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Bridging computational power
and environmental challenges: a
perspective on neural network
predictive models for
environmental engineering
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The escalating frequency and severity of extreme environmental events underscores
the critical need for a paradigm shift from reactive to proactive management
strategies. This perspective article argues that artificial neural networks (ANNs)
represent a transformative tool for environmental forecasting, capable of capturing
the non-linear, high-dimensional dynamics that define complex Earth systems.
While ANNs demonstrate superior predictive performance across domains such as
hydrology, air quality, and ecology, their integration into decision-making workflows
remains hindered by challenges related to data quality, model interpretability, and
a lack of interdisciplinary collaboration. We synthesize current advancements,
highlighting the pivotal role of physics-informed neural networks (PINNs) and
explainable Al (XAl) in bridging the gap between data-driven insights and physical
plausibility. Finally, we propose a concrete interdisciplinary roadmap, encompassing
curated benchmarks, hybrid modeling, educational initiatives, and institutional
co-design, to translate computational potential into trustworthy, actionable tools
for building environmental resilience.
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1 Introduction

The increasing frequency and severity of extreme environmental events, ranging from
catastrophic floods to widespread wildfires, underscore the limitations of reactive management
and the urgent need for reliable forecasting tools (IPCC, 2023). Predictive modeling has
therefore become a cornerstone of proactive mitigation and adaptation strategies (Dikmen,
2025). However, the inherent complexity of environmental systems, characterized by nonlinear
dynamics, high dimensionality, and intricate feedback loops, continues to challenge traditional
modeling approaches (Eid, 2025). These challenges have direct implications for water security,
agricultural productivity, public health, and the design of early warning systems fundamental
to societal resilience (Farhangmehr, 2025).

Techniques, including ARIMA and multiple linear regression, as well as process-based
mechanistic models, have long contributed to understanding hydrologic and atmospheric
processes (He, 2023; Razavi, 2022). Yet these models often struggle to capture the full range of
nonlinearities and multiscale interactions present in large and noisy environmental datasets
(Molkov et al., 2022). Despite recent advances, a gap persists in fully leveraging modern
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computational capabilities to overcome these limitations. Deep
learning applications, particularly neural networks, remain
insufficiently integrated with domain knowledge, and issues of data
quality, workflow standardization, and model interpretability continue
to hinder trust and operational adoption (Janiesch et al., 2021;
Xu, 2024).

This perspective argues that artificial neural networks (ANNs)
offer a promising path toward next-generation environmental
forecasting when coupled with robust data practices and
interpretability frameworks. Rather than replacing domain expertise,
ANNSs should be guided by it to generate physically plausible,
transparent, and operationally useful models. The article establishes
the theoretical rationale for ANN-based modeling, highlights key
application areas, discusses persistent challenges, and outlines an
interdisciplinary roadmap for integrating neural networks into
environmental engineering practice.

2 Theoretical rationale: why neural
networks for environmental
forecasting?

Artificial neural networks (ANNs) provide a flexible
computational framework capable of approximating highly nonlinear
and high-dimensional relationships that characterize environmental
systems (Karniadakis et al., 2021; Razavi, 2021). Unlike conventional
statistical or mechanistic models, which rely on predefined functional
structures, ANNs learn representations directly from data, enabling
them to capture complex spatiotemporal interactions and system
behaviors that are difficult to specify analytically.

Recurrent architectures such as Long Short-Term Memory
(LSTM) networks and gated units are particularly effective at modeling
temporal dependencies, while convolutional structures extract spatial
features relevant in hydrology, atmospheric science, and remote
sensing (Sit et al., 2020; Zhang, 2021). Owing to these capabilities,
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ANNs serve not merely as statistical tools but as universal
approximators capable of mapping intricate input-output relationships
in large environmental datasets. When applied appropriately,
especially in contexts with abundant data and strong nonlinear
dynamics, ANNs can enable more accurate and adaptive
environmental forecasting than linear or semi-empirical approaches.

3 Frontiers of application: key
domains in environmental science

The application of neural networks has catalyzed a revolution
across nearly every sub-discipline of environmental science, enabling
predictions at unprecedented resolutions and accuracies (Boukabara,
2021; Zhong, 2021). In hydrology, LSTM networks have become a
benchmark for rainfall-runoff modeling, often outperforming
established conceptual models (Sit et al., 2020). Wajid et al. (2024)
state in their research that floods are among the most devastating
natural disasters and therefore propose an IoT based prediction model
that analyzes seven factors and implements neural networks. They
tested additional algorithms Logistic Regression and Decision Tree to
compare their efficiency, obtaining accuracies of LR (89.6%), Random
Forest (87.9%), and ANN (94.2%), demonstrating that ANNs
outperform the other algorithms in terms of precision.

Likewise, in the following Figure 1, (Jia, 2025) presents the
schematic representation of the physics-informed neural network
model for hydrodynamic evolution problems, demonstrating that
HC-PDNet achieved the lowest errors, greater stability, and an
improvement of up to 79.32% in accuracy compared to FNO,
becoming the most efficient and robust model for predicting
hydrodynamic diffusion fields.

For air quality forecasting, hybrid models combining CNNs for
spatial feature extraction with LSTMs for temporal dynamics are
setting new standards in predicting PM2.5 and O concentrations
(Zhang, 2021). Kamsing et al. (2025) state that the prediction of
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FIGURE 1

Physics-informed neural network (PINN). The network minimizes a global loss L that penalizes deviations from data (Lopg) and physical constraints,
including the governing equation (Lgpg). boundary (L), and initial conditions (Lj). Adapted from Jia (2025).
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atmospheric pollutant concentrations (CO, NO,, PM2.5, and PM10)
at Suvarnabhumi Airport can be accomplished using artificial neural
networks. They proposed a model based on aircraft trajectories
obtained from ADS-B data, analyzing eight input factors. Tests were
conducted on four pollutants to evaluate the model’s efficiency,
yielding R* values of 0.4946 for CO, 0.3339 for NO,, 0.4762 for PM2.5,
and 0.5594 for PM10, concluding that the model is acceptable for
environmental management and route planning applications.

Beyond geophysics, in ecology, CNNs automate the analysis of
camera trap and acoustic recordings, enabling large-scale biodiversity
monitoring and species identification (Murray, 2022). Odilov et al.
(2024)developed an IoT-based water-quality monitoring system to
assess aquatic ecosystem health and preserve biodiversity, combined
with a generalized regression neural network (G-RNN) to estimate
water parameters that cannot be measured by sensors; they achieved
high accuracy for nitrates and phosphates, with R? values between 0.79
and 0.89 and errors below 0.3 mg/L, results the authors regarded as
adequate and satisfactory.

The common thread across these diverse applications is the ability
of ANNS to fuse heterogeneous data streams into a unified predictive
framework, pushing the boundaries from isolated models to integrated
digital twins of environmental systems (Hammoumi, 2025). The
versatility of ANNs extends to urban waste management, where, for
instance, Facuy et al. (2025) successfully applied an ambient
intelligence system powered by neural networks to predict electronic
waste generation, demonstrating its practical utility for logistical
planning in smart cities. Future efforts must focus on developing
transferable, pre-trained models that can be adapted to different
regions, democratizing access to advanced predictive capabilities for
global environmental challenges (Xiong, 2022). The qualitative results
of these studies strengthen the credibility of the ANN approach and
demonstrate its other

competitiveness  compared  with

predictive methods.

4 The data dilemma: challenges in
quality, quantity, and Preprocessing

The performance of any neural network is fundamentally
constrained by the quality, quantity, and structure of its training data,
presenting a significant barrier in environmental contexts (Liu, 2022;
Sambasivan et al., 2021). Environmental data is notoriously noisy,
plagued by missing values from sensor failures, and often skewed by
indirect measurement techniques (Sambasivan et al., 2021). While
ANNGs require large volumes of data for training, many critical
environmental phenomena are rare events (e.g., extreme floods),
leading to imbalanced datasets that bias models toward predicting the
median state (Liu, 2022).

Furthermore, a lack of standardized data pre-processing protocols
can lead to data leakage and overly optimistic performance estimates,
undermining the reliability of published models (Sambasivan et al.,
2021). This underscores that data curation is not a preliminary step
but a central, intellectually demanding part of the modeling workflow,
where the adage “garbage in, garbage out” is acutely relevant. Studies
such as that of Wajid et al. (2024) show that artificial neural networks
(ANN) achieve 94.2% accuracy in flood-prediction tasks, clearly
outperforming traditional algorithms such as logistic regression
(89.6%) and decision trees (87.9%).
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We advocate for the development and adoption of rigorous
benchmarking datasets and pre-processing pipelines specific to
environmental data to ensure reproducibility and foster trust in model
outcomes for critical environmental decision-making.

5 Beyond the black box: the
imperative of interpretability and
explainability (XAl)

The perceived “black box” nature of deep learning models is a
major impediment to their adoption for high-stakes environmental
decision-making and policy formulation (Xu, 2024). While ANNs
provide accurate predictions, their complex inner workings often
obscure how and why a specific prediction was made, eroding trust
among stakeholders and regulators (Xu, 2024; Janiesch et al., 2021). In
response, the field of Explainable AI (XAI) has developed techniques
such as SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) to attribute predictions to
input features (Bao, 2025).

Emerging research shows that integrating physical principles
directly into ANN architectures (e.g., physics-informed neural
networks) not only improves extrapolation but also makes models
more interpretable by aligning them with known laws of nature
(Karniadakis et al., 2021; Jia, 2025). Interpretability should not be an
afterthought but a core design objective, as an interpretable model
provides not just a prediction but also scientific insight, potentially
within  the
environmental system. We strongly recommend that the evaluation

revealing previously unknown relationships
criteria for environmental ML models be expanded beyond
predictive accuracy to include metrics of interpretability and
physical consistency to facilitate their adoption in policy and

management contexts.

6 An interdisciplinary roadmap:
integrating computation and domain
expertise

The literature consistently emphasizes that realizing the full
potential of neural networks in environmental science requires a
genuinely interdisciplinary model integrating computational
methods with domain-specific knowledge (Karniadakis et al., 2021;
Boukabara, 2021). Evidence shows that the most effective ANN
applications arise when environmental scientists frame and
validate the problem, while data scientists develop and optimize
the models, underscoring the complementary nature of both roles
(Boukabara, 2021). This convergence has prompted educational
programs to formalize “environmental data science” as an emerging
hybrid discipline that cultivates expertise across these domains
(McGovern et al., 2019).

Moreover, integrative frameworks such as theory-guided data
science (TGDS) institutionalize this collaboration by embedding
physical principles into neural network design, thereby enhancing
both statistical robustness and physical plausibility (Karniadakis et al.,
2021; Jia, 2025). The literature suggests that such synergy is essential:
domain insight mitigates the risk of producing computationally
sophisticated yet scientifically invalid models, while advanced ML
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techniques enable the detection of complex environmental patterns
not accessible through traditional approaches. In line with these
findings, several authors advocate for the development of
interdisciplinary research clusters and curricula that dismantle
disciplinary silos and support collaborative solution-building for the
environmental problems highlighted in recent assessments (IPCC,
2023; Bennett et al., 2021).

7 Discussion

The growing severity of climate-driven extremes highlighted by
recent IPCC findings (IPCC, 2023), has catalyzed a shift in the
literature toward rethinking environmental forecasting as a proactive,
data-centric enterprise. Across studies, artificial neural networks
(ANNs) consistently emerge as a foundational technology enabling
this transition, though our synthesis shows that their transformative
potential depends less on computational capacity and more on
resolving interdisciplinary challenges tied to data quality,
interpretability, and the integration of physical principles into data-
driven workflows (Liu, 2022; Wang, 2023).

The evidence consolidates three core dimensions of this
integration. First, multiple investigations confirm the superior ability
of ANN architectures especially LSTMs and CNNs to model the
nonlinear, high-dimensional behavior of hydrological systems (Sit et
al., 2020; Feng, 2023) and atmospheric processes (Zhang, 2021),
reinforcing early arguments that deep learning would redefine Earth
system science (Boukabara, 2021). Second, our comparative reading
indicates that the primary limitation is no longer model design but the
“data bottleneck™ a persistent deficit in standardized, high-quality
environmental datasets, particularly for forecasting rare but high-
impact extremes (Liu, 2022; Xiong, 2022). The absence of universal
preprocessing protocols further undermines reproducibility and
equitable model benchmarking, a problem widely noted across the
field (Sambasivan et al., 2021).

Third, and emerging as the most decisive trend, the field is shifting
from generic black-box modeling to frameworks that foreground
interpretability and physical consistency. Recent critiques underscore
that in high-stakes environmental contexts, explainability is essential
for institutional trust and operational uptake (Xu, 2024). This demand
is driving the adoption of physics-informed neural networks (PINNs)
and related advances (Karniadakis et al., 2021), as well as the broader
Theory-Guided Data Science (TGDS) paradigm (Jia, 2025), which
collectively embed physical knowledge into ANN training to ensure
that both
physically meaningful.

predictions  remain statistically ~robust and

Recent literature suggests that advances in neural network-
based environmental forecasting hinge on both technological
refinement and sustained interdisciplinary collaboration.
Technologically, although ANNs function as powerful universal
their deliberate

architectural choices to prevent non-physical outputs. Within this

approximators, complexity necessitates
context, research on transfer learning has emerged as a promising
pathway for mitigating data scarcity in under-monitored regions,
enabling models trained on data-rich basins to be effectively
adapted elsewhere and thereby broadening access to high-quality

predictive tools (Xiong, 2022). Yet, the efficacy of such approaches
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is shown to depend fundamentally on iterative cooperation
between data scientists and domain experts.

Contrary to critiques that interdisciplinary processes introduce
inefficiencies, our synthesis aligns with arguments that this negotiated
co-design is indispensable: without it, data scientists risk optimizing
solutions to mis-specified problems, while domain experts may
disregard otherwise powerful tools they cannot adequately interpret.
The Theory-Guided Data Science (TGDS) framework formalizes this
symbiosis by providing conceptual and methodological scaffolding for
integrating physical knowledge with data-driven modeling (Jia, 2025).
Parallel insights from socio-technical systems research further
reinforce that sustainability-oriented tools achieve greater legitimacy
and equity when developed with, rather than merely for, their
stakeholders (Bennett et al., 2021).

At the same time, a clear delineation of scope remains essential.
While this perspective highlights the unique advantages of neural
networks for high-dimensional spatiotemporal problems, other
machine learning families especially tree-based ensemble methods
such as XGBoost continue to perform at state-of-the-art levels for
many tabular-data applications in environmental science
(Grinsztajn et al., 2022; Janiesch et al., 2021). Accordingly, the
conclusions drawn here apply specifically to domains where the
strengths of neural networks are most pertinent. Because this
contribution synthesizes existing literature rather than presenting
new empirical evidence, it does not claim ANN superiority across
all contexts but instead positions them as particularly powerful for
a specific subset of forecasting challenges. Nonetheless, the
persistent absence of standardized, community-endorsed
benchmarks for datasets and evaluation protocols remains a critical
barrier to producing field-wide, generalizable insights (Sambasivan
etal., 2021).

To translate this perspective into tangible progress, we propose a
concerted agenda for future research and practice:

1 Creation of curated benchmark datasets: A community-wide
initiative to develop and maintain public datasets for flagship
challenges (e.g., predicting compound extremes, pollutant
transport) with rigorous pre-processing standards and
evaluation metrics. This is a prerequisite for reproducibility and
fair model comparison, as pioneered in related fields
(Sambasivan et al., 2021).

2 Advancement of hybrid, transferable, and interpretable models:
Prioritizing research that integrates physical laws (via PINN,
TGDS), enhances explainability (XAI), and leverages transfer
learning to address data inequality. Success must be measured
by performance on benchmarks, physical consistency,
operational utility, and the ability to provide scientific insight
(Karniadakis et al., 2021; Xiong, 2022).

3 Cultivation of interdisciplinary capacity: The active promotion
of “environmental data science” as a discipline through
dedicated academic programs and continuous learning
platforms to train a generation of professionals fluent in both
domain knowledge and computational methods (Zhong, 2021).

4 Institutionalization of Co-Design: Funding agencies and
research institutions must create mechanisms and incentives
that mandate the formation of deeply integrated teams from
project inception, ensuring tools are co-designed with
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end-users to guarantee their practical relevance and adoption
(Bennett et al., 2021).

Beyond their technical performance, the deployment of
Al-based environmental models carries important ethical and policy
implications that must be considered in decision-making contexts.
Environmental datasets often reflect spatial, socioeconomic, and
infrastructural inequalities, which may introduce bias in model
predictions and disproportionately affect vulnerable communities.
Furthermore, when ANN-based forecasts are used to guide risk-
management actions, the lack of transparency and interpretability
may limit accountability and reduce stakeholder trust. These
concerns underscore the need for governance frameworks
promoting explainability, equitable data practices, and responsible
use of automated predictions in climate resilience and
environmental planning.

In conclusion, bridging the chasm between computational
potential and environmental problem-solving is a quintessential
socio-technical challenge. It requires building a shared language
and purpose across the entire pipeline from sensor deployment
and data curation to model development and decision-making. By
championing a culture of collaboration centered on robust data,
transparent models, and shared goals, neural networks can mature
from powerful academic exercises into indispensable, trustworthy
partners in the urgent global effort to build resilience and
ensure sustainability.
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