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Introduction: Pulmonary hypertension (PH) has an incidence of approximately 
6 cases per million adults, with a global prevalence ranging from 49 to 55 
cases per million adults. Recent advancements in artificial intelligence (AI) have 
demonstrated promising improvements in the diagnostic accuracy of imaging 
for PH, achieving an area under the curve (AUC) of 0.94, compared to seasoned 
professionals.
Research objective: To systematically synthesize available evidence on the 
comparative accuracy of AI versus manual interpretation in detecting PH across 
various chest imaging modalities, i.e., chest X-ray, echocardiography, CT scan 
and cardiac MRI.
Methods: Following PRISMA guidelines, a comprehensive search was conducted 
across five databases—PubMed, Embase, ScienceDirect, Scopus, and the 
Cochrane Library—from inception through March 2025. Statistical analysis 
was performed using R (version 2024.12.1 + 563) with 2 × 2 contingency data. 
Sensitivity, specificity, and diagnostic odds ratio (DOR) were pooled using a 
bivariate random-effects model (reitsma() from the mada package), while the 
AUC were meta-analyzed using logit-transformed values via the metagen() 
function from the meta package.
Results: This meta-analysis of 12 studies, encompassing 7,459 patients, 
demonstrated a statistically significant improvement in diagnostic accuracy of 
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PH with AI integration, evidenced by a logit mean difference in AUC of 0.43 
(95% CI: 0.23–0.64; p < 0.0001) and low heterogeneity (I2 = 21.0%, τ2 < 0.0001, 
p = 0.2090), which was consolidated by pooled AUC of 0.934 on bivariate 
model. Pooled sensitivity and specificity for AI models were 0.83 (95% CI: 0.73–
0.90) and 0.91 (95% CI: 0.86–0.95), respectively, with substantial heterogeneity 
for sensitivity (I2 = 83.8%, τ2 = 0.4934, p < 0.0001) and moderate for specificity 
(I2 = 41.5%, τ2 = 0.1015, p = 0.1146); the diagnostic odds ratio was 54.26 (95% 
CI: 22.50–130.87) with substantial heterogeneity (I2 = 70.7%, τ2 = 0.8451, 
p = 0.0023). Sensitivity analysis showed stable estimates and did not reduce 
heterogeneity across outcomes.
Conclusion: AI-integrated imaging significantly enhances diagnostic accuracy 
for pulmonary hypertension, with higher sensitivity (0.83) and specificity (0.91) 
compared to manual interpretation across chest imaging modalities. However, 
further high-quality trials with externally validated cohorts may be needed to 
confirm these findings and reduce variability among AI models across diverse 
clinical settings.

KEYWORDS

artificial intelligence, chest imaging, diagnostic accuracy, meta-analysis, pulmonary 
hypertension

Introduction

Pulmonary Hypertension (PH) is a progressive disease 
characterized by mean pulmonary artery pressure >20 mm Hg on 
the Right Heart Catheterization (Maron, 2023). It has multiple 
etiologies and clinical presentations leading to significant morbidity 
and mortality (Manek and Bhardwaj, 2025). Recent data estimate a 
1-year mortality rate of approximately 8%, which escalates to nearly 
24% over 3 years, highlighting the progressive nature of the disease 
(Chang et al., 2022). Diagnostic chest imaging modalities such as 
Chest X-ray (CXR), CT scans or Echocardiography play an integral 
role in diagnosis of Pulmonary Hypertension. However, manual 
interpretation of these imaging modalities is prone to diagnostic 
errors and inter-observer variability, potentially contributing to 
missed or delayed diagnoses (Sharma et al., 2021; Brady et al., 
2012). This delayed diagnosis is significantly associated with poor 
outcomes and increased health costs (Kubota et al., 2024). A study 
by Kubota et al. (2024) reported that patients who had Pulmonary 
Hypertension diagnosed within 3 months had significantly better 
survival outcomes than the ones who had it diagnosed after 
3 months. These factors have led us to look for novel methods for 
interpretation for chest imaging that are more accurate and efficient 
(Brady et al., 2012).

Recent advancements in Artificial Intelligence (AI) have been 
showing promising results in this niche (Anderson et al., 2024; 
Jia et al., 2022; Zhang et al., 2018). A comprehensive study by 
Anderson et al. (2024) showed excellent Area Under Curve 
(AUC) of 0.976 in detecting CXR abnormalities. Furthermore, 
non-radiologist aided with AI performed equally well compared 
to radiologists in interpreting CXRs. Similarly, Jia et al. (2022) 
reported the pooled AUC of AI Algorithm models for 
distinguishing COVID-19 from other pneumonias on chest 
imaging (such as CXR, CT scan and Lung Ultrasounds) to be 
0.96, signifying its excellent potential for future diagnostic 
interpretation tool. The results for AI-driven Echocardiography 

interpretation were no different, showing up to 0.87 as a value for 
AUC (Zhang et al., 2018). Moreover, integrating AI models is 
predicted to reduce healthcare costs and time enormously in 
coming years (Khanna et al., 2022).

There are multiple studies comparing the accuracy and efficiency 
of manual interpretation by physicians to AI; however, a 
comprehensive meta-analysis remains a gap in research. This 
Diagnostic Test Accuracy Meta-analysis aims to bridge this gap by 
systematically addressing the comparison of AI interpretation of chest 
imaging to the traditional methods in detecting Pulmonary 
Hypertension and evaluating its severity. We hypothesize that 
AI-Algorithms based interpretation of chest imaging can significantly 
outweigh traditional interpretation methods for Pulmonary 
Hypertension therefore, revolutionizing the diagnostic accuracy of PH 
in clinical practice.

Methodology

Protocol

This meta-analysis was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines 
(McInnes et al., 2018).

Data sources and search strategy

A systematic literature search was conducted across five electronic 
databases: PubMed, Embase, ScienceDirect, Scopus, and the Cochrane 
Library, from inception until April, 2025. The search strategy utilized 
both MeSH terms and free-text keywords, combined using Boolean 
operators (“AND,” “OR”), and tailored for each database. The detailed 
search strategy is shown in Supplementary Table S1.
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All identified records were imported into Rayyan software for 
de-duplication and screening. Two reviewers independently screened 
the titles and abstracts, followed by a full-text review of potentially 
eligible studies. Discrepancies were resolved by discussion or 
adjudication by a third reviewer. We also performed backward 
snowballing by reviewing the reference lists of included studies to 
identify additional relevant publications, aided by the literature 
mapping tool Litmaps.

Eligibility criteria

We included studies involving human participants of any age 
diagnosed with any type of pulmonary hypertension (PH), in which 
chest imaging modalities—such as chest X-ray (CXR), 
echocardiography, computed tomography (CT), magnetic resonance 
imaging (MRI), or right heart catheterization (RHC)—were evaluated 
for diagnostic purposes. Eligible studies were required to compare 
artificial intelligence (AI)-based interpretation of chest imaging with 
conventional clinician-based interpretation for the diagnosis of 
PH. The primary outcome was the area under the receiver operating 
characteristic curve (AUC), used to assess diagnostic performance. 
Secondary outcomes included sensitivity, specificity, and diagnostic 
odds ratio (DOR).

We excluded studies involving non-human subjects, case reports, 
case series, cross-sectional studies, editorials, review articles, 
commentaries, and conference abstracts. Studies lacking full-text 
availability or presenting incomplete diagnostic data were also excluded.

Data extraction

Two independent reviewers conducted data extraction using a 
standardized form developed in Microsoft Excel. Discrepancies were 
resolved by discussion with a third independent reviewer. Extracted 
data included: first author, year of study publication, country of study, 
study design, AI algorithm used (including model characteristics across 
internal and external validation cohorts), reference standard (i.e., 
traditional clinician interpretation), primary and secondary outcomes, 
sample size, number of images analyzed, and patient comorbidities.

For studies that reported binary classification outcomes, we 
extracted data to construct 2 × 2 contingency tables (true positives, 
TP; false positives, FP; true negatives, TN; false negatives, FN) for 
pooled diagnostic analysis. Subgroup analyses were pre-planned based 
on the imaging modality used (CXR, CT, MRI, echocardiography, or 
RHC) to explore heterogeneity in diagnostic performance. When 
essential data were missing, we contacted the corresponding authors 
via email. If no response was received within 2 weeks, a follow-up 
email was sent. Studies were excluded if no reply was received within 
4 weeks of the initial contact.

Quality assessment

Risk of bias and concerns regarding applicability were assessed 
using the Quality Assessment of Diagnostic Accuracy Studies 2 
(QUADAS-2) tool, which evaluates four domains: “patient selection,” 
“index test,” “reference standard,” and “flow and timing.” Each domain 

was assessed for risk of bias and applicability concerns using the 
predefined criteria specified in the QUADAS-2 manual, and 
categorized as low, high, or unclear risk.

Two independent reviewers conducted the assessments, and 
discrepancies were resolved through discussion with a third reviewer. 
Summary judgments for each domain across all studies are presented 
as traffic light plots and overall risk-of-bias graphs 
(Supplementary Figure S1).

Statistical analysis

All statistical analyses were performed using R (Version 
2024.12.1 + 563). Logit AUC conversion was performed before pooling 
AUC using the metagen function in R. Because the AUC is a bounded 
proportion with a skewed sampling distribution, we applied a logit 
transformation to stabilize variance and improve normality prior to 
pooling (Shim et al., 2019). Meta-analysis was performed using 
inverse-variance weighting of logit-transformed AUC values, and 
results were back-transformed to the original AUC scale for easy 
readers’ interpretation. The general inverse variance method with 
restricted maximum likelihood (REML) model estimated between-
study heterogeneity (τ2). Diagnostic accuracy was modeled using a 
bivariate random-effects meta-analysis based on the Reitsma model, 
implemented via the reitsma() function from the mada package in 
R. This approach simultaneously models logit-transformed sensitivity 
and specificity while accounting for the correlation between them, 
yielding a summary receiver operating characteristic (SROC) curve 
with associated 95% confidence and prediction regions (Reitsma et al., 
2005). Due to the inherent structure of bivariate modeling, direct 
pooled estimates for sensitivity and specificity are not returned in the 
forest plots (Shim et al., 2019). To enable reporting of pooled diagnostic 
metrics and facilitate forest plot visualization, we additionally 
performed univariate random-effects meta-analyses. The metaprop() 
function from the meta package was used to estimate pooled sensitivity 
and specificity separately, while madauni() from the mada package was 
applied to estimate the pooled diagnostic odds ratio (DOR). Forest 
plots for each measure were generated using the forest() function. 
While these univariate results do not account for the sensitivity-
specificity covariance, they serve as a practical summary of central 
tendencies across studies and support the illustrated interpretation.

Influence analysis was conducted using the metainf() function 
(meta package) to assess the impact of individual studies on pooled 
estimates. Funnel plots were generated using funnel(), and Egger’s test 
was applied via metabias() to assess small-study effects. Subgroup 
analysis and meta-regression were planned a priori based on several 
study-level characteristics, including imaging modality (eg, chest 
X-ray, CT, echocardiography), attenuation vs. diagnostic endpoints, 
convolutional neural network (CNN) architecture, and study design.

Results

Summary of study selection and eligibility 
process

A total of 219 records were retrieved through a comprehensive 
search across PubMed, Embase, ScienceDirect, Scopus, and the 
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Cochrane Library. After removing 73 duplicates, 146 records remained 
for title and abstract screening. Of these, 158 were excluded based on 
predefined eligibility criteria. Twenty full-text articles were assessed 
for eligibility in Rayyan, and 8 were excluded due to a lack of 
diagnostic AUC data, irrelevance to AI-based imaging, or unsuitable 
study design. An additional manual search of reference lists did not 
yield further eligible studies. Ultimately, 12 studies met the inclusion 
criteria and were included in the meta-analysis. The study selection 
process is detailed in the PRISMA flow diagram (Figure 1).

Study characteristics

A total of 7,459 patients were represented across the 12 included 
studies, all of which evaluated AI-assisted interpretation across 
multiple imaging modalities. These comprised chest X-ray (CXR) (7 
studies) (Imai et al., 2024; Kusunose et al., 2022; Han et al., 2024; 
Shimbo et al., 2024; Zou et al., 2020; Li et al., 2024; Kusunose et al., 
2020), computed tomography (CT) (2 studies) (Jimenez-Del-Toro 
et al., 2020; Charters et al., 2022), echocardiography (2 studies) (Liao 
et al., 2023; Leha et al., 2019), and cardiac magnetic resonance imaging 

(CMR) (1 study) (Swift et al., 2021). Study characteristics and 
modality-specific details are summarized in Tables 1, 2, respectively.

Quality assessment

The risk of bias was assessed using the QUADAS-2 tool, which 
covers four domains: patient selection, index test, reference standard, 
and flow and timing. It demonstrated generally acceptable 
methodological quality. Eight studies were judged to have low risk of 
bias, while four studies had either unclear or high risk, predominantly 
due to non-consecutive patient sampling, retrospective design, or 
insufficient reporting of imaging-to-reference standard timing. 
Applicability concerns were low overall; however, two studies used 
tertiary-center, highly selected patient populations, potentially 
limiting external validity. The risk of bias assessment is shown in 
Supplementary Figure S1. Importantly, inclusion of these higher-bias 
studies did not materially change pooled estimates as depicted in 
sensitivity analysis and funnel plots in results section below, though 
they tended to report slightly higher diagnostic accuracy, suggesting 
possible spectrum or selection bias.

FIGURE 1

PRISMA flow chart of the included studies.
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TABLE 1  Baseline characteristics.

Study 

First 

author 

name 

(year)

Study 

design

Total no. 

of 

patients 

(n)

Total 

no. of 

images 

(n)

AI-algorithms group Traditional 

methods group

Mean age (years/months) Male—n (%)* Congenital heart 

disease

Connective tissue 

disease
Internal test data External test data

Total no. 

of 

patients 

(n)

Total no. 

of 

images 

(n)

Total 

no. of 

patients 

(n)

Total 

no. of 

images 

(n)

Total 

no. of 

patients 

(n)

Total 

no. of 

images 

(n)

PH group Non-PH 

group

Total PH 

group

Non-

PH 

group

Total PH 

group

Non-

PH 

group

PH 

group

Non-PH 

group

Leha et al. 

(2019)

Retrospective 

cohort study

90 NA 68 NA NA NA 22 NA 68 ± 14 years 54 ±  

19 years

61 ±  

16.5 years

32 

(35.5)

8 (8.8) 40 (44.4) NA NA NA NA

Zou et al. 

(2020)

Retrospective 

study

762 762 721 80 41 41 357 357 NA NA 59.9 years NA NA NA NA NA NA NA

Jimenez-

Del-Toro et 

al. (2020)

Retrospective 

observational 

study

75 85 27 37 NA NA 48 48 62.3 ±  

15 years

65 ±  

16 years

63.65 ±  

15.5 years

28 

(37.3)

14 (18.6) 42 (56) NA NA NA NA

Kusunose et 

al. (2020)

Retrospective 

cohort study

900 NA 90 90 55 55 900 NA 66 ±  

14 years

68 ± 

 12 years

65.5 ±  

13 years

233 

(25.8)

278 (30.8) 511 (56.8) NA NA NA NA

Swift et al. 

(2021)

Retrospective 

observational 

study

220 NA 150 NA NA NA 70 NA 64 years 61 years 62.5 years NA NA NA 10 (4.5) NA 58 (26.3) NA

Kusunose et 

al. (2022)

Reterospective 

cohort study

142 NA NA NA NA NA NA NA 60 ± 14 years 57 ±  

13 years

58 ±  

13 years

9 (6.3) 8 (5.6) 17 (12) NA NA NA NA

Charters et 

al. (2022)

Retrospective 

analysis of a 

prospective 

database

202 NA 102 NA NA NA 250 NA NA NA NA NA NA NA NA NA NA NA

Han et al. 

(2024)

Retrospective 

study

3,256 3,255 NA 330 NA NA NA 330 NA NA NA NA NA 1764 (54) 142 (4.3) 1,174 

(36.05)

NA NA

Liao et al. 

(2023)

Reterospective 

study

346 NA 275 NA NA NA 71 NA 41 ±  

15 years

40 ±  

15 years

40.5 ±  

15 years

NA NA NA NA NA 33 (9.5) 8 (2.3)

Li et al. 

(2024)

Retrospective 

study

831 NA 166 166 50 50 NA NA 6 ±  

1.4 months

6 ±  

1.2 months

6 ±  

1.3 months

NA NA 330 (49.5) 161 (19.3) 670 

(80.6)

NA NA

Shimbo et 

al. (2024)

Prospective 

cohort study

230 46 NA NA NA NA NA NA 65.6 years 58.3 years 61.95 years 10 

(16.7)

14 (8.2) 24 (24.9) NA NA 60 

(26.08)

169 (73.4)

Imai et al. 

(2024)

Retrospective 

study

405 519 145 259 NA NA 260 260 51.9 ±  

16.1 years

62.5 ±  

9.6 years

57.2 ± 12.85 34 (8.3) 131 (32.3) 165 (40.7) 17 (4.1) NA 50 (12.3) NA

*All the percentages are with respect to total number of patients.
AI, artificial intelligence; PH, pulmonary hypertension; n (%), number (percentage).
Diagnosis categories include congenital heart disease and connective tissue disease (e.g., systemic sclerosis, lupus, rheumatoid arthritis). “PH group” and “non-PH group” refer to patients with and without pulmonary hypertension, respectively.
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Logit MD AUC difference between AI and 
conventional methods

Across all included imaging modalities, AI-assisted diagnostic 
approaches demonstrated significantly higher accuracy compared to 
conventional interpretation. The logit mean difference (MD) in AUC 
was 0.43 (95% CI: 0.23–0.64; p < 0.0001), indicating a statistically 
meaningful improvement with AI integration (Figure 2). 
Heterogeneity was low (I2 = 21.0%, τ2 < 0.0001, p = 0.2090). Egger’s 
test for funnel plot asymmetry revealed no evidence of small-study 
effects (t = 0.02, df = 15, p = 0.986), with a bias estimate of 0.0126 
(SE = 0.7108) and substantial between-study heterogeneity (τ2 = 1.35) 
(Figure 3). Sensitivity analysis showed that excluding Leha et al. (2019) 
(LPLR) reduced heterogeneity substantially to 5.3%, yielding a logit-
transformed AUC of 0.48 (95% CI: 0.27–0.69; p < 0.0001), as 
illustrated in Supplementary Figure S2. No evidence of small-study 
publication bias was detected (Egger’s test p = 0.986).

Subgroup analysis comparing chest radiography with other 
imaging modalities (CT and echocardiography) demonstrated no 
statistically significant differences (χ2 = 3.46, df = 1, p = 0.063). A more 
granular, three-way comparison (X-ray vs. CT vs. echocardiography) 
similarly showed no significant subgroup effect (χ2 = 5.32, df = 2, 
p = 0.070) (Supplementary Figures S3, S4). In contrast, the analysis 
based on AUC effect direction revealed a significant subgroup 
difference (χ2 = 5.30, df = 1, p = 0.0213), with the enhancing-effect 
group demonstrating a pooled logit AUC of 0.59 (95% CI: 0.35–0.83), 
and no observed heterogeneity (I2 = 0%, τ2 = 0, p = 0.7117) (Figure 4).

Diagnostic performance and statistical 
analysis

A bivariate random-effects meta-analysis using the Reitsma 
model revealed the pooled sensitivity of 0.824 (95% CI, 0.713–0.899) 
and the pooled false positive rate (FPR) of 0.097 (95% CI, 0.062–
0.149) for AI-based diagnostic models. The Area Under the Curve 
(AUC) was 0.934, with a partial AUC of 0.81, indicating strong 
diagnostic performance of AI-assisted methods. Heterogeneity 
analysis showed minimal variation in sensitivity (I2 = 27.2%) and 
more substantial variation in false-positive rates (FPR) 
(I2 = 73–82.3%). The Summary Receiver Operating Characteristic 
(SROC) curve for sensitivity versus 1-specificity demonstrated the 
overall diagnostic accuracy of AI-based models across studies 
(Figure 5).

The summary estimates of the bivariate model are presented in 
Table 3.

Univariate meta-analysis reinforced the bivariate model findings, 
reporting a pooled sensitivity of 0.83 (95% CI: 0.73–0.90) with 

substantial heterogeneity (I2 = 83.8%, τ2 = 0.4934, p < 0.0001), as 
shown in Supplementary Figure S5. The pooled specificity was 0.91 
(95% CI: 0.86–0.95), with moderate heterogeneity (I2 = 41.5%, 
τ2 = 0.1015, p = 0.1146), as illustrated in Supplementary Figure S6. The 
random-effects model for diagnostic odds ratio (DOR) yielded a 
pooled estimate of 54.26 (95% CI: 22.50–130.87), with substantial 
heterogeneity (I2 = 70.7%, τ2 = 0.8451, p = 0.0023), as depicted in 
Supplementary Figure S7.

Leave-one-out analyses across sensitivity and DOR reached their 
lowest estimates of 74.1 and 27.3% respectively, upon exclusion of Han 
et al. (2024) (Supplementary Figures S8, S9). Egger’s test indicated no 
evidence of small-study effects for sensitivity (t  = 1.42, df = 5, 
p  = 0.214; intercept = 0.10, 95% CI: −2.18 to 2.39) or specificity 
(t  = 1.23, df = 5, p  = 0.272; intercept = 1.75, 95% CI: 0.75–2.74), 
whereas evidence of small-study effects was detected for DOR 
(t  = 2.92, df = 5, p  = 0.033; intercept = 1.85, 95% CI: 0.29–3.42), 
suggesting selective reporting of more extreme diagnostic contrasts in 
smaller cohorts (Supplementary Figures S10–S12).

Discussion

AI’s diagnostic performance compared to 
conventional methods

This meta-analysis demonstrated that AI-based imaging 
interpretation achieves a pooled AUC of 0.934 (partial AUC 0.81), 
with sensitivity and specificity of approximately 0.83 and 0.91, 
respectively. These results indicate AI’s substantial advantage over 
manual readings, quantified by a logit AUC mean difference of 0.43. 
Such high diagnostic accuracy suggests that AI tools could detect 
pulmonary hypertension (PH) earlier in the disease course, even when 
clinical signs are subtle. Timely detection is critical because delayed 
diagnosis of pulmonary arterial hypertension has been consistently 
linked to poorer patient outcomes, whereas early diagnosis allows 
patients to begin therapy earlier, improving their long-term prognosis 
(Ono et al., 2024).

Our findings align with established diagnostic frameworks 
outlined in the ATS/ERS and ESC/ERS guidelines, which advocate a 
tiered approach to pulmonary hypertension (PH) diagnosis, beginning 
with symptom evaluation and chest imaging, followed by 
echocardiography and definitive confirmation via right-heart 
catheterization (American College of Cardiology, 2022). As outlined 
by the American Thoracic Society (ATS), chest radiographs may show 
pulmonary artery enlargement or right heart changes suggestive of 
PH, though their diagnostic sensitivity remains limited (American 
Thoracic Society, 2023). Accordingly, the American College of 
Radiology (ACR) designates both chest X-ray and contrast-enhanced 
chest CT as appropriate first-line investigations in suspected cases 
(American College of Radiology, 2024). However, guidelines also 
emphasize that a normal chest X-ray does not exclude PH, 
underscoring the historical limitations of conventional interpretation 
(PHA Europe, 2022). Our meta-analysis suggests that AI integration 
can substantially mitigate this constraint. With a pooled AUC of 0.934, 
AI-assisted CXR interpretation demonstrated enhanced sensitivity in 
detecting subtle radiographic abnormalities that may be overlooked 
by human readers (Rajaram et al., 2015). These findings support the 
potential utility of AI as a triage tool, enabling earlier identification of 

TABLE 2  Baseline characteristics of patients by modality.

Modality No. of studies Total patients

Chest X-ray 7 6,526

CT scan 2 277

Echocardiography 2 436

Cardiac magnetic resonance 

imaging

1 220
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high-risk individuals for echocardiographic evaluation while 
minimizing unnecessary invasive procedures in low-risk patients. 
Prior studies further corroborate AI’s diagnostic advantage over 
conventional radiologist interpretation in CXR-based PH screening 
(Rajaram et al., 2015). Thus, AI-enhanced chest radiography could 
reinforce and streamline the early diagnostic phase of PH, improving 
adherence to guideline-recommended diagnostic workflows 
(American College of Cardiology, 2022).

While chest radiography was the primary imaging modality in our 
meta-analysis (7 of 12 studies, 6,526 patients), current ESC/ERS 
guidelines endorse a multimodal approach to PH diagnosis, 
integrating echocardiography, CT, and MRI for complementary 

insights (American College of Cardiology, 2022). Echocardiography 
remains the cornerstone for noninvasive screening, with CT used to 
identify lung pathology and chronic thromboembolic PH (CTEPH), 
and MRI for advanced right ventricular assessment. AI can augment 
all of these modalities, quantifying pulmonary artery dimensions on 
CT, standardizing TR-jet velocity on echo, and improving ventricular 
measurements on MRI. Although fewer studies in our meta-analysis 
evaluated CT, echo, or CMR, the positive findings suggest AI’s value 
is not limited to CXR. As such, AI may support each step of imaging 
including broad CXR screening, detailed echo/CT evaluation, and 
precise MRI phenotyping, in line with current recommendations 
(American College of Radiology, 2024).

FIGURE 2

Forest plot of logit-transformed mean difference in AUC.

FIGURE 3

Funnel plot of logit-transformed mean difference in AUC.
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The meta-analysis further concluded that artificial intelligence 
(AI) outperformed conventional methods consistently across the area 
under the curve (AUC), a key parameter for measuring the accuracy 
of diagnosis, on multiple occasions. Across 12 studies involving 7,459 
patients, Logit mean difference (MD) in AUC was 0.43 (95% 
confidence interval: 0.23–0.64; p < 0.0001) and reflects that AI can 
enhance diagnostic performance across imaging modalities. The low 
heterogeneity (I2 = 21.0%) further supports the consistency of this 
improvement across different studies and imaging modalities.

Complementing this, the bivariate random-effects meta-analysis 
revealed a pooled AUC of 0.91, underscoring the excellent overall 
diagnostic performance of AI-based models. When combined, these 
findings highlight that AI not only improves the average AUC 
compared to conventional methods but also achieves a high level of 
diagnostic accuracy across diverse imaging techniques and patient 
populations. The findings are in accordance with other studies that 
have concluded high AUC values in AI systems for ophthalmic and 
respiratory imaging, often superior to human experts in lesion 
detection and disease diagnosis tasks (Aggarwal et al., 2021; 
Najjar, 2023).

The logit MD in AUC between CXR and other modalities did not 
differ significantly, according to the imaging modality-based 
subgroup analysis. However, when examining the effect direction of 
AUC enhancement, a significant subgroup difference was found 
(χ2  = 5.30, df = 1, p  = 0.0213). With no discernible heterogeneity 
(I2 = 0%, τ2 = 0, p = 0.7117), the group exhibiting an enhancing effect 

had a pooled logit AUC of 0.59 (95% CI: 0.35–0.83). Subgroup 
comparisons between various imaging modalities independently 
were also not statistically significant. The versatility of AI in imaging 
techniques is notably demonstrated by CMR, which was successful 
in a trial involving 220 patients. These results demonstrate AI’s 
versatility in imaging methods. A trial of AI-aided CT imaging for 
the diagnosis of COVID-19 showed improved diagnostic accuracy, 
pointing to the ability of AI to enhance CT-based diagnostics (Moezzi 
et al., 2021).

Further examination of diagnostic performance metrics showed 
that the pooled sensitivity was 0.824 (95% CI: 0.713–0.899), with a 
relatively low false positive rate of 0.097 (95% CI: 0.062–0.149). The 
summary receiver operating characteristic (SROC) curve visually 
confirmed this strong diagnostic accuracy, with the area under the curve 
reaching 0.934 and a partial AUC of 0.81, indicating that AI models 
maintain high sensitivity while controlling false positives effectively.

In addition to the bivariate analysis, univariate meta-analyses 
provided complementary insights: the pooled sensitivity was slightly 
higher at 0.83 (95% CI: 0.73–0.90), albeit with substantial heterogeneity 
(I2 = 83.8%), while the pooled specificity was 0.91 (95% CI: 0.86–0.95) 
with moderate heterogeneity (I2 = 41.5%). The diagnostic odds ratio 
(DOR), a composite measure of test effectiveness, was also notably high 
at 54.26 (95% CI: 22.50–130.87), supporting the strong discriminatory 
power of AI diagnostics despite some heterogeneity (I2 = 70.7%).

Taken together, these pooled sensitivity, specificity, and DOR 
values from both univariate and bivariate analyses reinforce the 

FIGURE 4

Forest plot of logit-transformed mean difference in AUC: subgroup analysis based on AUC effect enhancement.
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conclusion that AI-based diagnostic imaging offers very good to 
excellent diagnostic accuracy. The ROC curve analysis further 
substantiates this, illustrating that AI models achieve a robust balance 
between sensitivity and specificity, making them highly effective tools 
for clinical decision-making.

Efficiency gains with AI integration

AI’s ability to process medical images rapidly is a key advantage, 
reducing diagnostic time and mitigating human error due to fatigue 

or oversight. For example, emergency settings benefit significantly 
from AI’s speed in analyzing complex data, enabling timely 
interventions. Additionally, AI enhances image quality through 
noise reduction and normalization techniques, improving 
visualization of anatomical structures critical for accurate diagnosis. 
Novak et al. (2024) found that AI-enhanced workflows in 
emergency radiology improved both efficiency and diagnostic 
accuracy.

Challenges and methodological 
considerations

While its advantages are evident, there are challenges to 
implementing AI in diagnostic imaging:

Overdiagnosis risks: Oversensitivity can result in false positives or 
identification of clinically insignificant abnormalities, requiring 
stringent calibration of algorithms.

Heterogeneity across studies: Methodological and outcome 
measure differences make direct comparison between studies 
challenging and potentially exaggerate AI effectiveness.

Bias risks: Retrospective analysis and blinding in some but not all 
studies introduce bias in results, as indicated by QUADAS-2 
evaluations with issues in patient selection and index tests.

FIGURE 5

Bivariate model: ROC (receiver operating curve) plane.

TABLE 3  Bivariate model: summary estimates.

Performance 
metrics

Estimate 95% 
Lower CI

95% 
Upper CI

Sensitivity 0.83 0.73 0.90

Specificity 0.91 0.87 0.94

DOR 49.43 23.58 103.64

LR+ 9.23 6.40 13.30

LR- 0.19 0.11 0.31

FPR 0.09 0.06 0.13

DOR, diagnostic odds ratio; LR, likelihood ratio; FPR, false positive rate.
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Although 8 of the included studies were rated low risk for bias, 2 
had some concerns, and 2 were rated as high risk, particularly in 
patient selection and flow/timing domains. Standardized reporting 
guidelines are necessary to maintain consistency and reliability in 
assessing AI’s performance in diagnosis. Robust validation and 
transparent reporting are stressed in literature concerning the state of 
AI in diagnostic imaging (Kusunose et al., 2022). In addition, the 
current landscape of AI adoption in diagnostic imaging is hindered 
by inconsistent regulatory frameworks, integration challenges, and a 
lack of clinician-centered design, factors that must be addressed to 
maximize clinical utility and trust (Larson et al., 2021).

The translation of the diagnostic performance of AI into real-
world practice is conditioned by substantial deployment barriers. It 
relies heavily on robust computational infrastructure, smooth system 
connections, and seamless integration with PACS and EHR systems, 
which many under-resourced hospitals lack (Nair et al., 2022). 
Successful deployment in real-life situations requires careful planning, 
investment, and teamwork, especially in areas with limited support. 
Beyond technical deployment, the implementation of diagnostic AI 
in PH imaging raises important ethical and practical concerns. 
Although the overall FPR is less than 0.10, AI implementation still 
carries misdiagnosis risks from low false-positive/negative rates, 
which can trigger invasive tests, delay diagnosis, and cause anxiety 
(Bernstein et al., 2023). Moreover, algorithmic bias arises when 
models train on limited population samples, reducing generalizability 
and necessitating accountability through transparent documentation. 
Cybersecurity risks from large-scale data transfers further heighten 
practical concerns, demanding rigorous oversight by skilled 
professionals (Herington et al., 2023). Lastly, AI should act as a safety 
partner with humans, improving patient safety by providing an extra 
“pair of eyes” and detecting subtle pH signs while clinicians filter out 
clearly incorrect AI outputs and retain final decision-making 
authority. This setup reduces both missed diagnoses and unnecessary 
investigations (Cabitza et al., 2021).

Clinical implications and future directions

The findings strongly favor the implementation of AI in standard 
diagnostic imaging practice based on its steady improvements in 
accuracy among modalities. Real-world application, though, will need 
to overcome limitations like overdiagnosis and methodologic 
heterogeneity while emphasizing clinically relevant endpoints such as 
patient survival and treatment response. Prospective studies assessing 
AI’s long-term advantages in various clinical settings are among the 
research priorities for future studies. Additionally, it is essential that 
explainable AI models are developed to increase clinician trust and 
enable the embedding of AI tools into clinical workflow.

Furthermore, leave-one-out sensitivity analysis confirmed the 
robustness of pooled estimates, and no significant small-study effects 
were detected using Egger’s test, supporting the reliability of the meta-
analytic outcomes. However, several limitations related to 
heterogeneity exploration should be noted. Although we performed 
subgroup analyses by imaging modality, additional subgrouping by 
study design and by neural network architecture was not feasible 
because all included studies were observational, and each architecture 
was represented by only one study. Furthermore, the relatively small 
number of studies in individual comparisons precluded reliable 

meta-regression. In summary, artificial intelligence is an exciting 
evolution of diagnostic imaging with increased precision and 
decreased inefficiencies in inherent manual methods. Incorporation 
of this technology in health systems may potentially transform clinical 
decision-making as well as outcomes of patients greatly.

Conclusion

Our meta-analysis provides well-supported evidence that artificial 
intelligence enhances diagnostic performance across key imaging 
modalities, including Chest X-ray, CT, and Echocardiography. The 
consistent improvement in AUC values across diverse study settings 
and patient populations emphasizes the potential of AI-assisted 
diagnostic interpretation. As diagnostic imaging continues to evolve, 
these findings support the integration of AI into routine practice, with 
the potential to boost accuracy, and enhance clinical decision-making. 
Future studies should focus on implementing these findings in real-
world settings to ensure long-term benefits for patients.
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Glossary

AI - Artificial intelligence

AUC - Area under the (receiver-operating-characteristic) curve

CIs - Confidence intervals

CMR - Cardiac magnetic resonance imaging

CT - Computed tomography

CXR - Chest X-ray

DOR - Diagnostic odds ratio

FN - False negative

FP - False positive

FPR - False-positive rate

HSROC - Hierarchical summary ROC (if you keep that term)

I2 - Higgins heterogeneity statistic

MRI - Magnetic resonance imaging

PH - Pulmonary hypertension

PRISMA-DTA - Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses—Diagnostic Test Accuracy

QUADAS-2 - Quality Assessment of Diagnostic Accuracy Studies-2

REML - Restricted maximum likelihood

RHC - Right heart catheterization

ROC - Receiver operating characteristic

SROC - Summary ROC

SN - Sensitivity

SP - Specificity

TP - True positive

PACS - Picture archiving and communication system

EHR - Electronic health record
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