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Reconstructing high-fidelity and animatable 3D human avatars from visual
data is a core task for immersive applications such as virtual reality (VR)
and digital content creation. While traditional approaches often suffer from
high computational costs, slow inference, and visual artifacts, recent advances
leverage 3D Gaussian Splatting (3DGS) to enable rapid training and real-time
rendering (up to 361 FPS). A common framework leverages parametric models
to establish a canonical human representation, followed by deformation of 3D
Gaussians into target poses using learnable skinning and novel regularization
techniques. Key advances include deformation mechanisms for motion
generalization, hybrid Gaussian-mesh representations for complex clothing and
geometry, efficient compression and acceleration strategies, and specialized
modules for handling occlusions and fine details. This article briefly reviews
recent progress in 3DGS-based human reconstruction, we organize methods by
input type: single-view and multi-view reconstruction. We discuss the strengths
and limitations of each category and highlight promising future directions.

KEYWORDS
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1 Introduction

The creation of high-fidelity animatable 3D human avatars is a fundamental objective
in computer vision and graphics, with broad applications in VR and digital content
creation. Despite significant advances, faithfully reconstructing dynamic humans with
varied clothing from single-view or multi-view data remains challenging. Articulated
motion, non-rigid deformations, occlusions, and the need for real-time performance
impose stringent demands on reconstruction systems.

Traditional 3D reconstruction methods typically rely on specialized hardware such
as 3D scanning chambers. With the advent of deep learning, data-driven approaches
have emerged that reconstruct 3D human shapes directly from RGB inputs (e.g., single
images, multi-view images). For instance, PIFu (Saito et al., 2019) predicts 3D occupancy
fields from aligned image features and extracts meshes via marching cubes (Lorensen and
Cline, 1987). To improve reconstruction robustness, many recent methods incorporate
parametric human models like SMPL (Loper et al., 2015) and SMPL-X (Pavlakos et al.,
2019). Representative works include ARCH (Huang et al., 2020), ARCH++ (He et al,,
2021), ICON (Xiu et al., 2022), CAR (Liao et al., 2023), VINECS (Liao et al., 2024), and
CanonicalFusion (Shin et al., 2025). More recently, methods such as SiTH (Ho et al.,
2024), PSHuman (Li et al., 2025), and PARTE (Nam et al., 2025) integrate diffusion models
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to infer occluded views, thereby enhancing both geometric detail
and visual appearance. Despite these advances, a noticeable
gap remains between current reconstruction accuracy and the
demands of real-world applications. Concurrently, neural implicit
representations like Neural Radiance Fields (NeRFs) (Mildenhall
et al., 2022) improve the visual quality in novel view synthesis.
However, their high computational burden and slow rendering
speeds often limit their practicality for reconstructing and
animating human subjects. In contrast, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) introduces an explicit and differentiable
representation that achieves state-of-the-art visual quality while
enabling fast training (often under 1.5 h) and real-time rendering,
marking a significant shift from previous paradigms.

A dominant framework in 3DGS-based human reconstruction
deforms canonical 3D Gaussians into target poses using learned
skinning mechanisms, heavily leveraging SMPL-based priors.
Recent efforts have extended this core idea across several
dimensions: (i) novel deformation techniques using MLPs, graph
networks, or attention mechanisms improve motion generalization;
(ii) hybrid representations combine Gaussians with explicit
surfaces (meshes, tetrahedra, or surfels) for complex cloth and
topological detail; (iii) efficient compression and rasterization
strategies enable deployment on consumer hardware; and (iv)
specialized modules address persistent challenges such as occlusion
handling, facial animation, and fine-grained dynamic details. This
article surveys recent progress in 3DGS for human reconstruction,
organizing methods by input modality: single-view and multi-
view setups. We discuss representative works, analyze their trade-
offs between speed, fidelity, and generality, and identify promising
future research directions.

2 3D Gaussian Splatting

3DGS (Kerbl et al, 2023) represents 3D data using a set
of discrete geometric primitives known as 3D Gaussians. Each
Gaussian is defined by a center position 1+ € R?, a scaling vector
s € R and a rotation quaternion q € R*. These parameters are
used to construct a covariance matrix ¥ € R**? in a physically
plausible manner as: ¥ = RSSTRT, where S is the scaling matrix,
and R is the rotation matrix derived from q. To model appearance,
each Gaussian is associated with an opacity value « € [0,1] and
view-dependent color properties ¢ € R represented via spherical
harmonics coefficients. During rendering, the 3D Gaussians are
projected onto the 2D image plane as splats. A tile-based rasterizer
is employed to efficiently combine contributions from all splats
overlapping a pixel.

3DGS provides an and fully differentiable
representation that is particularly suitable for modeling dynamic

explicit

human subjects. A highly influential paradigm adopted by
many recent methods involves establishing 3D Gaussians in a
canonical space and deforming them into target poses using
learned skinning fields, leveraging strong priors from parametric
human templates (e.g., SMPL, SMPL-X), as depicted in Figure 1.
In terms of implementation, optimization-based methods for
3DGS human reconstruction iteratively optimizes Gaussian
parameters to minimize a rendering loss, a process that is relatively
intensive in computation. On the other hand, LHM (Qiu et al,

Frontiersin Artificial Intelligence

10.3389/frai.2025.1709229

2025a) exemplifies the feed-forward paradigm, using a network to
generate animatable 3D avatars from a single image in seconds,
thereby bypassing the costly optimization loop.

3 3DGS-based human reconstruction

The emergence of 3DGS has introduced a significant shift
in the field of 3D human reconstruction, effectively bridging the
long-standing gap between high-fidelity rendering and real-time
performance. This section systematically reviews these advancing
techniques, organizing them according to input type: single-
view and multi-view reconstruction, while critically examining
core innovations in deformation modeling, hybrid representation
design, and regularization strategies that facilitate robust animation
and generalization. The 3DGS-based human reconstruction
methods are summarized in Table 1.

While early work on 3DGS avatar reconstruction primarily
utilized monocular or multi-view video inputs, the research focus
has expanded to data-efficient settings. Notably, the majority of
novel works presented at top conferences and journals in 2025
predominantly employ single or sparse images as input.

3.1 Single-view reconstruction

3.1.1 Monocular video processing

Reconstructing  animatable avatars from monocular
video presents a trade-off between accuracy, efficiency, and
generalization. A number of methods adopt 3D Gaussian
representations to achieve high-quality rendering and fast
training. GaussianAvatar (Hu et al., 2024b) utilizes coarse global
appearance features combined with pose information to form
composite features, which are decoded into Gaussian parameters.
Focusing on efficiency, GauHuman (Hu et al., 2024c) introduces
canonical encoding initialized from SMPL and uses pose and
linear blend skinning (LBS) refinements for deformation. It further
incorporates a KL-divergence guided dynamic Gaussian control
strategy (including splitting, cloning, pruning, and merging)
and tile-based rasterization, achieving training in 1-2 min and
rendering at 189 FPS with only 13k Gaussians. Also building on a
canonical representation, HUGS (Kocabas et al., 2024) employs 3D
Gaussians initialized from SMPL but allows deviations to capture
loose clothing and hair. It proposes joint optimization of LBS
weights to better align Gaussian motions during animation. Taking
a network-based deformation approach, 3DGS-Avatar (Qian et al.,
2024) combines 3DGS with a non-rigid deformable network for
fast reconstruction from monocular video. It generalizes better
to unseen poses through an as-isometric-as-possible regularizer
applied to Gaussian means and covariances.

To enhance explicit control and structural consistency,
several methods explore hybrid or template-guided Gaussian
representations. GART (Lei et al., 2024) models articulated subjects
using a Gaussian mixture model in canonical space, leveraging
category-specific templates (e.g., SMPL/SMAL) and learnable
forward skinning. It captures challenging deformations like loose
clothing via a latent bone mechanism. SplattingAvatar (Shao et al.,
2024) jointly optimizes Gaussian parameters and mesh embeddings
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FIGURE 1
Overview of the 3DGS human reconstruction pipeline. The core objective of 3DGS avatar generation methods is to train a network to accurately
predict the parameters of 3D Gaussians, denoted as G(u, g, s, «, ¢). The pipeline typically starts by initializing a point cloud from the vertices of an
SMPL(-X) model. The positions and rotations of the Gaussians are then transformed into the observation space via forward linear blend skinning
(LBS). Differentiable rasterization is subsequently applied to render the target novel view image. The resulting animatable avatars can be driven by
pose sequences and expression signals (if applicable). Part of image source generated by LHM (Qiu et al., 2025a).

directly on a mesh surface for realistic avatars. GoMAvatar
(Wen et al., 2024) adopts a similar Gaussians-on-Mesh (GoM)
representation, combining the rendering speed of splatting with the
compatibility of mesh deformations. In a hybrid approach, HAHA
(Svitov et al., 2024) attaches Gaussians to mesh polygons and uses a
learned transparency map to blend splatting with mesh rendering,
activating Gaussians only for complex areas like hair.

Further innovations aim to improve robustness and handling
of challenging conditions such as occlusion and lighting variation.
EVA (Hu et al,, 2024a) proposes a context-aware density control
strategy with feedback to handle varying detail levels across
body parts (e.g., face vs. torso). StruGauAvatar (Zhi et al., 2025)
introduces a structured Gaussian representation anchored to a
DMTet (Shen et al, 2021) canonical mesh, supplemented by
free Gaussians, and uses dual-space optimization to jointly refine
shapes, Gaussians, and skinning weights for better generalization.
For handling occlusions, OccGaussian (Ye et al, 2025) designs
an occlusion-aware rendering pipeline that initializes Gaussians in
canonical space and employs feature aggregation from occluded
regions, enabling training from monocular occluded videos in
6 min. SGIA (Zhao et al,, 2025) explores an inverse rendering
approach, defining PBR-aware Gaussian attributes in canonical
space and deforming them via LBS, while using an occlusion
approximation to disentangle lighting and materials. These
techniques highlight a diversity of strategies for overcoming the
limited information in single-image inputs, though issues in pose
naturalness and occlusion persist. On the other hand, TetGS
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(Liu et al,, 2025) prioritizes editability by constraining Gaussians
within a tetrahedral grid, decoupling editing into spatial adaptation
and appearance learning.

3.1.2 Single-image reconstruction

Reconstructing animatable humans from a single image
remains challenging due to incomplete data, and is often addressed
by incorporating strong generative or geometric priors. Recent
advances in diffusion-based human generative models, especially
those conditioned on pose, have improved model controllability
and reconstruction quality. HumanSplat (Pan et al., 2024) uses a
fine-tuned multi-view diffusion model to produce latent features,
which are then integrated with geometric constraints via a
transformer to reconstruct 3D Gaussians, reducing the need for
dense inputs. Human-3Diffusion (Xue et al., 2024) proposes a
mutual refinement framework where 2D diffusion priors initialize
3D Gaussians, and 3D rendering feedback in turn refines the
diffusion sampling, ensuring 3D consistency. Its successor, Gen-
3Diffusion (Xue et al., 2025), generalizes this pipeline to generic
object categories. AniGS (Qiu et al., 2025b) tackles the problem by
first synthesizing multi-view canonical images and normal maps
using a video generator, then treating reconstruction as a 4D
problem solved via 4D Gaussian splatting.

Recently, methods explore specialized architectures for
disentanglement or detailed reconstruction from a single
image. Disco4D (Pang et al, 2025) proposes a clothing-body
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TABLE 1 Summary of 3DGS-based human reconstruction methods.

10.3389/frai.2025.1709229

‘ Method Publication Input GPU Training FPS Template Output ‘
GaussianAvatar CVPR24 Monocular video 1 RTX 3090 0.5~6h - SMPL(-X) Image
GauHuman CVPR24 Monocular video - 1 min 189 SMPL Image
HUGS CVPR24 Monocular video 1 RTX 3090Ti 8 min 60 SMPL Image
3DGS-Avatar CVPR24 Monocular video - 30 min 50 SMPL Image
GART CVPR24 Monocular video - 2.5 min 150 SMPL, SMAL Image
SplattingAvatar CVPR24 Monocular video 1 RTX 3090 - 351 SMPL, FLAME Image
GoMAvatar CVPR24 Monocular video 1 NVIDIA A100 - 43 SMPL Image, Mesh
HAHA ACCV’24 Monocular video - - - SMPL-X Image
EVA NeurIPS’24 Monocular video 1 NVIDIA A5000 - 361 SMPL-X Image
StruGauAvatar TVCG25 Monocular video 1 RTX 3090 12 min 48 SMPL Image, Normal
OccGaussian ICMR25 Monocular video - 10 160 SMPL Image
SGIA TPAMI’'25 Monocular video 1 RTX 3090Ti 40 min 5 SMPL Albedo, Normal
TetGS CVPR25 Monocular video 1 NVIDIA A40 1.5h - Template-free Mesh
HumanSplat NeurIPS’24 Single image 8 NVIDIA A100 2 days 150 SMPL Image
Gen-3Diffusion TPAMI'25 Single image 8 NVIDIA A100 5 days - Template-free Mesh
AniGS CVPR’25 Single Image - - - SMPL-X Image, Normal
Disco4D CVPR25 Single image - - - SMPL-X Image
SinGS CVPR25 Single image 8 NVIDIA A100 - 70 SMPL Image
HumanRef-GS TCSVT25 Single image 1 RTX 3090 1.5h - SMPL-X Mesh
LHM ICCV’25 Single image 64 NVIDIA A100 15.8 days - SMPL-X Image
PERSONA ICCV’25 Single image - - - SMPL-X Image
Animatable Gaussians CVPR24 Multi-view video 1 RTX 4090 2 days 10 SMPL(-X) Image
HuGS CVPR24 Multi-view video 1 Tesla V100 10h 80 SMPL Image
ASH CVPR24 Multi-view video - - 30 Habermann etal. | Image
HiFi4G CVPR24 Multi-view video - - - Template-free Image
DualGS TOG24 Multi-view video 1 RTX 3090 - 77 Template-free Image
LayGA SIGGRAPH24 Multi-view video - - - SMPL-X Image, Normal
Anim-3D Gaussian ACM MM24 Multi-view video 1 RTX 3090 5s 120 Template-free Image
MCGS ACM MM24 Multi-view video - 0.7h 32 SMPL Mesh, Image
SK-GS NeurIPS’24 Multi-view video 1 Tesla V100 1.5h 198 Template-free Image
Hi-Fi Gaussian CVPR25 Multi-view video 1 RTX 3090 17.5h 166 SMPL-X Image
TaoAvatar CVPR25 Multi-view images | - - 150 SMPL-X variant Image
GPS-gaussian CVPR24 Multi-view images | - - 25 Template-free Image
GPS-gaussian+ TPAMI'25 Multi-view images | - - 25 Template-free Image
UV Gaussians KBS'25 Multi-view images | 1 NVIDIA A100 3 days - SMPL-X variant Image
GBC-Splat CVPR25 Multi-view images | - - - Template-free Mesh
CloCap-GS TIP24 Multi-view images | 1 RTX 2080Ti - - Template-free Mesh, Image
RoGSplat CVPR25 Multi-view images | 1 RTX 4090 - - SMPL Image

Anim-3D Gaussian means Animatable 3D Gaussian (Liu et al., 2024);

disentanglement framework that initializes separate Gaussians
for each, uses diffusion to inpaint occluded regions, and guides
optimization with clothing identity codes. SinGS (Wu et al,
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means no report or not applicable; Image means rendered image.

2025) uses a kinematic diffusion model to generate plausible

pose sequences from a single image and reconstructs an avatar

via geometry-preserving splatting with semantic regularization.
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HumanRef-GS (Zhang et al., 2025) employs a reference-guided
score distillation sampling framework, using pose and normal
priors for initialization, enforcing multi-view consistency,
and adopting isotropic Gaussians to reduce view-dependent
artifacts, though it may still produce unnatural poses. LHM
(Qiu et al, 2025a) introduces a generalizable model by fusing
3D geometric and image features with a Multimodal Body-Head
Transformer (MBHT); although it achieves robust generalization
and animation consistency rapidly, it still struggles with loose
clothing. Subsequently, PERSONA (Sim and Moon, 2025)
effectively handles loose garments by leveraging diffusion-
generated videos and a hybrid SMPL-X/3DGS representation,
modeling deformations via MLP-predicted offsets and employing
balanced sampling and geometry-weighted optimization for
identity-consistent, sharp renderings across different poses.
However, PERSONA is incapable of simulating fabric physics;
furthermore, the diffusion process is computationally expensive
and requires a long time for preprocessing.

Monocular video-based human reconstruction has reduced the
need for specialized equipment, but single-image reconstruction
remains challenging due to incomplete data. While significant
progress has been made in reconstruction quality and training
efficiency through Gaussian representations and diffusion priors,
challenges remain in handling extreme occlusions, achieving
natural pose generation, and ensuring geometric consistency across
novel poses.

3.2 Multi-view reconstruction

3.2.1 Multi-view video processing

Multi-view video input offers richer spatial and temporal
constraints, enabling high-fidelity reconstruction of dynamic
human performances. A prominent line of work focuses on
learning motion-dependent representations for robust animation.
Animatable Gaussians (Li et al., 2024) learns a parametric template
to guide splatting and uses a CNN to predict pose-dependent
Gaussian maps, improving generalization. HuGS (Moreau et al.,
2024) employs a coarse-to-fine deformation strategy, combining
skinning with non-rigid refinements for real-time rendering. ASH
(Pang et al., 2024) generates a motion-dependent mesh and texture
via a deformation network, then predicts Gaussian parameters
from the rendered texture. HiFi4G (Jiang et al., 2024b) proposes
a dual-graph mechanism to balance motion priors and geometric
updates, enabling high-fidelity performance capture. Its successor,
DualGS (Jiang et al., 2024a), decouples motion and appearance into
two Gaussian sets and uses a coarse-to-fine training strategy with
advanced compression, achieving ultra-high compression rates
suitable for VR.

To improve representation structure and training efficiency,
another group of methods integrates explicit templates or
geometric constraints. LayGA (Lin et al, 2024) uses a two-
stage approach to model the body and clothing in separate
layers, enabling virtual try-on. Animatable 3D Gaussian (Liu
et al, 2024) demonstrates high reconstruction quality and
efficiency for basketball players. MCGS (Zhang and Chen, 2024)
replaces Marching Cubes with mesh-centric SDF enveloping
and constrains Gaussians to mesh surfaces, ensuring accurate
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geometry-rendering correspondence. SK-GS (Wan et al., 2024)
automatically discovers skeletal structures from dynamic scenes
via superpoint clustering and part affinity. Hi-Fi Gaussian (Zhan
et al., 2025) uses spatially-distributed MLPs on a template mesh
to generate dynamic Gaussian parameters, enabling detailed pose-
dependent deformation. TaoAvatar (Chen et al,, 2025) builds a
lightweight talking avatar by binding Gaussians to an extended
SMPLX template, learning pose-dependent deformations with a
StyleUNet distilled into an MLP, and adding learnable blend shapes
for detail. These works showcase effective strategies for achieving
high fidelity, efficient training, and realistic deformation from
multi-view video.

3.2.2 Reconstruction with multi-view images

Reconstruction from sparse multi-view images requires
techniques that ensure view consistency and strong generalization
despite limited input. Several approaches enhance cross-view
consistency through geometry-aware mechanisms. GPS-Gaussian
(Zheng et al., 2024) regresses 2D Gaussian parameter maps from
input views and unprojects them into 3D, trained with depth
supervision. GPS-Gaussian+ (Zhou et al., 2025) improves upon
this by introducing an epipolar attention module for geometric
consistency and removing the need for depth supervision via a
rendering-based loss. Other methods integrate classical graphic
representations for efficiency. UV Gaussians (Jiang et al., 2025)
performs joint learning of mesh deformation and Gaussian texture
in 2D UV space, leveraging 2D CNNs for feature extraction.
GBC-Splat (Tu et al.,, 2025) reconstructs a fine-grained mesh by
fusing occupancy and disparity, then anchors Gaussians to the
mesh surface with adaptive subdivision for detail.

Another line of work targets high-fidelity performance capture
under sparse views. CloCap-GS (Wang et al, 2025) aligns
Gaussians with deforming body and clothing, jointly optimized
under photometric constraints, and uses a physics-inspired cloth
network to learn plausible dynamics. RoGSplat (Xiao et al., 2025)
generates dense 3D prior points from SMPL vertices, fuses pixel
and voxel features for coarse Gaussian prediction, and refines
them with depth unprojection. These approaches highlight the
integration of differentiable rendering with traditional graphic
principles, enabling robust and generalizable multi-view human
reconstruction even from limited image sets.

4 Conclusion and future directions

In this survey, we have provided a comprehensive overview
of recent advances in reconstructing human avatars from both
single-view and multi-view inputs. A prominent trend is the
shift toward 3D Gaussian representations, which effectively
balance high-fidelity rendering with computational efficiency. For
monocular video, methods have evolved from learning canonical
mappings with pose-refined deformations to incorporating
hybrid Gaussians-on-mesh representations and occlusion-aware
optimization, enabling fast training and real-time rendering.
In the more constrained single-image setting, researchers have
increasingly leveraged powerful diffusion priors and generative
models to synthesize consistent geometry and appearance, though
challenges in pose naturalness and occlusion handling remain.
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Multi-view approaches further exploit geometric constraints to
achieve higher fidelity, through motion-dependent modeling,
structured template-guided Gaussians, and improved cross-view
consistency mechanisms. Collectively, these works demonstrate
significant progress in creating photorealistic, animatable avatars
while reducing reliance on expensive capture systems.

these
remain open for future research. (i) Unified and Editable

Despite advances, several important challenges
Geometry Representation: Future work should develop hybrid
representations that retain the rendering efficiency of 3D Gaussians
while enabling direct extraction of editable, rigged meshes for
broader animation and content creation applications. (ii) Robust
Learning for Complex Clothing and Physics: Integrating physical
simulation and cloth dynamics into reconstruction pipelines is
essential to improve the realism and motion generalization of
loose garments under monocular settings. (iii) Generalization
and Few-Shot Learning: Advancing few-shot learning techniques
(using stronger priors or diffusion models) will be critical for
reducing input requirements and enhancing practicality for

real-world applications.
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