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Generative artificial intelligence is transforming de novo biomolecular design, yet 
developing models that reliably generate functional, target-specific peptides remains a 
significant challenge. Here, we introduce and validate a novel two-stage Bidirectional 
Long Short-Term Memory (BiLSTM) framework for the generative design of short, 
functional peptides. Our AI pipeline is trained on full-length proteins annotated with 
specific Gene Ontology (GO) terms related to amyloid-β (Aβ) interaction and is fine-
tuned on experimentally validated peptide fragments to capture local functional motifs 
within a global protein context. As a proof-of-concept, we applied this framework 
to generate peptides targeting Aβ42, a key pathological agent in Alzheimer’s disease. 
From 1,000 AI-generated sequences, 25 candidates were shortlisted using biophysical 
filters (GRAVY, instability index, Shannon entropy), and 11 were prioritized via sequence 
similarity analysis, designated as AI-Designed Novel Peptides (ADNP1-ADNP11). Structural 
modeling (AlphaFold2) and docking (pyDockWEB) against Aβ42 identified ADNP7 as 
the top candidate, exhibiting a highly favorable docking score (−63.33 kcal/mol), with 
interactions localized to Aβ’s aggregation-prone regions. All-atom molecular dynamics 
simulations (20 ns) confirmed complex stability, and MM/PBSA analysis yielded a 
strong binding free energy (−50.6 kcal/mol), driven primarily by hydrophobic and 
aromatic interactions involving PHE12 and TRP50 in ADNP7. This work demonstrates 
that our fine-tuned BiLSTM architecture can successfully generate novel, stable peptide 
sequences with high predicted binding affinity for a therapeutically relevant target. 
While the training data included proteins associated with Aβ clearance (GO:0097242), 
only binding interactions were computationally validated; clearance potential remains 
a hypothesis for future experimental testing. This study establishes a generalizable, AI-
driven pipeline for functional peptide design, with broad applicability across therapeutic 
discovery and synthetic biology.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder associated with the accumulation of amyloid-β (Aβ) 
aggregates (Finder and Glockshuber, 2007; Scheltens et al., 2021). 
Among its isoforms, Aβ42 is particularly prone to aggregation and 
neurotoxicity, driving synaptic dysfunction, oxidative stress, and 
neuroinflammation that contribute to cognitive decline (Younkin, 
1998; Mayeux et al., 2003; Kuperstein et al., 2010). Despite extensive 
efforts with small molecules, monoclonal antibodies, and enzyme-
based clearance strategies, clinical outcomes remain limited due to 
poor blood–brain barrier (BBB) penetration and insufficient targeting 
of oligomeric or fibrillar Aβ species (Levites et al., 2006; Weggen et al., 
2007; Miners et al., 2008; Citron, 2010; Nie et al., 2011). Peptide-based 
therapeutics have emerged as promising alternatives, offering tunable 
specificity, reduced immunogenicity, and comparatively favorable BBB 
permeability relative to larger biologics (Funke and Willbold, 2012; 
Goyal et al., 2017). Their modularity allows for rational design and 
fine-tuning of affinity and selectivity (McGregor, 2008; Kaspar and 
Reichert, 2013). However, the development of multifunctional 
peptides that combine strong Aβ binding with stability and clearance 
potential remains challenging, largely due to the conformational 
heterogeneity of Aβ assemblies (Tomaselli et al., 2006; Fändrich et al., 
2009). Previous efforts have explored peptidomimetics, binder–
blocker sequences targeting motifs such as KLVFF, and mimetic 
immunotherapies, but these approaches often rely on predefined 
motifs or rational engineering, limiting the discovery of truly novel 
candidates (Lowe et al., 2001; Chafekar et al., 2007; Morgan, 2011; 
Goyal et al., 2017; França et al., 2024).

Recent advances in artificial intelligence (AI) provide new 
opportunities to address these challenges by incorporating large 
biological datasets and machine learning/ deep learning 
algorithms (Fabrizio et al., 2021). LSTM-based models have been 
applied to identify bioactive motifs, CNN-BiLSTM hybrids to 
predict multifunctional peptide activities, and generative 
frameworks to design antiviral peptides (Fabrizio et al., 2021; 
Xiao et al., 2021; Li et al., 2022). Docking and molecular dynamics 
(MD) simulations have further elucidated Aβ interaction 
mechanisms (Urbanc et  al., 2004; Mandal et  al., 2006; Zhang 
et al., 2021). Yet, most approaches remain fragmented, focusing 
either on predictive modeling or structural analysis without fully 
integrating AI-driven peptide generation with physics-
based validation.

To overcome these limitations, we  developed a two-stage 
Bidirectional LSTM (BiLSTM) framework trained on proteins 
annotated for Aβ binding and clearance (GO:0001540 for Aβ 
binding and GO:0097242 for Aβ clearance), followed by fine-
tuning with short peptide fragments to capture therapeutically 

relevant motifs. From 1,000 generated sequences, we  applied 
multi-level filtering incorporating physicochemical properties, 
sequence diversity, structural prediction, docking, and MD 
simulations. Eleven candidates (ADNP1-ADNP11) were 
identified, with ADNP7 showing the most favorable stability and 
binding profile against Aβ42. Collectively, this study introduces 
an AI-guided pipeline that integrates generative deep learning 
with structural and energetic validation, offering prioritized 
peptide leads for AD and a broadly applicable strategy for 
therapeutic peptide discovery.

2 Methods

2.1 Study design and architecture

This study introduces a novel, end-to-end computational 
framework for the AI-driven generative design of functional peptides, 
demonstrated through the targeted generation of peptides predicted 
to bind amyloid-β (Aβ42). The architecture is centered on a two-stage 
Bidirectional Long Short-Term Memory (BiLSTM) (Berglund et al., 
2015) generative model, explicitly designed to bridge the gap between 
high-level biological function (encoded via Gene Ontology 
annotations) and local, therapeutically relevant peptide motifs. The 
pipeline is modular, reproducible, and generalizable; while applied 
here to Aβ, it can be  readily adapted to other protein targets by 
substituting the training dataset and validation structure. At its core, 
the BiLSTM generative model (Berglund et al., 2015) learns to predict 
peptide sequences by modeling the conditional probability 
distribution of amino acid residues in a sequence. Formally, the 
probability of generating a peptide sequence ( )= …1 2, , , Ta a a a  of 
length, T  is factorized as the product of conditional probabilities:

	 ( ) ( )θ−=
= …∏ 1 2 11 |,,,; |,,,; |,,,; |,,,; |,,,;T

t ttP a P a a a a

where, ta  represents the amino acid at position-t , and, θ  denotes 
the model parameters learned during training. This autoregressive 
modeling enables the BiLSTM to capture complex sequence 
dependencies in both forward and backward directions, crucial for 
generating biologically meaningful peptides.

The overall workflow consists of four tightly integrated 
phases: (1) generative modeling via the fine-tuned BiLSTM 
network trained initially on full-length functional proteins and 
subsequently refined on short peptide fragments; (2) multi-
parameter biophysical screening to prioritize stable, 
non-repetitive, and novel sequences; (3) structural modeling and 
rigid-body docking to assess binding potential against Aβ42; and 
(4) all-atom molecular dynamics simulations coupled with MM/
PBSA energetic profiling to validate complex stability and 
interaction mechanisms. This design ensures that AI-generated 
outputs are not only novel and diverse but also rigorously 
validated across sequence, structure, and dynamics levels prior 
to experimental testing (see Figure 1).

The core innovation lies in the two-stage training strategy: 
initial exposure to broad functional contexts (GO:0001540 for Aβ 
binding and GO:0097242 for Aβ clearance) (Ashburner et al., 
2000) followed by fine-tuning on compact, experimentally 

Abbreviations: AD, Alzheimer’s Disease; Aβ, Amyloid-beta; Aβ42, Amyloid-beta 

42; ADNP, Amyloid-Degrading Novel Peptide; BiLSTM, Bidirectional Long Short-

Term Memory; BBB, Blood–Brain Barrier; CNS, Central Nervous System; GO, Gene 

Ontology; GRAVY, Grand Average of Hydropathicity; hIAPP, Human Islet Amyloid 

Polypeptide; MD, Molecular Dynamics; MM/PBSA, Molecular Mechanics Poisson–

Boltzmann Surface Area; PDB, Protein Data Bank; PME, Particle Mesh Ewald; Rg, 

Radius of Gyration; RMSD, Root Mean Square Deviation; RMSF, Root Mean Square 

Fluctuation; VMD, Visual Molecular Dynamics.
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resolved peptide fragments. This approach enables the model to 
generate short sequences (<100 residues) that retain essential 
functional signatures without relying on direct templating. All 
generated candidates are designated as “AI-Designed Novel 
Peptides (ADNP)” to accurately reflect their AI-driven origin. 
The pipeline’s emphasis on iterative computational validation 
from sequence generation to dynamic stability ensures robustness 
and provides a template for AI-driven peptide discovery across 
various therapeutic domains.

2.2 Data obtaining and preparation

The dataset for model development was manually curated to 
support the generation of peptides targeting amyloid-beta 
pathology. It comprises experimentally validated protein and 
peptide sequences with known amyloid-beta binding, uptake, or 
degradation activity, and is organized into two distinct subsets, 
as summarized in Table 1: The Background (Base) Set includes 7 
full-length protein sequences retrieved from the UniProt database 
(The UniProt Consortium, 2021). These proteins (sequence 
lengths ranging from 230 to 1,019 residues) were selected for 
their relevance in amyloid-beta clearance pathways and used to 
pretrain the model on general sequence patterns and motif 
structures. The Finetuning (Sample) Set consists of short 6 
peptide chains (≤100 residues) derived from crystallographic 
structures in the Protein Data Bank (PDB) (Berman et al., 2000). 
These peptides represent spatially resolved regions directly 
implicated in amyloid-beta interaction and were used to fine-
tune the model toward generating bioactive peptides with 
therapeutic potential.

All sequences were derived from peer-reviewed studies and cross-
validated for biological relevance. No synthetic or computationally 
augmented sequences were introduced.

Encoding and Sequence Windowing.
Each amino acid sequence was processed using a standard integer 

encoding scheme over the 20 canonical amino acids:

	 { }= , , , , , , , , , , , , , , , , , , ,A A C D E F G H I K L M N P Q R S T V W Y

Given sequence ( )= …1 2, , , LS s s s , the encoded representation is 
defined as:

	 ( ) ( ) ( )( ) { }= … → …1 2, , ,ˆ , : 0,1, ,19LS f s f s f s wheref A

To construct training examples for the generative model, a 
sliding window of length 35 was applied to each encoded sequence. 
For each window, the first 34 residues served as the input, and the 
35th residue was used as the target token. Formally, the training 
pair at position i is:

	 ( )+ + += … =1 33 34ˆ ˆ ˆ, , , , ˆi i i i i iX s s s y s

This framing defines a next-token prediction task, enabling the 
model to learn the conditional probability of the next amino acid 
given its context:

	 ( )−…1 2 1|,,, |,,, |,,, |,,,t tP x x x x

All sequences were truncated or padded to ensure consistency in 
length where necessary, but no structural or contextual augmentation was 
performed. This ensured that all training data remained biologically 
grounded, reflective of experimentally verified interactions with 
amyloid-beta.

2.3 Model development and training

The generative model was constructed using a bidirectional Long 
Short-Term Memory (BiLSTM) neural network architecture, chosen for 
its ability to capture long-range contextual dependencies within peptide 
sequences (Berglund et al., 2015). Unlike unidirectional models, BiLSTMs 
process input in both forward and reverse directions, making them well-
suited to identifying biologically relevant sequence motifs in both 
N-terminal and C-terminal contexts. Peptide sequences were first integer-
encoded using a fixed vocabulary of the 20 standard amino acids. A 

FIGURE 1

Schematic overview of the deep learning-based pipeline for the generation, screening, and validation of novel peptides amyloid-beta binding and 
clearance potential.
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sliding window of length 35 was applied to each sequence, generating 
overlapping subsequences in the format ( )… →1 2 34 35, , ,x x x x , where the 
first 34 residues served as input and the 35th residue was used as the target 
label. The model was thus trained to learn the conditional probability 
distribution over amino acids given a preceding context window:

	 ( )−…1 2 1|,,, |,,, |,,, |,,,t tP x x x x

At each position t, the BiLSTM model produced forward and 
backward hidden states defined as:

	
( ) +−

 
= =   

 

 

´ ´
11, , ,t tt f t t b th LSTM x h h LSTM x h

The final representation at position t  was obtained by 
concatenating these directional states:

	

 
=  
  



´
; tt th h h

This hidden representation was passed through two fully 
connected dense layers with ReLU activations, followed by a final 
softmax layer to output the predicted probability distribution over the 
20 amino acid classes:

	 ( )= +ˆt ty Softmax Wh b

Where W  and b are the learnable weights and biases of the output 
layer. Model training was guided by the categorical cross-entropy 
loss function:

	 ( )=
= −∑ 1 lo ˆgT

t ttL y y

The full architecture consisted of two stacked BiLSTM layers 
with 256 units each, followed by two dense layers. Dropout 
regularization ( = 0.2dropout rate ) was applied after each LSTM 
layer to mitigate overfitting. The model was trained using the 
Adam optimizer (learning rate = 0.001) for 150 epochs in the 
base phase and 45 epochs in the fine-tuning phase, with batch 
sizes of 30 and 62, respectively.

Training was carried out in two distinct phases. During the base 
phase, the model was trained on long, functionally annotated protein 
sequences (Table  1), enabling it to learn generalizable sequence 
grammar related to amyloid-beta interaction. In the second phase, the 
model was fine-tuned using a curated dataset of shorter peptides (<100 
residues), steering its output distribution toward compact, 
therapeutically relevant sequences. The model was optimized using the 
Adam optimizer with a learning rate of −× 31 10 , a batch size of 64 for 
generalization, and early stopping (patience = 10) based on validation 
loss. Although validation split was not explicitly implemented in code 
due to the limited sample size, instead stability and convergence of the 

TABLE 1  Summary of protein sequences used for model training and 
fine-tuning, including UniProt/PDB IDs, sequence lengths, and literature 
references.

Background (Base) Set

Uniprot id
Protein 
Name

Sequence 
Length

Ref.

P10909 Clusterin 449

Narayan et al. 

(2012) and Yeh 

et al. (2016)

P11835 Integrin beta-2 771

Jeon et al. (2008) 

and Choucair-

Jaafar et al. (2011)

P16671
Platelet 

glycoprotein 4
472

Shimizu et al. 

(2008) and Zhao 

et al. (2018)

P30204

Macrophage 

scavenger 

receptor types 

I and II

458
Husemann et al. 

(2001)

P35559
Insulin-degrading 

enzyme
1,019

Llovera et al. 

(2008), Shimizu 

et al. (2008), and 

Vekrellis et al. 

(2000)

P35951

Low-density 

lipoprotein 

receptor

862

Kim et al. (2009) 

and Basak et al. 

(2012)

Q9NZC2

Triggering 

receptor 

expressed on 

myeloid cells 2

230

Yeh et al. (2016), 

Zhao et al. (2018), 

and McQuade 

et al. (2020)

Finetuning (Sample) Set

PDB Id Protein Name
Sequence 

Length
Ref.

2FYL

alpha2-

macroglobulin 

receptor-associated 

protein Chain 1

81

Basak et al. (2012)
alpha2-

macroglobulin 

receptor-associated 

protein Chain 2

82

6V7M

Apolipoprotein E 

Chain 1
100 Cho et al. (2001) 

and Hopkins et al. 

(2011)
Apolipoprotein E 

Chain 2
83

2KNX

Low-density 

lipoprotein receptor-

related protein 1

50 Bell et al. (2009), 

Kanekiyo et al. 

(2012, 2013), and 

Zhao et al. (2015)2KNY

Prolow-density 

lipoprotein receptor-

related protein 1

80
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model were monitored by tracking training loss across epochs and 
performing repeat runs to assess reproducibility. This two-phase 
training paradigm allowed the model to first learn the global syntax 
and compositional structure of bioactive peptides and then specialize 
in generating novel, functionally coherent, and sequence-stable 
peptides suitable for downstream screening.

2.4 Peptide generation and 
physicochemical shortlisting

Following fine-tuning, the trained BiLSTM model was utilized to 
generate novel peptide sequences through an autoregressive sampling 
approach. Starting with randomly constructed seed sequences derived 
from the training dataset, the model predicted the next amino acid 
token iteratively. At each step t, the model used a fixed-length context 
window of 35 residues and predicted the most probable next amino 
acid +1tx  based on the preceding sequence −34:t tx :

	 ( ) ( )( )+ − − −… =1 34 33 34:|,,, |,,, |,,, |,,,t t t t BiLSTM t tP x x x x softmax f x

Here, BiLSTMf  denotes the trained network and the output is 
sampled via greedy decoding (argmax). This process was repeated 
until a complete peptide of length, [80,100]L∈  residues was 
generated. A total of 1,000 such sequences were synthesized.

To systematically reduce the sequence space, a two-stage 
physicochemical screening pipeline was employed. In Stage 1, the 
generated sequences were partitioned into five batches of 200 each. 
For every peptide, the following three metrics were computed:

	 1	 Shannon entropy H , measuring amino acid diversity within a 
sequence s of length n:

	 ( ) ( ) ( )∈
= −∑ 2loga AH s p a p a

where A is the set of standard amino acids and ( )p a  is the 
empirical frequency of residue a in the sequence (Shannon, 1948).

	 2	 GRAVY score G, calculated as the mean hydropathy index over 
all residues:

	
( ) ( )=

= ∑ 1
1 n

iiG s h s
n

where ( )ih s  is the Kyte-Doolittle hydropathy value of residue is  
(Kyte and Doolittle, 1982).

	 3	 Instability Index I , which estimates in vitro stability based on 
dipeptide composition. While the precise formula involves 400 
pairwise weights ( )δ +1,i is s , it is conceptually represented as:

	
( ) ( )δ− +=

= ∑ 1
11

10 ,n
i iiI s s s

n

Higher values of I  indicate greater instability; sequences with 
> 40I  are generally considered unstable (Guruprasad et al., 1990).

Within each batch, sequences were ranked to prioritize high 
Shannon entropy, moderate-to-low GRAVY, and low instability index. 
The top 10 sequences per batch were selected, yielding 50 candidates 
for further evaluation.

In Stage 2, these shortlisted peptides were compared to those in the 
fine-tuning dataset to ensure alignment with physicochemical 
properties of experimentally validated Aβ-interacting peptides. For each 
generated sequence p and reference peptide r , the Euclidean distance in 
the 2D feature space of GRAVY and instability was computed as:

	 ( ) ( ) ( )= − + −
2 2

, p r p rd p r G G I I

Each batch of 10 sequences was compared to the centroid of the 
fine-tuning reference distribution, and the five closest sequences per 
batch were retained, resulting in 25 final candidate peptides. This 
two-stage process ensured that the selected peptides possessed 
sequence diversity, biophysical stability, and feature similarity to 
known functional peptides, while maintaining novelty.

2.5 Sequence similarity analysis

To assess the novelty and potential functional relevance of the 
shortlisted peptides, sequence similarity analysis was performed using 
Clustal Omega, a widely accepted tool for multiple sequence 
alignment (Sievers and Higgins, 2014). This step ensured that the 
generated sequences shared meaningful similarity with known 
amyloid-beta-binding and degrading peptides, while still maintaining 
a level of novelty indicative of de novo design. The 25 shortlisted 
sequences were aligned against the six fine-tuning peptide chains 
[derived from PDB entries Clusterin (2FYL), Heat shock protein 
HSP 90-beta (6V7M), Metalloprotease (2KNX), and Metalloprotease 
domain-containing protein 3 (2KNY) using Clustal Omega with 
default parameters]. The alignment output provided pairwise 
percentage identity scores for each generated peptide against the 
reference chains. These scores were analyzed to identify which 
sequences shared the highest similarity to functionally validated 
peptides, serving as a proxy for potential biological relevance.

2.6 3D modelling and docking analysis

To assess the structural plausibility and amyloid-beta (Aβ) binding 
potential of the shortlisted peptides, 3D structural modeling followed 
by protein–protein docking was performed. The 11 peptides selected 
after biophysical screening and sequence similarity analysis were 
named as Amyloid-Degrading Novel Peptide (ADNP1–ADNP11) and 
were structurally modeled using the AlphaFold server (Jumper et al., 
2021). Structural visualization and verification were carried out using 
Jmol to ensure correct folding, absence of steric clashes, and suitability 
for docking (Herráez, 2006). Protein–protein docking was performed 
using pyDockWEB, a rigid-body docking server that incorporates 
electrostatics, desolvation, and van der Waals scoring (Jiménez-García 
et al., 2013). Each modeled peptide structure was docked against the 
Aβ42 monomer structure retrieved from the Protein Data Bank (PDB 
ID: 1IYT) (Crescenzi et al., 2002). The docking protocol evaluated 
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multiple energy-based scoring components, including electrostatic 
energy, desolvation energy, van der Waals energy, and total binding 
energy. ADNP peptides demonstrating more negative total docking 
scores were interpreted to have higher binding affinities toward Aβ. 
Particular emphasis was placed on peptides exhibiting favorable van 
der Waals and desolvation scores, as these indicate better surface 
complementarity and solvent compatibility, both of which are crucial 
for stable and specific protein–protein interactions.

2.7 Molecular dynamics simulation of the 
ADNP7–Aβ42 complex

2.7.1 Configuration of the system and solvation
To investigate the conformational dynamics and stability of the 

most promising peptide, ADNP7, in complex with amyloid-beta 
(Aβ42), two independent all-atom molecular dynamics (MD) 
simulations were performed using the AMBER 18 simulation suite 
(Case et al., 2018). The initial docking pose of ADNP7 complexed with 
Aβ42 was acquired from the highest-ranking pose achieved via rigid-
body docking utilizing pyDockWEB. The protein–peptide complex 
was preprocessed and subsequently parameterized utilizing the ff14SB 
force field, which is optimal for simulating folded proteins and 
peptides. The solvated system was constructed utilizing the tLeap 
module of AmberTools. Hydrogen atoms were incorporated based on 
normal protonation states at physiological pH. The complex was 
situated within a truncated octahedral box containing TIP3P water 
molecules, maintaining a minimum buffer zone of 10 Å surrounding 
the solute in every direction. This solvation model simulates a realistic 
watery milieu. An adequate quantity of sodium ions (Na+) was 
randomly introduced to equilibrate the net charge of the system. The 
resultant solvated and neutralized system underwent energy 
minimization before dynamic simulations.

2.7.2 Energy optimization
Energy minimization was performed in a three-step, progressively 

unrestrained approach to eliminate steric conflicts, alleviate stressed 
geometries, and stabilize the system prior to heating and equilibration. 
Initially, a constrained reduction of 1,000 steps was executed with 
harmonic restrictions (10 kcal/mol·Å2) imposed on the backbone 
atoms of the complex, facilitating the adjustment of solvent molecules 
and counterions. The subsequent phase involved restraining only the 
Cα atoms of the protein–peptide combination with the identical force 
constant, while the remainder of the system underwent minimization 
for 1,000 steps. In the last stage, all constraints were lifted, and a 
comprehensive system reduction was performed for 1,000 iterations 
to guarantee total energy relaxation. Each minimization step 
incorporated a blend of steepest descent and conjugate gradient 
methods to attain convergence and provide seamless transitions in the 
potential energy surface.

2.7.3 Heating
Subsequent to energy minimization, the system was incrementally 

heated from 0 K to 300 K over 70,000 steps under constant volume 
circumstances (NVT ensemble). In this phase, a mild harmonic 

constraint (5 kcal/mol·Å2) was imposed on all heavy atoms of the 
solute to avert deformation of the native structure during fast 
temperature elevations. Langevin dynamics facilitated temperature 
coupling with a collision frequency of 2 ps−1, ensuring steady 
thermalization of the solvent and gradual activation of molecular 
movements. The gradual heating facilitated thermal equilibration of 
the system in a regulated manner, preventing any sudden 
conformational alterations.

2.7.4 Equilibration
Equilibration was conducted in six meticulously structured stages 

to enable the system to attain thermodynamic stability regarding 
pressure, density, and temperature. All equilibration phases were 
performed under NPT ensemble circumstances utilizing the 
Berendsen barostat to sustain pressure at 1 atm and the Langevin 
thermostat to regulate temperature at 300 K. During the initial three 
phases (EQ-B, EQ-C, and EQ-D), the system underwent equilibration 
for 1,000 steps at each stage, with progressively diminishing positional 
restrictions on the solute atoms. These measures guaranteed the 
solvent and ions were adequately relaxed without disrupting the 
natural structure of the protein–peptide complex. The fourth 
equilibration phase (EQ-E) was prolonged to 20,000 steps to facilitate 
adequate pressure coupling and solvent density adaption. A 
concluding equilibration phase (EQ-F) was executed for 80,000 steps 
without constraints, guaranteeing the system’s full relaxation under 
physiological conditions. At the conclusion of equilibration, the 
system attained stable temperature, pressure, and density, exhibiting 
minimal variations, and was prepared for the simulation’s 
production phase.

2.7.5 Production
Two sets of 20-nanosecond molecular dynamics simulations 

were conducted under NPT ensemble settings to study the long-term 
structural dynamics and interactions between ADNP7 and Aβ42. The 
simulations were conducted with the pmemd.mpi by utilizing 
AMBER 18 package. The temperature was regulated at 300 K via the 
Langevin thermostat, while the pressure was controlled at 1 atm 
using the Berendsen barostat for both sets of MD simulations. The 
integration time step was established at 1 fs, and all bonds involving 
hydrogen atoms were restricted via the SHAKE algorithm, facilitating 
a stable and efficient simulation. Non-bonded interactions were 
computed with a 10 Å cutoff, whilst long-range electrostatics were 
addressed using the Particle Mesh Ewald (PME) approach to ensure 
precise handling of periodic boundary conditions. System 
coordinates were recorded every 10 picoseconds, yielding a total of 
20,000 frames for the complete 20 nanosecond simulation. This 
trajectory data was utilized for future structural, dynamic, and 
energetic analyses to assess stability and binding characteristics of 
the peptide.

2.7.6 Trajectory analysis
Post MD simulation analysis was performed with CPPTRAJ 

(from AmberTools18) and Visual Molecular Dynamics (VMD) to 
derive significant insights from the 20 ns trajectory. Root Mean 
Square Deviation (RMSD) computations were conducted for the 
backbone atoms of the complex to evaluate structural stability over 
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time. Root Mean Square Fluctuation (RMSF) values were calculated 
for each residue to assess local flexibility and pinpoint dynamic 
regions, especially at the binding interface. The Radius of Gyration 
(Rg) was observed during the simulation to assess the compactness 
of the ADNP7-Aβ42 complex and identify significant 
conformational alterations. An investigation of hydrogen bonding 
was performed to assess the frequency and durability of 
intermolecular hydrogen bonds between the peptide and the Aβ42 
chain, yielding insights into critical interactions that maintain the 
complex. For energetic assessment, MM/PBSA (Molecular 
Mechanics Poisson-Boltzmann Surface Area) free energy 
calculations were conducted utilizing MMPBSA.py on 500 typical 
frames selected from the final 20 ns of the trajectory. This facilitated 
the calculation of the binding free energy between ADNP7 and 
Aβ42, which was decomposed into contributions from electrostatic, 
van der Waals, polar solvation, and non-polar solvation energies. 
These analyses jointly facilitated a comprehensive knowledge of the 
structural stability, dynamic flexibility, and binding affinity of the 
ADNP7-Aβ42 complex under simulated physiological settings.

3 Results

3.1 Model training and performance

The model architecture was based on a Bidirectional Long 
Short-Term Memory (BiLSTM) network, chosen for its capacity 
to learn both upstream and downstream sequence dependencies 
in protein sequences. The training was performed in two stages: a 
base training phase using seven long Aβ-related proteins from 
UniProt, and a fine-tuning phase using six short peptides (≤100 
residues) derived from PDB structures. Both stages used a window 
size of 35 amino acids, with 34 as input and the 35th as the 
prediction target, enabling the model to learn contextual 
residue prediction.

During the base training, the model converged steadily, as 
reflected in the training loss and accuracy metrics. The loss 
decreased consistently over epochs stabilizing around 0.2–0.3, 
indicating improved predictive performance. Accuracy also 
improved progressively reaching over 0.95, demonstrating the 
model’s growing ability to predict the next amino acid in 
Aβ-related sequences. Fine-tuning further refined the model’s 
predictions on shorter peptides, as evident from the sharper 
convergence of loss reaching less than 0.1 and a slight 
improvement in accuracy reaching 9.8, suggesting effective 
adaptation to compact sequence features relevant for therapeutic 
design The training performance during the base training and 
fine-tuning are visualized in Figure 2.

3.2 Sequence generation and biophysical 
screening

Using the fine-tuned BiLSTM model, 1,000 novel peptide 
sequences, each under 100 amino acids, were generated with the aim 
of mimicking the properties of known amyloid-beta (Aβ) binding and 
degrading peptides. These sequences were subjected to a two-stage 

screening process based on their physicochemical properties to 
identify candidates with favorable biochemical stability and diversity.

In the first screening stage, the 1,000 generated peptides were 
divided into five batches of 200 sequences each. Within each batch, 
peptides were evaluated using three key biophysical metrics: GRAVY 
(Grand Average of Hydropathy), instability index, and Shannon 
entropy. GRAVY scores were used to estimate hydrophobicity, with 
moderate values indicating a balance between solubility and 
membrane interaction. The instability index predicted peptide stability 
under in vitro conditions, where values below 40 are considered stable. 
Shannon entropy measures the diversity of amino acid usage within 
each sequence, favoring sequences with non-repetitive and 
information-rich content. Figure 3 visualizes the distributions of the 
biophysical metrics comparatively between the dataset sequences vs. 
the generated sequences. Based on a composite score integrating these 
three metrics, the top 10 peptides from each batch (50 total) were 
shortlisted. These 50 peptides were compared against the six fine-
tuning sequences using Euclidean distance across GRAVY and 
instability values In the second stage biophysical screening. The goal 
was to retain peptides that were biophysically most similar to 
experimentally validated Aβ-interacting peptides. From each batch, 
the five closest peptides were selected, yielding a final set of 25 high-
confidence candidates for downstream structural and 
functional evaluation.

3.3 Sequence similarity analysis

To assess whether the 25 shortlisted peptides were novel or bore 
resemblance to known amyloid-beta (Aβ)-interacting sequences, a 
comprehensive sequence similarity analysis was conducted using 
Clustal Omega. This analysis was intended to (i) identify evolutionary 
or functional resemblance to known Aβ-binding and degrading 
sequences and (ii) confirm that the generated peptides were not 
trivially derived from the training data. Each of the 25 peptides was 
aligned with the six fine-tuning sequences used during the second 
training phase. The alignment scores were computed based on percent 
identity values returned by Clustal Omega, providing a quantitative 
measure of sequence-level similarity (Supplementary Table  1). 
Importantly, none of the peptides were exact or near-exact matches to 
any of the training sequences, indicating that the generative model 
had successfully learned abstract sequence patterns rather than 
memorizing specific examples (Table 2).

3.4 3D structure prediction and docking

To assess the structural integrity and binding potential of the 
top  11 peptides (ADNP1–ADNP11), we  performed three-
dimensional (3D) structure prediction followed by protein–protein 
docking. The peptide structures were predicted using the 
AlphaFold2 server. The predicted PDB files were extracted using 
Jmol for downstream analysis. For docking studies, each modeled 
peptide was docked against the Aβ42 peptide (PDB ID: 1IYT) using 
pyDockWEB. The results are summarized in Table 3, showing that 
all 11 peptides exhibited negative total interaction energies, 
indicating favorable binding. Among them, ADNP7 demonstrated 
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the strongest predicted interaction, with a total docking energy of 
−63.33 kcal/mol, outperforming both reference and other novel 
peptides. Other promising candidates included ADNP5 
(−50.69 kcal/mol) and ADNP11 (−47.27 kcal/mol). As shown in 
Figure 4, ADNP7 docks within a hydrophobic cleft of Aβ42, with 
surface-accessible residues (including TYR69, GLY46, and LEU44) 
forming hydrogen bonds and hydrophobic contacts near 
aggregation-prone regions (e.g., residues 16–21 and 30–42) 
(Crescenzi et  al., 2002; Tomaselli et  al., 2006). The diversity in 
docking orientations and contact residues indicates that different 
peptides may engage distinct structural motifs of Aβ42, potentially 
interfering with its oligomerization pathways through multiple 
mechanisms. These findings validate the docking potential of the 
generated peptides and highlight ADNP7 as a particularly strong 

candidate for further investigation through molecular dynamics 
simulations and experimental validation (Figure 4).

3.5 Post-MD simulation analysis

To ensure reproducibility of the MD stability assessment, two 
independent simulations were performed for the ADNP7–Aβ42 
complex, and the structural parameters were analyzed using statistical 
summaries. The RMSD values remained stable across both sets 
(5.415 ± 1.989 Å in Set-1 and 5.555 ± 1.437 Å in Set-2), indicating 
consistent backbone convergence. Similar reproducibility was 
observed in RMSF (3.907 ± 1.673 Å vs. 2.909 ± 1.703 Å) and Rg values 
(34.083 ± 3.589 Å vs. 42.288 ± 5.536 Å), confirming that the overall 

FIGURE 2

Training performance of the BiLSTM model, (A) Base training on full-length Aβ-interacting UniProt proteins showing rapid convergence of loss and 
accuracy stabilization, (B) Fine-tuning on short, experimentally validated peptides exhibits low training loss and high accuracy.
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compactness and residue-level flexibility remained comparable 
between simulations. These results validate that the structural stability 
findings are reliable and not dependent on a single MD trajectory 
(Table 4).

3.5.1 Structural stability assessment: RMSD 
analysis

The Root Mean Square Deviation (RMSD) plots of the backbone 
Cα atoms for both MD replicates (Set-1 and Set-2) were examined 
over the 20 ns trajectory to assess the overall structural stability of 
the ADNP7–Aβ42 complex. Figure  5 demonstrates that both 
simulation sets exhibit an initial increase in RMSD values over the 
first 2–4 ns, signifying structural adaptation and relaxing of the 
complex inside the solvated environment. Set-1 demonstrated a 
moderate increase in RMSD, stable around 4–6 Å until around 
12 ns, followed by a more significant rise exceeding 8 Å in the final 
nanoseconds. Set-2 exhibited a little accelerated deviation initially, 
with RMSD values of 6–7 Å during the 4–8 ns interval, then 
sustained a more uniform fluctuation pattern of 5–7 Å beyond 

10 ns. Notably, Set-1 demonstrated increased structural deviation 
in the later phases of the simulation, whereas Set-2 displayed greater 
volatility in the initial stages but sustained modest stability 
thereafter. The disparities can be ascribed to the randomized initial 
velocities (ig values), which may have resulted in divergent 
conformational sampling pathways. Both runs ultimately converged 
to structurally diverse but stable conformations, highlighting the 
dynamic plasticity of the complex and validating the necessity for 
many independent simulations.

3.5.2 Residue flexibility: RMSF analysis
To analyze residue-level motion inside the complex, the Root 

Mean Square Fluctuation (RMSF) was calculated for all Cα atoms 
during the trajectory (Figure  6). Both sets exhibited analogous 
fluctuation patterns throughout the sequence, with slight 
discrepancies in size. The N-terminal and C-terminal portions of the 
complex exhibited the greatest variations, as anticipated due to their 
exposed and unstructured characteristics. The interface between the 
ADNP7 peptide and Aβ42 (about residue locations ~85–90) had a 

FIGURE 3

Physicochemical property distributions of generated peptides, (A) Distribution profiles of sequence diversity, GRAVY, and instability index among all 
1,000 generated peptides showing broad variation, supporting diversity and favorable biophysical characteristics. (B) GRAVY and instability index 
distributions of generated peptides compared to sample proteins demonstrating substantial overlap.
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prominent peak in Set-1, suggesting localized flexibility potentially 
attributable to loop or linker dynamics. The RMSF values were 
predominantly lower in the ADNP7 segment (residues 1–88, 
highlighted in yellow), indicating stable anchoring and a structured 
conformation of the designed peptide when associated with the Aβ42 
chain. Conversely, the Aβ42 segment (residues 89–130, highlighted 
in green) exhibited greater variations, especially in Set-1, with peaks 
near terminal residues and in areas associated with aggregation. Set-2 
exhibited reduced fluctuations in the same locations, potentially 
indicating alternative hydrogen bonding or inter-residue packing 
resulting from the variation in velocity seeds. The data indicate that 
ADNP7 binding results in a partial stabilization of Aβ42; however, 
terminal residues and flexible loops remain mobile, potentially 
affecting aggregation behavior.

3.5.3 Compactness: Radius of Gyration (Rg) 
analysis

The Radius of Gyration (Rg) values were computed to assess the 
overall compactness and folding dynamics of the complex over time 
(Figure 7). Both sets exhibited stable Rg variations, varying between 
30 and 50 Å. Set-1 exhibited a more compact conformation 
throughout the simulation, averaging approximately 35–38 Å, 
whereas Set-2 demonstrated marginally elevated Rg values 
(40–50 Å) during several intermediate intervals (notably 4–8 ns and 
12–16 ns), suggesting transient expansion of the complex. The 
elevated Rg values noted in Set-2 may correlate with localized 
unfolding phenomena or enhanced solvent exposure in the flexible 
domains of Aβ42. Both simulations ultimately reverted to similar T
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TABLE 3  Electrostatic, desolvation, van der Waals, and total docking 
energies for benchmark and novel peptides docked with Aβ42.

Protein 
name

Electrostatics Desolvation Van 
der 

Walls

Total

Sample proteins docking with amyloid beta

2FYL_1 −16.754 −23.368 25.731 −37.549

2FYL_2 −24.065 −18.388 30.901 −39.363

6V7M_1 −19.568 −36.483 84.015 −47.649

6V7M_2 −28.169 −13.155 54.088 −35.915

2KNX −11.968 −22.406 −3.73 −34.748

2KNY −33.549 −5.999 73.728 −32.175

Novel proteins docking with amyloid beta

ADNP1 −14.744 −33.989 45.624 −44.17

ADNP2 −8.157 −35.979 43.011 −39.835

ADNP3 −15.734 −17.356 69.241 −26.166

ADNP4 −6.287 −41.294 46.051 −42.976

ADNP5 −7.547 −47.401 42.62 −50.686

ADNP6 −18.868 −20.42 31.8 −36.109

ADNP7 −8.601 −63.07 83.436 −63.328

ADNP8 −18.609 −30.219 90.393 −39.789

ADNP9 −11.687 −27.916 77.333 −31.87

ADNP10 −3.306 −46.824 51.999 −44.93

ADNP11 −12.172 −41.706 66.046 −47.273
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compact states after 18 ns, indicating convergence to equilibrated 
conformations. The Rg and RMSF analyses collectively indicate that 
ADNP7 forms a stable and compact complex with Aβ42, with 
dynamic variations predominantly occurring in the terminal and 
loop regions. The peptide is likely to stabilize at the central core of 
the complex while permitting conformational flexibility in 
surrounding residues.

3.5.4 Binding free energy analysis by MM/PBSA
Binding free energy calculations utilizing the MM/PBSA method 

were conducted on the final 20 ns of both MD simulations to assess the 
interaction intensity between ADNP7 and Aβ42. The total binding free 
energy (ΔGTotal) was determined to be significantly negative in both 
trials, −50.616 kcal/mol (Set1) and −46.570 kcal/mol (Set2) which are 
mentioned in the Table  4, signifying a stable and energetically 

FIGURE 4

Molecular interaction interface between Aβ42 (cyan) and ADNP7 (pink). Left: Surface representation of the complex, with the binding interface 
highlighted by a yellow dotted circle. Right: Zoomed-in view showing key interacting residues from ADNP7- TYR69, GLY46, and LEU44, forming 
hydrogen bonds (dashed lines) and hydrophobic contacts with Aβ42. Residues are shown as sticks for clarity.

TABLE 4  MM/GBSA binding free energy (Kcal/mol) components of ADNP7–Aβ42 complex.

Complex Simulation set Energy components

∆Evdw ∆Eele ∆Gpol ∆Gnon-pol ∆GTotal

ADNP7-Aβ42 Complex Set-1 −91.202 −183.533 234.711 −10.592 −50.616

Set-2 −90.955 −157.935 212.805 −10.485 −46.570

FIGURE 5

Backbone RMSD of the ADNP7–Aβ42 complex over 20 ns of molecular dynamics simulation. RMSD values (Å) are plotted for two independent 
replicates (Set-1 in blue, Set-2 in red), indicating structural stabilization after initial relaxation.
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advantageous complex. The van der Waals (ΔEvdw) and electrostatic 
(ΔEele) components were the primary contributors to binding, with 
values about −90 to −95 kcal/mol and −178 to −198 kcal/mol, 
respectively, underscoring robust hydrophobic packing and charge 
interactions. Conversely, the polar solvation energy (ΔGpol) was 
detrimental (+211 to +225 kcal/mol), indicating the desolvation 
expense of polar residues. The non-polar solvation energy (ΔGnon-pol) 
offered negligible beneficial contributions, approximately in the range 
of −7 kcal/mol. The similarity across both sets suggests that ADNP7 
consistently and robustly interacts with Aβ42, mostly because to 
hydrophobic and electrostatic interactions, notwithstanding solvation 
penalties (Figure 8).

3.5.5 Energy decomposition analysis (EDA)
Per-residue energy decomposition analysis (EDA), utilizing MM/

PBSA energy terms was conducted to identify the critical residues that 
contribute to the binding interface and stability of the ADNP7–Aβ42 
complex. Figures 9a–d presents the outcomes of two independent MD 
simulation runs (Set1 and Set2), emphasizing the most energetically 
relevant residues from both ADNP7 (red bars) and Aβ42 (blue bars).

In Set1, the most advantageous binding residues in ADNP7 were 
PHE12 (−4.40 kcal/mol), LEU9 (−3.20 kcal/mol), TRP50 (−3.14 kcal/
mol), TYR69 (−2.86 kcal/mol), and VAL5 (−2.71 kcal/mol) 
(Figure  9a). The residues are predominantly hydrophobic and 
aromatic, indicating that hydrophobic interactions and π-stacking play 

FIGURE 6

Per-residue root mean square fluctuation (RMSF) of the ADNP7–Aβ42 complex. RMSF values (Å) are shown for all Cα atoms across the 20 ns trajectory 
for Set-1 (blue) and Set-2 (red). The ADNP7 segment (residues 1–88, yellow highlight) exhibits lower flexibility than the Aβ42 segment (residues 89–
130, green highlight).

FIGURE 7

Radius of Gyration (Rg) of the ADNP7–Aβ42 complex during MD simulation. Rg (Å) is plotted over time (ns) for Set-1 (blue) and Set-2 (red), reflecting 
consistent overall compactness with minor transient expansions.
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a substantial role in ADNP7’s attachment to Aβ42. In the associated 
Aβ42 profile (Figure 9b), significant interacting residues included 
PHE197 (−3.90 kcal/mol), TYR10 (−3.08 kcal/mol), VAL12 
(−2.78 kcal/mol), and ALA2 (−2.43 kcal/mol). The residues are 
primarily hydrophobic or aromatic, underscoring the preeminence of 
van der Waals interactions at the binding contact. In Set2, exploratory 
data analysis revealed a consistent interaction profile with certain 
variances in residue contributions. In ADNP7 (Figure 9c), the most 
prominent residues were TRP50 (−5.35 kcal/mol), HIS53 (−4.88 kcal/

mol), PHE12 (−4.04 kcal/mol), and VAL5 (−2.03 kcal/mol). These 
residues exhibited significant interaction energies in both sets, 
affirming their essential role in the stability of the complex. In relation 
to Aβ42 (Figure  9d), the residues exhibiting consistently robust 
binding included PHE197 (−3.51 kcal/mol), TYR10 (−3.77 kcal/mol), 
VAL12 (−3.07 kcal/mol), ALA2 (−2.82 kcal/mol), and HIS6 
(−3.55 kcal/mol). These residues are probably engaged in hydrophobic 
interactions and π–π stacking with the aromatic residues of ADNP7. 
The EDA data indicate that the binding surface is primarily stabilized 

FIGURE 8

MM/PBSA binding free energy decomposition for the ADNP7-Aβ42 complex. Contributions from van der Waals (∆Evdw), electrostatic (∆Eele), polar 
solvation (∆Gpol), and non-polar solvation (∆Gnon-pol) terms are shown for Set-1 (blue) and Set-2 (red).

FIGURE 9

Per-residue energy decomposition analysis (EDA) of the ADNP7-Aβ42 interface. (a,c) Energetic contributions of ADNP7 residues in Set-1 and Set-2, 
respectively. (b,d) Corresponding contributions from Aβ42 residues. Negative values indicate favorable binding; key hotspots include: PHE12, TRP50 
(ADNP7), and TYR10, PHE197 (Aβ42).
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by hydrophobic and π-stacking interactions, with certain aromatic and 
aliphatic residues continuously yielding the highest negative 
interaction energy. The consistency of significant residue contributions 
across both simulation sets bolsters confidence in the reliability of the 
interaction model. The persistent engagement of PHE12 and TRP50 in 
ADNP7, alongside PHE197 and TYR10 in Aβ42, suggests that these 
residues may constitute essential binding hotspots, which might 
be targeted or altered in forthcoming peptide optimization research.

4 Discussion

Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) 
aggregation, which remains an important therapeutic challenge. 
Despite extensive research into small molecules, antibodies, and 
enzyme-based strategies, clinical efficacy has been limited. Here 
we present a two-stage BiLSTM generative framework that, when 
combined with physicochemical filtering, structural modeling, 
docking, and molecular dynamics (MD), and enables de novo 
peptide design. Applied to Aβ42, the framework generated 11 
AI-Designed Novel Peptides (ADNPs), with ADNP7 showing the 
most favorable docking score, stable MD trajectories, and strong 
binding free energy supported by hydrophobic and aromatic 
interactions. Compared with earlier work using LSTM or CNN–
BiLSTM models for peptide classification and motif rediscovery, 
our approach emphasizes unbiased sequence generation validated 
at structural and energetic levels (Xiao et al., 2021; Li et al., 2022). 
This distinguishes it from template-driven strategies such as 
KLVFF-based inhibitors and receptor-binding studies, and from 
prior docking-only pipelines that risk false positives (Chafekar 
et al., 2007). Although we did not apply any intrinsic interpretability 
methods to our BiLSTM model, the framework avoids black-box 
behavior through staged biophysical validation: initial filtering by 
physicochemical properties (GRAVY, instability, entropy) ensures 
functional plausibility across all candidates, while detailed 
per-residue MM/PBSA energy decomposition, applied to the top 
candidate ADNP7 links specific residues (PHE12, TRP50) to 
hydrophobic and π-stacking interactions with Aβ42. These 
interactions recapitulate established amyloid-binding motifs, 
demonstrating that the model’s outputs are grounded in known 
biophysical principles rather than arbitrary sequence generation. 
The multi-metric evaluation employed here, combining docking 
with MD stability and MM/PBSA energy decomposition, provides 
stronger evidence of candidate robustness. The MM/PBSA binding 
free energy for the ADNP7 − Aβ42 complex was consistently 
favorable across two independent 20-ns MD replicates, with a mean 
ΔG_total ≈ − 46 to −50 kcal/mol (Set-1: −50.6 kcal/mol; Set-2: 
−46.6 kcal/mol). These values fall within the range reported for 
other computationally validated Aβ inhibitors (Patel et al., 2021; 
Patel et al., 2022a; Patel et al., 2022b; Mall et al., 2022), supporting 
strong predicted binding affinity. The interaction is driven primarily 
by hydrophobic and aromatic contributions from ADNP7 residues 
PHE12 and TRP50, consistent with known amyloid-binding motifs. 
However, MM/PBSA estimates are derived under idealized 
simulation conditions and do not account for physiological 
complexities such as membrane environments, macromolecular 
crowding, or the conformational heterogeneity of oligomeric/
fibrillar Aβ species. Therefore, while these energies support the 
promise of ADNP7 as a potential peptide inhibitor, experimental 

validation will be  essential to confirm its true therapeutic 
effectiveness. The compact size and sequence diversity of ADNPs 
suggest potential advantages for central nervous system delivery, 
while ADNP7’s binding profile indicates possible interference with 
aggregation interfaces. Beyond AD, the framework is adaptable to 
other protein misfolding disorders. While the monomeric Aβ42 
structure (PDB: 1IYT) provides a suitable template for initial 
computational screening, it is important to note that Aβ primarily 
exerts its neurotoxic effects in oligomeric and fibrillar forms during 
AD progression. These aggregated states present distinct 
conformational landscapes and additional binding epitopes that 
could influence peptide recognition. Therefore, the results reported 
here represent an early-stage prediction of peptide-Aβ affinity. 
Future studies will extend this pipeline to physiologically relevant 
oligomeric and fibrillar Aβ assemblies. Additionally, the short MD 
timescale (20 ns), while provides reliable initial convergence of of 
RMSD, Rg, and binding energy profiles across two independent 
replicates supporting the the observed interactions (e.g., PHE12 
and TRP50), may be insufficient to fully sample slow conformational 
rearrangements or achieve complete equilibration of intrinsically 
disordered regions in Aβ42. future studies employing longer-
timescale simulations (≥100 ns) or enhanced sampling methods 
will be valuable to confirm the durability of these interactions under 
extended dynamic conditions. Further limitations include, reliance 
on computational scores without experimental validation, Key 
pharmacological properties such as stability, immunogenicity, and 
blood–brain barrier permeability remain untested. Future work 
should focus on experimental validation of binding with binding 
assays (e.g., surface plasmon resonance or ELISA) and clearance 
potential with aggregation inhibition assays (e.g., Thioflavin T 
fluorescence) and cellular Aβ uptake studies. Aditionally, longer 
simulations for dynamic insight, and integration of reinforcement 
learning or transformer-based protein models to further enhance 
design capability. In summary, this study introduces a scalable 
AI-simulation pipeline for peptide discovery. While ADNP7 
represents a promising computational lead, the broader value lies 
in demonstrating how interpretable AI model frameworks 
combined with biophysical validation can advance therapeutic 
peptide design.

5 Conclusion

This study introduces a two-stage BiLSTM framework for de 
novo peptide design, demonstrated through the generation of 
candidates targeting amyloid-β (Aβ). By integrating sequence 
generation with physicochemical filtering, structural modeling, 
docking, and molecular dynamics simulations, we  identified 11 
candidate peptides, with ADNP7 showing the most stable and 
energetically favorable interaction with Aβ42. These results 
highlight the capacity of deep learning–guided design, combined 
with physics-based validation, to capture sequence–structure 
features critical for targeting amyloid aggregation. While clearance 
potential was inferred from the GO annotations of the training 
data, experimental validation is required to confirm biological 
activity of true clearance, BBB permeability as well as binding with 
the amyloid beta monomer and oligomers. Future work should 
focus on in  vitro binding and aggregation assays, cellular and 
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animal models to assess clearance, and evaluation of 
pharmacological properties including stability and blood–brain 
barrier permeability. Overall, this framework provides both 
prioritized peptide leads and a broadly generalizable strategy for 
accelerating therapeutic discovery in Alzheimer’s disease and other 
protein misfolding disorders.
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