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Introduction: In the face of high uncertainty and complexity in financial
markets, achieving portfolio return maximization while effectively controlling
risk remains a critical challenge.

Methods: We propose a novel portfolio management framework based on the
value distribution maximum entropy actor-critic (VD-MEAC) reinforcement
learning algorithm. We establish a framework where the agent’s actions represent
portfolio weight adjustments and stock factors serve as state observations. For risk
management, the critic network learns the complete distribution of future returns.
For return enhancement, we incorporate entropy regularization.

Results: We conduct extensive experiments using real market data from the
Chinese stock market. Results demonstrate that our VD-MEAC strategy achieves
an average return of 2490 and an average Sharpe ratio of 2.978, significantly
outperforming benchmark strategies.

Discussion: These results validate the effectiveness of our approach in practical
portfolio management scenarios.

KEYWORDS

portfolio optimization, reinforcement learning, value distribution risk management,
quantitative finance, actor-critic algorithm

1 Introduction

Portfolio management remains one of the most challenging problems in financial mathematics
and quantitative investment, requiring sophisticated approaches to balance return maximization
against risk minimization in highly complex and non-stationary market environments (Rezaei and
Nezamabadi-Pour, 2025; Sattar et al., 2025; Xu, 2025). Traditional portfolio optimization methods,
from Markowitz’s mean-variance framework to various factor models, often rely on restrictive
assumptions about return distributions and market behavior that may not hold in practice (Li and
Hai, 2024). With the advancement of artificial intelligence and the increasing availability of high-
dimensional financial data, reinforcement learning (RL) has emerged as a promising approach to
portfolio management, enabling the development of adaptive investment strategies through
interaction with financial markets (Jiang et al., 2024).

In practice, prior studies have applied RL to portfolio management from different perspectives.
For instance, Day et al. (2024) employed policy gradient algorithms to build trading frameworks,
while Fu and Huang (2025) used Q-learning to design an intelligent portfolio management system.
However, these works relied on shallow neural networks, which are insufficient to handle the
increasing complexity of financial markets. With the development of reinforcement learning theory,
the Actor-Critic (AC) framework, which combines the benefits of both value-based and
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policy-based methods, has been introduced into quantitative investment.
Specifically, Kitchat et al. (2024) applied the deterministic policy gradient
(DPG) method to allocate a set of cryptocurrency weights and proposed
a model-free convolutional network for feature extraction. Building on
DPG, Cui et al. (2024) designed a state-augmentation approach to address
data heterogeneity. In addition, Cheng and Sun (2024) applied the deep
deterministic policy gradient (DDPG) algorithm within the AC
framework to portfolio problems, while Belyakov and Sizykh (2024)
introduced a proximal optimization method under the AC framework to
handle portfolio optimization with transaction costs. Furthermore, Pippas
etal. (2025) integrated fuzzy representations with the AC framework and
proposed an adaptive fuzzy reinforcement learning approach.

Recent applications of deep reinforcement learning in portfolio
management have demonstrated promising results but continue to
face critical challenges (Junfeng et al., 2024). First, conventional RL
algorithms typically optimize for expected returns using point
estimates, which fail to capture the full uncertainty inherent in
financial returns and can lead to risk-seeking behavior unsuitable for
investment applications (Betancourt and Chen, 2021; Wu et al., 2021;
Jang and Seong, 2023). Second, most existing approaches suffer from
overestimation bias in value functions, potentially resulting in overly
aggressive investment strategies and substantial drawdowns during
market downturns (Aminifar et al., 2022; Koratamaddi et al., 2021).
Third, the exploration-exploitation tradeoff in financial markets
presents a unique challenge, as insufficient exploration may lead to
strategies that perform well historically but fail to adapt to changing
market conditions (Teoh et al., 2021; Pallathadka et al., 2023).

To address these limitations, we propose a Value Distribution
Maximum Entropy Actor-Critic (VD-MEAC) framework that
fundamentally reimagines the application of reinforcement learning to
portfolio management. Our framework makes three key innovations: (1)
Instead of modeling expected returns, our Critic network learns the entire
distribution of future returns, providing a more comprehensive risk
assessment; (2) We implement a novel mechanism to filter out
overconfident decision information in the value distribution, explicitly
reducing overestimation risk; and (3) We incorporate maximum entropy
reinforcement learning principles to encourage strategy diversification
and robust exploration of the investment action space.

The remainder of this paper is organized as follows: Section II
formulates the portfolio management problem within a reinforcement
learning framework. Section III introduces our VD-MEAC algorithm,
detailing its theoretical foundations and implementation. Section IV
presents experimental results on real market data. Section V discusses
the implications of our findings and concludes the paper.

2 Reinforcement learning framework
for portfolio optimization

2.1 Portfolio problem description
Portfolio optimization involves the adjustment of asset weights by
investors seeking to maximize utility at the end of an investment

period (Du and Ghavidel, 2022). This problem can be expressed in the
following optimization form:

max, [u(W(x,p(g)))] (1)
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where x represents the investor’s trading strategy (i.e., the vector of
asset weights), u() is the utility function, W() denotes the terminal
wealth value, € represents random factors, and p(s) denotes asset prices.

To rigorously describe the problem, we make the following
assumptions about investors and the financial environment (Jin et al.,
2024; de Lopez Prado et al., 2025):

« Investors are risk-neutral, meaning the utility function is linear.

« The asset pool consists of a fixed set of N risky assets and one
risk-free asset, with no addition of new risky assets during the
investment period.

o No minimum trading unit exists, meaning assets can be
infinitely divisible.

o Trading prices are closing prices for each period, without
consideration of bid-ask spreads.

o Trading costs can be represented as proportional costs.

For the optimal decision problem in Equation 1, we can employ a
reinforcement learning framework for the solution. Reinforcement
learning is built upon a Markov Decision Process (S, A, R, p, ), where
S represents the state space, A is the action space, R denotes the reward
function, p is the state transition matrix (dependent on the specific
policy 7 and the environment), and y is the reward discount factor.

As shown in Figure 1, investors observe the state information
from the financial market, take actions to adjust weights, and the
financial environment provides rewards in the form of portfolio gains
or losses. The ultimate goal of reinforcement learning is to train an
investor that acts based on long-term benefits rather than
myopic behavior.

2.2 Reinforcement learning framework
design

State space design. Investors need to observe the state information
of the financial market to make trading decisions. In this study, we

Financial Market

3. Change in Wealth R,

Observe

Action A, State S,

Investor

i 2. Trading L.

FIGURE 1
Reinforcement learning portfolio framework.
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choose to describe the financial market using factor information
(Dong et al., 2024). The state S; can be represented as:

3(t>1 Sf)z 5<t)n
t t t
s s s
s = e S @
t t t
SN1 SN2 SNn

where S; is a matrix composed of asset factor information, and sfj
represents the value of factor j for asseti at time .

We use the Light Gradient Boosting Machine (LightGBM) (Gong et
al,, 2024) method to select important factors from the factor library.
Figure 2 shows the factor importance. Investors select the top 15
important factors as observations of the financial environment before
each trade, i.e., n = 15. The specific state information is shown in Table 1.
Some factors in Table 1, such as the 20-day turnover rate, already
incorporate historical information, so investors only observe the current
period’s factor information rather than using a three-dimensional tensor.

Action space design. Investors adjust asset weights at the
beginning of each period. The action A, at time t is defined as the
target portfolio weight vector x, for the end of the period,
after rebalancing:

Ap=x :(xt,O’xt,l»-'-’xt,N)T

3)

where x; ; represents the target weight of the i-th asset (with i = 0
being the risk—fre}\? asset). The action space is the set of all valid weight
vectors, i.e., Z,‘:oxf»i =1,x,;>0 (for a long-only portfolio). This

10.3389/frai.2025.1709493

constraint explicitly forbids the use of leverage or short-selling,
ensuring that all performance gains are derived solely from the agent’s
methodological advantages. The policy network outputs the
parameters for this continuous action vector.

Reward function design. The design of the reward function is
crucial. We follow the framework presented in Jiang et al. (2017) to
define the reward as the one-period portfolio log return, net of
transaction costs, which directly relates to maximizing terminal wealth.

Let W; be the Bortfolio value after rebalancing at time t, and
Xt =(xt,0,...,xt,N) bq"

Pri1=(Pr+1,05-- > Pr41,N ) be the gross relative price vector from time

the corresponding weight vector. Let

ttot+1 (ie., price,) / price;). We assume P, ) o =1 for the risk-free

asset.  The  portfolio

t+ Lis Wiy =Wr-&c?Pt+1 :
At this point, the agent observes state S;,1 and takes action Ay

value  before  rebalancing  at

to choose a new weight vector x; ;. Before this rebalancing, the drifted
weights (due to market movement) are Xt = (xt OP t+1)/ (xtT B t+f1t) ,
where © is element-wise multiplication.

Following Jiang et al. (2017), a proportional transaction cost C
is incurred on the change in weights for risky assets. The portfolio
value after rebalancing at t+ 1 is:
Wi =W 1—C-Zi1| |%¢ 41,0 —x;,,»|| . The one-period reward R;
is then defined as the log return:

Ryt =In(Wist /W;) = ln[(xf Pt+1)~(1—czfi I, —xé,ill)] (4)

This reward function directly optimizes the cumulative log return,
while correctly accounting for the friction of transaction costs as
defined in Jiang et al. (2017).

PEG
net_profit_to_total_operate_revenue_ttm
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FIGURE 2
Factor importance ranking generated by LightGBM.
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TABLE 1 Specific state information.

10.3389/frai.2025.1709493

Factor type Factor name Factor representation
Price-to-earnings growth ratio PEG
Growth factor
Net profit to total operating revenue Net profit to total operating revenue TTM
120-day return variance Variancel20
20-day return variance Variance20
120-day Sharpe ratio Sharpe ratio120
Risk factor
60-day return variance Variance60
20-day return kurtosis Kurtosis20
120-day return skewness Skewness120
Technical factor Money flow index MFI14
20-day average turnover rate VOL20
Sentiment factor Volume oscillator VOSsC
20-day to 120-day turnover ratio DAVOL20
Style factor Beta, liquidity, momentum Beta, liquidity, momentum

3 Methodology

Classical reinforcement learning handles uncertainty in long-term
decision processes by calculating expectations, specifically:

Q" (s.a) =E[R(s,a)}+7/E[maxaf Q" (s',a’)} (5)

where Q* (s,a) is used to evaluate the maximum expected
return that the current state-action pair (s,a) can generate. In
solving optimal decision problems, whether using value function-
based or policy-based reinforcement learning algorithms, the
accuracy of Q" (s,a) directly affects the algorithm’s performance.
However, from the definition in Equation 5, we can see that Q* (s,a)
only utilizes the expectation information from the distribution
z" (s,a), and expectation values are easily influenced by extreme
values. Furthermore, the maximization in Equation 5 and the
bootstrapping TD (temporal difference) algorithm used in training
inevitably produce overestimation (Zhao et al., 2024; Li et al,,
2024), which in investment manifests as overconfidence, potentially
leading to investment losses.

To address this, we define a stochastic policy 7: S — ’P(.A) asa
mapping from states to a probability distribution over actions. We
then model the full distribution of the random return Z” (s,a), which
is defined as the discounted sum of future rewards:
z" (s,u) - z::()}’kRHkH |S; =s,A; =a,7 . The Bellman equation for

this random return is:
Z"(s,a)=R(s,a)+yZ"(S,A") (6)

where (S',A’) ~ 7[(-|S'). Our goal is to learn the distribution of
7" (s,a), not just its expectation Q* (s,a) = E[Z” (s,a)}.
3.1 Distribution function parameterization
The first issue to address is how to parameterize the distribution

z" (s,a). We follow the Fully Parameterized Quantile Function (FQF)
approach (Yang et al., 2019) to parameterize Z” (s,a). According to
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Yang et al. (2019), any cumulative distribution function (CDF) F, and
its inverse (quantile function) F; ! satisfy the following relationship for
the expected value E [Z ]= IOFZ_ 4. This fundamental result allows
us to represent a distribution by discretizing its quantile function.
Following the FQF parameterization, we represent the return
distribution as:

Zo,r (5’“)'2181(%41 —Ti)5a(s,a) (7)

where & (sa) 1S the Dirac function, and 7 represents the quantiles
with 0=17y <7;_; <7; <7y =1. Our approach employs two neural
networks: (1) Quantile Proposal Network 7: Takes state-action pair (s,
a) as input and outputs adaptive quantile fractions 7z = z(s, a). (2)
Quantile Value Network 6: Takes (s, g, 7) as input and outputs the
quantile values 0 = (s, a, 7).

For each state-action pair (s,a), the quantile proposal network
outputs quantiles 7, and the quantile value network outputs quantile
values @ for each set of 7 inputs.

If F, (z) = P(Z < z) is the cumulatlive distribution function of
z" (s,a), then its inverse function is ¥Z (p)-inf{z eR:p<F; (Z)}
. According to Equation 7, we can derive the expression for the
quantile values:

F—l

(@) =0+ 3 (61— 6) He, (@) (8)

where H; | (a)) is the unit step function.
For the quantile proposal network, the closer the output quantiles
are to the actual quantiles, the better. Thus, we define the loss function as:

Wi(zo)=3 Fz‘l(w)—Fz‘{;i]aldw (©)

where 7i = (Ti +7it1 ) 12, using the Wasserstein distance.
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The gradient information can be obtained by differentiating the
parametric variable integral (Yang et al., 2019):

6Wl:ZFZ_I(Ti)_FZ_I[Ti]—FZ_I[Ti—l] (10)

671-

Equation 10 can be simplified to avoid integral calculations, reducing
the difficulty of network training. For the quantile value network,
combining quantile regression with the Bellman equation, we have the
TD error:

é}§=rt+7F7'{wl (z',-)—FZiIW‘(rj) (11)

where w, denotes the target network parameters.
Theloss function is chosen as the Huber quantile regression function:

L(St,at,rt;sprl) Zjvolz‘llvol z"c( ’]) (12)

St
where P; (5t) =l7r— Igé‘t <O)\ ( ]) s I() is the indicator
function, L, )1s the Huber loss functlon, and « is the threshold value.

T

When| é’ I< k, it is the squared error, otherwise, it is the linear error.

3.2 Value distribution reinforcement
learning

After parameterizing the distribution Z z (s,a), we need to consider
how to utilize the distribution information. We adopt the Actor-Critic
framework, where the distributional critic guides the actor. Our approach
is based on the Soft Actor-Critic (SAC) framework (Haarnoja et al., 2018),
which incorporates a maximum entropy objective to encourage
exploration. Unlike SAC, our critic learns a quantile-parameterized return
distribution rather than an expected Q-value.

High quantiles imply higher estimates of future returns for the
current state-action pair (s,a), which in finance can lead to risk due to
overconfidence. Due to the overestimation problem inherent in
network training, we need to discard information that might cause
overestimation. We define the utilization of distribution information as:

@ (sa)= SNV 6B, [] a3

where Q" (s,a) is the guidance information from the Critic network,
transmitted to the Actor network, w, denotes the quantile-value network
parameters, /3 is the distribution information utilization coefficient with
(N - 1) € N*. The coefficient f e (0,1] controls the fraction of quantile
information used when aggregating the learned distribution. A smaller 5
filters out upper-tail quantiles to mitigate overestimation. The state value
function V* (s) is defined as:

v” (s)zQ”(s,a)+aH(7r(~|s)) (14)

In terms of returns, we add entropy regularization H (72' (|s)), using
the maximum entropy principle to encourage investors to explore the
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action space and find more profitable trading decisions. & is the
regularization coefficient; a larger & indicates stronger exploration (Zhu
et al, 2024). Unlike fixed game scenarios, the financial market is a
complex environment with multiple suboptimal or optimal decisions.
Therefore, we prefer learning a stochastic policy to adapt to the complex
financial market.

The maximum entropy objective modifies the standard
reinforcement learning objective to:

xt= argmax &, [ZZO;/ (R(st,at ) + aH(n'(-|st)))} (15)

This objective encourages exploration in a principled way by
maximizing both the expected return and the entropy of the policy.
The entropy term H (ﬂ'(|s)) is defined as:

H(ﬂ(~|s))=

—Ea~7r(-|s) [logﬂ(a|s)} (16)

By incorporating this entropy term, the agent is incentivized to
maintain diverse action selection probabilities, preventing premature
convergence to potentially suboptimal deterministic policies. This is
particularly valuable in financial markets where:

« Multiple near-optimal strategies may exist.
» Market conditions change over time.

o Deterministic = policies are more  vulnerable to
adversarial conditions.

« Exploration is necessary to discover new profitable opportunities.

3.3 Synergistic benefits of value distribution
and maximum entropy

The true innovation of our VD-MEAC algorithm lies in the
synergistic integration of value distribution learning and maximum
entropy exploration. These two components complement each other
in several ways:

Risk-aware exploration: The value distribution component
provides rich uncertainty information that guides the entropy-based
exploration toward regions with both high expected returns and
manageable risk.

Robust uncertainty estimation: The maximum entropy
component encourages the agent to explore diverse states, which in
turn improves the quality and coverage of the learned
return distributions.

Adaptive risk-return tradeoff: The combination allows for
dynamic adjustment of the risk-return tradeoff based on the full
distribution information rather than just point estimates.

Market regime adaptation: By maintaining policy stochasticity
while capturing return distributions, the agent can quickly adapt to
changing market conditions and regime shifts.

The Actor network in VD-MEAC follows a stochastic
policy parameterization:

17)

§)=—————exp
\/271'0'¢(s)
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where y (s) and oy (s) are the mean and standard deviation of
the action distribution, respectively, produced by the Actor network.
This Gaussian policy allows for controlled stochasticity in portfolio
weight adjustments.

3.4 Theoretical convergence properties

The theoretical convergence properties of VD-MEAC are founded
on the established convergence guarantees of its core components. The
distributional critic, based on FQF, inherits the convergence properties
of distributional RL in the 1-Wasserstein metric, which is shown to be
a contraction (Yang et al., 2019). The actor and its entropy-regularized
objective are based on the Soft Actor-Critic framework, which
provides its own policy improvement and convergence guarantees
(Haarnoja et al., 2018).

While a unified convergence proof for the combined VD-MEAC
framework is non-trivial and left for future work, the robust empirical
convergence demonstrated in our experiments (Figure 3) validates the
stability and effectiveness of this synergistic approach.

10.3389/frai.2025.1709493

Algorithm 1 and Figure 4 illustrate the VD-MEAC algorithm flow.
Our approach combines the strengths of distributional reinforcement
learning with maximum entropy reinforcement learning to create a
robust portfolio management system that effectively balances risk and
return considerations.

ALGORITHM 1 Value distribution maximum
entropy actor-critic
Initialize actor network 7, with random parameters ¢
Initialize quantile proposal network 7z, with random
parameters @
Initialize quantile value network 6, with random parameters @
Initialize target networks: y ‘— v/, @ ‘“— @
Initialize replay buffer &
For each episode:
Initialize state sg
For each time step t:
Observe state s;
Sample action a; ~ 774 (“[s; )
Execute action a;, observe next state s;,jand reward r;

in9

Store transition (St:at)rt)ast+1)

0.0010 A

0.0009 A

0.0008 +

0.0007 A

Learning Rate
o
)
o
o
(o))
1

0.0005

0.0004

o

T T T T T
100000 200000 300000 400000 500000
Training Steps

@

T T T T 1
100000 200000 300000 400000 500000
Training Steps

o

©

FIGURE 3

3.5 1

3.0 4

2.5

2.0 A

1.5 4

Sharpe Ratio

1.0 1

0.5 1

T T T T T
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Loss

2.0 1

1.5 1

1.0

0.5 1

T T 1 T T
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@

Model training results. (a) Learning rate, (b) Sharpe ratio, (c) Loss (Critic), and (d) Loss (Actor).
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FIGURE 4
VD-MEAC algorithm flow diagram.

If time to update:

1. Sample mini-batch of N transitions (s, a, 1, s") from &

2. Generate quantiles T=Ty (s,a)

3. Compute quantile values ¢ =0p (541:1)

4. Compute target quantiles 7' =7, (s',a’) witha'~ 7 (-|s')

5. Compute target quantile values &' =6 5’>“’>T')

6. Update quantile proposal network by minimizing W; (Z ,r) in
Equation 9

7.Update quantile value network by minimizing the loss
(Equation 12)

8. Compute filtered Q* (s,a) using Eq. 13

9. Update actor network by maximizing Q” (s,a) +aH (7z'¢ (|s))

10. Update target networks:

v oy +(1-1)y

o 10 +(1-7)o

4 Experiments and analysis
4.1 Model training

To thoroughly evaluate our VD-MEAC algorithm, we
designed a comprehensive experimental framework comparing
against both traditional portfolio strategies and state-of-the-art
reinforcement learning methods (Jeribi et al., 2024; Alzaman,
2025; Aritonang et al., 2025; Cui et al., 2025). The comparative
methods are:

 Equal-weight (EW): A naive baseline that assigns equal weights to

all assets, requiring no optimization but serving as a surprisingly
effective benchmark in many portfolio studies.

Frontiers in Artificial Intelligence
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o CSI 300 Index: A market capitalization-weighted index tracking
the 300
market benchmark.

largest stocks in China, representing the

o DDPG: A model-free, off-policy actor-critic algorithm using
deep function approximators for continuous action spaces.
DDPG combines the actor-critic approach with insights
from DQN.

« TD3 (Twin Delayed DDPG): An improved version of DDPG that
addresses function approximation errors by using twin critics
and delayed policy updates, reducing overestimation bias.

o SAC (Soft Actor-Critic): A state-of-the-art off-policy algorithm
that maximizes both expected return and entropy, encouraging

exploration and robustness.

For each portfolio, we selected constituent stocks from the CSI
300 Index with minimal missing data. Any intermittent missing values
(e.g., due to trading halts) within the selected stocks were filled using
the forward-fill method, carrying over the last known value. This
ensures continuity in price series while maintaining the most recent
available information for suspended stocks. Before training, all 15
state factors were normalized using z-score normalization based on
the mean and standard deviation of the training dataset (July 1,2017-
July 1, 2020). This ensures that all input features have a mean of
approximately 0 and a standard deviation of 1, preventing features
with larger scales from dominating the learning process. The stock list
is presented in Table 2.

To ensure the robustness of our results and avoid selection bias,
we conducted experiments on three different portfolios sampled from
CSI 300 constituents:

Portfolio A (Original Portfolio): Nine stocks selected based on
data completeness and sector diversity, plus one risk-free asset
(government bonds).

Portfolio B (Financial & Consumer Sectors): Ten stocks from
financial services and consumer goods sectors, representing defensive
and stable growth characteristics.

Portfolio C (Technology & Healthcare Sectors): Ten stocks from
technology and healthcare sectors, representing high-growth and
innovative industries.

We implemented the VD-MEAC strategy using TensorFlow 2.4
with Python 3.8. The experiments were conducted on a high-
performance computing workstation equipped with an Intel Xeon
E5-2698 v4 CPU, an NVIDIA Tesla V100 GPU, and 128 GB of DDR4
RAM. The system ran on Ubuntu 20.04 LTS, ensuring a stable Linux-
based environment for deep learning training. The training period
spanned from July 1, 2017, to July 1, 2020, ensuring sufficient
historical data to capture various market conditions. The testing
period was from July 1, 2020, to September 1, 2021, encompassing
both bull and bear market phases. The main parameter settings for the
model are presented in Table 3, where we utilized the Adam optimizer
with ReLU activation functions. The 5 x 10° training steps for the
VD-MEAC model took approximately 8.5h to complete. The
computational complexity of the agent at each time step is dominated
by the forward passes of the actor and critic networks, which is
efficient for real-time decision-making.

Additionally, we used the Adam optimizer and ReLU activation
functions. The model was trained for 5x10° steps, with the training
results shown in Figure 3. Figure 3a shows the learning rate, which
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TABLE 2 Stock list.

10.3389/frai.2025.1709493

Portfolio Stock name Stock code Sector
Yanzhou coal mining 600188 Energy
YTO express 600233 Logistics
Zhongnan construction 000961 Real estate
China molybdenum 601958 Materials
Shijiazhuang stone 002153 Materials

A (original portfolio)
Hundsun technologies 600446 Technology
Tsinghua unigroup 000938 Technology
Sinopec oilfield service 600871 Energy
Wanhua chemical 600309 Materials
AVIC electronics 600372 Industrials
China merchants bank 600036 Financials
Ping an insurance 601318 Financials
Industrial bank 601166 Financials
Kweichow moutai 600519 Consumer Goods
Yili group 600887 Consumer Goods

B (financial and consumer)
Midea group 000333 Consumer Goods
Luzhou Laojiao 000568 Consumer Goods
China pacific insurance 601601 Financials
CITIC securities 600,030 Financials
China life insurance 601628 Financials
Eastmoney information 300059 Technology
Hikvision 002415 Technology
GoerTek 002241 Technology
iFlytek 002230 Technology
Luxshare precision 002475 Technology

C (technology and healthcare)
Mindray medical 300760 Healthcare
WuXi AppTec 603259 Healthcare
Jiangsu Hengrui medicine 600276 Healthcare
Tigermed consulting 300347 Healthcare
Shenzhen Kangtai biological 300601 Healthcare

incorporates decay to prevent non-convergence due to excessive
learning rates. Figures 3c,d display the loss values for the Actor and
Critic networks, respectively, indicating that the network training has
stabilized. It's important to note that the interpretation of loss values
in reinforcement learning differs from that in deep learning; stable
network training does not necessarily signify that the model has
learned a profitable trading strategy. However, examining Figure 3b,
we observe that the Sharpe ratio per episode increases continuously
as training progresses and eventually stabilizes, suggesting
model convergence.

4.2 Model testing

It is critical to note that all strategies compared in this
section, including our own VD-MEAGC, are evaluated under the
strict long-only, no-leverage constraint defined in Section

Frontiers in Artificial Intelligence

TABLE 3 Model main parameter settings.

Entropy weight o 0.05
Distribution utilization 0.75
Replay buffer capacity 1x10°
Batch size 128
Critic network architecture [300, 200]
Actor network architecture [64, 32]
Initial learning rate 0.001

II-B. The superior performance of VD-MEAC is therefore
derived entirely from its methodological advantages in risk
modeling and exploration, not from financial engineering or
hidden leverage.
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FIGURE 5
Distribution of VD-MEAC trading results across 100 runs.

The testing period spans from July 1, 2020, to September 1, 2021,
with transaction costs set at 0.25%. Since VD-MEAC learns a
stochastic policy, we conducted 100 trading simulations during the
test period to avoid evaluation bias from extreme performances. The
trading results are presented in Figure 5. Across these 100 trading
simulations, the VD-MEAC strategy achieved an average Sharpe ratio
of 2.978 with a variance of 0.015, and an average wealth ratio of 2.490
with a variance of 0.011. These results demonstrate the remarkable
stability of the VD-MEAC stochastic policy, with even the worst-
performing test achieving a Sharpe ratio of approximately 2.70.

We selected one representative test result for comparison with
other strategies. The comparative trading results are illustrated in
Figure 6. Figure 6 clearly shows that although the VD-MEAC strategy
lagged behind other strategies in the initial trading period, it
significantly outperformed both baseline comparison groups (CSI
300, Equal-weight) and classical reinforcement learning algorithms
(TD3, DDPG, SAC) throughout the remainder of the testing period.

To conduct a more comprehensive comparison, we introduced
additional quantitative metrics to evaluate portfolio performance, as
shown in Table 4. The bold values indicate the best performance under
each metric. From Table 4, we observe that the Equal-weight strategy’s
annualized return of 0.0707 underperforms the CSI 300 index, while
all reinforcement learning strategies surpass the CSI 300 index in
terms of returns. The VD-MEAC strategy demonstrates superior
performance with an annualized return of 1.1944, highlighting its
strong profitability. Regarding risk management, VD-MEAC also
significantly outperforms other strategies in terms of Sharpe ratio and
Calmar ratio, confirming that leveraging more distribution
information effectively enhances risk resistance.

In investment, particular attention must be paid to drawdown
metrics, as maximum drawdown measures the largest potential loss
investors may experience, while drawdown duration affects investor
confidence and subsequent trading decisions. As shown in Table 5,
although DDPG slightly outperforms VD-MEAC in terms of
maximum drawdown, DDPG never recovered to its highest wealth
point by the end of the testing period, reflecting its inferior profitability
compared to VD-MEAC. Crucially, durations in Table 5 marked with
a>symbol (e.g., “>419 days”) indicate that the strategy failed to
recover to its previous peak by the end of the testing period. Our
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Performance comparison of different portfolio strategies.

VD-MEAG, in contrast, was one of only two strategies to achieve a full
recovery, and it did so in only 169 days, demonstrating superior
resilience. Under conditions where VD-MEAC’s wealth value is
significantly higher than other strategies, VD-MEAC’s maximum
drawdown period is shorter, demonstrating its exceptional recovery
capability. Overall, considering multiple dimensions of assessment,
VD-MEAC performs better than other strategies in terms of
maximum drawdown.

4.3 Factor portfolio analysis

As shown in Figure 7, the factor importance analysis provides
deep insights into the decision-making mechanics of the VD-MEAC
algorithm. The dominance of risk-related factors, particularly
Variancel20 and Sharpe_ratiol20, at the top of the ranking confirms
our theoretical framework, which emphasizes comprehensive risk
assessment as the primary determinant of portfolio allocation. The
algorithm systematically places higher weight on long-horizon risk
metrics (120-day measures) compared to short-term indicators,
thereby filtering out market noise and focusing on persistent patterns
of risk. The notable importance assigned to momentum (importance
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TABLE 4 Comparison of strategy evaluation metrics.

10.3389/frai.2025.1709493

Strategy Annualized Sharpe ratio = Calmar ratio Stability Max drawdown Volatility
return
Equal-weight 0.0707 0.4476 0.3709 0.2663 0.1906 0.1948
CSI300 0.1140 0.6190 0.6268 0.2505 0.1819 0.2109
DDPG 05162 22190 4.2520 0.6444 0.1214 0.1963
TD3 0.6171 2.0973 3.8380 0.7188 0.1608 0.2434
SAC 0.1956 0.9866 1.3250 0.0448 0.1476 02015
VD-MEAC 1.1944 2.8502 9.3808 0.7223 0.1273 0.2907
TABLE 5 Comparison of maximum drawdown periods.
Strategy Max drawdown Peak date Trough date Recovery date Duration (days)
Equal-weight 0.1906 2020-07-09 2021-02-05 - >419
CSI300 0.1819 2021-02-10 2021-07-27 - >203
DDPG 0.1214 2021-01-18 2021-07-28 - >226
TD3 0.1608 2021-01-12 2021-05-21 2021-07-19 188
SAC 0.1476 2020-12-04 2021-05-10 - >271
VD-MEAC 0.1273 2021-02-22 2021-05-20 2021-08-10 169
value = 0.118) reveals that VD-MEAC has internalized the predictive
value of trend-following signals. At the same time, the strong
- . VOsC
contribution of fundamental measures such as the PEG ratio MFI14
(importance value = 0.093) demonstrates that the algorithm integrates et profit_fatio
Skewness120
both technical and fundamental domains. This balance suggests the DI%\VQIJ_ZS
e . iquidi
emergence of a sophisticated multi-factor framework that captures 5 Kurtosis20
trivial int ti di P 1 ithout P iv] Variance60
non-trivial interactions among diverse signals, without requiring 8 VOL20 0076
.. . . . . beta 0.082
explicit programming of factor interrelationships. Variancee ooby
To further enhance interpretability, we provide a visual example PEG B Risk Factors
N .. . . . . . momentum [ Style Factors
of the agent’s decision-making at a specific time step in Figure 8. Sharpe._ratio120 S Growth FactorsC 11
s . PR . . Variance120 BN Sentiment Factors §142
While the factor importance analysis in Figure 7 provides a global
view of which factors the model values most, Figure 7 offers a local 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
. . . . . o . Importance Score
interpretation for a single decision. Using a contribution analysis
FIGURE 7

(akin to SHAP or LIME), we can visualize the factors that pushed
the agent to increase or decrease its allocation to a specific asset. In
this example, the agent’s decision to significantly increase allocation
to ‘Yanzhou Coal Mining’ (YCM) on February 22, 2021, was
primarily driven by a very strong ‘Sharpe_ratiol20” and a high
‘momentum’ factor, which offset the negative contribution from its
‘Variancel20’ (which was high, but deemed acceptable given the
risk-adjusted returns). This local-level insight is crucial for building
practitioner trust, as it allows for an audit of the agent’s “reasoning”
at critical market junctures.

The portfolio weight evolution, visualized in Figure 9, reveals that
VD-MEAC adapts allocation strategies in a manner consistent with
prevailing market conditions. During bullish phases, the algorithm
increased exposure to cyclical sectors such as energy and materials
(YCM, CMM), while simultaneously reducing allocations to
technology (TU). This sectoral rotation aligns with the cyclical
structure of financial markets. Conversely, in bearish conditions, the
model exhibited a defensive posture, reducing cyclical exposures and
reallocating toward more stable, defensive sectors. The periodicity
observed in rebalancing suggests that the algorithm has implicitly
discovered near-optimal rebalancing frequencies, despite the absence
of explicit programming to that effect.
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Factor importance in VD-MEAC model.
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Factor importance in VD-MEAC model.

The correlation matrix of factors, illustrated in Figure 10, highlights
VD-MEACs ability to internalize interdependencies among explanatory
variables. The emergence of distinct correlation clusters, especially within
factors of the same type, indicates that the algorithm systematically
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accounts for redundancy in information. This suggests that VD-MEAC
not only recognizes the presence of collinearity but also adjusts its
weighting to prevent the double-counting of equivalent sources of risk.

Finally, the decision boundary analysis of the two most influential
factors (Variancel20 and Sharpe_ratio120), as depicted in Figure 11,
offers an interpretable view of the algorithm’s internal logic. The
non-linear geometry of the boundary confirms that VD-MEAC
captures complex, non-linear relationships between risk characteristics
and allocation choices. Importantly, the identified decision regions
correspond closely to financial intuition: the algorithm increases
exposure when variance is elevated but compensated by a high Sharpe
ratio, and decreases exposure when variance is high but not
accompanied by sufficient risk-adjusted return.

4.4 Extended experiments

To address concerns about the generalizability of our findings from
a single portfolio and to validate the individual contributions of our
model’s components, we conducted three additional experiments: (1)
hyperparameter sensitivity analysis, (2) performance under different
market conditions, and (3) an ablation study examining the individual
contributions of value distribution and maximum entropy components.

We examined the sensitivity of VD-MEAC to two key
hyperparameters: the distribution information utilization coefficient
() and the entropy regularization coeflicient (o). Figure 12 shows
how these parameters affect the Sharpe ratio and annualized return.
The results reveal that the performance of VD-MEAC is relatively
stable across a range of parameter values, with optimal performance
achieved when £ is around 0.75 and « is approximately 0.05. Too
small values of S lead to insufficient utilization of distribution
information, while too large values can include noisy extreme
quantiles. Similarly, very small values of & result in insufficient
exploration, while excessive values may lead to overly random policies.

To assess the robustness of VD-MEAC across varying market
conditions, we divided our test period into three market regimes: bullish
(uptrend), bearish (downtrend), and sideways (neutral). Table 6 presents
the performance metrics under each condition. The results demonstrate
that VD-MEAC significantly outperforms other strategies across all
market conditions, with particular strength during bearish markets where
it maintains positive returns while other strategies experience losses. This
highlights the algorithm’s robustness to varying market conditions, which
is crucial for real-world portfolio management.

To understand the individual contributions of the value distribution
and maximum entropy components, we conducted an ablation study
comparing four variants: (1) VD-MEAC (full algorithm), (2) VD-AC
(without maximum entropy), (3) ME-AC (with maximum entropy but
using traditional Q-learning), and (4) AC (basic actor-critic). The results
are presented in Table 7. The ablation study confirms that both the value
distribution and maximum entropy components contribute significantly
to the algorithms performance. While each component individually
improves performance over the basic actor-critic approach, their
combination in VD-MEAC yields synergistic benefits, particularly in
terms of risk-adjusted returns as measured by the Sharpe and Calmar
ratios. This study provides definitive evidence that the superior, high-
return performance of VD-MEAC is a direct result of its novel
architecture, not an artifact of external factors such as leverage, which
were explicitly forbidden.
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FIGURE 9
VD-MEAC portfolio weight dynamics.
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TABLE 6 Performance under different market conditions.

Market Period VD-MEAC return

DDPG return CSI 300 return

Equal-weight

return

Bullish 2020-07-01 to 2020-12-31 0.487 0.326 0.215 0.189
Bearish 2021-01-01 to 2021-03-31 0.109 —0.082 —0.132 —0.098
Sideways 2021-04-01 to 2021-09-01 0.318 0.164 0.073 0.041

TABLE 7 Ablation study results.

Variant Annualized return Sharpe ratio Max drawdown Calmar ratio
VD-MEAC (Full) 1.1944 2.8502 0.1273 9.3808
VD-AC (w/o ME) 0.8735 2.3467 0.1542 5.6647
ME-AC (w/o VD) 0.7214 2.0981 0.1698 4.2486
AC (Basic) 0.5623 1.8942 0.1876 2.9973

To address concerns about selection bias from a single small
portfolio, we conducted additional experiments on three different
10-stock portfolios randomly sampled from CSI 300 constituents:

Portfolio A: Original portfolio (Table 2).

Portfolio B: 10 stocks from financial and consumer sectors.

Portfolio C: 10 stocks from the technology and healthcare sectors.

Table 8 presents the performance comparison across all three
portfolios. VD-MEAC consistently outperforms benchmarks across
all portfolios, with average Sharpe ratios of 2.98 (Portfolio A), 2.76
(Portfolio B), and 2.85 (Portfolio C). This multi-portfolio validation
demonstrates that our algorithm’s superior performance is not an
artifact of a single favorable stock selection.

4.5 Analysis and discussion

Combining evaluations across multiple dimensions, the
VD-MEAC strategy demonstrates superior performance in both risk
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management and return generation compared to baseline strategies.
Several key insights emerge from our experimental results:

First, the value distribution approach significantly enhances risk
management by capturing the full uncertainty of returns rather than
just point estimates. This is particularly evident in the reduced
maximum drawdowns and shorter recovery periods exhibited by
VD-MEAC.

Second, the maximum entropy component effectively encourages
exploration of the action space, leading to the discovery of more
profitable trading strategies. This is reflected in the substantially
higher annualized returns achieved by VD-MEAC compared to other
reinforcement learning algorithms.

Third, the stability of performance across 100 test runs (with very
low variance in Sharpe and wealth ratios) demonstrates the robustness
of VD-MEAC as a stochastic policy. This stability is crucial for real-
world applications where consistent performance is valued.

Fourth, the outperformance of VD-MEAC across different market
conditions (bullish, bearish, and sideways) highlights its adaptability
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TABLE 8 Multi-portfolio performance comparison.

Strategy

Portfolio A Sharpe

Portfolio B Sharpe

10.3389/frai.2025.1709493

Portfolio C Sharpe Average Sharpe

Equal-weight (EW) 0.45 0.52 0.48 0.48
CSI 300 0.62 0.62 0.62 0.62
DDPG 222 1.98 2.10 2.10
TD3 2.10 1.89 2.05 2.01
SAC 0.99 1.12 1.05 1.05
VD-MEAC 2.85 2.76 2.85 2.82

to changing market environments, a critical advantage over traditional
strategies that may perform well in certain market conditions but
poorly in others.

Finally, the hyperparameter sensitivity analysis reveals that while
the algorithm’s performance can be optimized through careful
parameter tuning, it maintains strong performance across a reasonable
range of parameter values, indicating robustness to
hyperparameter settings.

In summary, our comprehensive experimental evaluation validates
that the VD-MEAC algorithm effectively addresses the risk-return
tradeoff in portfolio management, achieving superior risk-adjusted
returns compared to both traditional investment strategies and state-of-

the-art reinforcement learning methods.

5 Conclusion

This study proposes a portfolio management strategy built upon the
VD-MEAC framework, which shifts the focus from single-point return
predictions to modeling the entire distribution of outcomes. Such a
formulation enhances the capacity to evaluate both profitability and
downside risk, thereby strengthening the role of distributional
reinforcement learning in financial decision-making. Empirical tests on
real stock market data confirm the algorithm’s promising profitability and
resilience under uncertainty, underscoring its alignment with practical
investment logic. Nevertheless, these results are derived under a set of
experimental assumptions that simplify real-world trading environments.
Future research should narrow this gap by incorporating more realistic
market frictions, transaction costs, and dynamic constraints. Moreover,
while the model demonstrates strong performance, the opacity of the
agent’s decision process remains a key limitation. While our Factor Portfolio
Analysis in Section IV-C provides a significant degree of transparency into
the models learned logic and decision-making process, addressing
interpretability, potentially by integrating advances in explainable Al will
be critical for building investor trust and enabling deployment in live
trading systems.

Furthermore, the VD-MEAC framework opens several avenues
for future work. Extending the model to a multi-agent reinforcement
learning (MARL) setting, where different agents manage different
asset classes or cooperate/compete to optimize a joint portfolio, could
capture more complex market dynamics. Additionally, exploring
cross-market transfer learning, for instance, pre-training the agent on
a data-rich market (e.g., the U.S. stock market) and subsequently fine-
tuning it on another (e.g., the Chinese market), could significantly
improve data efficiency and model generalization, aligning with
current Al-in-finance trends.
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