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Generative artificial intelligence is transforming de novo biomolecular design, yet
developing models that reliably generate functional, target-specific peptides remains a
significant challenge. Here, we introduce and validate a novel two-stage Bidirectional
Long Short-Term Memory (BiLSTM) framework for the generative design of short,
functional peptides. Our Al pipeline is trained on full-length proteins annotated with
specific Gene Ontology (GO) terms related to amyloid-/ (AB) interaction and is fine-
tuned on experimentally validated peptide fragments to capture local functional motifs
within a global protein context. As a proof-of-concept, we applied this framework
to generate peptides targeting Ap42, a key pathological agent in Alzheimer's disease.
From 1,000 Al-generated sequences, 25 candidates were shortlisted using biophysical
filters (GRAVY, instability index, Shannon entropy), and 11 were prioritized via sequence
similarity analysis, designated as Al-Designed Novel Peptides (ADNP1-ADNP11). Structural
modeling (AlphaFold2) and docking (pyDockWEB) against AB42 identified ADNP7 as
the top candidate, exhibiting a highly favorable docking score (-63.33 kcal/mol), with
interactions localized to Af's aggregation-prone regions. All-atom molecular dynamics
simulations (20 ns) confirmed complex stability, and MM/PBSA analysis yielded a
strong binding free energy (-50.6 kcal/mol), driven primarily by hydrophobic and
aromatic interactions involving PHE12 and TRP50 in ADNP7. This work demonstrates
that our fine-tuned BiLSTM architecture can successfully generate novel, stable peptide
sequences with high predicted binding affinity for a therapeutically relevant target.
While the training data included proteins associated with AB clearance (GO:0097242),
only binding interactions were computationally validated; clearance potential remains
a hypothesis for future experimental testing. This study establishes a generalizable, Al-
driven pipeline for functional peptide design, with broad applicability across therapeutic
discovery and synthetic biology.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder associated with the accumulation of amyloid-# (Ap)
aggregates (Finder and Glockshuber, 2007; Scheltens et al., 2021).
Among its isoforms, AB42 is particularly prone to aggregation and
neurotoxicity, driving synaptic dysfunction, oxidative stress, and
neuroinflammation that contribute to cognitive decline (Younkin,
1998; Mayeux et al., 2003; Kuperstein et al., 2010). Despite extensive
efforts with small molecules, monoclonal antibodies, and enzyme-
based clearance strategies, clinical outcomes remain limited due to
poor blood-brain barrier (BBB) penetration and insufficient targeting
of oligomeric or fibrillar AP species (Levites et al., 2006; Weggen et al.,
2007; Miners et al., 2008; Citron, 2010; Nie et al., 2011). Peptide-based
therapeutics have emerged as promising alternatives, offering tunable
specificity, reduced immunogenicity, and comparatively favorable BBB
permeability relative to larger biologics (Funke and Willbold, 2012;
Goyal et al., 2017). Their modularity allows for rational design and
fine-tuning of affinity and selectivity (McGregor, 2008; Kaspar and
Reichert, 2013). However, the development of multifunctional
peptides that combine strong AP binding with stability and clearance
potential remains challenging, largely due to the conformational
heterogeneity of Ap assemblies (Tomaselli et al., 2006; Fandrich et al.,
2009). Previous efforts have explored peptidomimetics, binder—
blocker sequences targeting motifs such as KLVFE, and mimetic
immunotherapies, but these approaches often rely on predefined
motifs or rational engineering, limiting the discovery of truly novel
candidates (Lowe et al., 2001; Chafekar et al., 2007; Morgan, 2011;
Goyal et al,, 2017; Franga et al., 2024).

Recent advances in artificial intelligence (AI) provide new
opportunities to address these challenges by incorporating large
biological datasets and machine learning/ deep learning
algorithms (Fabrizio et al., 2021). LSTM-based models have been
applied to identify bioactive motifs, CNN-BiLSTM hybrids to
predict multifunctional peptide activities, and generative
frameworks to design antiviral peptides (Fabrizio et al., 2021;
Xiaoetal., 2021; Li et al., 2022). Docking and molecular dynamics
(MD) simulations have further elucidated AP interaction
mechanisms (Urbanc et al., 2004; Mandal et al., 2006; Zhang
et al, 2021). Yet, most approaches remain fragmented, focusing
either on predictive modeling or structural analysis without fully
integrating Al-driven peptide generation with physics-
based validation.

To overcome these limitations, we developed a two-stage
Bidirectional LSTM (BiLSTM) framework trained on proteins
annotated for AP binding and clearance (GO:0001540 for AP
binding and GO:0097242 for AP clearance), followed by fine-
tuning with short peptide fragments to capture therapeutically

Abbreviations: AD, Alzheimer's Disease; Af, Amyloid-beta; AB42, Amyloid-beta
42; ADNP, Amyloid-Degrading Novel Peptide; BiLSTM, Bidirectional Long Short-
Term Memory; BBB, Blood—-Brain Barrier; CNS, Central Nervous System; GO, Gene
Ontology; GRAVY, Grand Average of Hydropathicity; hIAPP, Human Islet Amyloid
Polypeptide; MD, Molecular Dynamics; MM/PBSA, Molecular Mechanics Poisson—
Boltzmann Surface Area; PDB, Protein Data Bank; PME, Particle Mesh Ewald; Rg,
Radius of Gyration; RMSD, Root Mean Square Deviation; RMSF, Root Mean Square

Fluctuation; VMD, Visual Molecular Dynamics.
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relevant motifs. From 1,000 generated sequences, we applied
multi-level filtering incorporating physicochemical properties,
sequence diversity, structural prediction, docking, and MD
simulations. Eleven candidates (ADNP1-ADNP11) were
identified, with ADNP7 showing the most favorable stability and
binding profile against A42. Collectively, this study introduces
an Al-guided pipeline that integrates generative deep learning
with structural and energetic validation, offering prioritized
peptide leads for AD and a broadly applicable strategy for
therapeutic peptide discovery.

2 Methods
2.1 Study design and architecture

This study introduces a novel, end-to-end computational
framework for the AI-driven generative design of functional peptides,
demonstrated through the targeted generation of peptides predicted
to bind amyloid-$ (AB42). The architecture is centered on a two-stage
Bidirectional Long Short-Term Memory (BiLSTM) (Berglund et al.,
2015) generative model, explicitly designed to bridge the gap between
high-level biological function (encoded via Gene Ontology
annotations) and local, therapeutically relevant peptide motifs. The
pipeline is modular, reproducible, and generalizable; while applied
here to AP, it can be readily adapted to other protein targets by
substituting the training dataset and validation structure. At its core,
the BiLSTM generative model (Berglund et al., 2015) learns to predict
peptide sequences by modeling the conditional probability
distribution of amino acid residues in a sequence. Formally, the
probability of generating a peptide sequence a = (al,az,...,aT) of
length, T is factorized as the product of conditional probabilities:

P(a) = HthlP(at|,,,;a1|,,,;a2|,,,;. . .|,,,;at,1|,,,;9)

where, a; represents the amino acid at position-, and, # denotes
the model parameters learned during training. This autoregressive
modeling enables the BiLSTM to capture complex sequence
dependencies in both forward and backward directions, crucial for
generating biologically meaningful peptides.

The overall workflow consists of four tightly integrated
phases: (1) generative modeling via the fine-tuned BiLSTM
network trained initially on full-length functional proteins and
subsequently refined on short peptide fragments; (2) multi-
stable,
non-repetitive, and novel sequences; (3) structural modeling and

parameter biophysical screening to prioritize
rigid-body docking to assess binding potential against AB42; and
(4) all-atom molecular dynamics simulations coupled with MM/
PBSA energetic profiling to validate complex stability and
interaction mechanisms. This design ensures that AI-generated
outputs are not only novel and diverse but also rigorously
validated across sequence, structure, and dynamics levels prior
to experimental testing (see Figure 1).

The core innovation lies in the two-stage training strategy:
initial exposure to broad functional contexts (GO:0001540 for Af
binding and G0:0097242 for AP clearance) (Ashburner et al.,

2000) followed by fine-tuning on compact, experimentally
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resolved peptide fragments. This approach enables the model to
generate short sequences (<100 residues) that retain essential
functional signatures without relying on direct templating. All
generated candidates are designated as “AI-Designed Novel
Peptides (ADNP)” to accurately reflect their AI-driven origin.
The pipeline’s emphasis on iterative computational validation
from sequence generation to dynamic stability ensures robustness
and provides a template for AI-driven peptide discovery across
various therapeutic domains.

2.2 Data obtaining and preparation

The dataset for model development was manually curated to
support the generation of peptides targeting amyloid-beta
pathology. It comprises experimentally validated protein and
peptide sequences with known amyloid-beta binding, uptake, or
degradation activity, and is organized into two distinct subsets,
as summarized in Table 1: The Background (Base) Set includes 7
full-length protein sequences retrieved from the UniProt database
(The UniProt Consortium, 2021). These proteins (sequence
lengths ranging from 230 to 1,019 residues) were selected for
their relevance in amyloid-beta clearance pathways and used to
pretrain the model on general sequence patterns and motif
structures. The Finetuning (Sample) Set consists of short 6
peptide chains (<100 residues) derived from crystallographic
structures in the Protein Data Bank (PDB) (Berman et al., 2000).
These peptides represent spatially resolved regions directly
implicated in amyloid-beta interaction and were used to fine-
tune the model toward generating bioactive peptides with
therapeutic potential.

All sequences were derived from peer-reviewed studies and cross-
validated for biological relevance. No synthetic or computationally
augmented sequences were introduced.

Encoding and Sequence Windowing.

Each amino acid sequence was processed using a standard integer
encoding scheme over the 20 canonical amino acids:

A={A,C,D,EF,G,H,IK,L,M,N,P,QRS,T,V,W,Y}
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Given sequence S = (51 2S5+ sSL ) , the encoded representation is
defined as:

3=(f(sl),f(sz),...,f(sL)),wheref:A - {0,1,...,19}

To construct training examples for the generative model, a
sliding window of length 35 was applied to each encoded sequence.
For each window, the first 34 residues served as the input, and the
35th residue was used as the target token. Formally, the training
pair at position i is:

Xi = (8isSix15-- 81433 ) Vi = $i434

This framing defines a next-token prediction task, enabling the
model to learn the conditional probability of the next amino acid
given its context:

P (5|31 |32 55 |1 )

All sequences were truncated or padded to ensure consistency in
length where necessary, but no structural or contextual augmentation was
performed. This ensured that all training data remained biologically
grounded, reflective of experimentally verified interactions with
amyloid-beta.

2.3 Model development and training

The generative model was constructed using a bidirectional Long
Short-Term Memory (BiLSTM) neural network architecture, chosen for
its ability to capture long-range contextual dependencies within peptide
sequences (Berglund et al., 2015). Unlike unidirectional models, BILSTMs
process input in both forward and reverse directions, making them well-
suited to identifying biologically relevant sequence motifs in both
N-terminal and C-terminal contexts. Peptide sequences were first integer-
encoded using a fixed vocabulary of the 20 standard amino acids. A
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TABLE 1 Summary of protein sequences used for model training and
fine-tuning, including UniProt/PDB IDs, sequence lengths, and literature
references.

Background (Base) Set

. " Protein Sequence
Uniprot id 9
Name Length
Narayan et al.
P10909 Clusterin 449 (2012) and Yeh
etal. (2016)
Jeon et al. (2008)
P11835 Integrin beta-2 771 and Choucair-
Jaafar et al. (2011)
Shimizu et al.
Platelet
P16671 472 (2008) and Zhao
glycoprotein 4
etal. (2018)
Macrophage
scavenger Husemann et al.
P30204 458
receptor types (2001)
Tand II
Llovera et al.
(2008), Shimizu
Insulin-degrading
P35559 1,019 etal. (2008), and
enzyme
Vekrellis et al.
(2000)
Low-density Kim et al. (2009)
P35951 lipoprotein 862 and Basak et al.
receptor (2012)
Triggering Yeh et al. (2016),
receptor Zhao et al. (2018),
QINZC2 230
expressed on and McQuade
myeloid cells 2 et al. (2020)

Finetuning (Sample) Set

Sequence

PDB Id Length

Protein Name
alpha2-

macroglobulin
81
receptor-associated

protein Chain 1
2FYL Basak et al. (2012)
alpha2-

macroglobulin

82
receptor-associated

protein Chain 2

Apolipoprotein E

Chain 1
6V7M and Hopkins et al.
Apolipoprotein E . Qo11)

Chain 2

100 Cho et al. (2001)

Low-density
2KNX lipoprotein receptor- 50 Bell et al. (2009),
related protein 1 Kanekiyo et al.

(2012,2013), and

Zhao et al. (2015)

Prolow-density
2KNY lipoprotein receptor- 80

related protein 1
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sliding window of length 35 was applied to each sequence, generating
overlapping subsequences in the format (xl X250 X34 ) — x35 where the
first 34 residues served as input and the 35th residue was used as the target
label. The model was thus trained to learn the conditional probability
distribution over amino acids given a preceding context window:

P51 |52 00 |1

At each position ¢, the BiLSTM model produced forward and
backward hidden states defined as:

hy =LSTM (x,,ﬁt,l),ht =LSTM, {x,,htﬂ]

The final representation at position t was obtained by
concatenating these directional states:

ht = |:flt;h[}

This hidden representation was passed through two fully
connected dense layers with ReLU activations, followed by a final
softmax layer to output the predicted probability distribution over the
20 amino acid classes:

¢ = Softmax(Wh; +b)

Where W and b are the learnable weights and biases of the output
layer. Model training was guided by the categorical cross-entropy
loss function:

L= —Zthl)’t log( )

The full architecture consisted of two stacked BiLSTM layers
with 256 units each, followed by two dense layers. Dropout
regularization (dropout rate=0.2) was applied after each LSTM
layer to mitigate overfitting. The model was trained using the
Adam optimizer (learning rate = 0.001) for 150 epochs in the
base phase and 45 epochs in the fine-tuning phase, with batch
sizes of 30 and 62, respectively.

Training was carried out in two distinct phases. During the base
phase, the model was trained on long, functionally annotated protein
sequences (Table 1), enabling it to learn generalizable sequence
grammar related to amyloid-beta interaction. In the second phase, the
model was fine-tuned using a curated dataset of shorter peptides (<100
residues), steering its output distribution toward compact,
therapeutically relevant sequences. The model was optimized using the
Adam optimizer with a learning rate of 1x 10_3, a batch size of 64 for
generalization, and early stopping (patience = 10) based on validation
loss. Although validation split was not explicitly implemented in code
due to the limited sample size, instead stability and convergence of the

frontiersin.org
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model were monitored by tracking training loss across epochs and
performing repeat runs to assess reproducibility. This two-phase
training paradigm allowed the model to first learn the global syntax
and compositional structure of bioactive peptides and then specialize
in generating novel, functionally coherent, and sequence-stable
peptides suitable for downstream screening.

2.4 Peptide generation and
physicochemical shortlisting

Following fine-tuning, the trained BiLSTM model was utilized to
generate novel peptide sequences through an autoregressive sampling
approach. Starting with randomly constructed seed sequences derived
from the training dataset, the model predicted the next amino acid
token iteratively. At each step ¢, the model used a fixed-length context
window of 35 residues and predicted the most probable next amino
acid x; 1 based on the preceding sequence x;_34.:

P(p1orXt-3alXt—33 |- ook ) = softmax ( fairsta (%0-34 )

Here, fgirstm denotes the trained network and the output is
sampled via greedy decoding (argmax). This process was repeated
until a complete peptide of length, L e[80,100] residues was
generated. A total of 1,000 such sequences were synthesized.

To systematically reduce the sequence space, a two-stage
physicochemical screening pipeline was employed. In Stage 1, the
generated sequences were partitioned into five batches of 200 each.
For every peptide, the following three metrics were computed:

1 Shannon entropy H, measuring amino acid diversity within a
sequence s of length »:

H(s)==2 P (a)log2 p(a)
where A is the set of standard amino acids and p(a) is the

empirical frequency of residue a in the sequence (Shannon, 1948).

2 GRAVY score G, calculated as the mean hydropathy index over
all residues:

where h (si) is the Kyte-Doolittle hydropathy value of residue s;
(Kyte and Doolittle, 1982).

3 Instability Index I, which estimates in vitro stability based on

dipeptide composition. While the precise formula involves 400
pairwise weights & (s,-,s,-+1 ), it is conceptually represented as:

10 -
I(s):—Z?zllé(si,siH)

n

Frontiers in Artificial Intelligence

10.3389/frai.2025.1709505

Higher values of T indicate greater instability; sequences with
I > 40 are generally considered unstable (Guruprasad et al., 1990).

Within each batch, sequences were ranked to prioritize high
Shannon entropy, moderate-to-low GRAVY, and low instability index.
The top 10 sequences per batch were selected, yielding 50 candidates
for further evaluation.

In Stage 2, these shortlisted peptides were compared to those in the
fine-tuning dataset to ensure alignment with physicochemical
properties of experimentally validated Ap-interacting peptides. For each
generated sequence p and reference peptide r, the Euclidean distance in
the 2D feature space of GRAVY and instability was computed as:

d(p,r):\/(Gp -G,V +(1,-1,)

Each batch of 10 sequences was compared to the centroid of the
fine-tuning reference distribution, and the five closest sequences per
batch were retained, resulting in 25 final candidate peptides. This
two-stage process ensured that the selected peptides possessed
sequence diversity, biophysical stability, and feature similarity to
known functional peptides, while maintaining novelty.

2.5 Sequence similarity analysis

To assess the novelty and potential functional relevance of the
shortlisted peptides, sequence similarity analysis was performed using
Clustal Omega, a widely accepted tool for multiple sequence
alignment (Sievers and Higgins, 2014). This step ensured that the
generated sequences shared meaningful similarity with known
amyloid-beta-binding and degrading peptides, while still maintaining
a level of novelty indicative of de novo design. The 25 shortlisted
sequences were aligned against the six fine-tuning peptide chains
[derived from PDB entries Clusterin (2FYL), Heat shock protein
HSP 90-beta (6V7M), Metalloprotease (2KNX), and Metalloprotease
domain-containing protein 3 (2KNY) using Clustal Omega with
default parameters]. The alignment output provided pairwise
percentage identity scores for each generated peptide against the
reference chains. These scores were analyzed to identify which
sequences shared the highest similarity to functionally validated
peptides, serving as a proxy for potential biological relevance.

2.6 3D modelling and docking analysis

To assess the structural plausibility and amyloid-beta (Af) binding
potential of the shortlisted peptides, 3D structural modeling followed
by protein—protein docking was performed. The 11 peptides selected
after biophysical screening and sequence similarity analysis were
named as Amyloid-Degrading Novel Peptide (ADNP1-ADNP11) and
were structurally modeled using the AlphaFold server (Jumper et al.,
2021). Structural visualization and verification were carried out using
Jmol to ensure correct folding, absence of steric clashes, and suitability
for docking (Herréez, 2006). Protein—protein docking was performed
using pyDockWEB, a rigid-body docking server that incorporates
electrostatics, desolvation, and van der Waals scoring (Jiménez-Garcia
etal., 2013). Each modeled peptide structure was docked against the
Ap42 monomer structure retrieved from the Protein Data Bank (PDB
ID: 1IYT) (Crescenzi et al., 2002). The docking protocol evaluated
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multiple energy-based scoring components, including electrostatic
energy, desolvation energy, van der Waals energy, and total binding
energy. ADNP peptides demonstrating more negative total docking
scores were interpreted to have higher binding affinities toward Ap.
Particular emphasis was placed on peptides exhibiting favorable van
der Waals and desolvation scores, as these indicate better surface
complementarity and solvent compatibility, both of which are crucial
for stable and specific protein—protein interactions.

2.7 Molecular dynamics simulation of the
ADNP7-Ap42 complex

2.7.1 Configuration of the system and solvation

To investigate the conformational dynamics and stability of the
most promising peptide, ADNP7, in complex with amyloid-beta
(Ap42), two independent all-atom molecular dynamics (MD)
simulations were performed using the AMBER 18 simulation suite
(Case et al., 2018). The initial docking pose of ADNP7 complexed with
ApP42 was acquired from the highest-ranking pose achieved via rigid-
body docking utilizing pyDockWEB. The protein-peptide complex
was preprocessed and subsequently parameterized utilizing the ff14SB
force field, which is optimal for simulating folded proteins and
peptides. The solvated system was constructed utilizing the tLeap
module of AmberTools. Hydrogen atoms were incorporated based on
normal protonation states at physiological pH. The complex was
situated within a truncated octahedral box containing TIP3P water
molecules, maintaining a minimum buffer zone of 10 A surrounding
the solute in every direction. This solvation model simulates a realistic
watery milieu. An adequate quantity of sodium ions (Na*) was
randomly introduced to equilibrate the net charge of the system. The
resultant solvated and neutralized system underwent energy
minimization before dynamic simulations.

2.7.2 Energy optimization

Energy minimization was performed in a three-step, progressively
unrestrained approach to eliminate steric conflicts, alleviate stressed
geometries, and stabilize the system prior to heating and equilibration.
Initially, a constrained reduction of 1,000 steps was executed with
harmonic restrictions (10 kcal/mol-A%) imposed on the backbone
atoms of the complex, facilitating the adjustment of solvent molecules
and counterions. The subsequent phase involved restraining only the
Co atoms of the protein-peptide combination with the identical force
constant, while the remainder of the system underwent minimization
for 1,000 steps. In the last stage, all constraints were lifted, and a
comprehensive system reduction was performed for 1,000 iterations
to guarantee total energy relaxation. Each minimization step
incorporated a blend of steepest descent and conjugate gradient
methods to attain convergence and provide seamless transitions in the
potential energy surface.

2.7.3 Heating

Subsequent to energy minimization, the system was incrementally
heated from 0 K to 300 K over 70,000 steps under constant volume
circumstances (NVT ensemble). In this phase, a mild harmonic
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constraint (5 kcal/mol-A?) was imposed on all heavy atoms of the
solute to avert deformation of the native structure during fast
temperature elevations. Langevin dynamics facilitated temperature

coupling with a collision frequency of 2 ps™

, ensuring steady
thermalization of the solvent and gradual activation of molecular
movements. The gradual heating facilitated thermal equilibration of
the system in a regulated manner, preventing any sudden

conformational alterations.

2.7.4 Equilibration

Equilibration was conducted in six meticulously structured stages
to enable the system to attain thermodynamic stability regarding
pressure, density, and temperature. All equilibration phases were
performed under NPT ensemble circumstances utilizing the
Berendsen barostat to sustain pressure at 1 atm and the Langevin
thermostat to regulate temperature at 300 K. During the initial three
phases (EQ-B, EQ-C, and EQ-D), the system underwent equilibration
for 1,000 steps at each stage, with progressively diminishing positional
restrictions on the solute atoms. These measures guaranteed the
solvent and ions were adequately relaxed without disrupting the
natural structure of the protein-peptide complex. The fourth
equilibration phase (EQ-E) was prolonged to 20,000 steps to facilitate
adequate pressure coupling and solvent density adaption. A
concluding equilibration phase (EQ-F) was executed for 80,000 steps
without constraints, guaranteeing the system’s full relaxation under
physiological conditions. At the conclusion of equilibration, the
system attained stable temperature, pressure, and density, exhibiting
minimal variations, and was prepared for the simulation’s
production phase.

2.7.5 Production

Two sets of 20-nanosecond molecular dynamics simulations
were conducted under NPT ensemble settings to study the long-term
structural dynamics and interactions between ADNP7 and Ap42. The
simulations were conducted with the pmemd.mpi by utilizing
AMBER 18 package. The temperature was regulated at 300 K via the
Langevin thermostat, while the pressure was controlled at 1 atm
using the Berendsen barostat for both sets of MD simulations. The
integration time step was established at 1 fs, and all bonds involving
hydrogen atoms were restricted via the SHAKE algorithm, facilitating
a stable and efficient simulation. Non-bonded interactions were
computed with a 10 A cutoff, whilst long-range electrostatics were
addressed using the Particle Mesh Ewald (PME) approach to ensure
precise handling of periodic boundary conditions. System
coordinates were recorded every 10 picoseconds, yielding a total of
20,000 frames for the complete 20 nanosecond simulation. This
trajectory data was utilized for future structural, dynamic, and
energetic analyses to assess stability and binding characteristics of
the peptide.

2.7.6 Trajectory analysis

Post MD simulation analysis was performed with CPPTRA]J
(from AmberTools18) and Visual Molecular Dynamics (VMD) to
derive significant insights from the 20 ns trajectory. Root Mean
Square Deviation (RMSD) computations were conducted for the
backbone atoms of the complex to evaluate structural stability over
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time. Root Mean Square Fluctuation (RMSF) values were calculated
for each residue to assess local flexibility and pinpoint dynamic
regions, especially at the binding interface. The Radius of Gyration
(Rg) was observed during the simulation to assess the compactness
of the ADNP7-Ap42
conformational alterations. An investigation of hydrogen bonding

complex and identify significant
was performed to assess the frequency and durability of
intermolecular hydrogen bonds between the peptide and the Ap42
chain, yielding insights into critical interactions that maintain the
complex. For energetic assessment, MM/PBSA (Molecular
Mechanics Poisson-Boltzmann Surface Area) free energy
calculations were conducted utilizing MMPBSA.py on 500 typical
frames selected from the final 20 ns of the trajectory. This facilitated
the calculation of the binding free energy between ADNP7 and
AP42, which was decomposed into contributions from electrostatic,
van der Waals, polar solvation, and non-polar solvation energies.
These analyses jointly facilitated a comprehensive knowledge of the
structural stability, dynamic flexibility, and binding affinity of the

ADNP7-AP42 complex under simulated physiological settings.

3 Results
3.1 Model training and performance

The model architecture was based on a Bidirectional Long
Short-Term Memory (BiLSTM) network, chosen for its capacity
to learn both upstream and downstream sequence dependencies
in protein sequences. The training was performed in two stages: a
base training phase using seven long Ap-related proteins from
UniProt, and a fine-tuning phase using six short peptides (<100
residues) derived from PDB structures. Both stages used a window
size of 35 amino acids, with 34 as input and the 35th as the
prediction target, enabling the model to learn contextual
residue prediction.

During the base training, the model converged steadily, as
reflected in the training loss and accuracy metrics. The loss
decreased consistently over epochs stabilizing around 0.2-0.3,
indicating improved predictive performance. Accuracy also
improved progressively reaching over 0.95, demonstrating the
model’s growing ability to predict the next amino acid in
Ap-related sequences. Fine-tuning further refined the model’s
predictions on shorter peptides, as evident from the sharper
convergence of loss reaching less than 0.1 and a slight
improvement in accuracy reaching 9.8, suggesting effective
adaptation to compact sequence features relevant for therapeutic
design The training performance during the base training and
fine-tuning are visualized in Figure 2.

3.2 Sequence generation and biophysical
screening

Using the fine-tuned BiLSTM model, 1,000 novel peptide
sequences, each under 100 amino acids, were generated with the aim
of mimicking the properties of known amyloid-beta (Af) binding and
degrading peptides. These sequences were subjected to a two-stage
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screening process based on their physicochemical properties to
identify candidates with favorable biochemical stability and diversity.

In the first screening stage, the 1,000 generated peptides were
divided into five batches of 200 sequences each. Within each batch,
peptides were evaluated using three key biophysical metrics: GRAVY
(Grand Average of Hydropathy), instability index, and Shannon
entropy. GRAVY scores were used to estimate hydrophobicity, with
moderate values indicating a balance between solubility and
membrane interaction. The instability index predicted peptide stability
under in vitro conditions, where values below 40 are considered stable.
Shannon entropy measures the diversity of amino acid usage within
each sequence, favoring sequences with non-repetitive and
information-rich content. Figure 3 visualizes the distributions of the
biophysical metrics comparatively between the dataset sequences vs.
the generated sequences. Based on a composite score integrating these
three metrics, the top 10 peptides from each batch (50 total) were
shortlisted. These 50 peptides were compared against the six fine-
tuning sequences using Euclidean distance across GRAVY and
instability values In the second stage biophysical screening. The goal
was to retain peptides that were biophysically most similar to
experimentally validated AB-interacting peptides. From each batch,
the five closest peptides were selected, yielding a final set of 25 high-
downstream  structural  and

confidence candidates for

functional evaluation.

3.3 Sequence similarity analysis

To assess whether the 25 shortlisted peptides were novel or bore
resemblance to known amyloid-beta (A)-interacting sequences, a
comprehensive sequence similarity analysis was conducted using
Clustal Omega. This analysis was intended to (i) identify evolutionary
or functional resemblance to known AP-binding and degrading
sequences and (ii) confirm that the generated peptides were not
trivially derived from the training data. Each of the 25 peptides was
aligned with the six fine-tuning sequences used during the second
training phase. The alignment scores were computed based on percent
identity values returned by Clustal Omega, providing a quantitative
measure of sequence-level similarity (Supplementary Table 1).
Importantly, none of the peptides were exact or near-exact matches to
any of the training sequences, indicating that the generative model
had successfully learned abstract sequence patterns rather than
memorizing specific examples (Table 2).

3.4 3D structure prediction and docking

To assess the structural integrity and binding potential of the
top 11 peptides (ADNPI-ADNPI1), we performed three-
dimensional (3D) structure prediction followed by protein-protein
docking. The peptide structures were predicted using the
AlphaFold2 server. The predicted PDB files were extracted using
Jmol for downstream analysis. For docking studies, each modeled
peptide was docked against the AP42 peptide (PDB ID: 11YT) using
pyDockWEB. The results are summarized in Table 3, showing that
all 11 peptides exhibited negative total interaction energies,
indicating favorable binding. Among them, ADNP7 demonstrated
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FIGURE 2
Training performance of the BiLSTM model, (A) Base training on full-length Ap-interacting UniProt proteins showing rapid convergence of loss and
accuracy stabilization, (B) Fine-tuning on short, experimentally validated peptides exhibits low training loss and high accuracy.

the strongest predicted interaction, with a total docking energy of
—63.33 kcal/mol, outperforming both reference and other novel
peptides. Other promising candidates included ADNP5
(=50.69 kcal/mol) and ADNP11 (—47.27 kcal/mol). As shown in
Figure 4, ADNP7 docks within a hydrophobic cleft of Ap42, with
surface-accessible residues (including TYR69, GLY46, and LEU44)
forming hydrogen bonds and hydrophobic contacts near
aggregation-prone regions (e.g., residues 16-21 and 30-42)
(Crescenzi et al., 2002; Tomaselli et al., 2006). The diversity in
docking orientations and contact residues indicates that different
peptides may engage distinct structural motifs of Ap42, potentially
interfering with its oligomerization pathways through multiple
mechanisms. These findings validate the docking potential of the
generated peptides and highlight ADNP7 as a particularly strong
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candidate for further investigation through molecular dynamics
simulations and experimental validation (Figure 4).

3.5 Post-MD simulation analysis

To ensure reproducibility of the MD stability assessment, two
independent simulations were performed for the ADNP7-Ap42
complex, and the structural parameters were analyzed using statistical
summaries. The RMSD values remained stable across both sets
(5.415 + 1.989 A in Set-1 and 5.555 + 1.437 A in Set-2), indicating
consistent backbone convergence. Similar reproducibility was
observed in RMSF (3.907 + 1.673 A vs. 2.909 + 1.703 A) and Rg values
(34.083 + 3.589 A vs. 42.288 + 5.536 A), confirming that the overall
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FIGURE 3
Physicochemical property distributions of generated peptides, (A) Distribution profiles of sequence diversity, GRAVY, and instability index among all
1,000 generated peptides showing broad variation, supporting diversity and favorable biophysical characteristics. (B) GRAVY and instability index
distributions of generated peptides compared to sample proteins demonstrating substantial overlap.

compactness and residue-level flexibility remained comparable
between simulations. These results validate that the structural stability
findings are reliable and not dependent on a single MD trajectory
(Table 4).

3.5.1 Structural stability assessment: RMSD
analysis

The Root Mean Square Deviation (RMSD) plots of the backbone
Ca atoms for both MD replicates (Set-1 and Set-2) were examined
over the 20 ns trajectory to assess the overall structural stability of
the ADNP7-AB42 complex. Figure 5 demonstrates that both
simulation sets exhibit an initial increase in RMSD values over the
first 2-4 ns, signifying structural adaptation and relaxing of the
complex inside the solvated environment. Set-1 demonstrated a
moderate increase in RMSD, stable around 4-6 A until around
12 ns, followed by a more significant rise exceeding 8 A in the final
nanoseconds. Set-2 exhibited a little accelerated deviation initially,
with RMSD values of 6-7 A during the 4-8 ns interval, then
sustained a more uniform fluctuation pattern of 5-7 A beyond
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10 ns. Notably, Set-1 demonstrated increased structural deviation
in the later phases of the simulation, whereas Set-2 displayed greater
volatility in the initial stages but sustained modest stability
thereafter. The disparities can be ascribed to the randomized initial
velocities (ig values), which may have resulted in divergent
conformational sampling pathways. Both runs ultimately converged
to structurally diverse but stable conformations, highlighting the
dynamic plasticity of the complex and validating the necessity for
many independent simulations.

3.5.2 Residue flexibility: RMSF analysis

To analyze residue-level motion inside the complex, the Root
Mean Square Fluctuation (RMSF) was calculated for all Co atoms
during the trajectory (Figure 6). Both sets exhibited analogous
fluctuation patterns throughout the sequence, with slight
discrepancies in size. The N-terminal and C-terminal portions of the
complex exhibited the greatest variations, as anticipated due to their
exposed and unstructured characteristics. The interface between the
ADNP7 peptide and AP42 (about residue locations ~85-90) had a
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FIGURE 4

Molecular interaction interface between Ap42 (cyan) and ADNP7 (pink). Left: Surface representation of the complex, with the binding interface
highlighted by a yellow dotted circle. Right: Zoomed-in view showing key interacting residues from ADNP7- TYR69, GLY46, and LEU44, forming
hydrogen bonds (dashed lines) and hydrophobic contacts with Ap42. Residues are shown as sticks for clarity.

TABLE 4 MM/GBSA binding free energy (Kcal/mol) components of ADNP7—-Ap42 complex.

Simulation set

Energy components

A(:|pol AC'non—pol
ADNP7-AB42 Complex Set-1 —91.202 —183.533 234.711 —10.592 —50.616
Set-2 —90.955 —157.935 212.805 —10.485 —46.570
12
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FIGURE 5
Backbone RMSD of the ADNP7-Ap42 complex over 20 ns of molecular dynamics simulation. RMSD values (A) are plotted for two independent
replicates (Set-1in blue, Set-2 in red), indicating structural stabilization after initial relaxation.

compact states after 18 ns, indicating convergence to equilibrated
conformations. The Rg and RMSF analyses collectively indicate that
ADNP7 forms a stable and compact complex with Ap42, with
dynamic variations predominantly occurring in the terminal and
loop regions. The peptide is likely to stabilize at the central core of
the complex while permitting conformational flexibility in
surrounding residues.
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3.5.4 Binding free energy analysis by MM/PBSA
Binding free energy calculations utilizing the MM/PBSA method
were conducted on the final 20 ns of both MD simulations to assess the
interaction intensity between ADNP7 and AB42. The total binding free
energy (AGr,,) was determined to be significantly negative in both
trials, —50.616 kcal/mol (Setl) and —46.570 kcal/mol (Set2) which are
mentioned in the Table 4, signifying a stable and energetically
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advantageous complex. The van der Waals (AE,q,) and electrostatic
(AE,.) components were the primary contributors to binding, with
values about —90 to —95 kcal/mol and —178 to —198 kcal/mol,
respectively, underscoring robust hydrophobic packing and charge
interactions. Conversely, the polar solvation energy (AG,,) was
detrimental (+211 to +225kcal/mol), indicating the desolvation
expense of polar residues. The non-polar solvation energy (AGon-pol)
offered negligible beneficial contributions, approximately in the range
of —7 kcal/mol. The similarity across both sets suggests that ADNP7
consistently and robustly interacts with AB42, mostly because to
hydrophobic and electrostatic interactions, notwithstanding solvation
penalties (Figure 8).
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3.5.5 Energy decomposition analysis (EDA)
Per-residue energy decomposition analysis (EDA), utilizing MM/
PBSA energy terms was conducted to identify the critical residues that
contribute to the binding interface and stability of the ADNP7-Ap42
complex. Figures 9a—d presents the outcomes of two independent MD
simulation runs (Setl and Set2), emphasizing the most energetically
relevant residues from both ADNP7 (red bars) and AB42 (blue bars).
In Setl, the most advantageous binding residues in ADNP7 were
PHE12 (—4.40 kcal/mol), LEU9 (—3.20 kcal/mol), TRP50 (—3.14 kcal/
mol), TYR69 (—2.86 kcal/mol), and VAL5 (—2.71 kcal/mol)
(Figure 9a). The residues are predominantly hydrophobic and
aromatic, indicating that hydrophobic interactions and z-stacking play
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a substantial role in ADNP7’s attachment to Af42. In the associated
ApP42 profile (Figure 9b), significant interacting residues included
PHE197 (-3.90 kcal/mol), TYR10 (—3.08 kcal/mol), VALI12
(—2.78 kcal/mol), and ALA2 (—2.43 kcal/mol). The residues are
primarily hydrophobic or aromatic, underscoring the preeminence of
van der Waals interactions at the binding contact. In Set2, exploratory
data analysis revealed a consistent interaction profile with certain
variances in residue contributions. In ADNP7 (Figure 9¢), the most
prominent residues were TRP50 (—5.35 kcal/mol), HIS53 (—4.88 kcal/
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mol), PHE12 (—4.04 kcal/mol), and VAL5 (—2.03 kcal/mol). These
residues exhibited significant interaction energies in both sets,
affirming their essential role in the stability of the complex. In relation
to AP42 (Figure 9d), the residues exhibiting consistently robust
binding included PHE197 (—3.51 kcal/mol), TYR10 (—3.77 kcal/mol),
VAL12 (—3.07 kcal/mol), ALA2 (—2.82kcal/mol), and HIS6
(—3.55 kcal/mol). These residues are probably engaged in hydrophobic
interactions and - stacking with the aromatic residues of ADNP7.
The EDA data indicate that the binding surface is primarily stabilized
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by hydrophobic and n-stacking interactions, with certain aromatic and
aliphatic residues continuously vyielding the highest negative
interaction energy. The consistency of significant residue contributions
across both simulation sets bolsters confidence in the reliability of the
interaction model. The persistent engagement of PHE12 and TRP50 in
ADNP7, alongside PHE197 and TYR10 in Ap42, suggests that these
residues may constitute essential binding hotspots, which might
be targeted or altered in forthcoming peptide optimization research.

4 Discussion

Alzheimer’s disease (AD) is characterized by amyloid-f (Af)
aggregation, which remains an important therapeutic challenge.
Despite extensive research into small molecules, antibodies, and
enzyme-based strategies, clinical efficacy has been limited. Here
we present a two-stage BiLSTM generative framework that, when
combined with physicochemical filtering, structural modeling,
docking, and molecular dynamics (MD), and enables de novo
peptide design. Applied to Ap42, the framework generated 11
AlI-Designed Novel Peptides (ADNPs), with ADNP7 showing the
most favorable docking score, stable MD trajectories, and strong
binding free energy supported by hydrophobic and aromatic
interactions. Compared with earlier work using LSTM or CNN-
BiLSTM models for peptide classification and motif rediscovery,
our approach emphasizes unbiased sequence generation validated
at structural and energetic levels (Xiao et al., 2021; Li et al., 2022).
This distinguishes it from template-driven strategies such as
KLVFF-based inhibitors and receptor-binding studies, and from
prior docking-only pipelines that risk false positives (Chafekar
etal., 2007). Although we did not apply any intrinsic interpretability
methods to our BiLSTM model, the framework avoids black-box
behavior through staged biophysical validation: initial filtering by
physicochemical properties (GRAVY, instability, entropy) ensures
functional plausibility across all candidates, while detailed
per-residue MM/PBSA energy decomposition, applied to the top
candidate ADNP7 links specific residues (PHE12, TRP50) to
hydrophobic and z-stacking interactions with Ap42. These
interactions recapitulate established amyloid-binding motifs,
demonstrating that the model’s outputs are grounded in known
biophysical principles rather than arbitrary sequence generation.
The multi-metric evaluation employed here, combining docking
with MD stability and MM/PBSA energy decomposition, provides
stronger evidence of candidate robustness. The MM/PBSA binding
free energy for the ADNP7 — AP42 complex was consistently
favorable across two independent 20-ns MD replicates, with a mean
AG_total ~ — 46 to —50 kcal/mol (Set-1: —50.6 kcal/mol; Set-2:
—46.6 kcal/mol). These values fall within the range reported for
other computationally validated Af inhibitors (Patel et al., 2021;
Patel et al., 2022a; Patel et al., 2022b; Mall et al., 2022), supporting
strong predicted binding affinity. The interaction is driven primarily
by hydrophobic and aromatic contributions from ADNP7 residues
PHEI12 and TRP50, consistent with known amyloid-binding motifs.
However, MM/PBSA estimates are derived under idealized
simulation conditions and do not account for physiological
complexities such as membrane environments, macromolecular
crowding, or the conformational heterogeneity of oligomeric/
fibrillar AP species. Therefore, while these energies support the
promise of ADNP7 as a potential peptide inhibitor, experimental
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validation will be essential to confirm its true therapeutic
effectiveness. The compact size and sequence diversity of ADNPs
suggest potential advantages for central nervous system delivery,
while ADNP7’s binding profile indicates possible interference with
aggregation interfaces. Beyond AD, the framework is adaptable to
other protein misfolding disorders. While the monomeric Ap42
structure (PDB: 1IYT) provides a suitable template for initial
computational screening, it is important to note that Af primarily
exerts its neurotoxic effects in oligomeric and fibrillar forms during
AD progression. These aggregated states present distinct
conformational landscapes and additional binding epitopes that
could influence peptide recognition. Therefore, the results reported
here represent an early-stage prediction of peptide-Af affinity.
Future studies will extend this pipeline to physiologically relevant
oligomeric and fibrillar Ap assemblies. Additionally, the short MD
timescale (20 ns), while provides reliable initial convergence of of
RMSD, Rg, and binding energy profiles across two independent
replicates supporting the the observed interactions (e.g., PHE12
and TRP50), may be insufficient to fully sample slow conformational
rearrangements or achieve complete equilibration of intrinsically
disordered regions in AP42. future studies employing longer-
timescale simulations (=100 ns) or enhanced sampling methods
will be valuable to confirm the durability of these interactions under
extended dynamic conditions. Further limitations include, reliance
on computational scores without experimental validation, Key
pharmacological properties such as stability, immunogenicity, and
blood-brain barrier permeability remain untested. Future work
should focus on experimental validation of binding with binding
assays (e.g., surface plasmon resonance or ELISA) and clearance
potential with aggregation inhibition assays (e.g., Thioflavin T
fluorescence) and cellular AP uptake studies. Aditionally, longer
simulations for dynamic insight, and integration of reinforcement
learning or transformer-based protein models to further enhance
design capability. In summary, this study introduces a scalable
Al-simulation pipeline for peptide discovery. While ADNP7
represents a promising computational lead, the broader value lies
in demonstrating how interpretable AI model frameworks
combined with biophysical validation can advance therapeutic
peptide design.

5 Conclusion

This study introduces a two-stage BiLSTM framework for de
novo peptide design, demonstrated through the generation of
candidates targeting amyloid-# (Af). By integrating sequence
generation with physicochemical filtering, structural modeling,
docking, and molecular dynamics simulations, we identified 11
candidate peptides, with ADNP7 showing the most stable and
energetically favorable interaction with AP42. These results
highlight the capacity of deep learning-guided design, combined
with physics-based validation, to capture sequence-structure
features critical for targeting amyloid aggregation. While clearance
potential was inferred from the GO annotations of the training
data, experimental validation is required to confirm biological
activity of true clearance, BBB permeability as well as binding with
the amyloid beta monomer and oligomers. Future work should
focus on in vitro binding and aggregation assays, cellular and
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animal models to assess clearance, and evaluation of
pharmacological properties including stability and blood-brain
barrier permeability. Overall, this framework provides both
prioritized peptide leads and a broadly generalizable strategy for
accelerating therapeutic discovery in Alzheimer’s disease and other

protein misfolding disorders.
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