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Convolutional neural networks
and mixture of experts for
intrusion detection in 5G
networks and beyond

Loukas Ilias*, George Doukas, Vangelis Lamprou,
Christos Ntanos and Dimitris Askounis

Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece

The advent of 6G/NextG networks offers numerous benefits, including extreme
capacity, reliability, and efficiency. To mitigate emerging security threats,
6G/NextG networks incorporate advanced artificial intelligence algorithms.
However, existing studies on intrusion detection predominantly rely on deep
neural networks with static components that are not conditionally dependent
on the input, thereby limiting their representational power and efficiency. To
address these issues, we present the first study to integrate a Mixture of Experts
(MoE) architecture for the identification of malicious traffic. Specifically, we use
network traffic data and convert the 1D feature array into a 2D matrix. Next, we
pass this matrix through a convolutional neural network (CNN) layer, followed
by batch normalization and max pooling layers. Subsequently, a sparsely gated
MoE layer is used. This layer consists of a set of expert networks (dense layers)
and a router that assigns weights to each expert’s output. Sparsity is achieved by
selecting only the most relevant experts from the full set. Finally, we conduct a
series of ablation experiments to demonstrate the effectiveness of our proposed
model. Experiments are conducted on the 5G-NIDD dataset, a network intrusion
detection dataset generated from a real 5G test network, and the NANCY dataset,
which includes cyberattacks from the O-RAN 5G Testbed Dataset. The results
show that our introduced approach achieves accuracies of up to 99.96% and
79.59% on the 5G-NIDD and NANCY datasets, respectively. The findings also
show that our proposed model offers multiple advantages over state-of-the-art
approaches.

KEYWORDS

5G/6G networks, intrusion detection, deep learning, convolutional neural networks,
mixture of experts

1 Introduction

Fifth-generation (5G) networks have found applications in several domains, including
autonomous vehicles, smart factories, smart cities, and healthcare, due to their significant
improvements in latency, throughput, and bandwidth (Saad et al., 2020). Although the
potential of 5G networks has not been fully investigated, both academia and industry have
shifted their attention to 6G networks (Siriwardhana et al., 2021). At the same time, several
projects have been funded under the Smart Networks and Services Joint Undertaking
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(SNS JU)! and the Horizon 2020 programme (Jiang et al., 2021)
to facilitate the transition to 6G networks. As new requirements
arise in the context of 6G networks, including latency, mobility,
peak data rate, spectrum efficiency, area traffic capacity, and
network energy efficiency, it is worth noting that new attackers
with advanced characteristics also emerge (Porambage et al., 2021).
Specifically, advanced security threats, including eavesdropping
(Rif‘a-Pous et al., 2024) and jamming (Priyadarshani et al., 2025;
Lohan etal., 2024), necessitate the development of intelligent threat
mitigation systems. In this context, artificial intelligence (AI) can
play a pivotal role in protecting 6G networks against such attacks,
thereby enabling the creation of robust systems.

Existing studies train shallow machine learning classifiers,
resulting in suboptimal performance and poor generalization.
Recently, existing studies have shifted their focus to converting
network traffic or packet-level data into images and training
convolutional neural networks (CNNs), pretrained CNNs
(AlexNet, VGGI19, and ResNet), and RNNs (LSTMs and
BiLSTMs), and then employing fully connected layers for
classification. However, these approaches rely on dense layers
doing everything. Network parameters are fixed during training,
while inference is performed statically, which demands additional
computational resources and increases both training and inference
time. On the contrary, the literature review suggests that models
conditioned on the input (Han et al., 2022) offer a range of
benefits, including efficiency, expressive power, adaptiveness, and
compatibility. This is because these models selectively activate
their components. Mixture of Experts belongs to the category
of input-conditional computation models. Specifically, MoE was
originally proposed in Jacobs et al. (1991) and has since found
applications across a range of domains (Aljundi et al., 2017; Cai
et al., 2024; Shazeer et al., 2017).

To address the aforementioned limitations, we present the first
study to integrate MoE layers into a deep neural network for
intrusion detection in 5G networks. Specifically, we use network
traffic data represented as a feature set, i.e, a 1D array. We
reshape this array into a matrix, which is then fed into the CNN,
max-pooling, and batch normalization layers. After this, we use
a sparsely gated MoE layer (Shazeer et al., 2017), which applies
different subsets of layers (experts) and activates only a selected
subset of experts, i.e., the k most relevant ones, during each forward
pass. Experiments are performed on two publicly available datasets,
namely the 5G-NIDD dataset (Samarakoon et al., 2022) and the
O-RAN 5G Testbed NANCY dataset (Liatifis et al., 2024). Results
demonstrate that the proposed method achieves notable benefits
over state-of-the-art approaches.

Our main contributions can be summarized as follows:

e To the best of our knowledge, this is the first study employing
sparse MoE layers in the intrusion detection task.

e We perform our experiments on two publicly available
datasets related to 5G networks.

e We conduct a series of ablation studies to assess the
effectiveness of the proposed architecture.

1 https://smart-networks.europa.eu/
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The rest of this article is organized as follows: Section 2 presents
existing studies on intrusion detection. Section 3 presents the
dataset used for conducting our experiments. Section 4 presents the
proposed methodology. Section 5 presents the experimental setup,
results, and the ablation experiments. Finally, Section 6 presents
some concluding remarks, limitations, and ideas for future work.

2 Related research

2.1 Traditional machine learning
algorithms

Kasongo and Sun (2020) trained traditional machine learning
algorithms using the UNSW-NB15 dataset. The authors employed
XGBoost to select the most important features, then trained
Artificial Neural Networks (ANNs), k-Nearest Neighbors (k-NN),
Decision Trees (DT), Logistic Regression, and Support Vector
Machine (SVM). The authors stated that ANN achieved the highest
performance.

In Thakkar and Lohiya (2023), the authors introduced an
approach based on feature selection. Specifically, the introduced
feature selection strategy is based on the fusion of statistical
importance measures, namely the standard deviation and
the difference between the mean and median. The authors
performed their experiments on the NSL-KDD, UNSW-NBI15,
and CICIDS2017 datasets. The authors compared their introduced
feature selection approach with existing approaches, including
recursive feature elimination, chi-square, correlation-based feature
selection, genetic algorithm, mutual information, Relief-f, and
Random Forest. Results showed that the proposed approach
outperformed existing approaches across all evaluation metrics
and datasets.

Mohale and Obagbuwa (2025) used the UNSW-NBI5 dataset
and trained multiple ML models, including Decision Trees,
Multilayer Perceptron (MLP), XGBoost, Random Forest, CatBoost,
Logistic Regression and Gaussian Naive Bayes. Next, the authors
employed explainable AT algorithms, including LIME, SHAP, and
ELI5, to gain insights into feature importance.

2.2 Deep neural networks—CNNs and
RNNs

Hadi et al. (2024) presented a multi-tier fusion approach in
which several models, including CNNs, GANs, and MLPs, were
trained. Fusion methods, including minimum, maximum, median,
sum, and weighted sum, were employed to combine the outputs
of the aforementioned deep learning models. Experiments were
conducted on three datasets, including 5G-NIDD, and showed
promising results.

Farzaneh et al. (2024) introduced three transfer learning
strategies for detecting DoS attacks. Specifically, the authors utilized
a source and a target dataset. Regarding the source dataset,
the authors used the dataset introduced in Khan et al. (2023),
which consists of eight types of DDoS attacks. Regarding the
target dataset, the authors utilized the 5G-NIDD dataset. The
authors employed CNNG, ResNet, Inception, and BILSTM. Transfer
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learning strategies, including freezing some layers and removing
the last layer, were employed. Findings showed that the BiLSTM
model achieved the best evaluation results.

Sadhwani et al. (2024) used the 5G-NIDD dataset to conduct
their experiments. The authors employed variance and correlation
reduction, followed by a filter-based feature selection approach
using F1 score, to reduce the dimensionality of the input feature set
while retaining the most informative features. The authors trained
and tested a series of shallow machine learning classifiers, including
kNN, Naive Bayes, DT, and Random Forest (RF), as well as deep
learning models, including MLP, CNN, LSTM, and CNN-LSTM.
Results showed that CNN-LSTM vyielded the highest performance.

A different approach was introduced by Djaidja et al. (2024),
which focused on the sequential nature of packets in a network flow.
A set of features corresponding to header data was extracted. Next,
the authors trained a deep learning model consisting of an LSTM
(or GRU) layer followed by an attention mechanism. Experiments
were conducted on CICIDS2017 and 5G-NIDD datasets. Results
showed that GRU coupled with an attention layer achieved the
highest performance on the CICIDS2017 dataset, while LSTM with
an attention layer achieved the best performance on the 5G-NIDD
dataset.

In Lilhore et al. (2024), experiments were performed on
CICIDS2017/2018 and UNSW-NBI5 datasets. After applying
preprocessing techniques and selecting the most relevant features
by employing a decision tree classifier in combination with the
Mahalanobis distance-based oversampling method, the authors
converted the data into images. Their proposed approach includes a
MobileNet in conjunction with an SVM classifier. As baselines, the
authors used VGG-16, VGG-19, EfficientNet, and Inception-Net.
Results showed the strength of the proposed methodology.

A different approach was introduced by Elsayed et al. (2020),
which removed socket features and proposed an RNN-based
autoencoder. Experiments were conducted on the CICDD0S2019
dataset (Sharafaldin et al., 2019). Results demonstrated the
effectiveness of the proposed method.

Agrafiotis et al. (2023) presented a toolkit for converting
packets into images. LSTM autoencoders were trained to generate
embeddings, followed by a fully connected layer for classification.
Experiments on 5G-NIDD demonstrated that the model achieved
promising results.

An image-based method, namely MAGNETO, was introduced
by Andresini et al. (2021). After transforming the data into images,
the authors trained Generative Adversarial Networks (GANs) to
generate new images, thereby augmenting the training set. Finally,
CNNs were trained on four datasets, namely KDDCUP99,2 UNSW-
NB15, CICDS2017, and AAGM17.%

Computer vision approaches were also introduced by Paolini
et al. (2024). Specifically, the authors presented a method used
directly at the packet level. A set of features was extracted per
packet. After designing the 2D matrix, the authors employed deep
learning computer vision models, including Inception, Xception,
EfficientNet, MobileNet, DenseNet, ResNet, and a customized

2 https://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html

3 https://www.unb.ca/cic/datasets/android-adware.html
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CNN. Results showed that the customized CNN yielded the highest
results.

Zhang et al. (2020) introduced a method based on SMOTE and
Gaussian Mixture Models for addressing data imbalance. Finally,
the authors trained a deep learning model consisting of CNN layers.
They compared their method with five class-imbalanced processing
techniques, including ROS, SMOTE, ADASYN, replacing GMM
with RUS, and k-means. The results showed that the proposed
approach outperformed existing approaches.

Almuhanna and Dardouri (2025) used a dataset comprising
over 5.6 million network traffic records. To address class imbalance,
the authors employed the Synthetic Minority Over-sampling
Technique (SMOTE). Finally, a weighted soft-voting ensemble
strategy was used. Specifically, predictions from XGBoost, Random
Forest, Graph Neural Network (GNN), LSTM, and Autoencoder
were integrated.

2.3 Unsupervised learning

A contrastive learning approach was proposed by Yuan et al.
(2024). Specifically, the authors used the 5G-NIDD dataset and
an ToT dataset (Mirsky et al., 2018). Next, the authors used both
statistical and original packet features (IP, TCP, UDP, and payload).
Afterward, the authors employed an unsupervised method using
contrastive autoencoders. An innovative loss was proposed that
integrates both reconstruction and contrastive losses. Results
showed that the proposed approach yielded results similar to those
of existing approaches.

An unsupervised learning approach was introduced by Paolini
et al. (2023). Specifically, the authors used an autoencoder
and passed the latent representation vector through a Gaussian
Mixture Model. The authors performed their experiments on
the CICIDS2017 dataset. The results showed the strength of the
proposed approach.

The study in Binbusayyis and Vaiyapuri (2021) proposed
an approach that combines a one-dimensional convolutional
autoencoder with a one-class support vector machine. Experiments
were performed on the NSL-KDD and UNSW-NBI5 datasets.
Findings showed the potential of the proposed approach for
designing an effective intrusion detection system.

2.4 Related research review findings

Existing studies rely on training traditional machine learning
classifiers, resulting in suboptimal performance. Image-based
methods are employed in conjunction with the development
of customized CNNs, pretrained CNNs in the vision domain
(AlexNet, Inception, VGG16), and RNNs. However, these methods
are fixed during training, perform inference in a static manner,
demanding significant computational resources in this way while
also increasing training and inference times.

Our study differs from existing research initiatives because we
present the first study using sparsely gated MoE layers, in which
only a subset of experts is activated during each forward pass.
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Additionally, instead of aggregating the outputs from all experts,
sparsely gated MoE layers keep only the k relevant experts.

3 Datasets
3.1 5G-NIDD

We use the 5G-NIDD dataset to conduct our experiments
(Samarakoon et al., 2022). This dataset has been collected
using the 5G Test Network (5GTN).* It contains both PCAP
files and network traffic data. Unlike existing datasets, benign
traffic has been generated using real mobile devices attached
to the 5GTN. The advantage of this dataset over existing ones
is that it contains features from 5G network flows. Existing
datasets, including UNSW-NB15 (Moustafa and Slay, 2015)
and CICIDS2017/2018 (Panigrahi and Borah, 2018; Sharafaldin
et al, 2018), have limitations, as they were collected in
the past in the absence of technological advances. Moreover,
the UNSW-NBI15 dataset uses a synthetic environment to
generate attacks.

Data from 5G-NIDD are extracted from two base stations.
The authors in Samarakoon et al. (2022) have made available
a csv file corresponding to the combined network flow dataset.
The 5G-NIDD dataset contains two attack categories: DoS/DDoS
and Port Scan. Regarding DoS/DDoS attacks, the following
types are included: ICMP flood, UDP flood, SYN flood, HTTP
flood, and Slow Rate DoS. Regarding Port Scan attacks, the
following types are included: SYN Scan, TCP Connect Scan, and
UDP Scan.

3.1.1 Handling missing values

Several methods have been used to impute missing values. For
instance, the study in Sadhwani et al. (2024) drops some columns
and imputes missing values using column means. However,
dropping columns results in a loss of information. In Singh
et al. (2024), the authors impute missing data using the median
or zero.

In this study, missing values in numerical features are imputed
using the class-wise mean, while categorical features are imputed
with the most frequent value per class. The number of samples per
traffic class is reported in Table 1.

3.1.2 Designing the feature set

In Appendix Table 8, we describe the features used in our
experiments. To normalize numerical features, Min-max Scaling
is applied, ensuring values are between 0 and 1. Categorical
features are one-hot encoded, excluding the first level to prevent
redundancy.

In total, we use 78 features. This 1D array is transformed into a
2D matrix, i.e., 6 x 13, and used as input to the CNN layers, which
are described in detail in the next section.

4 https://5gtnf.fi/
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TABLE 1 Samples per traffic class (5G-NIDD).

Category Number of instances

Benign 477,737
UDPFlood 457,340
HTTPFlood 140,812
SlowrateDoS 73,124
TCPConnectScan 20,052
SYNScan 20,043
UDPScan 15,906
SYNFlood 9,721

ICMPFlood 1,155

TABLE 2 Samples per traffic class (NANCY Dataset).

Class Samples

SYN flood 162,251
TCP scan 133,569
SYN scan 133,164
HTTP flood 87,531
Slowrate DoS 3,553
Reconnaissance attack 2,044
Benign traffic 65,621
3.2 NANCY

The NANCY dataset is newly collected. To construct this
dataset, a malicious user carries out cyberattacks against various
services running on the main operator and the micro-operator.
This dataset contains the following attack types: reconnaissance
attack, TCP scan, SYN scan, SYN Flood, HTTP Flood, and slow-
rate DoS. The authors used CICFlowMeter® to collect network
flow data. Due to data imbalance issues, we removed the Slowrate
DoS and Reconnaissance Attack from our dataset. Specifically,
the NANCY dataset includes 3,553 samples corresponding to
Slowrate DoS and 2,044 samples corresponding to Reconnaissance
Attack. The number of samples per traffic class is reported
in Table 2.

Unlike the 5G-NIDD dataset, the NANCY dataset contains no
missing values.

3.2.1 Designing the feature set

We keep only the numerical features. The complete feature set
is reported in Appendix Table 9. In total, we use 72 features. Min-
Max scaling is applied to ensure values fall between 0 and 1. This
1D array is transformed into a 2D matrix, i.e., 6 X 12, and is given
as input to CNN layers, which are described in detail in Section 4.

5 https://www.unb.ca/cic/research/applications.html
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4 Methodology

Our proposed architecture is illustrated in Figures 1-3. Below,
we explain in detail each component of our proposed architecture.

4.1 Convolutional neural networks

We design a convolutional neural network architecture to
obtain a representation vector from input X. The CNN component
of our methodology is illustrated in Figure 2.

The structure of the CNN cell is illustrated in Figure 3. We
place four CNN cells in a row with 16, 32, 64, and 128 filters,
respectively. The kernel size and padding are set equal to 3 and
1, respectively. For the max pooling layer, we set both the kernel
size and stride to 2. Each CNN cell, except for the final one,
consists of a 1D convolution, batch normalization, ReLU activation,
and a max-pooling layer. The final CNN cell does not include a
max-pooling layer.

Let the output of this model’s component be x = f;(X) € R,
where d = 128.

4.2 Sparse mixture of experts
In this section, we describe the sparsely gated MoE layer.

Specifically, this layer consists of n experts and a router/gating

Frontiersin Artificial Intelligence
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FIGURE 3
CNN cell structure (see Figure 2).

network. The aim of the router is to determine the important
experts based on the input data.

Equation 1 shows the output of the MoE layer, denoted as y,. y;
represents the output of each expert, while g; indicates the weight
assigned by the router to each expert’s output y;. Each expert is a
deep neural network with a hidden layer of 16 units.

Yo=Y gilx)yi(x) (1)

i=1

Equations 2-4 describe the sparsity mechanism and the
addition of noise. Specifically, the TopK(-, k) function selects the k
most relevant experts by setting the output vectors to their original
values and setting all the other values to —oo. Values of —oo become
close to zero after applying a softmax function. The addition of

frontiersin.org
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a noise term, denoted as Ryyis, facilitates load balancing among
experts (see below Lj,,4) and enhances the stability of MoE training.

G(x; ©); = softmax(TopK(g(x; ©®) + Ruoises k))is (2)

where Rpoise = StandardNormal() - Softplus((x - Whoise)i)

condition,

g(x; ©);,

—00,

TopK(g(x; ®),k); = (3)

otherwise.

where
condition : if g(x; ®); is in the top-k elements of g(x; ®).  (4)

For load-balancing purposes and to balance expert utilization,
we design two losses based on the study in Shazeer et al. (2017).

o Limportance: Shazeer et al. (2017) observe that large weights
are assigned to specific experts by the router. To address this
issue and ensure uniform routing weights across all experts,
the authors in Shazeer et al. (2017) design the following loss
function. This loss aims to assign equal importance to all
experts.

[/importance = Wimportance * CV(ImPOTta”CE(X))2> (5)

where X is the batch of features, CV(-) = J\/LIQZE()-)’ and
Importance(-) is defined by the equation below:
Importance(X) = Z G(x) (6)

xeX

o Ljoaa: Shazeer et al. (2017) designs the following loss function
to ensure that all experts receive an equal number of training
instances.

N (x Wg)i — kth_excluding (H(x),k, i)
=@ ( Softplus((x - Waoise)) -0

where @ is the cumulative distribution function of the
standard normal distribution.

Load(X); = ) _ P(x, ), (®)

xeX

where Load(X); is the load of the ith expert.

Lioad(X) = Wioaq - CV(Load(X))2 %)

4.3 Loss function

We minimize the following loss function:

L= ‘Ccrassfentropy +o- (Eimportance + Lload): (10)
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where Lcross—entropy corresponds to the cross-entropy loss function
and « is a hyperparameter denoting the importance assigned to
these two loss functions.

5 Experiments and results

5.1 Baselines

In terms of the 5G-NIDD dataset, we compare our method with
the following research studies:

e Embeddings & FC (multi-class) (Agrafiotis et al., 2023):
this method trains LSTM autoencoders followed by a fully
connected layer.

e FC Sehan (multi-class) (Samarakoon et al., 2022): this method
trains a Multilayer Perceptron.

e Customized CNN (N = 100) (Paolini et al., 2024): this method
extracts a set of features per packet, converts flows into an
image, and trains a CNN followed by ReLU-activated fully
connected layers.

o CNN-LSTM (multi-class) (Sadhwani et al., 2024): this method
trains a deep neural network consisting of CNN, LSTM, and
fully connected layers.

o Fusion Multi-Tier DNN (Hadi et al.,, 2024): this method
proposes a multi-tier fusion approach, where multiple deep
learning models, including MLPs, CNNs, and GANs, are
trained with the final classification obtained through some
combination rules, including maximum, minimum, median,
sum, and weighted sum.

Since the NANCY dataset is newly collected, no research studies
have been conducted on it.

5.2 Experimental setup

We use PyTorch (Paszke et al,, 2019) for performing our
experiments. All experiments are conducted on an NVIDIA A100
80GB PCle GPU.

5.2.1 5G-NIDD

We use 128 experts (value of n). We retain the 32 most relevant
experts (with a value of k). We set  of Equation 10 equal to 0.1. We
use a batch size of 1,024. We split the dataset into training and test
sets (60%-40%) using stratified sampling. We train the models for
up to 40 epochs. The total number of parameters is equal to 473,225.

5.2.2 NANCY

We use 64 experts (value of ). We keep the 32 most relevant
experts (with value of k). We set o of Equation 10 equal to 0.1.
We use a batch size of 256. Moreover, we apply class weights. We
divide the dataset into a train and test set (70%-30%) in a stratified
manner. We train the models for up to 40 epochs. The total number
of parameters is equal to 294,798.
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5.3 Evaluation metrics

Precision, recall, and F1 score are reported for each class.
Accuracy is also included.

Regarding 5G-NIDD, we also report the weighted F1 score
given the dataset’s imbalance.

5.4 Results

5.4.1 Results on the 5G-NIDD dataset

Results of our introduced methodology are reported in Table 3.
Specifically, this table reports the results, i.e., precision, recall, and
F1 score, per class and the overall accuracy. We observe that our
introduced model achieves an F1 score greater than 0.99900 for the
Benign, TCP Connect Scan, ICPM flood, and UDP flood classes.
Specifically, our model perfectly identifies ICPM flood and UDP
flood attacks, achieving a score of 1 across all metrics. For the SYN
Scan, SYN flood, and HTTP flood classes, the model yields FI scores
greater than or equal to 0.99800 but below 0.99900. Finally, we
observe that our model does not perform well at recognizing UDP
Scan and Slow Rate DoS attacks, with F1 scores of 0.99796 and
0.99735, respectively.

Table 4 reports the results of our method in comparison
with state-of-the-art approaches. As shown, our proposed model
outperforms existing studies by 0.00044-0.00875, 0.00043-
0.01577, and 0.00148-0.00835 in precision, recall, and accuracy,
respectively. Our method also outperforms existing studies in F1
score by 0.01228-0.00194, except for Customized CNN (N=100)
(Paolini et al., 2024). However, it must be noted that the study by
Paolini et al. (2024) outperforms ours by a small margin of 0.00001.
In our study, we also report a weighted F1 score to account for data
imbalance. As shown, our proposed model achieves a weighted
F1 score of up to 0.99958. Therefore, our study, which considers
conditional-input components, offers lower training and inference
times, among other benefits, and achieves performance comparable
to state-of-the-art results.

5.4.2 Results on the NANCY dataset

Table 5 presents the performance metrics of the proposed
approach on the NANCY dataset, including accuracy, precision,
recall, and F1 score for five traffic classes: Benign, SYN Scan,
TCP Connect Scan, SYN flood, and HTTP flood. The overall
accuracy of the model across all classes is 0.79592, indicating that
approximately 79.6% of instances were correctly classified. Among
the individual classes, the benign class achieved high performance,
with a precision of 0.99637, a recall of 0.97739, and an F1 score of
0.98679, indicating that normal traffic was accurately detected with
minimal misclassifications.

In contrast, the model struggled to detect SYN Scan traffic,
achieving the lowest performance metrics: precision of 0.59807,
recall of 0.39572, and F1 score of 0.47629. This indicates a
significant number of false negatives, pointing to challenges in
identifying this type of scan-based intrusion. TCP Connect Scan
performed moderately well, with a precision of 0.64581, a recall of
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0.74404, and an F1 score of 0.62969, indicating a more balanced but
still limited detection capability.

On the other hand, the approach showed excellent performance
in detecting flooding attacks. SYN flood and HTTP flood traffic
were classified with high precision and recall values 0.99865 and
0.98469 for SYN flood, and 0.99787 and 0.99760 for HTTP flood,
respectively resulting in F1 scores of 0.99162 and 0.99774. These
results demonstrate the model’s robustness in identifying high-
volume, aggressive attacks while also highlighting the need to
improve detection of subtler, low-rate intrusion attempts, such as
SYN scans.

5.4.3 Comparative analysis of results

As one can observe, performance on the NANCY dataset
is lower than the performance obtained on the 5G-NIDD
dataset. We speculate that this difference in performance is
attributable to (i) fewer samples overall. 5G-NIDD contains
approximately 1.2 million flows, whereas NANCY provides around
0.58 million after class pruning, i.e., less than half the data,
which limits model capacity utilization and increases variance
in the router’s estimates; (ii) Dataset/feature shift. 5G-NIDD
includes flow features extracted via the Argus tool (78 total,
with categorical features one-hot encoded), whereas NANCY is
produced by CICFlowMeter (72 numeric features only). This
change in feature space and traffic generation process is attributable
to the difference in performance; (iii) Attack generation shift.
Regarding 5G-NIDD, attacker nodes are Raspberry Pi 4 devices
that connect to the 5GTN RAN via Huawei E6878 5G modems
(the modem acts as the UE). Their target is an Ubuntu server
deployed in the 5G Test Network Multi-access Edge Computing
(MEC) environment. For the application-layer scenarios, the
MEC host runs an Apache2 web server. On the other hand,
NANCY’s attacks target services in a 5G coverage-expansion
scenario involving a main operator and a micro-operator that
extends the main operator’s coverage; the testbed includes O-RAN
elements (a near-RT RIC over the E2 interface) used to collect
RAN metrics.

5.5 Ablation study

In this section, we conduct a series of ablation studies to assess
the effectiveness of the proposed architecture. The results of the
ablation study are shown in Table 6.

5.5.1 5G-NIDD

First, we set Ljpag = Limportance = 0. Results showed a decrease
in accuracy of 0.00103. Specifically, the F1 scores for the Benign,
SYN Scan, UDP Scan, and HTTP flood decreased by 0.00002,
0.0005, 0.00086, and 0.00431, respectively. By setting both losses
to zero, the router allocates more training instances to the relevant
experts and assigns higher weights to them. This fact degrades the
performance of the MoE layer.

Second, we remove the MoE layer and replace it with a
dense layer. To be more specific, the output vector of the CNN
layers (128D) is passed through a dense layer consisting of nine
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TABLE 3 Results of our proposed approach (5G-NIDD).

10.3389/frai.2025.1708953

Class Accuracy Precision Recall F1 Score
Benign 0.99958 0.99996 0.99993 0.99995
SYN scan 0.99888 0.99713 0.99800
TCP connect scan 0.99975 0.99950 0.99963
UDP scan 0.99702 0.99890 0.99796
ICPM flood 1.0 1.0 1.0
UDP flood 1.0 1.0 1.0
SYN flood 0.99846 0.99949 0.99897
HTTP flood 0.99793 0.99922 0.99857
Slow rate DoS 0.99849 0.99621 0.99735

TABLE 4 Performance comparison among proposed models and baselines on the 5G-NIDD dataset.

Evaluation metrics

Architecture Precision Recall F1 score Accuracy Weighted F1 score
Comparison with state-of-the-art
Embeddings & FC (multi-class) (Agrafiotis et al., 0.99019 0.98316 0.98666 0.99123 -
2023)
FC Sehan (Samarakoon et al., 2022) 0.99167 0.98869 0.99017 0.99499 -
Customized CNN (N = 100) (Paolini et al., 2024) - - 0.99895 - -
CNN-LSTM (multi-class) (Sadhwani et al., 2024) 0.99850 0.99850 0.99700 0.99810 -
Fusion multi-tier DNN (Hadi et al., 2024) - - - 0.99150 -
Introduced approach

‘ 0.99894 ‘ 0.99893 ‘ 0.99894 0.99958 0.99958

TABLE 5 Results of our proposed approach on the NANCY dataset.

Class Accuracy Precision Recall F1 score
Benign 0.79592 0.99637 0.97739 0.98679
SYN scan 0.59807 0.39572 0.47629
TCP 0.64581 0.74404 0.62969
connect

scan

SYN flood 0.99865 0.98469 0.99162
HTTP 0.99787 0.99760 0.99774
flood

units (output layer). Results showed that accuracy decreased from
0.99958 to 0.99829. Specifically, the F1 scores for the Benign,
SYN Scan, ICPM flood, SYN flood, HTTP flood, and slow-rate
DoS decreased by 0.00003, 0.00069, 0.00216, 0.00026, 0.00532, and
0.01052, respectively.

Finally, we remove both the CNN and MoE layers and train a
deep neural network with an input layer (78 units) and an output
layer (nine units). Findings showed that accuracy decreased by
0.00802. F1 scores for all classes, except SYN Scan, decreased.
Specifically, the F1 scores for Benign, TCP Connect Scan, UDP
Scan, ICPM flood, UDP flood, SYN flood, HTTP flood, and Slow
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rate DoS decreased by 0.00515, 0.00082, 0.00063, 0.00324, 0.00001,
0.0123, 0.02683, and 0.0451, respectively.

Finally, in Figure 4, we vary the number of experts (1) and
the number of k indicating the top experts. On the x-axis, (1, k)
is reported, and n corresponds to the number of experts, where
k corresponds to the number of the most relevant experts as
described in Equation 3. On the y-axis, accuracy is reported. As one
can easily observe, in the majority of cases, reducing the number
of experts also reduces accuracy. Specifically, (64, 32) corresponds
to an accuracy of 0.99875, (64, 16) corresponds to an accuracy of
0.99863, (32,16) corresponds to an accuracy of 0.99881, (32,4)
corresponds to an accuracy of 0.99862, and (16,4) corresponds to
an accuracy of 0.99834. Therefore, having more experts leads to
better performance for our task.

5.5.2 NANCY

First, we set Lipag = Limportance = 0. Our proposed model
(Table 5) achieved an overall accuracy of 0.79592, whereas this
model (Table 7) shows a slightly lower accuracy of 0.78614. While
the difference in overall accuracy is minor, a closer examination of
class-wise performance reveals more insightful distinctions. For the
Benign class, the first model slightly outperforms the second, with
an F1 score of 0.98679 compared to 0.98389, indicating marginally
better consistency in identifying normal traffic. In the case of SYN
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TABLE 6 Ablation study (5G-NIDD dataset).

10.3389/frai.2025.1708953

Evaluation metrics

Architecture Accuracy Precision Recall F1 score
Set importance and load loss to zero

Benign 0.99855 0.99996 0.99989 0.99993
SYN scan 0.99925 0.99576 0.99750
TCP connect scan 0.99988 0.99950 0.99969
UDP scan 0.99484 0.99937 0.99710
ICPM flood 1.0 1.0 1.0
UDP flood 1.0 1.0 1.0
SYN flood 0.99846 0.99949 0.99897
HTTP flood 0.99113 0.99741 0.99426
Slow rate DoS 0.99485 0.98311 0.98894
Remove MoE layer

Benign 0.99829 0.99996 0.99987 0.99992
SYN scan 0.99925 0.99538 0.99731
TCP connect scan 0.99975 0.99950 0.99963
UDP scan 0.99452 0.99921 0.99686
ICPM flood 0.99569 1.0 0.99784
UDP flood 1.0 1.0 1.0
SYN flood 0.99795 0.99949 0.99871
HTTP flood 0.98819 0.99837 0.99325
Slow rate DoS 0.99658 0.97726 0.98683
Simple input and dense layer

Benign 0.99156 0.99996 0.98970 0.99480
SYN scan 0.99888 0.99738 0.99813
TCP connect scan 0.99988 0.99776 0.99881
UDP Scan 0.99639 0.99827 0.99733
ICPM flood 0.99355 1.0 0.99676
UDP flood 0.99997 1.0 0.99999
SYN flood 0.97418 0.99949 0.98667
HTTP flood 0.95971 0.98407 0.97174
Slow rate DoS 0.94523 0.95938 0.95225

Scan detection, the first model again shows superior performance
across all metrics: precision (0.59807 vs. 0.57368), recall (0.39572
vs. 0.35541), and F1 score (0.47629 vs. 0.43890). Although both
models struggle to detect SYN scans, the first model demonstrates
a better capacity to identify this type of stealthy intrusion. For TCP
Scan (Connect Scan), the second model performs almost identically
to the first in recall (0.74533 vs. 0.74404) but has slightly lower
precision (0.52975 vs. 0.64581) and F1 score (0.61932 vs. 0.62969).
This suggests that while both models detect similar quantities of
true positives, the first model does so with fewer false positives,
making it more reliable overall for this class. Regarding SYN
flood detection, the F1 scores are nearly identical (0.99070 vs.
0.99162), indicating both approaches are highly effective for this
attack type with negligible differences. Finally, for HTTP flood
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detection, one observes a drop in the FI score from 0.99774
to 0.99718.

Next, we remove the MoE layer and observe the resulting
performance differences. Our proposed model demonstrates better
overall accuracy (0.79592 vs. 0.77876). For benign traffic, both
models perform similarly, but the proposed model achieves
marginally higher precision and an F1 score, indicating slightly
more reliable identification of normal activity. In detecting
SYN scan attacks, the model without the MoE layer shows
a significantly higher recall (0.83337 vs. 0.39572), meaning
it captures more true positives, while the model with the
MoE layer maintains higher precision, resulting in a better
overall balance. For TCP scan, the introduced model clearly
outperforms the model without MoE with much higher recall
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FIGURE 4
Ablation study (5G-NIDD dataset). Varying the number of experts and top-k experts.

TABLE 7 Ablation study (NANCY dataset).

Evaluation metrics

Architecture Accuracy Precision Recall F1 score

Set importance and load loss to zero

Benign 0.78614 0.99486 0.97317 0.98389
SYN scan 0.57368 0.35541 0.43890
TCP Scan 0.52975 0.74533 0.61932
SYN flood 0.99754 0.98395 0.99070
HTTP flood 0.99802 0.99635 0.99718

Remove MoE layer

Benign 0.77876 0.99355 0.97815 0.98579
SYN scan 0.51127 0.83337 0.63374
TCP Scan 0.59182 0.23221 0.33354
SYN flood 0.99496 0.98662 0.99077
HTTP flood 0.99817 0.99589 0.99703

Simple input and dense layer

Benign 0.76558 0.97819 0.95929 0.96865
SYN Scan 0.49875 0.80135 0.61484
TCP Scan 0.54528 0.23689 0.33029
SYN flood 0.99721 0.97579 0.98638
HTTP flood 0.98796 0.98394 0.98595
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(0.74404 vs. 0.23221) and F1 score (0.62969 vs. 0.33354),
highlighting the proposed model’s superior ability to detect
this attack type. Both models perform exceptionally well at
detecting SYN and HTTP floods, with the model without
the MoE layer achieving slightly higher recall for SYN flood
detection, though the difference is minimal. Overall, our proposed
model, which incorporates both the CNN and MoE components,
provides a more balanced and consistent performance across all
traffic classes.

Finally, we use a neural network with 72 units (input
layer), 36 units (hidden layer), and five units (output layer).
Results show that CNN+MOoE outperforms the dense-layer model
in terms of overall accuracy (0.79592 vs. 0.76558), indicating
better general classification performance. For benign traffic,
CNN+MoE achieves slightly higher precision, recall, and F1
score, suggesting it identifies normal behavior more accurately.
In detecting SYN scan attacks, the dense-layer model shows
notably better recall (0.80135 vs. 0.39572), detecting more true
positives, while CNN + MoE maintains higher precision. For
TCP scan detection, both models perform weakly, but CNN +
MOoE again provides a better balance, with significantly higher
recall (0.74404 vs. 0.23689) and F1 score (0.62969 vs. 0.33029).
In flood-based attacks, both models perform very well; however,
CNN + MoE slightly outperforms the dense-layer model on
HTTP flood detection, while both are comparably strong for
SYN flood. Overall, CNN+MoE exhibits more consistent and
balanced performance across all classes, particularly in scan-type
attack detection.

6 Conclusion and future research

In this study, we present the first application of the Mixture
of Experts to the intrusion detection task. Specifically, we
use a publicly available dataset (5G-NIDD) generated from
a real 5G test network. An input 1D array of features is
transformed into a 2D matrix and then fed into the CNN
layers. The representation vector from the CNN layers is
passed through the Mixture of Experts layer, which consists
of experts and a router. Results on the 5G-NIDD dataset
showed that our proposed model outperforms the state of the
art, achieving accuracies of 0.99958 and F1 scores of 0.99894.
Results on the NANCY dataset indicate that the proposed
approach reaches an accuracy of up to 0.78614. An ablation
study demonstrated the effectiveness of all the components of our
introduced approach.

6.1 Limitations

Our study has certain limitations. Specifically, we used simple
methods for imputing missing values, which may influence
the evaluation performance. More advanced methods, including
Generative Adversarial Imputation Networks (GAIN) (Yoon et al.,
2018), have been proposed over the years. Additionally, our study
relies on labeled datasets.
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6.2 Future research

In the future, we aim to use advanced missing value imputation
methods and combine self-supervised learning with a mixture of
expert strategies. Another plan is to use transfer learning strategies
(e.g., pretraining on one dataset and fine-tuning on another),
assess performance in real-time intrusion-detection settings, and
investigate lightweight MoE variants for edge deployment.
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Appendix TABLE8 (Continued)

Features Description Type No. of

TABLE 8 Description of features. features after
preprocessing

Features Description Type No. of DstGap Numerical 1
features after
preprocessing Rate Transmission Rates Numerical 1

Seq Sequence Number Numerical 1 SrcRate Numerical 1
Dur Duration Numerical 1 DstRate Numerical 1
RunTime Run Time Numerical 1 State State Information Categorical 10
Mean Mean Value Numerical 1 SrcWin TCP Window Sizes Numerical 1
Sum Sum Value Numerical 1 DstWin Numerical 1
Min Minimum Value Numerical 1 sVid VLAN IDs Numerical 1
Max Maximum Value Numerical 1 dvid Numerical 1
Proto Protocol Type Categorical 7 SrcTCPBase | TCP Base Values Numerical 1
sTos Type of Service values Numerical 1 DstTCPBase Numerical 1
dTos Numerical 1 TcpRtt TCP Round Trip-Time | Numerical 1
sDSb Source and Categorical 11 SynAck Specific Packet Types Numerical 1

Destination Behavioral

Flags AckDat Numerical 1
dDSb Categorical 5 Total B B 78
sTtl Time-to-Live values Numerical 1

for source and

destination
dTtl Numerical 1
sHops Number of hops taken Numerical 1

by packets from source
to destination

dHops Numerical 1
Cause Cause code Categorical 2
TotPkts Total Packets Numerical 1
SrcPkts Source Packets Numerical 1
DstPkts Destination Packets Numerical 1
TotBytes Total Bytes Numerical 1
SrcBytes Source Bytes Numerical 1
DstBytes Destination Bytes Numerical 1
Offset Offset Value Numerical 1
sMeanPktSz | Source Mean Packet Numerical 1
Size
dMeanPktSz | Destination Mean Numerical 1
Packet Size
Load Load Value Numerical 1
SrcLoad Source Load Numerical 1
DstLoad Destination Load Numerical 1
Loss Total Loss Numerical 1
SrcLoss Source Loss Numerical 1
DstLoss Destination Loss Numerical 1
pLoss Packet Loss Numerical 1
SrcGap Time Gaps Numerical 1
(Continued)
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TABLE 9 Description of Features used (NANCY dataset).

10.3389/frai.2025.1708953

‘ Feature Description Feature Description
Flow Duration Duration of the flow in microseconds Tot Fwd Pkts Total number of packets in the forward direction
Tot Bwd Pkts Total number of packets in the backward direction TotLen Fwd Pkts Total length of packets in the forward direction
TotLen Bwd Pkts Total size of packets in the backward direction Fwd Pkt Len Max Maximum size of forward packets
Fwd Pkt Len Min Minimum size of forward packets Fwd Pkt Len Mean Mean size of forward packets
Fwd Pkt Len Std Standard deviation size of packet in forward direction Bwd Pkt Len Max Maximum size of packets in backward direction
Bwd Pkt Len Min Minimum size of backward packets Bwd Pkt Len Mean Mean size of backward packets
Bwd Pkt Len Std Standard deviation size of packet in backward direction Flow Byts/s Number of flow bytes per second
Flow Pkts/s Number of flow packets per second Flow IAT Mean Mean time between two packets sent in the flow
Flow IAT Std Standard deviation time between two packets sent in the flow | Flow IAT Max Maximum time between two packets sent in the
flow
Flow IAT Min Minimum time between two packets sent in the flow Fwd IAT Tot Total time between two packets sent in the
forward direction
Fwd IAT Mean Mean time between two packets sent in the forward direction | Fwd IAT Std Standard deviation time between two packets sent
in the forward direction
Fwd IAT Max Maximum time between two packets sent in the forward Fwd IAT Min Minimum time between two packets sent in the
direction forward direction
Bwd IAT Tot Total time between two packets sent in the backward Bwd IAT Mean Mean time between two packets sent in the
direction backward direction
Bwd IAT Std Standard deviation time between two packets sent in the Bwd IAT Max Maximum time between two packets sent in the
backward direction backward direction
Bwd IAT Min Minimum time between two packets sent in the backward Fwd Header Len Total header length in forward direction
direction
Bwd Header Len Total header length in backward direction Fwd Pkts/s Number of forward packets per second
Bwd Pkts/s Number of backward packets per second Pkt Len Min Minimum packet length
Pkt Len Max Maximum packet length Pkt Len Mean Mean packet length
Pkt Len Std Standard deviation of packet lengths Pkt Len Var Variance of packet lengths
FIN Flag Cnt Number of packets with FIN flag SYN Flag Cnt Number of packets with SYN flag
RST Flag Cnt Number of packets with RST flag PSH Flag Cnt Number of packets with PSH flag
ACK Flag Cnt Number of packets with ACK flag URG Flag Cnt Number of packets with URG flag
CWE Flag Count Number of CWE flag packets ECE Flag Cnt Number of packets with ECE flag
Down/Up Ratio Ratio of bytes sent in backward and forward directions Pkt Size Avg Average packet size
Fwd Seg Size Avg Average segment size in forward direction Bwd Seg Size Avg Average segment size in backward direction
Fwd Byts/b Avg Average number of bytes per bulk in forward direction Fwd Pkts/b Avg Average number of packets per bulk in forward
direction
Fwd Blk Rate Avg Average bulk rate in forward direction Bwd Byts/b Avg Average bytes per bulk in backward direction
Bwd Pkts/b Avg Average packets per bulk in backward direction Bwd Blk Rate Avg Average bulk rate in backward direction
Subflow Fwd Pkts Total packets in forward subflows Subflow Fwd Byts Total bytes in forward subflows
Subflow Bwd Pkts Total packets in backward subflows Subflow Bwd Byts Total bytes in backward subflows
Init Fwd Win Byts Initial window bytes in forward direction Init Bwd Win Byts Initial window bytes in backward direction
Fwd Act Data Pkts Number of forward active data packets Fwd Seg Size Min Minimum segment size in forward direction
Active Mean Mean active time Active Std Std of active time
Active Max Maximum activity time Active Min Minimum activity time
Idle Mean Mean idle time Idle Std Std of idle time
Idle Max Maximum idle time Idle Min Minimum idle time
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