parametric method
used in hypothesis testing to compare two related samples. It
involves calculating the differences between paired results for a
set of problems and ranking these differences by their absolute
values. The process then computes the totals of ranks for positive
differences (R™) and negative differences (R™), identifying the
smaller of the two. The significance of the test is determined using
a p-value; if it is below 0.05, it indicates that the differences between
the two approaches are statistically significant, suggesting strong
evidence against the null hypothesis.

The analysis of the results in Tables9, 10 demonstrates
that the BKOA-GOBL method significantly outperforms other
methods when implemented with either k-NN or Xgb-tree
classifiers across the entire test scenarios. The p-values in the
tables are consistently below the 0.05 threshold, indicating that
the enhancements provided by BKOA-GOBL are statistically
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significant and not merely coincidental. These results confirm the
superior performance of the BKOA-GOBL method compared to
other alternatives.

In summary, the results of the Wilcoxon test showcase the
strong performance of the BKOA-GOBL algorithm, reaffirming
its statistical superiority. The consistent rejection of the null
hypothesis indicates that the enhancements made by BROA-GOBL
are significant and worthwhile.

4.11 Real-time integration feasibility

The BKOA-GOBL framework shows real promise for real-
time FD, particularly in environments where decisions must
be made in milliseconds. By reducing the number of features,
the entire process is accelerated-less data means faster scoring
and fewer chances of system slowdowns. That's a significant
win when you’re trying to catch fraud before a transaction is
processed. These improvements make it a strong candidate for
integration into live monitoring systems, where speed and accuracy
are non-negotiable.

Reducing the feature set doesn’t just help with speed-it also
reduces memory usage, which is a significant advantage when
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deploying models in production. Whether it’s running on a cloud
server or a small device at the edge, like a payment terminal, leaner
models are easier to manage. The beauty of BROA-GOBL lies in its
flexibility: for smaller workloads, it runs smoothly on regular CPUs,
but when dealing with massive volumes-such as in an extensive
financial network-it can scale up with GPUs or distributed systems
to maintain speed and responsiveness.

Another strength of BKOA-GOBL is its ability to work in
both batch and streaming setups. Batch processing is ideal for
retraining and updating the model periodically, while streaming
enables real-time decisions as transactions occur. Although this
study didn’t simulate live data streams directly, the performance
gains we observed suggest that the system is well-equipped for such
an environment. Testing it on actual transaction flows would be a
logical next step—and one that could really show how well it holds
up under pressure.

5 Practical deployment
considerations

Although the proposed BKOA-GOBL has demonstrated
significant efficacy in benchmark datasets, transitioning from
experimental validation to deployment in real-world financial
systems necessitates addressing multiple operational and systemic
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challenges. This section outlines the key considerations for
effective integration.

5.1 Integration into financial infrastructure

The implementation of the proposed BKOA-GOBL system
within current financial ecosystems necessitates the seamless
incorporation with extant legacy systems, the establishment of
secure data transmission channels, and adherence to prevailing
regulatory frameworks. Principal challenges associated with
integration encompass:
seamless

e The capability to achieve

compatibility among a variety of data formats and sources

integration and

across different institutional frameworks.

e Tuning the algorithm for low-latency environments where FD
must occur instantly.

e Maintaining data confidentiality and adhering to standards.

5.2 Scalability and computational
efficiency

Financial institutions process vast volumes of transactions
daily. BROA-GOBL must scale efficiently to handle:
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e Optimizing parallel processing and memory usage for large-
scale deployment.

e Leveraging distributed architectures to support scalable and
resilient operations.

e Automating updates to maintain performance as fraud
patterns evolve.

5.3 Interpretability and regulatory
compliance

In FD, interpretability is crucial for establishing trust, ensuring
auditability, and maintaining legal accountability. To meet
these needs:

e Providing clear insights into which features influenced

detection decisions.
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e Integrating post-hoc interpretability methods such as
Explainable Al to visualize decision boundaries and model
behavior.

e Allowing analysts to validate and override automated

decisions when necessary.

5.4 Operational monitoring and
maintenance

Long-term success of BKOA-GOBL depends on robust
operational support:

e Monitoring for changes in data distribution that may degrade

model performance.
e Prioritizing alerts to reduce false positives and analyst fatigue.
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TABLE 9 Wilcoxon'’s test for the average classification error of the proposed BKOA-GOBL and its peers concerning K-NN.

BKOA-GOBL-k-NN vs. Confidence Exact Winner
interval confidence
BKOA 10.0 0.0 0.04461 0,0.0116 0.9375 BKOA-GOBL
BMOA 15.0 0.0 0.030971 0.0002, 0.0346 0.9375 BKOA-GOBL
BAVO 10.0 0.0 0.04461 0, 0.00505 0.9375 BKOA-GOBL
BSSO 10.0 0.0 0.04461 0, 0.0085 0.9375 BKOA-GOBL
BASO 15.0 0.0 0.030971 0.0002, 0.0271 0.9375 BKOA-GOBL
BHGSO 15.0 0.0 0.030971 0.0001, 0.0231 0.9375 BKOA-GOBL
BHHO 10.0 0.0 0.04461 0, 0.01055 0.9375 BKOA-GOBL
BSFO 10.0 0.0 0.04461 0, 0.01445 0.9375 BKOA-GOBL
BBA 15.0 0.0 0.030971 0.0004, 0.02685 0.9375 BKOA-GOBL
BGOA 10.0 0.0 0.04461 0, 0.00745 0.9375 BKOA-GOBL
BPSO 10.0 0.0 0.04461 0,0.01175 0.9375 BKOA-GOBL
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TABLE 10 Wilcoxon's test for the average classification error of the proposed BKOA-GOBL and its peers concerning Xgb-tree.

BKOA 15.0 0.0 0.030971 0,0.0116 0.9375 BKOA-GOBL
BMOA 15.0 0.0 0.030971 0.0002, 0.0346 0.9375 BKOA-GOBL
BAVO 10.0 0.0 0.04461 0, 0.00505 0.9375 BKOA-GOBL
BSSO 10.0 0.0 0.04461 0, 0.0085 0.9375 BKOA-GOBL
BASO 15.0 0.0 0.030971 0.0002, 0.0271 0.9375 BKOA-GOBL
BHGSO 15.0 0.0 0.030971 0.0001, 0.0231 0.9375 BKOA-GOBL
BHHO 10.0 0.0 0.04461 0,0.01055 0.9375 BKOA-GOBL
BSFO 15.0 0.0 0.06250 0,0.01445 0.9375 BKOA-GOBL
BBA 15.0 0.0 0.030971 0.0004, 0.02685 0.9375 BKOA-GOBL
BGOA 15.0 0.0 0.030971 0, 0.00745 0.9375 BKOA-GOBL
BPSO 15.0 0.0 0.030971 0,0.01175 0.9375 BKOA-GOBL

e Incorporating user feedback to refine model accuracy and
relevance.

6 Conclusion and future directions

This study introduced a robust and adaptive FD methodology,
BKOA-GOBL, for improved FD and convergence behavior. The
method effectively balances exploration and exploitation through
planetary motion-inspired dynamics and addresses class imbalance
using RUS. Two classifiers, K-NN and Xgb-tree, were employed
to assess the classification accuracy of selected feature subsets.
Comprehensive experiments across five diverse and real-world
datasets demonstrated that BROA-GOBL consistently outperforms
traditional classifiers and twelve state-of-the-art MHAs in terms of
several performance indicators, such as accuracy, feature reduction,
and fitness. Specifically, the proposed methodology achieved
classification accuracies of up to 99.96% and feature reduction
rates of up to 81.82%, while maintaining high precision, recall,
and F1-scores (all exceeding 0.95) across the datasets. The BKOA-
GOBL exhibited superior exploration and exploitation compared
to its counterparts. The statistical significance of its superiority
was confirmed using Wilcoxon’s rank-sum test at a 5% significance
level. These results affirm the proposed model’s adaptability,
efficiency, and robustness, making it a promising tool for real-
world FD applications in high-dimensional and imbalanced data
environments. The proposed BKOA-GOBL, while effective, has
several limitations: the use of RUS helps balance the dataset but may
remove valuable information and reduce classification accuracy;
the integration of BKOA and mutation strategies enhances FS
efficiency but introduces additional computational complexity
compared to simpler models; its success depends heavily on
optimal parameter tuning, requiring extra effort in hyperparameter
optimization; and although validated on five benchmark datasets,
its applicability to real-time, large-scale transaction data across
diverse regions and industries remains to be investigated.

Looking ahead, future research can focus on enhancing the
capabilities of BKOA-GOBL through hybridization with other
swarm-based or evolutionary algorithms to improve its global
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search ability and convergence behavior. Exploring the adaptation
of BKOA-GOBL to real-time FD systems using streaming
data environments, where latency and adaptability are critical.
Incorporating online learning mechanisms into the framework
would allow it to update dynamically as new transaction patterns
emerge, enhancing its responsiveness to evolving fraud tactics.
The integration of BKOA-GOBL with advanced classification
techniques, such as DL and neural networks, may yield further
improvements. Furthermore, exploring multi-objective extensions
of BKOA-GOBL could allow simultaneous optimization of multiple
conflicting goals, such as maximizing accuracy while minimizing
computational cost or energy consumption. These directions
offer valuable opportunities to evolve BROA-GOBL into a more
powerful and versatile optimization framework.
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