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Introduction: Pulmonary hypertension (PH) has an incidence of approximately
6 cases per million adults, with a global prevalence ranging from 49 to 55
cases per million adults. Recent advancements in artificial intelligence (Al) have
demonstrated promising improvements in the diagnostic accuracy of imaging
for PH, achieving an area under the curve (AUC) of 0.94, compared to seasoned
professionals.

Research objective: To systematically synthesize available evidence on the
comparative accuracy of Al versus manual interpretation in detecting PH across
various chest imaging modalities, i.e., chest X-ray, echocardiography, CT scan
and cardiac MRI.

Methods: Following PRISMA guidelines, a comprehensive search was conducted
across five databases—PubMed, Embase, ScienceDirect, Scopus, and the
Cochrane Library—from inception through March 2025. Statistical analysis
was performed using R (version 2024.12.1 + 563) with 2 x 2 contingency data.
Sensitivity, specificity, and diagnostic odds ratio (DOR) were pooled using a
bivariate random-effects model (reitsma() from the mada package), while the
AUC were meta-analyzed using logit-transformed values via the metagen()
function from the meta package.

Results: This meta-analysis of 12 studies, encompassing 7459 patients,
demonstrated a statistically significant improvement in diagnostic accuracy of
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PH with Al integration, evidenced by a logit mean difference in AUC of 0.43
(95% Cl: 0.23-0.64; p < 0.0001) and low heterogeneity (/> = 21.0%, z°> < 0.0001,
p = 0.2090), which was consolidated by pooled AUC of 0.934 on bivariate
model. Pooled sensitivity and specificity for Al models were 0.83 (95% CI: 0.73—
0.90) and 0.91 (95% CI: 0.86-0.95), respectively, with substantial heterogeneity
for sensitivity (? = 83.8%, 7> = 04934, p < 0.0001) and moderate for specificity
(17 = 41.5%, 7> = 0.1015, p = 0.1146); the diagnostic odds ratio was 54.26 (95%
Cl: 22.50-130.87) with substantial heterogeneity (2 =70.7%, 2= 0.8451,
p = 0.0023). Sensitivity analysis showed stable estimates and did not reduce
heterogeneity across outcomes.

Conclusion: Al-integrated imaging significantly enhances diagnostic accuracy
for pulmonary hypertension, with higher sensitivity (0.83) and specificity (0.91)
compared to manual interpretation across chest imaging modalities. However,
further high-quality trials with externally validated cohorts may be needed to
confirm these findings and reduce variability among Al models across diverse

clinical settings.

KEYWORDS
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Introduction

Pulmonary Hypertension (PH) is a progressive disease
characterized by mean pulmonary artery pressure >20 mm Hg on
the Right Heart Catheterization (Maron, 2023). It has multiple
etiologies and clinical presentations leading to significant morbidity
and mortality (Manek and Bhardwaj, 2025). Recent data estimate a
1-year mortality rate of approximately 8%, which escalates to nearly
24% over 3 years, highlighting the progressive nature of the disease
(Chang et al.,, 2022). Diagnostic chest imaging modalities such as
Chest X-ray (CXR), CT scans or Echocardiography play an integral
role in diagnosis of Pulmonary Hypertension. However, manual
interpretation of these imaging modalities is prone to diagnostic
errors and inter-observer variability, potentially contributing to
missed or delayed diagnoses (Sharma et al., 2021; Brady et al,,
2012). This delayed diagnosis is significantly associated with poor
outcomes and increased health costs (Kubota et al., 2024). A study
by Kubota et al. (2024) reported that patients who had Pulmonary
Hypertension diagnosed within 3 months had significantly better
survival outcomes than the ones who had it diagnosed after
3 months. These factors have led us to look for novel methods for
interpretation for chest imaging that are more accurate and efficient
(Brady et al., 2012).

Recent advancements in Artificial Intelligence (AI) have been
showing promising results in this niche (Anderson et al., 2024;
Jia et al., 2022; Zhang et al., 2018). A comprehensive study by
Anderson et al. (2024) showed excellent Area Under Curve
(AUC) of 0.976 in detecting CXR abnormalities. Furthermore,
non-radiologist aided with AI performed equally well compared
to radiologists in interpreting CXRs. Similarly, Jia et al. (2022)
reported the pooled AUC of AI Algorithm models for
distinguishing COVID-19 from other pneumonias on chest
imaging (such as CXR, CT scan and Lung Ultrasounds) to be
0.96, signifying its excellent potential for future diagnostic
interpretation tool. The results for AI-driven Echocardiography
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interpretation were no different, showing up to 0.87 as a value for
AUC (Zhang et al., 2018). Moreover, integrating AI models is
predicted to reduce healthcare costs and time enormously in
coming years (Khanna et al., 2022).

There are multiple studies comparing the accuracy and efficiency
of manual interpretation by physicians to AL however, a
comprehensive meta-analysis remains a gap in research. This
Diagnostic Test Accuracy Meta-analysis aims to bridge this gap by
systematically addressing the comparison of Al interpretation of chest
imaging to the traditional methods in detecting Pulmonary
Hypertension and evaluating its severity. We hypothesize that
Al-Algorithms based interpretation of chest imaging can significantly
outweigh traditional interpretation methods for Pulmonary
Hypertension therefore, revolutionizing the diagnostic accuracy of PH
in clinical practice.

Methodology
Protocol

This meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines
(McInnes et al., 2018).

Data sources and search strategy

A systematic literature search was conducted across five electronic
databases: PubMed, Embase, ScienceDirect, Scopus, and the Cochrane
Library, from inception until April, 2025. The search strategy utilized
both MeSH terms and free-text keywords, combined using Boolean
operators (‘AND,” “OR”), and tailored for each database. The detailed
search strategy is shown in Supplementary Table S1.
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All identified records were imported into Rayyan software for
de-duplication and screening. Two reviewers independently screened
the titles and abstracts, followed by a full-text review of potentially
eligible studies. Discrepancies were resolved by discussion or
adjudication by a third reviewer. We also performed backward
snowballing by reviewing the reference lists of included studies to
identify additional relevant publications, aided by the literature
mapping tool Litmaps.

Eligibility criteria

We included studies involving human participants of any age
diagnosed with any type of pulmonary hypertension (PH), in which
chest chest (CXR),
echocardiography, computed tomography (CT), magnetic resonance

imaging modalities—such as X-ray
imaging (MRI), or right heart catheterization (RHC)—were evaluated
for diagnostic purposes. Eligible studies were required to compare
artificial intelligence (AI)-based interpretation of chest imaging with
conventional clinician-based interpretation for the diagnosis of
PH. The primary outcome was the area under the receiver operating
characteristic curve (AUC), used to assess diagnostic performance.
Secondary outcomes included sensitivity, specificity, and diagnostic
odds ratio (DOR).

We excluded studies involving non-human subjects, case reports,
case series, cross-sectional studies, editorials, review articles,
commentaries, and conference abstracts. Studies lacking full-text
availability or presenting incomplete diagnostic data were also excluded.

Data extraction

Two independent reviewers conducted data extraction using a
standardized form developed in Microsoft Excel. Discrepancies were
resolved by discussion with a third independent reviewer. Extracted
data included: first author, year of study publication, country of study,
study design, Al algorithm used (including model characteristics across
internal and external validation cohorts), reference standard (i.e.,
traditional clinician interpretation), primary and secondary outcomes,
sample size, number of images analyzed, and patient comorbidities.

For studies that reported binary classification outcomes, we
extracted data to construct 2 x 2 contingency tables (true positives,
TP; false positives, FP; true negatives, TN; false negatives, FN) for
pooled diagnostic analysis. Subgroup analyses were pre-planned based
on the imaging modality used (CXR, CT, MR, echocardiography, or
RHC) to explore heterogeneity in diagnostic performance. When
essential data were missing, we contacted the corresponding authors
via email. If no response was received within 2 weeks, a follow-up
email was sent. Studies were excluded if no reply was received within
4 weeks of the initial contact.

Quality assessment

Risk of bias and concerns regarding applicability were assessed
using the Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) tool, which evaluates four domains: “patient selection,”

» «

“index test,” “reference standard,” and “flow and timing” Each domain
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was assessed for risk of bias and applicability concerns using the
predefined criteria specified in the QUADAS-2 manual, and
categorized as low, high, or unclear risk.

Two independent reviewers conducted the assessments, and
discrepancies were resolved through discussion with a third reviewer.
Summary judgments for each domain across all studies are presented
light
(Supplementary Figure S1).

as traffic plots and overall risk-of-bias graphs

Statistical analysis

All statistical analyses were performed using R (Version
2024.12.1 + 563). Logit AUC conversion was performed before pooling
AUC using the metagen function in R. Because the AUC is a bounded
proportion with a skewed sampling distribution, we applied a logit
transformation to stabilize variance and improve normality prior to
pooling (Shim et al.,, 2019). Meta-analysis was performed using
inverse-variance weighting of logit-transformed AUC values, and
results were back-transformed to the original AUC scale for easy
readers’ interpretation. The general inverse variance method with
restricted maximum likelihood (REML) model estimated between-
study heterogeneity (7%). Diagnostic accuracy was modeled using a
bivariate random-effects meta-analysis based on the Reitsma model,
implemented via the reitsma() function from the mada package in
R. This approach simultaneously models logit-transformed sensitivity
and specificity while accounting for the correlation between them,
yielding a summary receiver operating characteristic (SROC) curve
with associated 95% confidence and prediction regions (Reitsma et al.,
2005). Due to the inherent structure of bivariate modeling, direct
pooled estimates for sensitivity and specificity are not returned in the
forest plots (Shim et al., 2019). To enable reporting of pooled diagnostic
metrics and facilitate forest plot visualization, we additionally
performed univariate random-effects meta-analyses. The metaprop()
function from the meta package was used to estimate pooled sensitivity
and specificity separately, while madauni() from the mada package was
applied to estimate the pooled diagnostic odds ratio (DOR). Forest
plots for each measure were generated using the forest() function.
While these univariate results do not account for the sensitivity-
specificity covariance, they serve as a practical summary of central
tendencies across studies and support the illustrated interpretation.

Influence analysis was conducted using the metainf() function
(meta package) to assess the impact of individual studies on pooled
estimates. Funnel plots were generated using funnel(), and Egger’s test
was applied via metabias() to assess small-study effects. Subgroup
analysis and meta-regression were planned a priori based on several
study-level characteristics, including imaging modality (eg, chest
X-ray, CT, echocardiography), attenuation vs. diagnostic endpoints,
convolutional neural network (CNN) architecture, and study design.

Results

Summary of study selection and eligibility
process

A total of 219 records were retrieved through a comprehensive
search across PubMed, Embase, ScienceDirect, Scopus, and the
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Cochrane Library. After removing 73 duplicates, 146 records remained
for title and abstract screening. Of these, 158 were excluded based on
predefined eligibility criteria. Twenty full-text articles were assessed
for eligibility in Rayyan, and 8 were excluded due to a lack of
diagnostic AUC data, irrelevance to Al-based imaging, or unsuitable
study design. An additional manual search of reference lists did not
yield further eligible studies. Ultimately, 12 studies met the inclusion
criteria and were included in the meta-analysis. The study selection
process is detailed in the PRISMA flow diagram (Figure 1).

Study characteristics

A total of 7,459 patients were represented across the 12 included
studies, all of which evaluated Al-assisted interpretation across
multiple imaging modalities. These comprised chest X-ray (CXR) (7
studies) (Imai et al., 2024; Kusunose et al., 2022; Han et al., 2024;
Shimbo et al., 2024; Zou et al., 2020; Li et al., 2024; Kusunose et al.,
2020), computed tomography (CT) (2 studies) (Jimenez-Del-Toro
etal., 2020; Charters et al., 2022), echocardiography (2 studies) (Liao
etal., 2023; Leha et al,, 2019), and cardiac magnetic resonance imaging

10.3389/frai.2025.1709489

(CMR) (1 study) (Swift et al., 2021). Study characteristics and
modality-specific details are summarized in Tables 1, 2, respectively.

Quality assessment

The risk of bias was assessed using the QUADAS-2 tool, which
covers four domains: patient selection, index test, reference standard,
and flow and timing. It demonstrated generally acceptable
methodological quality. Eight studies were judged to have low risk of
bias, while four studies had either unclear or high risk, predominantly
due to non-consecutive patient sampling, retrospective design, or
insufficient reporting of imaging-to-reference standard timing.
Applicability concerns were low overall; however, two studies used
tertiary-center, highly selected patient populations, potentially
limiting external validity. The risk of bias assessment is shown in
Supplementary Figure S1. Importantly, inclusion of these higher-bias
studies did not materially change pooled estimates as depicted in
sensitivity analysis and funnel plots in results section below, though
they tended to report slightly higher diagnostic accuracy, suggesting
possible spectrum or selection bias.

R R e et Records removed before
screening.
Pubmed 77 :
; Embase 29 Duplicate recordsremoved
; - J > (n=73)
gg::lf: D;rgd 32 Records marked asineligible
Py iy by automationtools(n= 0)
§ Records removedforother
reasons(n =0)
L |
Y
Records screened Records excluded**
(n=146) > | (n=126)
v
Reports sought forretrieval Reports not retrieved
g (n=20) ’ (n=8)
§ I
T Reports excluded:
Refons assessedfor eligibility A Reason 1: not relatedto
(n=20) pulmonary hypertension (PH)
(n=50)
Reason 2: No use of chest X-
rays or CT scans (n = 50)
Reason 3: No mention of Al
algorithms (n = 26)
—
v
Studiesincludedin review
(n=12)
Reports of included studies
(n=12)
FIGURE 1
PRISMA flow chart of the included studies.
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TABLE 1 Baseline characteristics.

N\ Total no. Total Al-algorithms group Traditional Mean age (years/months) Male—n (%)* Congenital heart Connective tissue
design pat(i:nts i::ngs Internal test data External test data methods group disease disease
(n) (n) Total no. Total no. Total Total Total Total PH group PH Non- PH Non-PH
of of no. of no. of no. of no. of group PH group group
patients images patients = images @ patients = images group
(@] (@] (@] (n) (n) ()]

Leha et al. Retrospective 90 NA 68 NA NA NA 22 NA 68 + 14 years 54 + 61+ 32 8(8.8) 40 (44.4) NA NA NA NA
(2019) cohort study 19 years 16.5 years (35.5)
Zou et al. Retrospective 762 762 721 80 41 41 357 357 NA NA 59.9 years NA NA NA NA NA NA NA
(2020) study
Jimenez- Retrospective 75 85 27 37 NA NA 48 48 62.3+ 65+ 63.65 28 14 (18.6) 42 (56) NA NA NA NA
Del-Toro et observational 15 years 16 years 15.5 years (37.3)
al. (2020) study
Kusunose et | Retrospective 900 NA 90 90 55 55 900 NA 66 + 68 + 65.5+ 233 278 (30.8) | 511(56.8) NA NA NA NA
al. (2020) cohort study 14 years 12 years 13 years (25.8)
Swift et al. Retrospective 220 NA 150 NA NA NA 70 NA 64 years 61 years 62.5 years NA NA NA 10 (4.5) NA 58 (26.3) NA
(2021) observational

study
Kusunose et | Reterospective 142 NA NA NA NA NA NA NA 60 + 14 years 57+ 58+ 9(6.3) 8(5.6) 17 (12) NA NA NA NA
al. (2022) cohort study 13 years 13 years
Charters et Retrospective 202 NA 102 NA NA NA 250 NA NA NA NA NA NA NA NA NA NA NA
al. (2022) analysis of a

prospective

database
Han et al. Retrospective 3,256 3,255 NA 330 NA NA NA 330 NA NA NA NA NA 1764 (54) 142 (4.3) 1,174 NA NA
(2024) study (36.05)
Liao et al. Reterospective 346 NA 275 NA NA NA 71 NA 41 40+ 405+ NA NA NA NA NA 33(9.5) 8(23)
(2023) study 15 years 15 years 15 years
Lietal Retrospective 831 NA 166 166 50 50 NA NA 6+ 6+ 6+ NA NA 330 (49.5)  161(19.3) 670 NA NA
(2024) study 1.4 months 1.2 months 1.3 months (80.6)
Shimbo et Prospective 230 46 NA NA NA NA NA NA 65.6 years 58.3 years 61.95 years 10 14 (8.2) 24 (24.9) NA NA 60 169 (73.4)
al. (2024) cohort study (16.7) (26.08)
Imaietal. | Retrospective 405 519 145 259 NA NA 260 260 519+ 625+ 572+1285  34(83) | 131(323) 165(40.7)  17(4.1) NA 50 (12.3) NA
(2024) study 16.1 years 9.6 years

*All the percentages are with respect to total number of patients.
Al artificial intelligence; PH, pulmonary hypertension; 1 (%), number (percentage).
Diagnosis categories include congenital heart disease and connective tissue disease (e.g., systemic sclerosis, lupus, rheumatoid arthritis). “PH group” and “non-PH group” refer to patients with and without pulmonary hypertension, respectively.
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TABLE 2 Baseline characteristics of patients by modality.

Modality ‘ No. of studies ‘ Total patients
Chest X-ray 7 6,526

CT scan 2 277
Echocardiography 2 436
Cardiac magnetic resonance 1 220
imaging

Logit MD AUC difference between Al and
conventional methods

Across all included imaging modalities, Al-assisted diagnostic
approaches demonstrated significantly higher accuracy compared to
conventional interpretation. The logit mean difference (MD) in AUC
was 0.43 (95% CI: 0.23-0.64; p < 0.0001), indicating a statistically
meaningful improvement with AI integration (Figure 2).
Heterogeneity was low (I = 21.0%, 7* < 0.0001, p = 0.2090). Egger’s
test for funnel plot asymmetry revealed no evidence of small-study
effects (t=0.02, df = 15, p = 0.986), with a bias estimate of 0.0126
(SE = 0.7108) and substantial between-study heterogeneity (¢* = 1.35)
(Figure 3). Sensitivity analysis showed that excluding Leha et al. (2019)
(LPLR) reduced heterogeneity substantially to 5.3%, yielding a logit-
transformed AUC of 0.48 (95% CI: 0.27-0.69; p <0.0001), as
illustrated in Supplementary Figure S2. No evidence of small-study
publication bias was detected (Egger’s test p = 0.986).

Subgroup analysis comparing chest radiography with other
imaging modalities (CT and echocardiography) demonstrated no
statistically significant differences (y* = 3.46, df = 1, p = 0.063). A more
granular, three-way comparison (X-ray vs. CT vs. echocardiography)
similarly showed no significant subgroup effect (y*=5.32, df =2,
p =0.070) (Supplementary Figures S3, S4). In contrast, the analysis
based on AUC effect direction revealed a significant subgroup
difference (> = 5.30, df = 1, p = 0.0213), with the enhancing-effect
group demonstrating a pooled logit AUC of 0.59 (95% CI: 0.35-0.83),
and no observed heterogeneity (I* = 0%, 7> = 0, p = 0.7117) (Figure 4).

Diagnostic performance and statistical
analysis

A bivariate random-effects meta-analysis using the Reitsma
model revealed the pooled sensitivity of 0.824 (95% CI, 0.713-0.899)
and the pooled false positive rate (FPR) of 0.097 (95% CI, 0.062-
0.149) for Al-based diagnostic models. The Area Under the Curve
(AUC) was 0.934, with a partial AUC of 0.81, indicating strong
diagnostic performance of Al-assisted methods. Heterogeneity
analysis showed minimal variation in sensitivity (I* =27.2%) and
(FPR)
(I* =73-82.3%). The Summary Receiver Operating Characteristic

more substantial variation in false-positive rates
(SROC) curve for sensitivity versus 1-specificity demonstrated the
overall diagnostic accuracy of Al-based models across studies
(Figure 5).

The summary estimates of the bivariate model are presented in
Table 3.

Univariate meta-analysis reinforced the bivariate model findings,

reporting a pooled sensitivity of 0.83 (95% CI: 0.73-0.90) with
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substantial heterogeneity (I*=83.8%, 7> =0.4934, p <0.0001), as
shown in Supplementary Figure S5. The pooled specificity was 0.91
(95% CL: 0.86-0.95), with moderate heterogeneity (I*=41.5%,
72 =0.1015, p = 0.1146), as illustrated in Supplementary Figure S6. The
random-effects model for diagnostic odds ratio (DOR) yielded a
pooled estimate of 54.26 (95% CI: 22.50-130.87), with substantial
heterogeneity (I* =70.7%, 7> = 0.8451, p = 0.0023), as depicted in
Supplementary Figure S7.

Leave-one-out analyses across sensitivity and DOR reached their
lowest estimates of 74.1 and 27.3% respectively, upon exclusion of Han
etal. (2024) (Supplementary Figures S8, S9). Egger’s test indicated no
evidence of small-study effects for sensitivity (¢t =1.42, df=5,
p =0.214; intercept = 0.10, 95% CI: —2.18 to 2.39) or specificity
(t =1.23, df =5, p =0.272; intercept = 1.75, 95% CI: 0.75-2.74),
whereas evidence of small-study effects was detected for DOR
(t =2.92, df =5, p =0.033; intercept = 1.85, 95% CI: 0.29-3.42),
suggesting selective reporting of more extreme diagnostic contrasts in
smaller cohorts (Supplementary Figures S10-S12).

Discussion

Al's diagnostic performance compared to
conventional methods

This meta-analysis demonstrated that Al-based imaging
interpretation achieves a pooled AUC of 0.934 (partial AUC 0.81),
with sensitivity and specificity of approximately 0.83 and 0.91,
respectively. These results indicate AT’s substantial advantage over
manual readings, quantified by a logit AUC mean difference of 0.43.
Such high diagnostic accuracy suggests that Al tools could detect
pulmonary hypertension (PH) earlier in the disease course, even when
clinical signs are subtle. Timely detection is critical because delayed
diagnosis of pulmonary arterial hypertension has been consistently
linked to poorer patient outcomes, whereas early diagnosis allows
patients to begin therapy earlier, improving their long-term prognosis
(Ono et al., 2024).

Our findings align with established diagnostic frameworks
outlined in the ATS/ERS and ESC/ERS guidelines, which advocate a
tiered approach to pulmonary hypertension (PH) diagnosis, beginning
with symptom evaluation and chest imaging, followed by
echocardiography and definitive confirmation via right-heart
catheterization (American College of Cardiology, 2022). As outlined
by the American Thoracic Society (ATS), chest radiographs may show
pulmonary artery enlargement or right heart changes suggestive of
PH, though their diagnostic sensitivity remains limited (American
Thoracic Society, 2023). Accordingly, the American College of
Radiology (ACR) designates both chest X-ray and contrast-enhanced
chest CT as appropriate first-line investigations in suspected cases
(American College of Radiology, 2024). However, guidelines also
emphasize that a normal chest X-ray does not exclude PH,
underscoring the historical limitations of conventional interpretation
(PHA Europe, 2022). Our meta-analysis suggests that Al integration
can substantially mitigate this constraint. With a pooled AUC of 0.934,
Al-assisted CXR interpretation demonstrated enhanced sensitivity in
detecting subtle radiographic abnormalities that may be overlooked
by human readers (Rajaram et al., 2015). These findings support the
potential utility of Al as a triage tool, enabling earlier identification of
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Weight Weight
Study GEN SE(GEN) GEN GEN 95%-Cl (common) (random)
Imai S et al., 2024 15669 0.7057 |4.—*— 1.57 [0.18;2.95] 22% 22%
Kusunose K et al., 2022 0.3200 0.2658 o 0.32 [-0.20; 0.84] 15.8% 15.8%
Jimenez-del-Toro O et al., 2020 0.3333 04788 B 0.33 [[061;1.27] 49% 49%
Charters PFP, Rossdale J, Brown et al., 2022 06409 02794 L 0.64 [0.09;1.19] 14.3% 14.3%
Han PL et al., 2023* 06903 0.2914 L3 0.69 [0.12; 1.26] 13.1% 13.1%
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Funnel plot of logit-transformed mean difference in AUC.

GEN

high-risk individuals for echocardiographic evaluation while
minimizing unnecessary invasive procedures in low-risk patients.
Prior studies further corroborate AT’s diagnostic advantage over
conventional radiologist interpretation in CXR-based PH screening
(Rajaram et al., 2015). Thus, Al-enhanced chest radiography could
reinforce and streamline the early diagnostic phase of PH, improving
adherence to guideline-recommended diagnostic workflows
(American College of Cardiology, 2022).

While chest radiography was the primary imaging modality in our
meta-analysis (7 of 12 studies, 6,526 patients), current ESC/ERS
guidelines endorse a multimodal approach to PH diagnosis,
integrating echocardiography, CT, and MRI for complementary
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insights (American College of Cardiology, 2022). Echocardiography
remains the cornerstone for noninvasive screening, with CT used to
identify lung pathology and chronic thromboembolic PH (CTEPH),
and MRI for advanced right ventricular assessment. Al can augment
all of these modalities, quantifying pulmonary artery dimensions on
CT, standardizing TR-jet velocity on echo, and improving ventricular
measurements on MRI. Although fewer studies in our meta-analysis
evaluated CT, echo, or CMR, the positive findings suggest AI's value
is not limited to CXR. As such, AI may support each step of imaging
including broad CXR screening, detailed echo/CT evaluation, and
precise MRI phenotyping, in line with current recommendations
(American College of Radiology, 2024).
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Forest plot of logit-transformed mean difference in AUC: subgroup analysis based on AUC effect enhancement.

The meta-analysis further concluded that artificial intelligence
(AI) outperformed conventional methods consistently across the area
under the curve (AUC), a key parameter for measuring the accuracy
of diagnosis, on multiple occasions. Across 12 studies involving 7,459
patients, Logit mean difference (MD) in AUC was 0.43 (95%
confidence interval: 0.23-0.64; p < 0.0001) and reflects that AI can
enhance diagnostic performance across imaging modalities. The low
heterogeneity (I = 21.0%) further supports the consistency of this
improvement across different studies and imaging modalities.

Complementing this, the bivariate random-effects meta-analysis
revealed a pooled AUC of 0.91, underscoring the excellent overall
diagnostic performance of Al-based models. When combined, these
findings highlight that AI not only improves the average AUC
compared to conventional methods but also achieves a high level of
diagnostic accuracy across diverse imaging techniques and patient
populations. The findings are in accordance with other studies that
have concluded high AUC values in Al systems for ophthalmic and
respiratory imaging, often superior to human experts in lesion
detection and disease diagnosis tasks (Aggarwal et al, 2021;
Najjar, 2023).

The logit MD in AUC between CXR and other modalities did not
differ significantly, according to the imaging modality-based
subgroup analysis. However, when examining the effect direction of
AUC enhancement, a significant subgroup difference was found
(r* =5.30, df = 1, p = 0.0213). With no discernible heterogeneity
(I* = 0%, 7% = 0, p = 0.7117), the group exhibiting an enhancing effect
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had a pooled logit AUC of 0.59 (95% CI: 0.35-0.83). Subgroup
comparisons between various imaging modalities independently
were also not statistically significant. The versatility of Al in imaging
techniques is notably demonstrated by CMR, which was successful
in a trial involving 220 patients. These results demonstrate AT’s
versatility in imaging methods. A trial of Al-aided CT imaging for
the diagnosis of COVID-19 showed improved diagnostic accuracy,
pointing to the ability of Al to enhance CT-based diagnostics (Moezzi
etal., 2021).

Further examination of diagnostic performance metrics showed
that the pooled sensitivity was 0.824 (95% CI: 0.713-0.899), with a
relatively low false positive rate of 0.097 (95% CI: 0.062-0.149). The
summary receiver operating characteristic (SROC) curve visually
confirmed this strong diagnostic accuracy, with the area under the curve
reaching 0.934 and a partial AUC of 0.81, indicating that Al models
maintain high sensitivity while controlling false positives effectively.

In addition to the bivariate analysis, univariate meta-analyses
provided complementary insights: the pooled sensitivity was slightly
higher at 0.83 (95% CI: 0.73-0.90), albeit with substantial heterogeneity
(I = 83.8%), while the pooled specificity was 0.91 (95% CI: 0.86-0.95)
with moderate heterogeneity (I = 41.5%). The diagnostic odds ratio
(DOR), a composite measure of test effectiveness, was also notably high
at 54.26 (95% CI: 22.50-130.87), supporting the strong discriminatory
power of Al diagnostics despite some heterogeneity (> = 70.7%).

Taken together, these pooled sensitivity, specificity, and DOR
values from both univariate and bivariate analyses reinforce the
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Bivariate model: ROC (receiver operating curve) plane.

TABLE 3 Bivariate model: summary estimates.

Performance Estimate 95% 95%
metrics Lower CI  Upper CI
Sensitivity 0.83 0.73 0.90
Specificity 0.91 0.87 0.94
DOR 49.43 2358 103.64
LR+ 9.23 6.40 13.30
LR- 0.19 0.11 031
FPR 0.09 0.06 0.13

DOR, diagnostic odds ratio; LR, likelihood ratio; FPR, false positive rate.

conclusion that Al-based diagnostic imaging offers very good to
excellent diagnostic accuracy. The ROC curve analysis further
substantiates this, illustrating that Al models achieve a robust balance
between sensitivity and specificity, making them highly effective tools
for clinical decision-making.

Efficiency gains with Al integration

AT’s ability to process medical images rapidly is a key advantage,
reducing diagnostic time and mitigating human error due to fatigue
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or oversight. For example, emergency settings benefit significantly
from ADs speed in analyzing complex data, enabling timely
interventions. Additionally, AI enhances image quality through
noise reduction and normalization techniques, improving
visualization of anatomical structures critical for accurate diagnosis.
Novak et al. (2024) found that Al-enhanced workflows in
emergency radiology improved both efficiency and diagnostic
accuracy.

Challenges and methodological
considerations

While its advantages are evident, there are challenges to
implementing Al in diagnostic imaging:

Overdiagnosis risks: Oversensitivity can result in false positives or
identification of clinically insignificant abnormalities, requiring
stringent calibration of algorithms.

Heterogeneity across studies: Methodological and outcome
measure differences make direct comparison between studies
challenging and potentially exaggerate Al effectiveness.

Bias risks: Retrospective analysis and blinding in some but not all
studies introduce bias in results, as indicated by QUADAS-2
evaluations with issues in patient selection and index tests.
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Although 8 of the included studies were rated low risk for bias, 2
had some concerns, and 2 were rated as high risk, particularly in
patient selection and flow/timing domains. Standardized reporting
guidelines are necessary to maintain consistency and reliability in
assessing AD's performance in diagnosis. Robust validation and
transparent reporting are stressed in literature concerning the state of
Al in diagnostic imaging (Kusunose et al., 2022). In addition, the
current landscape of AI adoption in diagnostic imaging is hindered
by inconsistent regulatory frameworks, integration challenges, and a
lack of clinician-centered design, factors that must be addressed to
maximize clinical utility and trust (Larson et al., 2021).

The translation of the diagnostic performance of Al into real-
world practice is conditioned by substantial deployment barriers. It
relies heavily on robust computational infrastructure, smooth system
connections, and seamless integration with PACS and EHR systems,
which many under-resourced hospitals lack (Nair et al., 2022).
Successful deployment in real-life situations requires careful planning,
investment, and teamwork, especially in areas with limited support.
Beyond technical deployment, the implementation of diagnostic AI
in PH imaging raises important ethical and practical concerns.
Although the overall FPR is less than 0.10, AI implementation still
carries misdiagnosis risks from low false-positive/negative rates,
which can trigger invasive tests, delay diagnosis, and cause anxiety
(Bernstein et al., 2023). Moreover, algorithmic bias arises when
models train on limited population samples, reducing generalizability
and necessitating accountability through transparent documentation.
Cybersecurity risks from large-scale data transfers further heighten
practical concerns, demanding rigorous oversight by skilled
professionals (Herington et al., 2023). Lastly, Al should act as a safety
partner with humans, improving patient safety by providing an extra
“pair of eyes” and detecting subtle pH signs while clinicians filter out
clearly incorrect AI outputs and retain final decision-making
authority. This setup reduces both missed diagnoses and unnecessary
investigations (Cabitza et al., 2021).

Clinical implications and future directions

The findings strongly favor the implementation of Al in standard
diagnostic imaging practice based on its steady improvements in
accuracy among modalities. Real-world application, though, will need
to overcome limitations like overdiagnosis and methodologic
heterogeneity while emphasizing clinically relevant endpoints such as
patient survival and treatment response. Prospective studies assessing
AT’s long-term advantages in various clinical settings are among the
research priorities for future studies. Additionally, it is essential that
explainable AI models are developed to increase clinician trust and
enable the embedding of Al tools into clinical workflow.

Furthermore, leave-one-out sensitivity analysis confirmed the
robustness of pooled estimates, and no significant small-study effects
were detected using Egger’s test, supporting the reliability of the meta-
analytic outcomes. However, several limitations related to
heterogeneity exploration should be noted. Although we performed
subgroup analyses by imaging modality, additional subgrouping by
study design and by neural network architecture was not feasible
because all included studies were observational, and each architecture
was represented by only one study. Furthermore, the relatively small

number of studies in individual comparisons precluded reliable
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meta-regression. In summary, artificial intelligence is an exciting
evolution of diagnostic imaging with increased precision and
decreased inefficiencies in inherent manual methods. Incorporation
of this technology in health systems may potentially transform clinical
decision-making as well as outcomes of patients greatly.

Conclusion

Our meta-analysis provides well-supported evidence that artificial
intelligence enhances diagnostic performance across key imaging
modalities, including Chest X-ray, CT, and Echocardiography. The
consistent improvement in AUC values across diverse study settings
and patient populations emphasizes the potential of Al-assisted
diagnostic interpretation. As diagnostic imaging continues to evolve,
these findings support the integration of Al into routine practice, with
the potential to boost accuracy, and enhance clinical decision-making.
Future studies should focus on implementing these findings in real-
world settings to ensure long-term benefits for patients.
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Glossary

Al - Artificial intelligence

AUC - Area under the (receiver-operating-characteristic) curve
ClIs - Confidence intervals

CMR - Cardiac magnetic resonance imaging

CT - Computed tomography

CXR - Chest X-ray

DOR - Diagnostic odds ratio

FN - False negative

FP - False positive

FPR - False-positive rate

HSROC - Hierarchical summary ROC (if you keep that term)

P> - Higgins heterogeneity statistic
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MRI - Magnetic resonance imaging
PH - Pulmonary hypertension

PRISMA-DTA - Preferred Reporting Items for Systematic Reviews
and Meta-Analyses—Diagnostic Test Accuracy

QUADAS-2 - Quality Assessment of Diagnostic Accuracy Studies-2
REML - Restricted maximum likelihood

RHC - Right heart catheterization

ROC - Receiver operating characteristic

SROC - Summary ROC

SN - Sensitivity

SP - Specificity

TP - True positive

PACS - Picture archiving and communication system

EHR - Electronic health record
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