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The escalating frequency and severity of extreme environmental events underscores 
the critical need for a paradigm shift from reactive to proactive management 
strategies. This perspective article argues that artificial neural networks (ANNs) 
represent a transformative tool for environmental forecasting, capable of capturing 
the non-linear, high-dimensional dynamics that define complex Earth systems. 
While ANNs demonstrate superior predictive performance across domains such as 
hydrology, air quality, and ecology, their integration into decision-making workflows 
remains hindered by challenges related to data quality, model interpretability, and 
a lack of interdisciplinary collaboration. We synthesize current advancements, 
highlighting the pivotal role of physics-informed neural networks (PINNs) and 
explainable AI (XAI) in bridging the gap between data-driven insights and physical 
plausibility. Finally, we propose a concrete interdisciplinary roadmap, encompassing 
curated benchmarks, hybrid modeling, educational initiatives, and institutional 
co-design, to translate computational potential into trustworthy, actionable tools 
for building environmental resilience.

KEYWORDS

artificial intelligence, mathematical models, environmental engineering, prediction, 
environmental management

1 Introduction

The increasing frequency and severity of extreme environmental events, ranging from 
catastrophic floods to widespread wildfires, underscore the limitations of reactive management 
and the urgent need for reliable forecasting tools (IPCC, 2023). Predictive modeling has 
therefore become a cornerstone of proactive mitigation and adaptation strategies (Dikmen, 
2025). However, the inherent complexity of environmental systems, characterized by nonlinear 
dynamics, high dimensionality, and intricate feedback loops, continues to challenge traditional 
modeling approaches (Eid, 2025). These challenges have direct implications for water security, 
agricultural productivity, public health, and the design of early warning systems fundamental 
to societal resilience (Farhangmehr, 2025).

Techniques, including ARIMA and multiple linear regression, as well as process-based 
mechanistic models, have long contributed to understanding hydrologic and atmospheric 
processes (He, 2023; Razavi, 2022). Yet these models often struggle to capture the full range of 
nonlinearities and multiscale interactions present in large and noisy environmental datasets 
(Molkov et al., 2022). Despite recent advances, a gap persists in fully leveraging modern 
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computational capabilities to overcome these limitations. Deep 
learning applications, particularly neural networks, remain 
insufficiently integrated with domain knowledge, and issues of data 
quality, workflow standardization, and model interpretability continue 
to hinder trust and operational adoption (Janiesch et al., 2021; 
Xu, 2024).

This perspective argues that artificial neural networks (ANNs) 
offer a promising path toward next-generation environmental 
forecasting when coupled with robust data practices and 
interpretability frameworks. Rather than replacing domain expertise, 
ANNs should be guided by it to generate physically plausible, 
transparent, and operationally useful models. The article establishes 
the theoretical rationale for ANN-based modeling, highlights key 
application areas, discusses persistent challenges, and outlines an 
interdisciplinary roadmap for integrating neural networks into 
environmental engineering practice.

2 Theoretical rationale: why neural 
networks for environmental 
forecasting?

Artificial neural networks (ANNs) provide a flexible 
computational framework capable of approximating highly nonlinear 
and high-dimensional relationships that characterize environmental 
systems (Karniadakis et al., 2021; Razavi, 2021). Unlike conventional 
statistical or mechanistic models, which rely on predefined functional 
structures, ANNs learn representations directly from data, enabling 
them to capture complex spatiotemporal interactions and system 
behaviors that are difficult to specify analytically.

Recurrent architectures such as Long Short-Term Memory 
(LSTM) networks and gated units are particularly effective at modeling 
temporal dependencies, while convolutional structures extract spatial 
features relevant in hydrology, atmospheric science, and remote 
sensing (Sit et al., 2020; Zhang, 2021). Owing to these capabilities, 

ANNs serve not merely as statistical tools but as universal 
approximators capable of mapping intricate input–output relationships 
in large environmental datasets. When applied appropriately, 
especially in contexts with abundant data and strong nonlinear 
dynamics, ANNs can enable more accurate and adaptive 
environmental forecasting than linear or semi-empirical approaches.

3 Frontiers of application: key 
domains in environmental science

The application of neural networks has catalyzed a revolution 
across nearly every sub-discipline of environmental science, enabling 
predictions at unprecedented resolutions and accuracies (Boukabara, 
2021; Zhong, 2021). In hydrology, LSTM networks have become a 
benchmark for rainfall-runoff modeling, often outperforming 
established conceptual models (Sit et al., 2020). Wajid et al. (2024) 
state in their research that floods are among the most devastating 
natural disasters and therefore propose an IoT based prediction model 
that analyzes seven factors and implements neural networks. They 
tested additional algorithms Logistic Regression and Decision Tree to 
compare their efficiency, obtaining accuracies of LR (89.6%), Random 
Forest (87.9%), and ANN (94.2%), demonstrating that ANNs 
outperform the other algorithms in terms of precision.

Likewise, in the following Figure 1, (Jia, 2025) presents the 
schematic representation of the physics-informed neural network 
model for hydrodynamic evolution problems, demonstrating that 
HC-PDNet achieved the lowest errors, greater stability, and an 
improvement of up to 79.32% in accuracy compared to FNO, 
becoming the most efficient and robust model for predicting 
hydrodynamic diffusion fields.

For air quality forecasting, hybrid models combining CNNs for 
spatial feature extraction with LSTMs for temporal dynamics are 
setting new standards in predicting PM2.5 and O₃ concentrations 
(Zhang, 2021). Kamsing et al. (2025) state that the prediction of 

FIGURE 1

Physics-informed neural network (PINN). The network minimizes a global loss L that penalizes deviations from data (Lobs) and physical constraints, 
including the governing equation (LCDE ), boundary (LBC ), and initial conditions (LIC). Adapted from Jia (2025).
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atmospheric pollutant concentrations (CO, NO2, PM2.5, and PM10) 
at Suvarnabhumi Airport can be accomplished using artificial neural 
networks. They proposed a model based on aircraft trajectories 
obtained from ADS-B data, analyzing eight input factors. Tests were 
conducted on four pollutants to evaluate the model’s efficiency, 
yielding R2 values of 0.4946 for CO, 0.3339 for NO2, 0.4762 for PM2.5, 
and 0.5594 for PM10, concluding that the model is acceptable for 
environmental management and route planning applications.

Beyond geophysics, in ecology, CNNs automate the analysis of 
camera trap and acoustic recordings, enabling large-scale biodiversity 
monitoring and species identification (Murray, 2022). Odilov et al. 
(2024)developed an IoT-based water-quality monitoring system to 
assess aquatic ecosystem health and preserve biodiversity, combined 
with a generalized regression neural network (G-RNN) to estimate 
water parameters that cannot be measured by sensors; they achieved 
high accuracy for nitrates and phosphates, with R2 values between 0.79 
and 0.89 and errors below 0.3 mg/L, results the authors regarded as 
adequate and satisfactory.

The common thread across these diverse applications is the ability 
of ANNs to fuse heterogeneous data streams into a unified predictive 
framework, pushing the boundaries from isolated models to integrated 
digital twins of environmental systems (Hammoumi, 2025). The 
versatility of ANNs extends to urban waste management, where, for 
instance, Facuy et al. (2025) successfully applied an ambient 
intelligence system powered by neural networks to predict electronic 
waste generation, demonstrating its practical utility for logistical 
planning in smart cities. Future efforts must focus on developing 
transferable, pre-trained models that can be adapted to different 
regions, democratizing access to advanced predictive capabilities for 
global environmental challenges (Xiong, 2022). The qualitative results 
of these studies strengthen the credibility of the ANN approach and 
demonstrate its competitiveness compared with other 
predictive methods.

4 The data dilemma: challenges in 
quality, quantity, and Preprocessing

The performance of any neural network is fundamentally 
constrained by the quality, quantity, and structure of its training data, 
presenting a significant barrier in environmental contexts (Liu, 2022; 
Sambasivan et al., 2021). Environmental data is notoriously noisy, 
plagued by missing values from sensor failures, and often skewed by 
indirect measurement techniques (Sambasivan et al., 2021). While 
ANNs require large volumes of data for training, many critical 
environmental phenomena are rare events (e.g., extreme floods), 
leading to imbalanced datasets that bias models toward predicting the 
median state (Liu, 2022).

Furthermore, a lack of standardized data pre-processing protocols 
can lead to data leakage and overly optimistic performance estimates, 
undermining the reliability of published models (Sambasivan et al., 
2021). This underscores that data curation is not a preliminary step 
but a central, intellectually demanding part of the modeling workflow, 
where the adage “garbage in, garbage out” is acutely relevant. Studies 
such as that of Wajid et al. (2024) show that artificial neural networks 
(ANN) achieve 94.2% accuracy in flood-prediction tasks, clearly 
outperforming traditional algorithms such as logistic regression 
(89.6%) and decision trees (87.9%).

We advocate for the development and adoption of rigorous 
benchmarking datasets and pre-processing pipelines specific to 
environmental data to ensure reproducibility and foster trust in model 
outcomes for critical environmental decision-making.

5 Beyond the black box: the 
imperative of interpretability and 
explainability (XAI)

The perceived “black box” nature of deep learning models is a 
major impediment to their adoption for high-stakes environmental 
decision-making and policy formulation (Xu, 2024). While ANNs 
provide accurate predictions, their complex inner workings often 
obscure how and why a specific prediction was made, eroding trust 
among stakeholders and regulators (Xu, 2024; Janiesch et al., 2021). In 
response, the field of Explainable AI (XAI) has developed techniques 
such as SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) to attribute predictions to 
input features (Bao, 2025).

Emerging research shows that integrating physical principles 
directly into ANN architectures (e.g., physics-informed neural 
networks) not only improves extrapolation but also makes models 
more interpretable by aligning them with known laws of nature 
(Karniadakis et al., 2021; Jia, 2025). Interpretability should not be an 
afterthought but a core design objective, as an interpretable model 
provides not just a prediction but also scientific insight, potentially 
revealing previously unknown relationships within the 
environmental system. We strongly recommend that the evaluation 
criteria for environmental ML models be expanded beyond 
predictive accuracy to include metrics of interpretability and 
physical consistency to facilitate their adoption in policy and 
management contexts.

6 An interdisciplinary roadmap: 
integrating computation and domain 
expertise

The literature consistently emphasizes that realizing the full 
potential of neural networks in environmental science requires a 
genuinely interdisciplinary model integrating computational 
methods with domain-specific knowledge (Karniadakis et al., 2021; 
Boukabara, 2021). Evidence shows that the most effective ANN 
applications arise when environmental scientists frame and 
validate the problem, while data scientists develop and optimize 
the models, underscoring the complementary nature of both roles 
(Boukabara, 2021). This convergence has prompted educational 
programs to formalize “environmental data science” as an emerging 
hybrid discipline that cultivates expertise across these domains 
(McGovern et al., 2019).

Moreover, integrative frameworks such as theory-guided data 
science (TGDS) institutionalize this collaboration by embedding 
physical principles into neural network design, thereby enhancing 
both statistical robustness and physical plausibility (Karniadakis et al., 
2021; Jia, 2025). The literature suggests that such synergy is essential: 
domain insight mitigates the risk of producing computationally 
sophisticated yet scientifically invalid models, while advanced ML 
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techniques enable the detection of complex environmental patterns 
not accessible through traditional approaches. In line with these 
findings, several authors advocate for the development of 
interdisciplinary research clusters and curricula that dismantle 
disciplinary silos and support collaborative solution-building for the 
environmental problems highlighted in recent assessments (IPCC, 
2023; Bennett et al., 2021).

7 Discussion

The growing severity of climate-driven extremes highlighted by 
recent IPCC findings (IPCC, 2023), has catalyzed a shift in the 
literature toward rethinking environmental forecasting as a proactive, 
data-centric enterprise. Across studies, artificial neural networks 
(ANNs) consistently emerge as a foundational technology enabling 
this transition, though our synthesis shows that their transformative 
potential depends less on computational capacity and more on 
resolving interdisciplinary challenges tied to data quality, 
interpretability, and the integration of physical principles into data-
driven workflows (Liu, 2022; Wang, 2023).

The evidence consolidates three core dimensions of this 
integration. First, multiple investigations confirm the superior ability 
of ANN architectures especially LSTMs and CNNs to model the 
nonlinear, high-dimensional behavior of hydrological systems (Sit et 
al., 2020; Feng, 2023) and atmospheric processes (Zhang, 2021), 
reinforcing early arguments that deep learning would redefine Earth 
system science (Boukabara, 2021). Second, our comparative reading 
indicates that the primary limitation is no longer model design but the 
“data bottleneck”: a persistent deficit in standardized, high-quality 
environmental datasets, particularly for forecasting rare but high-
impact extremes (Liu, 2022; Xiong, 2022). The absence of universal 
preprocessing protocols further undermines reproducibility and 
equitable model benchmarking, a problem widely noted across the 
field (Sambasivan et al., 2021).

Third, and emerging as the most decisive trend, the field is shifting 
from generic black-box modeling to frameworks that foreground 
interpretability and physical consistency. Recent critiques underscore 
that in high-stakes environmental contexts, explainability is essential 
for institutional trust and operational uptake (Xu, 2024). This demand 
is driving the adoption of physics-informed neural networks (PINNs) 
and related advances (Karniadakis et al., 2021), as well as the broader 
Theory-Guided Data Science (TGDS) paradigm (Jia, 2025), which 
collectively embed physical knowledge into ANN training to ensure 
that predictions remain both statistically robust and 
physically meaningful.

Recent literature suggests that advances in neural network–
based environmental forecasting hinge on both technological 
refinement and sustained interdisciplinary collaboration. 
Technologically, although ANNs function as powerful universal 
approximators, their complexity necessitates deliberate 
architectural choices to prevent non-physical outputs. Within this 
context, research on transfer learning has emerged as a promising 
pathway for mitigating data scarcity in under-monitored regions, 
enabling models trained on data-rich basins to be effectively 
adapted elsewhere and thereby broadening access to high-quality 
predictive tools (Xiong, 2022). Yet, the efficacy of such approaches 

is shown to depend fundamentally on iterative cooperation 
between data scientists and domain experts.

Contrary to critiques that interdisciplinary processes introduce 
inefficiencies, our synthesis aligns with arguments that this negotiated 
co-design is indispensable: without it, data scientists risk optimizing 
solutions to mis-specified problems, while domain experts may 
disregard otherwise powerful tools they cannot adequately interpret. 
The Theory-Guided Data Science (TGDS) framework formalizes this 
symbiosis by providing conceptual and methodological scaffolding for 
integrating physical knowledge with data-driven modeling (Jia, 2025). 
Parallel insights from socio-technical systems research further 
reinforce that sustainability-oriented tools achieve greater legitimacy 
and equity when developed with, rather than merely for, their 
stakeholders (Bennett et al., 2021).

At the same time, a clear delineation of scope remains essential. 
While this perspective highlights the unique advantages of neural 
networks for high-dimensional spatiotemporal problems, other 
machine learning families especially tree-based ensemble methods 
such as XGBoost continue to perform at state-of-the-art levels for 
many tabular-data applications in environmental science 
(Grinsztajn et al., 2022; Janiesch et al., 2021). Accordingly, the 
conclusions drawn here apply specifically to domains where the 
strengths of neural networks are most pertinent. Because this 
contribution synthesizes existing literature rather than presenting 
new empirical evidence, it does not claim ANN superiority across 
all contexts but instead positions them as particularly powerful for 
a specific subset of forecasting challenges. Nonetheless, the 
persistent absence of standardized, community-endorsed 
benchmarks for datasets and evaluation protocols remains a critical 
barrier to producing field-wide, generalizable insights (Sambasivan 
et al., 2021).

To translate this perspective into tangible progress, we propose a 
concerted agenda for future research and practice:

	 1	 Creation of curated benchmark datasets: A community-wide 
initiative to develop and maintain public datasets for flagship 
challenges (e.g., predicting compound extremes, pollutant 
transport) with rigorous pre-processing standards and 
evaluation metrics. This is a prerequisite for reproducibility and 
fair model comparison, as pioneered in related fields 
(Sambasivan et al., 2021).

	 2	 Advancement of hybrid, transferable, and interpretable models: 
Prioritizing research that integrates physical laws (via PINNs, 
TGDS), enhances explainability (XAI), and leverages transfer 
learning to address data inequality. Success must be measured 
by performance on benchmarks, physical consistency, 
operational utility, and the ability to provide scientific insight 
(Karniadakis et al., 2021; Xiong, 2022).

	 3	 Cultivation of interdisciplinary capacity: The active promotion 
of “environmental data science” as a discipline through 
dedicated academic programs and continuous learning 
platforms to train a generation of professionals fluent in both 
domain knowledge and computational methods (Zhong, 2021).

	 4	 Institutionalization of Co-Design: Funding agencies and 
research institutions must create mechanisms and incentives 
that mandate the formation of deeply integrated teams from 
project inception, ensuring tools are co-designed with 
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end-users to guarantee their practical relevance and adoption 
(Bennett et al., 2021).

Beyond their technical performance, the deployment of 
AI-based environmental models carries important ethical and policy 
implications that must be considered in decision-making contexts. 
Environmental datasets often reflect spatial, socioeconomic, and 
infrastructural inequalities, which may introduce bias in model 
predictions and disproportionately affect vulnerable communities. 
Furthermore, when ANN-based forecasts are used to guide risk-
management actions, the lack of transparency and interpretability 
may limit accountability and reduce stakeholder trust. These 
concerns underscore the need for governance frameworks 
promoting explainability, equitable data practices, and responsible 
use of automated predictions in climate resilience and 
environmental planning.

In conclusion, bridging the chasm between computational 
potential and environmental problem-solving is a quintessential 
socio-technical challenge. It requires building a shared language 
and purpose across the entire pipeline from sensor deployment 
and data curation to model development and decision-making. By 
championing a culture of collaboration centered on robust data, 
transparent models, and shared goals, neural networks can mature 
from powerful academic exercises into indispensable, trustworthy 
partners in the urgent global effort to build resilience and 
ensure sustainability.
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