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Introduction: In the face of high uncertainty and complexity in financial 
markets, achieving portfolio return maximization while effectively controlling 
risk remains a critical challenge.
Methods: We propose a novel portfolio management framework based on the 
value distribution maximum entropy actor-critic (VD-MEAC) reinforcement 
learning algorithm. We establish a framework where the agent’s actions represent 
portfolio weight adjustments and stock factors serve as state observations. For risk 
management, the critic network learns the complete distribution of future returns. 
For return enhancement, we incorporate entropy regularization.
Results: We conduct extensive experiments using real market data from the 
Chinese stock market. Results demonstrate that our VD-MEAC strategy achieves 
an average return of 2.490 and an average Sharpe ratio of 2.978, significantly 
outperforming benchmark strategies.
Discussion: These results validate the effectiveness of our approach in practical 
portfolio management scenarios.
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1 Introduction

Portfolio management remains one of the most challenging problems in financial mathematics 
and quantitative investment, requiring sophisticated approaches to balance return maximization 
against risk minimization in highly complex and non-stationary market environments (Rezaei and 
Nezamabadi-Pour, 2025; Sattar et al., 2025; Xu, 2025). Traditional portfolio optimization methods, 
from Markowitz’s mean–variance framework to various factor models, often rely on restrictive 
assumptions about return distributions and market behavior that may not hold in practice (Li and 
Hai, 2024). With the advancement of artificial intelligence and the increasing availability of high-
dimensional financial data, reinforcement learning (RL) has emerged as a promising approach to 
portfolio management, enabling the development of adaptive investment strategies through 
interaction with financial markets (Jiang et al., 2024).

In practice, prior studies have applied RL to portfolio management from different perspectives. 
For instance, Day et al. (2024) employed policy gradient algorithms to build trading frameworks, 
while Fu and Huang (2025) used Q-learning to design an intelligent portfolio management system. 
However, these works relied on shallow neural networks, which are insufficient to handle the 
increasing complexity of financial markets. With the development of reinforcement learning theory, 
the Actor-Critic (AC) framework, which combines the benefits of both value-based and 
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policy-based methods, has been introduced into quantitative investment. 
Specifically, Kitchat et al. (2024) applied the deterministic policy gradient 
(DPG) method to allocate a set of cryptocurrency weights and proposed 
a model-free convolutional network for feature extraction. Building on 
DPG, Cui et al. (2024) designed a state-augmentation approach to address 
data heterogeneity. In addition, Cheng and Sun (2024) applied the deep 
deterministic policy gradient (DDPG) algorithm within the AC 
framework to portfolio problems, while Belyakov and Sizykh (2024) 
introduced a proximal optimization method under the AC framework to 
handle portfolio optimization with transaction costs. Furthermore, Pippas 
et al. (2025) integrated fuzzy representations with the AC framework and 
proposed an adaptive fuzzy reinforcement learning approach.

Recent applications of deep reinforcement learning in portfolio 
management have demonstrated promising results but continue to 
face critical challenges (Junfeng et al., 2024). First, conventional RL 
algorithms typically optimize for expected returns using point 
estimates, which fail to capture the full uncertainty inherent in 
financial returns and can lead to risk-seeking behavior unsuitable for 
investment applications (Betancourt and Chen, 2021; Wu et al., 2021; 
Jang and Seong, 2023). Second, most existing approaches suffer from 
overestimation bias in value functions, potentially resulting in overly 
aggressive investment strategies and substantial drawdowns during 
market downturns (Aminifar et al., 2022; Koratamaddi et al., 2021). 
Third, the exploration-exploitation tradeoff in financial markets 
presents a unique challenge, as insufficient exploration may lead to 
strategies that perform well historically but fail to adapt to changing 
market conditions (Teoh et al., 2021; Pallathadka et al., 2023).

To address these limitations, we propose a Value Distribution 
Maximum Entropy Actor-Critic (VD-MEAC) framework that 
fundamentally reimagines the application of reinforcement learning to 
portfolio management. Our framework makes three key innovations: (1) 
Instead of modeling expected returns, our Critic network learns the entire 
distribution of future returns, providing a more comprehensive risk 
assessment; (2) We implement a novel mechanism to filter out 
overconfident decision information in the value distribution, explicitly 
reducing overestimation risk; and (3) We incorporate maximum entropy 
reinforcement learning principles to encourage strategy diversification 
and robust exploration of the investment action space.

The remainder of this paper is organized as follows: Section II 
formulates the portfolio management problem within a reinforcement 
learning framework. Section III introduces our VD-MEAC algorithm, 
detailing its theoretical foundations and implementation. Section IV 
presents experimental results on real market data. Section V discusses 
the implications of our findings and concludes the paper.

2 Reinforcement learning framework 
for portfolio optimization

2.1 Portfolio problem description

Portfolio optimization involves the adjustment of asset weights by 
investors seeking to maximize utility at the end of an investment 
period (Du and Ghavidel, 2022). This problem can be expressed in the 
following optimization form:

	 ( )( )( )ε 
 max ,x u W x p

	
(1)

where x  represents the investor’s trading strategy (i.e., the vector of 
asset weights), ( )·u  is the utility function, ( )·W  denotes the terminal 
wealth value, ε represents random factors, and ( )εp  denotes asset prices.

To rigorously describe the problem, we make the following 
assumptions about investors and the financial environment (Jin et al., 
2024; de López Prado et al., 2025):

	•	 Investors are risk-neutral, meaning the utility function is linear.
	•	 The asset pool consists of a fixed set of N risky assets and one 

risk-free asset, with no addition of new risky assets during the 
investment period.

	•	 No minimum trading unit exists, meaning assets can be 
infinitely divisible.

	•	 Trading prices are closing prices for each period, without 
consideration of bid-ask spreads.

	•	 Trading costs can be represented as proportional costs.

For the optimal decision problem in Equation 1, we can employ a 
reinforcement learning framework for the solution. Reinforcement 
learning is built upon a Markov Decision Process (S, A, R, ρ, γ), where 
S represents the state space, A is the action space, R  denotes the reward 
function, ρ  is the state transition matrix (dependent on the specific 
policy π  and the environment), and γ  is the reward discount factor.

As shown in Figure 1, investors observe the state information 
from the financial market, take actions to adjust weights, and the 
financial environment provides rewards in the form of portfolio gains 
or losses. The ultimate goal of reinforcement learning is to train an 
investor that acts based on long-term benefits rather than 
myopic behavior.

2.2 Reinforcement learning framework 
design

State space design. Investors need to observe the state information 
of the financial market to make trading decisions. In this study, we 

FIGURE 1

Reinforcement learning portfolio framework.
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choose to describe the financial market using factor information 
(Dong et al., 2024). The state tS  can be represented as:
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 
 …

=  
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(2)

where tS  is a matrix composed of asset factor information, and t
ijs  

represents the value of factor j  for asset i at time t .
We use the Light Gradient Boosting Machine (LightGBM) (Gong et 

al., 2024) method to select important factors from the factor library. 
Figure 2 shows the factor importance. Investors select the top 15 
important factors as observations of the financial environment before 
each trade, i.e., n = 15. The specific state information is shown in Table 1. 
Some factors in Table 1, such as the 20-day turnover rate, already 
incorporate historical information, so investors only observe the current 
period’s factor information rather than using a three-dimensional tensor.

Action space design. Investors adjust asset weights at the 
beginning of each period. The action At at time t is defined as the 
target portfolio weight vector xt for the end of the period, 
after rebalancing:

	 ( )Tt t t t t NA x x x x,0 ,1 ,, , ,= = …
	 (3)

where ,t ix  represents the target weight of the i-th asset (with i = 0 
being the risk-free asset). The action space is the set of all valid weight 
vectors, i.e., 

=
= ≥∑ , ,0 1, 0N

t i t ii x x  (for a long-only portfolio). This 

constraint explicitly forbids the use of leverage or short-selling, 
ensuring that all performance gains are derived solely from the agent’s 
methodological advantages. The policy network outputs the 
parameters for this continuous action vector.

Reward function design. The design of the reward function is 
crucial. We follow the framework presented in Jiang et al. (2017) to 
define the reward as the one-period portfolio log return, net of 
transaction costs, which directly relates to maximizing terminal wealth.

Let tW  be the portfolio value after rebalancing at time t, and 
( )Tt t t Nx x x,0 ,, ,= …  be the corresponding weight vector. Let 
( )Tt t t NP P P1 1,0 1,, ,+ + += …  be the gross relative price vector from time 

t to t + 1 (i.e., +1price / pricet t). We assume + =1,0 1tP  for the risk-free 
asset. The portfolio value before rebalancing at 
t + 1 is ( )′

+ +=1 1· T
t t t tW W x P .

At this point, the agent observes state +1tS  and takes action +1tA  
to choose a new weight vector +1tx . Before this rebalancing, the drifted 
weights (due to market movement) are ( ) ( )T

t t t t tx x P x P1 1/′
+ +=  , 

where   is element-wise multiplication.
Following Jiang et al. (2017), a proportional transaction cost C 

is incurred on the change in weights for risky assets. The portfolio 
value after rebalancing at t +  1 is: 

( )′ ′
+ + +=
= − −∑1 1 1, ,11 · || ||N

t t t i t iiW W C x x . The one-period reward +1tR  
is then defined as the log return:

	
( ) ( ) ( )′

+ + + +=
 = = − − 
 ∑1 1 1 1, ,1ln / ln · 1 · || ||NT

t t t t t t i t iiR W W x P C x x
	

(4)

This reward function directly optimizes the cumulative log return, 
while correctly accounting for the friction of transaction costs as 
defined in Jiang et al. (2017).

FIGURE 2

Factor importance ranking generated by LightGBM.
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3 Methodology

Classical reinforcement learning handles uncertainty in long-term 
decision processes by calculating expectations, specifically:

	 ( ) ( ) ( )γ∗ ∗
′  = +   

′ ′, , max ,aQ s a R s a Q s a 
	

(5)

where ( )∗ ,Q s a  is used to evaluate the maximum expected 
return that the current state-action pair ( ),s a  can generate. In 
solving optimal decision problems, whether using value function-
based or policy-based reinforcement learning algorithms, the 
accuracy of ( )∗ ,Q s a  directly affects the algorithm’s performance. 
However, from the definition in Equation 5, we can see that ( )∗ ,Q s a  
only utilizes the expectation information from the distribution 

( )π ,Z s a , and expectation values are easily influenced by extreme 
values. Furthermore, the maximization in Equation 5 and the 
bootstrapping TD (temporal difference) algorithm used in training 
inevitably produce overestimation (Zhao et al., 2024; Li et al., 
2024), which in investment manifests as overconfidence, potentially 
leading to investment losses.

To address this, we define a stochastic policy ( )π →:    as a 
mapping from states to a probability distribution over actions. We 
then model the full distribution of the random return ( )π ,Z s a , which 
is defined as the discounted sum of future rewards: 

( ) k
t k t tkZ s a R S s A a10, | , ,π γ π∞
+ +=

⋅ = =∑ . The Bellman equation for 
this random return is:

	 ( ) ( ) ( )π πγ ′ ′= +, , ,Z s a R s a Z S A 	 (6)

where ( ) ( )π′ ′ ′, ~ ·|S A S . Our goal is to learn the distribution of 
( )π ,Z s a , not just its expectation ( ) ( )π π =  , ,Q s a Z s a .

3.1 Distribution function parameterization

The first issue to address is how to parameterize the distribution 
( )π ,Z s a . We follow the Fully Parameterized Quantile Function (FQF) 

approach (Yang et al., 2019) to parameterize ( )π ,Z s a . According to 

Yang et al. (2019), any cumulative distribution function (CDF) FZ and 
its inverse (quantile function) −1

ZF  satisfy the following relationship for 
the expected value ω−=   ∫

1 1
0 ZE Z F d . This fundamental result allows 

us to represent a distribution by discretizing its quantile function. 
Following the FQF parameterization, we represent the return 
distribution as:

	
( ) ( ) ( )i

N
i i s aiZ s a 1

, 1 ,0,θ τ θτ τ δ−
+=

⋅ −∑ 	
(7)

where ( )θδ ,i s a  is the Dirac function, and τ  represents the quantiles 
with τ τ τ τ−= < < < =0 10 1i i N . Our approach employs two neural 
networks: (1) Quantile Proposal Network τ: Takes state-action pair (s, 
a) as input and outputs adaptive quantile fractions τ = τ(s, a). (2) 
Quantile Value Network θ: Takes (s, a, τ) as input and outputs the 
quantile values θ = θ(s, a, τ).

For each state-action pair ( ),s a , the quantile proposal network 
outputs quantiles τ , and the quantile value network outputs quantile 
values θ  for each set of τ  inputs.

If ( ) ( )= <ZF z P Z z  is the cumulative distribution function of 
( )π ,Z s a , then its inverse function is ( ) ( ){ }Z ZF p z p F z1 inf :− ⋅ ∈ ≤

. According to Equation 7, we can derive the expression for the 
quantile values:

	 ( ) ( ) ( )
θ τ

τω θ θ θ ω
+

−−
+=

= + −∑ 1,

11
0 10 i

N
i iZ iF H

	
(8)

where ( )τ ω
+1i

H  is the unit step function.
For the quantile proposal network, the closer the output quantiles τ  

are to the actual quantiles, the better. Thus, we define the loss function as:

	
( ) ( )i

i

N
iZ ZiW Z F F d11 1 1

1 0,
τ

τ
τ ω τ ω+

−− − −
=

 
= −   

 
∑ ∫ | a |

	
(9)

where ( )i i i 1 / 2τ τ τ
−

+= + , using the Wasserstein distance.

TABLE 1  Specific state information.

Factor type Factor name Factor representation

Growth factor
Price-to-earnings growth ratio PEG

Net profit to total operating revenue Net profit to total operating revenue TTM

Risk factor

120-day return variance Variance120

20-day return variance Variance20

120-day Sharpe ratio Sharpe ratio120

60-day return variance Variance60

20-day return kurtosis Kurtosis20

120-day return skewness Skewness120

Technical factor Money flow index MFI14

Sentiment factor

20-day average turnover rate VOL20

Volume oscillator VOSC

20-day to 120-day turnover ratio DAVOL20

Style factor Beta, liquidity, momentum Beta, liquidity, momentum
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The gradient information can be obtained by differentiating the 
parametric variable integral (Yang et al., 2019):

	
( ) i iZ i Z Z

i

W F F F1 1 11
12 τ τ τ

τ

− −
− − −

−
   ∂

= − −      ∂     	
(10)

Equation 10 can be simplified to avoid integral calculations, reducing 
the difficulty of network training. For the quantile value network, 
combining quantile regression with the Bellman equation, we have the 
TD error:

	 ( ) ( )δ γ τ τ−
′
−= + −

1 1

1 1
, ,

t
ij t i jZ w Z wr F F

	
(11)

where w1 denotes the target network parameters.
The loss function is chosen as the Huber quantile regression function:

	
( ) ( )

j

N N t
t t t t iji jL s a r s 1 1

1 0 0, , , κ
τρ δ− −

+ = =
=∑ ∑

	
(12)

where ( ) ( ) ( )κκ
τ

δ
ρ δ τ δ

κ
= − < 0

j

t
ijt t

ij ij
L

I∣ ∣ , ( )·I  is the indicator 
function, ( )κ ·L  is the Huber loss function, and κ  is the threshold value. 
When δ κ≤ij∣ ∣ , it is the squared error, otherwise, it is the linear error.

3.2 Value distribution reinforcement 
learning

After parameterizing the distribution ( )π ,Z s a , we need to consider 
how to utilize the distribution information. We adopt the Actor-Critic 
framework, where the distributional critic guides the actor. Our approach 
is based on the Soft Actor-Critic (SAC) framework (Haarnoja et al., 2018), 
which incorporates a maximum entropy objective to encourage 
exploration. Unlike SAC, our critic learns a quantile-parameterized return 
distribution rather than an expected Q-value.

High quantiles imply higher estimates of future returns for the 
current state-action pair ( ),s a , which in finance can lead to risk due to 
overconfidence. Due to the overestimation problem inherent in 
network training, we need to discard information that might cause 
overestimation. We define the utilization of distribution information as:

	
( ) ( ) ( )N

ii i Z wiQ s a F
2

1 1
1 ,0, βπ τ τ τ

−− −
+=

 
= −   

 
∑

	
(13)

where ( )π ,Q s a  is the guidance information from the Critic network, 
transmitted to the Actor network, w2 denotes the quantile-value network 
parameters, β  is the distribution information utilization coefficient with 
( )β +− ∈1N  . The coefficient (β ∈ 0,1  controls the fraction of quantile 
information used when aggregating the learned distribution. A smaller β  
filters out upper-tail quantiles to mitigate overestimation. The state value 
function ( )πV s  is defined as:

	 ( ) ( ) ( )( )π π α π= +, ·|V s Q s a H s 	 (14)

In terms of returns, we add entropy regularization ( )( )π ·|H s , using 
the maximum entropy principle to encourage investors to explore the 

action space and find more profitable trading decisions. α  is the 
regularization coefficient; a larger α  indicates stronger exploration (Zhu 
et al., 2024). Unlike fixed game scenarios, the financial market is a 
complex environment with multiple suboptimal or optimal decisions. 
Therefore, we prefer learning a stochastic policy to adapt to the complex 
financial market.

The maximum entropy objective modifies the standard 
reinforcement learning objective to:

	
( )( )π ππ γ α π∞∗

=
 = +  ∑ 0 , ( (·| ))t

t t ttargmax R s a H s
	

(15)

This objective encourages exploration in a principled way by 
maximizing both the expected return and the entropy of the policy. 
The entropy term ( )( )π ·|H s  is defined as:

	 ( )( ) ( ) ( )ππ π = −  ~ ·|·| log |a sH s a s
	

(16)

By incorporating this entropy term, the agent is incentivized to 
maintain diverse action selection probabilities, preventing premature 
convergence to potentially suboptimal deterministic policies. This is 
particularly valuable in financial markets where:

	•	 Multiple near-optimal strategies may exist.
	•	 Market conditions change over time.
	•	 Deterministic policies are more vulnerable to 

adversarial conditions.
	•	 Exploration is necessary to discover new profitable opportunities.

3.3 Synergistic benefits of value distribution 
and maximum entropy

The true innovation of our VD-MEAC algorithm lies in the 
synergistic integration of value distribution learning and maximum 
entropy exploration. These two components complement each other 
in several ways:

Risk-aware exploration: The value distribution component 
provides rich uncertainty information that guides the entropy-based 
exploration toward regions with both high expected returns and 
manageable risk.

Robust uncertainty estimation: The maximum entropy 
component encourages the agent to explore diverse states, which in 
turn improves the quality and coverage of the learned 
return distributions.

Adaptive risk–return tradeoff: The combination allows for 
dynamic adjustment of the risk–return tradeoff based on the full 
distribution information rather than just point estimates.

Market regime adaptation: By maintaining policy stochasticity 
while capturing return distributions, the agent can quickly adapt to 
changing market conditions and regime shifts.

The Actor network in VD-MEAC follows a stochastic 
policy parameterization:

	

( )
( )

( )( )
( )
φ

φ
φφ

µ
π

σπσ

 − = −  
 

2

22

1| exp
22

a s
a s

ss 	

(17)
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where ( )φµ s  and ( )φσ s  are the mean and standard deviation of 
the action distribution, respectively, produced by the Actor network. 
This Gaussian policy allows for controlled stochasticity in portfolio 
weight adjustments.

3.4 Theoretical convergence properties

The theoretical convergence properties of VD-MEAC are founded 
on the established convergence guarantees of its core components. The 
distributional critic, based on FQF, inherits the convergence properties 
of distributional RL in the 1-Wasserstein metric, which is shown to be 
a contraction (Yang et al., 2019). The actor and its entropy-regularized 
objective are based on the Soft Actor-Critic framework, which 
provides its own policy improvement and convergence guarantees 
(Haarnoja et al., 2018).

While a unified convergence proof for the combined VD-MEAC 
framework is non-trivial and left for future work, the robust empirical 
convergence demonstrated in our experiments (Figure 3) validates the 
stability and effectiveness of this synergistic approach.

Algorithm 1 and Figure 4 illustrate the VD-MEAC algorithm flow. 
Our approach combines the strengths of distributional reinforcement 
learning with maximum entropy reinforcement learning to create a 
robust portfolio management system that effectively balances risk and 
return considerations.

ALGORITHM 1 Value distribution maximum 
entropy actor-critic

Initialize actor network πϕ with random parameters ϕ
Initialize quantile proposal network ψτ  with random 

parameters ω
Initialize quantile value network ωθ  with random parameters ω
Initialize target networks: ψ  ‘← ψ , ω ‘ ω←
Initialize replay buffer 𝓓
For each episode:
Initialize state 0s
For each time step t:

Observe state ts
Sample action ( )φπ~ ·|t ta s
Execute action ta , observe next state +1ts and reward tr
Store transition ( )t t t ts a r s 1, , ,a +  in 𝓓

FIGURE 3

Model training results. (a) Learning rate, (b) Sharpe ratio, (c) Loss (Critic), and (d) Loss (Actor).
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If time to update:
1. Sample mini-batch of N transitions (s, a, r, s′) from 𝓓
2. Generate quantiles ( )ψτ τ= ,s a
3. Compute quantile values ( )s a, ,ωθ θ τ=

4. Compute target quantiles ( )ψτ τ ′′ ′= ′,s a  with ( )φπ′ ′~ ·|a s
5. Compute target quantile values ( )s a, ,ωθ θ τ′′ ′ ′ ′=

6. �Update quantile proposal network by minimizing ( )τ1 ,W Z  in 
Equation 9

7. �Update quantile value network by minimizing the loss 
(Equation 12)

8. Compute filtered ( )π ,Q s a  using Eq. 13
9. Update actor network by maximizing ( ) ( )( )π

φα π+, ·|Q s a H s
10. Update target networks:

( )ψ τψ τ ψ←′ ′+ −1
( )ω τω τ ω←′ ′+ −1

4 Experiments and analysis

4.1 Model training

To thoroughly evaluate our VD-MEAC algorithm, we 
designed a comprehensive experimental framework comparing 
against both traditional portfolio strategies and state-of-the-art 
reinforcement learning methods (Jeribi et al., 2024; Alzaman, 
2025; Aritonang et al., 2025; Cui et al., 2025). The comparative 
methods are:

	•	 Equal-weight (EW): A naive baseline that assigns equal weights to 
all assets, requiring no optimization but serving as a surprisingly 
effective benchmark in many portfolio studies.

	•	 CSI 300 Index: A market capitalization-weighted index tracking 
the 300 largest stocks in China, representing the 
market benchmark.

	•	 DDPG: A model-free, off-policy actor-critic algorithm using 
deep function approximators for continuous action spaces. 
DDPG combines the actor-critic approach with insights 
from DQN.

	•	 TD3 (Twin Delayed DDPG): An improved version of DDPG that 
addresses function approximation errors by using twin critics 
and delayed policy updates, reducing overestimation bias.

	•	 SAC (Soft Actor-Critic): A state-of-the-art off-policy algorithm 
that maximizes both expected return and entropy, encouraging 
exploration and robustness.

For each portfolio, we selected constituent stocks from the CSI 
300 Index with minimal missing data. Any intermittent missing values 
(e.g., due to trading halts) within the selected stocks were filled using 
the forward-fill method, carrying over the last known value. This 
ensures continuity in price series while maintaining the most recent 
available information for suspended stocks. Before training, all 15 
state factors were normalized using z-score normalization based on 
the mean and standard deviation of the training dataset (July 1, 2017–
July 1, 2020). This ensures that all input features have a mean of 
approximately 0 and a standard deviation of 1, preventing features 
with larger scales from dominating the learning process. The stock list 
is presented in Table 2.

To ensure the robustness of our results and avoid selection bias, 
we conducted experiments on three different portfolios sampled from 
CSI 300 constituents:

Portfolio A (Original Portfolio): Nine stocks selected based on 
data completeness and sector diversity, plus one risk-free asset 
(government bonds).

Portfolio B (Financial & Consumer Sectors): Ten stocks from 
financial services and consumer goods sectors, representing defensive 
and stable growth characteristics.

Portfolio C (Technology & Healthcare Sectors): Ten stocks from 
technology and healthcare sectors, representing high-growth and 
innovative industries.

We implemented the VD-MEAC strategy using TensorFlow 2.4 
with Python 3.8. The experiments were conducted on a high-
performance computing workstation equipped with an Intel Xeon 
E5-2698 v4 CPU, an NVIDIA Tesla V100 GPU, and 128 GB of DDR4 
RAM. The system ran on Ubuntu 20.04 LTS, ensuring a stable Linux-
based environment for deep learning training. The training period 
spanned from July 1, 2017, to July 1, 2020, ensuring sufficient 
historical data to capture various market conditions. The testing 
period was from July 1, 2020, to September 1, 2021, encompassing 
both bull and bear market phases. The main parameter settings for the 
model are presented in Table 3, where we utilized the Adam optimizer 
with ReLU activation functions. The 5 × 105 training steps for the 
VD-MEAC model took approximately 8.5 h to complete. The 
computational complexity of the agent at each time step is dominated 
by the forward passes of the actor and critic networks, which is 
efficient for real-time decision-making.

Additionally, we used the Adam optimizer and ReLU activation 
functions. The model was trained for × 55 10  steps, with the training 
results shown in Figure 3. Figure 3a shows the learning rate, which 

FIGURE 4

VD-MEAC algorithm flow diagram.
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incorporates decay to prevent non-convergence due to excessive 
learning rates. Figures 3c,d display the loss values for the Actor and 
Critic networks, respectively, indicating that the network training has 
stabilized. It’s important to note that the interpretation of loss values 
in reinforcement learning differs from that in deep learning; stable 
network training does not necessarily signify that the model has 
learned a profitable trading strategy. However, examining Figure 3b, 
we observe that the Sharpe ratio per episode increases continuously 
as training progresses and eventually stabilizes, suggesting 
model convergence.

4.2 Model testing

It is critical to note that all strategies compared in this 
section, including our own VD-MEAC, are evaluated under the 
strict long-only, no-leverage constraint defined in Section 

II-B. The superior performance of VD-MEAC is therefore 
derived entirely from its methodological advantages in risk 
modeling and exploration, not from financial engineering or 
hidden leverage.

TABLE 2  Stock list.

Portfolio Stock name Stock code Sector

A (original portfolio)

Yanzhou coal mining 600188 Energy

YTO express 600233 Logistics

Zhongnan construction 000961 Real estate

China molybdenum 601958 Materials

Shijiazhuang stone 002153 Materials

Hundsun technologies 600446 Technology

Tsinghua unigroup 000938 Technology

Sinopec oilfield service 600871 Energy

Wanhua chemical 600309 Materials

AVIC electronics 600372 Industrials

B (financial and consumer)

China merchants bank 600036 Financials

Ping an insurance 601318 Financials

Industrial bank 601166 Financials

Kweichow moutai 600519 Consumer Goods

Yili group 600887 Consumer Goods

Midea group 000333 Consumer Goods

Luzhou Laojiao 000568 Consumer Goods

China pacific insurance 601601 Financials

CITIC securities 600,030 Financials

China life insurance 601628 Financials

C (technology and healthcare)

Eastmoney information 300059 Technology

Hikvision 002415 Technology

GoerTek 002241 Technology

iFlytek 002230 Technology

Luxshare precision 002475 Technology

Mindray medical 300760 Healthcare

WuXi AppTec 603259 Healthcare

Jiangsu Hengrui medicine 600276 Healthcare

Tigermed consulting 300347 Healthcare

Shenzhen Kangtai biological 300601 Healthcare

TABLE 3  Model main parameter settings.

Parameter name Value

Entropy weight α 0.05

Distribution utilization β 0.75

Replay buffer capacity 1 × 106

Batch size 128

Critic network architecture [300, 200]

Actor network architecture [64, 32]

Initial learning rate 0.001

https://doi.org/10.3389/frai.2025.1709493
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yang et al.� 10.3389/frai.2025.1709493

Frontiers in Artificial Intelligence 09 frontiersin.org

The testing period spans from July 1, 2020, to September 1, 2021, 
with transaction costs set at 0.25%. Since VD-MEAC learns a 
stochastic policy, we conducted 100 trading simulations during the 
test period to avoid evaluation bias from extreme performances. The 
trading results are presented in Figure 5. Across these 100 trading 
simulations, the VD-MEAC strategy achieved an average Sharpe ratio 
of 2.978 with a variance of 0.015, and an average wealth ratio of 2.490 
with a variance of 0.011. These results demonstrate the remarkable 
stability of the VD-MEAC stochastic policy, with even the worst-
performing test achieving a Sharpe ratio of approximately 2.70.

We selected one representative test result for comparison with 
other strategies. The comparative trading results are illustrated in 
Figure 6. Figure 6 clearly shows that although the VD-MEAC strategy 
lagged behind other strategies in the initial trading period, it 
significantly outperformed both baseline comparison groups (CSI 
300, Equal-weight) and classical reinforcement learning algorithms 
(TD3, DDPG, SAC) throughout the remainder of the testing period.

To conduct a more comprehensive comparison, we introduced 
additional quantitative metrics to evaluate portfolio performance, as 
shown in Table 4. The bold values indicate the best performance under 
each metric. From Table 4, we observe that the Equal-weight strategy’s 
annualized return of 0.0707 underperforms the CSI 300 index, while 
all reinforcement learning strategies surpass the CSI 300 index in 
terms of returns. The VD-MEAC strategy demonstrates superior 
performance with an annualized return of 1.1944, highlighting its 
strong profitability. Regarding risk management, VD-MEAC also 
significantly outperforms other strategies in terms of Sharpe ratio and 
Calmar ratio, confirming that leveraging more distribution 
information effectively enhances risk resistance.

In investment, particular attention must be paid to drawdown 
metrics, as maximum drawdown measures the largest potential loss 
investors may experience, while drawdown duration affects investor 
confidence and subsequent trading decisions. As shown in Table 5, 
although DDPG slightly outperforms VD-MEAC in terms of 
maximum drawdown, DDPG never recovered to its highest wealth 
point by the end of the testing period, reflecting its inferior profitability 
compared to VD-MEAC. Crucially, durations in Table 5 marked with 
a > symbol (e.g., “>419 days”) indicate that the strategy failed to 
recover to its previous peak by the end of the testing period. Our 

VD-MEAC, in contrast, was one of only two strategies to achieve a full 
recovery, and it did so in only 169 days, demonstrating superior 
resilience. Under conditions where VD-MEAC’s wealth value is 
significantly higher than other strategies, VD-MEAC’s maximum 
drawdown period is shorter, demonstrating its exceptional recovery 
capability. Overall, considering multiple dimensions of assessment, 
VD-MEAC performs better than other strategies in terms of 
maximum drawdown.

4.3 Factor portfolio analysis

As shown in Figure 7, the factor importance analysis provides 
deep insights into the decision-making mechanics of the VD-MEAC 
algorithm. The dominance of risk-related factors, particularly 
Variance120 and Sharpe_ratio120, at the top of the ranking confirms 
our theoretical framework, which emphasizes comprehensive risk 
assessment as the primary determinant of portfolio allocation. The 
algorithm systematically places higher weight on long-horizon risk 
metrics (120-day measures) compared to short-term indicators, 
thereby filtering out market noise and focusing on persistent patterns 
of risk. The notable importance assigned to momentum (importance 

FIGURE 5

Distribution of VD-MEAC trading results across 100 runs.

FIGURE 6

Performance comparison of different portfolio strategies.
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value = 0.118) reveals that VD-MEAC has internalized the predictive 
value of trend-following signals. At the same time, the strong 
contribution of fundamental measures such as the PEG ratio 
(importance value = 0.093) demonstrates that the algorithm integrates 
both technical and fundamental domains. This balance suggests the 
emergence of a sophisticated multi-factor framework that captures 
non-trivial interactions among diverse signals, without requiring 
explicit programming of factor interrelationships.

To further enhance interpretability, we provide a visual example 
of the agent’s decision-making at a specific time step in Figure 8. 
While the factor importance analysis in Figure 7 provides a global 
view of which factors the model values most, Figure 7 offers a local 
interpretation for a single decision. Using a contribution analysis 
(akin to SHAP or LIME), we can visualize the factors that pushed 
the agent to increase or decrease its allocation to a specific asset. In 
this example, the agent’s decision to significantly increase allocation 
to ‘Yanzhou Coal Mining’ (YCM) on February 22, 2021, was 
primarily driven by a very strong ‘Sharpe_ratio120’ and a high 
‘momentum’ factor, which offset the negative contribution from its 
‘Variance120’ (which was high, but deemed acceptable given the 
risk-adjusted returns). This local-level insight is crucial for building 
practitioner trust, as it allows for an audit of the agent’s “reasoning” 
at critical market junctures.

The portfolio weight evolution, visualized in Figure 9, reveals that 
VD-MEAC adapts allocation strategies in a manner consistent with 
prevailing market conditions. During bullish phases, the algorithm 
increased exposure to cyclical sectors such as energy and materials 
(YCM, CMM), while simultaneously reducing allocations to 
technology (TU). This sectoral rotation aligns with the cyclical 
structure of financial markets. Conversely, in bearish conditions, the 
model exhibited a defensive posture, reducing cyclical exposures and 
reallocating toward more stable, defensive sectors. The periodicity 
observed in rebalancing suggests that the algorithm has implicitly 
discovered near-optimal rebalancing frequencies, despite the absence 
of explicit programming to that effect.

The correlation matrix of factors, illustrated in Figure 10, highlights 
VD-MEAC’s ability to internalize interdependencies among explanatory 
variables. The emergence of distinct correlation clusters, especially within 
factors of the same type, indicates that the algorithm systematically 

TABLE 4  Comparison of strategy evaluation metrics.

Strategy Annualized 
return

Sharpe ratio Calmar ratio Stability Max drawdown Volatility

Equal-weight 0.0707 0.4476 0.3709 0.2663 0.1906 0.1948

CSI 300 0.1140 0.6190 0.6268 0.2505 0.1819 0.2109

DDPG 0.5162 2.2190 4.2520 0.6444 0.1214 0.1963

TD3 0.6171 2.0973 3.8380 0.7188 0.1608 0.2434

SAC 0.1956 0.9866 1.3250 0.0448 0.1476 0.2015

VD-MEAC 1.1944 2.8502 9.3808 0.7223 0.1273 0.2907

TABLE 5  Comparison of maximum drawdown periods.

Strategy Max drawdown Peak date Trough date Recovery date Duration (days)

Equal-weight 0.1906 2020-07-09 2021-02-05 – >419

CSI 300 0.1819 2021-02-10 2021-07-27 – >203

DDPG 0.1214 2021-01-18 2021-07-28 – >226

TD3 0.1608 2021-01-12 2021-05-21 2021-07-19 188

SAC 0.1476 2020-12-04 2021-05-10 – >271

VD-MEAC 0.1273 2021-02-22 2021-05-20 2021-08-10 169

FIGURE 7

Factor importance in VD-MEAC model.

FIGURE 8

Factor importance in VD-MEAC model.
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accounts for redundancy in information. This suggests that VD-MEAC 
not only recognizes the presence of collinearity but also adjusts its 
weighting to prevent the double-counting of equivalent sources of risk.

Finally, the decision boundary analysis of the two most influential 
factors (Variance120 and Sharpe_ratio120), as depicted in Figure 11, 
offers an interpretable view of the algorithm’s internal logic. The 
non-linear geometry of the boundary confirms that VD-MEAC 
captures complex, non-linear relationships between risk characteristics 
and allocation choices. Importantly, the identified decision regions 
correspond closely to financial intuition: the algorithm increases 
exposure when variance is elevated but compensated by a high Sharpe 
ratio, and decreases exposure when variance is high but not 
accompanied by sufficient risk-adjusted return.

4.4 Extended experiments

To address concerns about the generalizability of our findings from 
a single portfolio and to validate the individual contributions of our 
model’s components, we conducted three additional experiments: (1) 
hyperparameter sensitivity analysis, (2) performance under different 
market conditions, and (3) an ablation study examining the individual 
contributions of value distribution and maximum entropy components.

We examined the sensitivity of VD-MEAC to two key 
hyperparameters: the distribution information utilization coefficient 
(β ) and the entropy regularization coefficient (α ). Figure 12 shows 
how these parameters affect the Sharpe ratio and annualized return. 
The results reveal that the performance of VD-MEAC is relatively 
stable across a range of parameter values, with optimal performance 
achieved when β  is around 0.75 and α  is approximately 0.05. Too 
small values of β  lead to insufficient utilization of distribution 
information, while too large values can include noisy extreme 
quantiles. Similarly, very small values of α  result in insufficient 
exploration, while excessive values may lead to overly random policies.

To assess the robustness of VD-MEAC across varying market 
conditions, we divided our test period into three market regimes: bullish 
(uptrend), bearish (downtrend), and sideways (neutral). Table 6 presents 
the performance metrics under each condition. The results demonstrate 
that VD-MEAC significantly outperforms other strategies across all 
market conditions, with particular strength during bearish markets where 
it maintains positive returns while other strategies experience losses. This 
highlights the algorithm’s robustness to varying market conditions, which 
is crucial for real-world portfolio management.

To understand the individual contributions of the value distribution 
and maximum entropy components, we conducted an ablation study 
comparing four variants: (1) VD-MEAC (full algorithm), (2) VD-AC 
(without maximum entropy), (3) ME-AC (with maximum entropy but 
using traditional Q-learning), and (4) AC (basic actor-critic). The results 
are presented in Table 7. The ablation study confirms that both the value 
distribution and maximum entropy components contribute significantly 
to the algorithm’s performance. While each component individually 
improves performance over the basic actor-critic approach, their 
combination in VD-MEAC yields synergistic benefits, particularly in 
terms of risk-adjusted returns as measured by the Sharpe and Calmar 
ratios. This study provides definitive evidence that the superior, high-
return performance of VD-MEAC is a direct result of its novel 
architecture, not an artifact of external factors such as leverage, which 
were explicitly forbidden.

FIGURE 9

VD-MEAC portfolio weight dynamics.

FIGURE 10

Factor correlation matrix.

FIGURE 11

Decision boundary of top two factors.
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To address concerns about selection bias from a single small 
portfolio, we conducted additional experiments on three different 
10-stock portfolios randomly sampled from CSI 300 constituents:

Portfolio A: Original portfolio (Table 2).
Portfolio B: 10 stocks from financial and consumer sectors.
Portfolio C: 10 stocks from the technology and healthcare sectors.
Table 8 presents the performance comparison across all three 

portfolios. VD-MEAC consistently outperforms benchmarks across 
all portfolios, with average Sharpe ratios of 2.98 (Portfolio A), 2.76 
(Portfolio B), and 2.85 (Portfolio C). This multi-portfolio validation 
demonstrates that our algorithm’s superior performance is not an 
artifact of a single favorable stock selection.

4.5 Analysis and discussion

Combining evaluations across multiple dimensions, the 
VD-MEAC strategy demonstrates superior performance in both risk 

management and return generation compared to baseline strategies. 
Several key insights emerge from our experimental results:

First, the value distribution approach significantly enhances risk 
management by capturing the full uncertainty of returns rather than 
just point estimates. This is particularly evident in the reduced 
maximum drawdowns and shorter recovery periods exhibited by 
VD-MEAC.

Second, the maximum entropy component effectively encourages 
exploration of the action space, leading to the discovery of more 
profitable trading strategies. This is reflected in the substantially 
higher annualized returns achieved by VD-MEAC compared to other 
reinforcement learning algorithms.

Third, the stability of performance across 100 test runs (with very 
low variance in Sharpe and wealth ratios) demonstrates the robustness 
of VD-MEAC as a stochastic policy. This stability is crucial for real-
world applications where consistent performance is valued.

Fourth, the outperformance of VD-MEAC across different market 
conditions (bullish, bearish, and sideways) highlights its adaptability 

FIGURE 12

Hyperparameter sensitivity.

TABLE 6  Performance under different market conditions.

Market Period VD-MEAC return DDPG return CSI 300 return Equal-weight 
return

Bullish 2020-07-01 to 2020-12-31 0.487 0.326 0.215 0.189

Bearish 2021-01-01 to 2021-03-31 0.109 −0.082 −0.132 −0.098

Sideways 2021-04-01 to 2021-09-01 0.318 0.164 0.073 0.041

TABLE 7  Ablation study results.

Variant Annualized return Sharpe ratio Max drawdown Calmar ratio

VD-MEAC (Full) 1.1944 2.8502 0.1273 9.3808

VD-AC (w/o ME) 0.8735 2.3467 0.1542 5.6647

ME-AC (w/o VD) 0.7214 2.0981 0.1698 4.2486

AC (Basic) 0.5623 1.8942 0.1876 2.9973
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to changing market environments, a critical advantage over traditional 
strategies that may perform well in certain market conditions but 
poorly in others.

Finally, the hyperparameter sensitivity analysis reveals that while 
the algorithm’s performance can be optimized through careful 
parameter tuning, it maintains strong performance across a reasonable 
range of parameter values, indicating robustness to 
hyperparameter settings.

In summary, our comprehensive experimental evaluation validates 
that the VD-MEAC algorithm effectively addresses the risk–return 
tradeoff in portfolio management, achieving superior risk-adjusted 
returns compared to both traditional investment strategies and state-of-
the-art reinforcement learning methods.

5 Conclusion

This study proposes a portfolio management strategy built upon the 
VD-MEAC framework, which shifts the focus from single-point return 
predictions to modeling the entire distribution of outcomes. Such a 
formulation enhances the capacity to evaluate both profitability and 
downside risk, thereby strengthening the role of distributional 
reinforcement learning in financial decision-making. Empirical tests on 
real stock market data confirm the algorithm’s promising profitability and 
resilience under uncertainty, underscoring its alignment with practical 
investment logic. Nevertheless, these results are derived under a set of 
experimental assumptions that simplify real-world trading environments. 
Future research should narrow this gap by incorporating more realistic 
market frictions, transaction costs, and dynamic constraints. Moreover, 
while the model demonstrates strong performance, the opacity of the 
agent’s decision process remains a key limitation. While our Factor Portfolio 
Analysis in Section IV-C provides a significant degree of transparency into 
the model’s learned logic and decision-making process, addressing 
interpretability, potentially by integrating advances in explainable AI, will 
be critical for building investor trust and enabling deployment in live 
trading systems.

Furthermore, the VD-MEAC framework opens several avenues 
for future work. Extending the model to a multi-agent reinforcement 
learning (MARL) setting, where different agents manage different 
asset classes or cooperate/compete to optimize a joint portfolio, could 
capture more complex market dynamics. Additionally, exploring 
cross-market transfer learning, for instance, pre-training the agent on 
a data-rich market (e.g., the U.S. stock market) and subsequently fine-
tuning it on another (e.g., the Chinese market), could significantly 
improve data efficiency and model generalization, aligning with 
current AI-in-finance trends.

Reproducibility: To ensure full reproducibility and facilitate 
further research, the complete source code, experimental framework, 
and trained models for this paper have been made publicly available 
at: https://github.com/YanYang/VD-MEAC
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TABLE 8  Multi-portfolio performance comparison.

Strategy Portfolio A Sharpe Portfolio B Sharpe Portfolio C Sharpe Average Sharpe

Equal-weight (EW) 0.45 0.52 0.48 0.48

CSI 300 0.62 0.62 0.62 0.62

DDPG 2.22 1.98 2.10 2.10

TD3 2.10 1.89 2.05 2.01

SAC 0.99 1.12 1.05 1.05

VD-MEAC 2.85 2.76 2.85 2.82
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