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Black-box models, particularly Support Vector Machines (SVM), are widely
employed for identifying dynamic systems due to their high predictive accuracy;
however, their inherent lack of transparency hinders the understanding of
how individual input variables contribute to the system output. Consequently,
retrieving interpretability from these complex models has become a critical
challenge in the control and identification community. This paper proposes
a post-hoc functional decomposition algorithm based on Non-linear Oblique
Subspace Projections (NObSP). The method decomposes the output of an
already identified SVM regression model into a sum of partial (non)linear dynamic
contributions associated with each input regressor. By operating in the non-
linear feature space, NObSP utilizes oblique projections to mitigate cross-
contributions from correlated regressors. Furthermore, an efficient out-of-
sample extension is introduced to improve scalability. Numerical simulations
performed on benchmark Wiener and Hammerstein structures demonstrate
that the proposed method effectively retrieves the underlying partial nonlinear
dynamics of each sub-system. Additionally, the computational analysis confirms
that the proposed extension reduces the arithmetic complexity from O (N3> to

O (Ndz), where d is the number of support vectors. These findings indicate that
NODSP is a robust geometric framework for interpreting non-linear dynamic
models, offering a scalable solution that successfully decouples blended
dynamics without sacrificing the predictive power of the black-box model.

KEYWORDS

interpretability, oblique projections, support vector machine, Hammerstein-Wiener
models, dynamic systems, system identification

1 Introduction

Interpretability of Support Vector Machine (SVM) or Neural Networks (NN) models,
examples of black-box models, is a field of study that has recently gained attention,
especially for the significant advances of machine learning models and their inclusion in
fields such as medicine and law (Barredo Arrieta et al., 2020). For physicians, the accuracy
of classification models is as important as understanding why the models provide some
results. The lack of understanding of the model performance diminishes the confidence of
the specialist in its use, even more so when the model’s output differs from the one expected
by the specialist. When addressing interpretability of a machine learning model, the aim is
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to understand how the input parameters influence the model’s
output. Interpretability can be addressed in two ways: model and
instance explanation approaches. The local or instance approach
tries to explain a prediction for a specific instance, making it valid
just for its vicinity. This approach must not be generalized (Burkart
and Huber, 2021). In contrast, global or model interpretability aims
to provide information about the model functionality on its whole
using only the training data (Barredo Arrieta et al., 2020; Burkart
and Huber, 2021).

The framework of interpretability/explainability is still wide
and open. In Luckey et al. (2022), the authors establish
an explainable artificial intelligence (XAI) pipeline, where the
explanation and interpretation are processes within this pipeline.
The goal of the explanation is to identify the most relevant
features that influence the classifier decision, i.e., illustrate which
input features contribute the most to producing a decision.
In the next process, interpretation, the features previously
identified are associated with the problem-specific domain, i.e.,
mapping an abstract concept into a domain that makes sense
to humans. Further, in Barredo Arrieta et al. (2020) the authors
define interpretability as a passive characteristic of a model,
part of its design, at the level that it has a sense for a
human observer; and explicability as the active characteristic
that clarify or detail the internal functioning in a model. In
Burkart and Huber (2021), the authors address three concepts:
(i) the interpretable models, which are entirely understandable
and are built naturally or by using design principles; (ii) the
approach of fitting a surrogate model that approximates a
black box through local or global interpretable models, and
(iii) the process of generating a local or global explanation.
In addition, the development of interpretable models can be
divided into two groups, according to the moment when
interpretability/explainability is applied. If the explanation is
produced ante-hoc, they can be called Interpretable (Burkart
and Huber, 2021) or Transparent models (Barredo Arrieta
et al.,, 2020; Luckey et al., 2022) whilst explainable models with
post-hoc explanations.

Linear regression is considered a white box or an interpretable
model since it is possible to know how each input variable has
contributed to the output. White-box models are characterized
for having ante-hoc interpretability, which means that they are
interpretable on their own (Burkart and Huber, 2021). However,
linear regression might lack accuracy in its predictions since it
is not able to model nonlinearities that are not explicitly defined
in the model design (Harrell et al., 2001). In contrast, black-box
models have high accuracy and can adapt to nonlinearities but lack
interpretability. For black-box models, post-hoc interpretability can
be achieved through a global model-agnostic explanator (Barredo
Arrieta et al., 2020), which is a white-box surrogate model that
simulates the behavior of the black-box model (Burkart and Huber,
2021).

In recent years, powerful post-hoc and model-agnostic
frameworks have become foundational to XAI. Notably, Local
Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al.,
2016) and SHapley Additive exPlanations (SHAP) (Lundberg
and Lee, 2017) are designed to explain the predictions of any
classifier or regressor. These methods are highly effective for
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feature attribution, providing importance scores that quantify the
contribution of each individual feature to a specific prediction.

However, applying these methods directly to dynamic systems
is non-trivial, as standard implementations (e.g., KernelSHAP)
often assume feature independence, which is fundamentally
violated by the temporal correlations (autocorrelation) inherent in
time-series data. Although adaptations for time-series have been
proposed (Jutte et al, 2025; Sen et al., 2025; Theissler et al,
2022), their objective remains providing saliency scores (e.g., the
importance of u[n — k] at a specific time step k) rather than
retrieving a complete functional dynamic.

Other families of XAI methods face similar limitations in this
context. Gradient-based methods, such as Grad-CAM, have been
adapted for 1D signals (Selvaraju et al., 2016; Aquino et al., 2022),
but they are (i) model-specific to neural networks, requiring access
to gradients and internal feature maps, and thus inapplicable to
kernel-based models like SVMs, and (ii) focused on identifying
saliency (i.e., which parts of the input were most critical), not
decomposing the output.

Furthermore, visualization methods like Partial Dependence
Plots (PDP) and Individual Conditional Expectation (ICE) plots,
which do attempt to show a functional relationship, also struggle
with dynamic systems. Their reliance on marginalizing features
fails when strong correlations exist—as they always do between
lagged regressors (u[n — 1], u[n — 2], etc.). This fact can lead to
averaging over “impossible” regions of the feature space, yielding
unreliable results (Rojat et al., 2021; Angelini et al., 2023; Shi et al.,
2023).

This work, in contrast, addresses a different objective. The goal
of the NODBSP extension is not feature attribution but functional
decomposition. The methodology leverages the specific geometric
properties of kernel methods to reconstruct the entire partial
(non)linear dynamic contribution of each input regressor (i.e.,
) as an additive component of the total system output. As
demonstrated with the Wiener and Hammerstein examples, this
decompositional approach, built on oblique projections specifically
designed to handle correlated regressors, allows for the retrieval of
the underlying sub-system dynamics—a different and more holistic
form of interpretation than feature attribution or saliency mapping.

Considering nonlinearities, additive models can decompose
the output of a nonlinear regression as the sum of the partial
(non)linear contributions of each input variable and their
interaction effects. In this context, some approaches already
reported in the literature are sparse additive models (Ravikumar
et al, 2009), functional ANOVA models (Abramovich and
Angelini, 2006), and neural additive models (Agarwal et al., 2021).
However, these methods require to specify, a priori, which are the
most relevant input variables and interaction effects of interest. This
restriction, imposed during the model definition, conditions the
functionality of the methods. In contrast, black-box models, such as
SVM and NN, do not need to define the variables of interest a priori,
but they use all the available input-output observations to find the
model that better fits the data. These black-box models generally
have greater accuracy in their predictions but lack interpretability
(DeVore et al., 2011). Nevertheless, in Rudin (2019), the authors
express that it is a myth that there is necessarily a trade-off between
accuracy and interpretability. Additionally, the authors mention
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that there exists a widespread belief that more complex models
(black box) are more accurate, which often is not true, especially
when the data are structured with a suitable representation in terms
of naturally meaningful features.

SVM is a popular non-parametric framework that uses input
data and their targets to estimate a model, which can be employed
to generate predictions on unseen data (Vapnik, 1999). SVM
produces a black-box model that fits the data but does not facilitate
the interpretation of the results. As in Caicedo et al. (2019), in this
article, the interpretability is understood as “the property of a model
to express the output into additive terms of the partial (non)linear
contributions of the input variables.” Interpretability of Least-
Squares Support Vector Machine (LS-SVM) has been addressed by
employing a truncated multinomial expansion for classifiers (Van
Belle and Lisboa, 2014), and using oblique subspace projections
for regression models (Caicedo et al., 2019). In Ravikumar et al.
(2009) and Abramovich and Angelini (2006), the authors propose
to retrieve the interpretability of SVM forcing the model to be
adjusted from prior knowledge, identifying the contributions of
each input variable main effects and interaction effects. Here,
the designer needs to define a priori, which input variables and
interaction effects of interest are essential for the model. Other
approaches use a geometric framework, decomposing the estimated
observation vector as a linear additive term through oblique
subspace projections (Bring, 1996). This approach is similar to the
one proposed by Caicedo et al. (2019), where they use a nonlinear
extension to oblique subspace projections (NODbSP). Here, they
used a static LS-SVM regression and considered that in the dual
space, i.e., the transform space, the underlying model that relates
the input and output variables is linear. Therefore, in this dual
space the model can be decomposed into additive components.
In Caicedo et al. (2019), they proposed to generate a basis for
each subspace of interest using appropriate kernel evaluations, i.e.,
subspaces that span the (non)linear transformation of each input
variable and their interaction effects. They demonstrate the use of
NObBSP through toy examples and showcase its application in the
manufacturing industry using data from the compressive strength
dataset from the University of California, Irvine (UCI) machine
learning repository (Yeh, 1998). NODSP retrieves the functional
relationships between the input and output variables for a static
regression model using LS-SVM, even in the presence of correlated
inputs. In addition, it does not require for the designer to define a
priori the input variables and the interaction effects of interest.

While the previous discussion centered on static regression,
the utility of black-box models extends prominently to the
identification of nonlinear dynamic systems. In this context,
Gonzalez-Olvera and Tang (2010) have proposed recurrent NN
to identify dynamic systems, and Forgione et al. (2023) proposed
a methodology to adapt the identified model using recurrent
NN to the changes present in a non-stationary nonlinear system.
Moreover, Yazdani et al. (2020) used deep learning algorithms
to estimate the parameters of a differential equation that models
a biological system. Likewise, Candon et al. (2022) compared
the performance of multiple-input-single-output (MISO) system
identification from linear regression models, Artificial NN, and
deep learning strategies in the prediction of the representative
bending and torsional load spectra on an aircraft wing based on
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strain sensors. Besides, Resendiz-Trejo et al. (2006) used a recursive
SVM for MISO nonlinear system online identification, improving
computational cost compared to SVM, while Espinoza et al. (2005)
used a partially linear model with an LS-SVM to identify a
combined linear-nonlinear model, with fewer parameters, better
generalization ability and performance than a full nonlinear black-
box model. In addition, Li J. et al. (2022) and Zong et al. (2021)
considered block-oriented system identification approaches, where
the nonlinear system is represented as an interconnection of linear
and nonlinear blocks. Some examples of these nonlinear systems
structures are a Wiener system, i.e., a linear block followed by a
nonlinear block, and a Hammerstein system, i.e., a nonlinearity
followed by a linear block (Li J. et al., 2022). In this context,
some methodologies have been developed for the use of SVM and
LS-SVM for the identification of Wiener systems (Castro-Garcia
and Suykens, 2016; Bottegal et al., 2018; Bottegai et al., 2017),
Hammerstein-Wiener systems (Goethals et al., 2005), and Wiener-
Hammerstein systems (Falck et al., 2009). More recent works on
these block structures use Particle Swarm Optimization (PSO)
to obtain the parameters of the Hammerstein-Wiener nonlinear
system, including the time delay (Li J. et al., 2022), and to identify
the model in the presence of scarce measurements (Zong et al.,
2021). In (Li F. et al., 2022) and Li et al. (2023c), the authors
present a decouple identification scheme model for nonlinear
systems through a structure of a Hammerstein system based on a
neural fuzzy network and autoregressive exogenous (ARX) model.
Finally, this methodology is analyzed with output noise (Li et al.,
2023b), and extended for Hammerstein-Wiener (Li et al., 2023a)
and Wiener (Li et al., 2024) structures.

Industrial processes like thermal, biological fermentation,
chemical processes, pumped-storage power generating systems,
and solar-wind hybrid power systems, among others, present
nonlinear characteristics. Although the block structure of the
Wiener and Hammerstein models is well-known in the literature,
their structure helps to reflect the behavior of these types of systems
integrating the linear dynamic model with a static memoryless
nonlinear model (Li J. et al., 2022; Zong et al., 2021). In addition,
time delay phenomenon is also encountered in metallurgy, refining,
and glass industries with complex production links, increasing the
adjustment time (Li J. et al., 2022).

In the presence of a MISO system, it will be advantageous to
fit a general model to the system dynamics and then decompose its
output into additive terms, where each term represents the output
of a Wiener, Hammerstein, or Wiener-Hammerstein system. Here,
a strategy such as NObSP might be of help. However, NObSP has
yet to be developed for dynamic systems identification. In addition,
to decompose the output of the model using NODSDP, it is necessary
to compute oblique projection matrices for each input variable,
or interaction effect, of interest. This process is computationally
expensive with an arithmetic complexity of O (N?), where N
represents the number of observations. Therefore, using NObSP
for test data, i.e., out-of-sample extension, is computationally
expensive.

Within the context of this study, the primary contributions of
this paper are twofold. On one hand, the previous work (Pena-
Campos et al., 2023) is extended from static systems to dynamic
systems. In this frame, while SVM has been previously employed
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for system identification purposes, here the methodology adapts
the use of NObSP to decompose the output of the identified
model of a nonlinear dynamical system into additive components.
Where each additive component represents the non-linear dynamic
partial contribution of each input variable to the output. These
components can be further used in a framework of block system
identification to recognize the system components. To the best of
the authors’ knowledge, the proposed algorithm is the only method
capable of retrieving the partial nonlinear dynamic contribution
of each independent input without specifying a priori the most
relevant input variables or interaction effects of interest and
without adjusting the model based on prior domain knowledge.
On the other hand, this methodology adapts and validates a
computationally more efficient out-of-sample extension, previously
introduced by the authors for static regression models (Pena-
Campos et al., 2023), for the specific context of nonlinear dynamic
system identification. This extension decomposes the output of the
model for new testing data using only kernel evaluations and matrix
multiplication between the kernel matrix and a set of coeflicients.
Calculating the matrix multiplication, the extension reduces the
arithmetic complexity of the algorithm from O (N?) to O (Nd?),
being d the number of support vectors.

This paper is organized as follows: in Section 2, the extension
of NODbSP for dynamic models using SVM, as well as the out-
of-sample extension, are presented. Here, an example is used to
evaluate the performance of NObSP. Section 3 presents the results
of NODSP using the toy dataset. Section 4 discusses the results
and possible improvements to the algorithm. Finally, Section 5
presents some conclusions from the results obtained using the
proposed method.

2 Methods

The analysis begins by considering the standard mathematical
structure used to represent a broad class of discrete-time, multi-
input, single-output (MISO) nonlinear dynamic systems (Ljung
et al., 2020). This model, often referred to as a Nonlinear Moving
Average (NMA) or Nonlinear Finite Impulse Response (NFIR)
model, represents the system output as a general, unknown
function of a regressor vector composed of present and past inputs.

This system
identification as it can approximate a wide variety of nonlinear

generalist structure is foundational in

dynamics, including, but not limited to, block-oriented structures
such as the Wiener and Hammerstein models discussed in this
work. The model is defined as:

y[n] = f(xl[n], ..
LXp[n— mr])—f—n, (1)

sxin—mls oo oxlnl, o xln—myly

x:[n],..

where n € Z% is the discrete-time variable, y[n] € R is the
n sample of the model’s output, and 5 is a Gaussian noise.
The function f(-) is an unknown nonlinear continuous map that
depends on a regressor vector built from the history of the r input
variables xj[n] € R. Each of the r inputs contributes a block
of its current value (e.g., x;[n]) and its own m; past delays (e.g.,

xi[n—1],...,x[n—my]). Here, r represents the number of physical
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input variables (e.g., voltage, flow rate), and m; represents the
system’s memory (number of delays) associated with that specific
I™ input. Therefore, the total dimension of the regressor vector is
the sum of all these contributions: r (for the r current inputs) plus
the sum of all individual delays, M, where M = erzl m;. The total
dimension is thus r + M. The Gaussian noise term 7 is included
to represent unmodeled dynamics or measurement noise, thus
creating a more realistic identification scenario. Now, let consider

the decomposition of y[n] as an additive sum of the form

ylnl = fitalnl,....xln—m))+
=1

r r (2)
ZZﬁh xlnl,....xn—ml; ... xplnl, ...,

I=1 h>l
xp[n —myl) + G+,

where fi:R™*! — TR represents the map that indicates the

(non)linear contribution of the Ith

-input variable on the output,
fip RmFmA2 R represents the map that indicates the
(non)linear second-order interaction contribution of the variables
x; and x;, on the output, and G € R represents the (non)linear
contributions of higher order interactions.

The main goal of this paper is to introduce an algorithm
that allows the decomposition of the function f, which represents
the nonlinear dynamic system presented in Equation 1, into the
sum presented in Equation 2. In this framework, the term G
represents the blended contribution of all second- and higher-order
interactions. A primary objective of the proposed methodology is to
quantify the relative importance of this term. As will be detailed in
Section 2.2 (see Equation 13), the magnitude of this residual term—
i.e., the difference between the full model output and the sum of
the first-order components—is used precisely to determine when
higher-order interactions are dominant or when the system can be
considered negligibly non-additive.

2.1 Support vector machines for system
identification

SVM is a kernel-based methodology that can be used either
for regression or classification problems. A system identification
problem can be formulated as a regression problem, where the
input variables contain a temporal window of the input data. In the
primal space, the model has the form

yln] = wp(x[n]) + b, 3)

where y[n] € R is the output of the model, x[n] € Rr(m+1) g
the vector containing the inputs of the model and their delays,
r represents the number of input variables, m is the length of
the temporal window and b is the bias term. For simplicity, it is
assumed that all variables have the same number of delays in the
model, but this is not a restriction. In fact x[#n] is a column vector
x1[n],- -, x[n]]", with x;[n] € R+D
and xj[n] = [x[n],---,x[n —m]] is the entry for the lth-input

of the form x[n] =
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regressor (e.g., the u; block in the example of the previous section)
and T represents the transpose. For simplicity, this study assumes
a uniform memory m for all inputs. The selection of an optimal
m (or different m; for each input) is a separate model selection
problem, which falls outside the scope of interpreting the already-
identified model. Besides, w:R"(’“"’l) —> IRP represents the
nonlinear mapping of the input vector into a high-dimensional
(and potentially infinite) feature space. This “kernel trick" is the
core of the SVM, allowing it to solve a linear regression problem
in the feature space, which corresponds to a powerful nonlinear
regression in the original input space (Suykens J. A. K. et al., 2002).
Moreover, @ € RP are the weights of the SVM model. Depending
on the selection of the kernel function, the dimension p of the
nonlinear mapping can be infinite.

Before the decomposition of Equation 2 can be performed,
an accurate, non-parametric model of the full function f in
Equation 1 must first be identified. Therefore, the process begins
by determining how to obtain f using SVM.

To make this structure concrete, consider a simple MISO
system with r = 2 inputs (u;, u2) and a uniform memory of m = 2.
The general input vector x[n] from Equation 3 for any time # is
constructed by “stacking” the present and past values of all inputs

T
x(n] = [[m[n],ul[n — mn - 2]
T
2]] ]
The SVM model will learn a single function f(x[#]) based on

[0l waln = 1), sl -

this vector. The goal of NObSP is to decompose the output of this
function, y[n], back into two components: one attributable to the
block [u;[n], ur[n — 1], u1[n — 2]]7 and another attributable to the
block [tz [n], ua[n — 1], ua[n — 2]]7.

Given the training set {x”, y}¥ | where the superindex (i)

indicates the i observation, the SVM regression problem can be
formulated as follows (Suykens J. A. K. et al., 2002):

N
Lo i (@)
min -0 w+c (é(’)+$* )
obgEs 2 ;
subjectto ¥ —@Tp(x?) —b < e +&0,

0T +b -y <e+6*@,
é-(i),&-*(i) >0,
Vi=1,...,N

where c is the regularization constrain parameter, in the Vapnik e-
insensitive loss function € is the tolerated error for the regression
model, €@ and £ are slack variables that manage data outside the
e-sensitive tube, and N is the number of observations. Taking the
Lagrangian and solving for the Karush-Kuhn-Tucker conditions
for optimally, the solution to problem Equation 4 in matrix form
is given by Suykens J. A. K. et al. (2002).

5 =Qa+b, (5)

where 7 € RY is a column vector representing the output of
the model, with components such that 3 = [H1,... N7,

Q ¢ RN*4 with d the number of support vectors, Q) =
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oM Tel)) = KW, x0) is the ijth element of the kernel matrix,
and K(-, -) is the kernel function, considering x® and x¥ the i-th
and j-th observation, respectively. Besides, @ € R? is a column
vector containing the Lagrange multipliers and b is the bias term.
To solve the problem (Equation 4), it is necessary to find the values
for the kernel hyper-parameters, as well as the model order m, that
minimizes the cost function.

Furthermore, for NObSP, it is crucial to normalize the input
data and center the kernel matrix. This normalization can be done
by subtracting the bias term in the estimated output such that
(Suykens J. et al., 2002).

y = Qca, (6)

where ¢ = M;2M,; is the centered kernel matrix, M; = Iy —
INII{,/N and M, = I; — ldlg/d are centering matrices, with Iy
the identity matrix of N size, and 1y € RN is a column vector of
unitary entries. The ij? entry of the centered kernel matrix is given
by Slg’j) = (p(xW) — M(p)T((p(x(/)) — lg), with 1, € RP the mean
value of the nonlinear transformation of the input variables.

Since SVM is used to identify the nonlinear model, then
the SVM model is able to represent, in a non-parametric way
(Equation 1). Then, the function f(-) should be a function that lies
in a Hilbert space, i.e., f(+) is a smooth and continuous function.

It is critical to understand the relationship between the SVM
model (Equation 3) and the decomposition goal (Equation 2). The
SVM does not inherently support the decomposition. Rather, the
trained SVM model becomes the black-box function f that is to be
interpreted. The SVM provides a non-parametric representation of
the overall system dynamics, y[n] = f(x[n]).

The NObSP methodology, introduced next, is the post-hoc tool
that operates on this already-trained SVM model. NObSP takes the
full model f and applies a geometric decomposition to retrieve the
non-parametric partial contributions fi(-), fi;(-), etc., which aligns
with the additive structure defined in Equation 2.

2.2 Nonlinear oblique subspace
projections for SVM

The core challenge in functional decomposition, and the
primary motivation for NObSP, arises when input regressors are
correlated. This collinearity in the input space is the underlying
cause for the subspaces in the nonlinear feature space (the high-
dimensional space mapped by ¢(-)) to be non-orthogonal. In
this feature space, the SVM model itself is linear (Equation 5).
However, the input correlation means that their respective feature
subspaces are not orthogonal; their intersection is not null and they
are overlapping.

A standard (which
orthogonality) would incorrectly capture energy from all other

orthogonal  projection assumes
overlapping subspaces, leading to an erroneous decomposition.
This is precisely the problem Nonlinear Oblique Subspace
Projections (NODbSP) is designed to address. NObSP operates
geometrically in this feature space, using oblique projections to
mitigate the cross-contributions from one overlapping subspace to
another and isolate only the unique contribution of each regressor
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lllustrative Example: Orthogonal vs. Oblique Projections
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FIGURE 1
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Illustrative example of NObSP for correlated regressors. (a) Shows the total observed signal y. (b) Shows the retrieval of fi(x;) = x‘f. (c) Shows the
retrieval of f,(x2) = exp(x2). In both (b, c), the orthogonal projection (red dashed line) fails to match the ground truth (black line), while the oblique
projection (NObSP, blue dotted line) successfully retrieves the true component.
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(Caicedo et al., 2019; Bring, 1996). It is important to note, however,
that in the presence of extremely high correlations, the method can
become numerically unstable and may produce unreliable results.

To illustrate this principle visually, a simple simulation was
performed. Consider a MISO system y = f(x1) + f2(x2), where the
true components are f;(x;) = x% and f>(x3) = exp(xz). The inputs
were generated such that x; is a noisy, correlated version of x; (e.g.,
X3 ~ x1 + ¢). The results are shown in Figure 1. It is important
to note that while the data was generated with a dependency, the
NObBSP method treats x; and x; as independent regressors. When
the algorithm isolates the f; contribution (conceptually “zeroing”
X3), it is treating x; as an independent subspace, not as a constant c.

As predicted by the theory, Figures1b, ¢ show that the
orthogonal projection fails, retrieving a blended, incorrect signal.
In contrast, the NObSP (oblique) projection successfully isolates
the unique contribution of both f(x1) and f(x2), matching the
ground truth. This simple example demonstrates the principle that
NODBSP extends to the high-dimensional feature space of the SVM.
The following defines this nonlinear extension formally.

Let define A = [A; A(;] as a matrix where its columns span
the subspace V C RN, with A € RN*", A; € RN*4 a partition
of A that spans the subspace V; C V and Ay € RN*(r=a) 4
partition of A that spans the subspace ;) C V. Considering
V=V& - DV & @&V, with @ the direct sum operator
and r the number of regressor subspaces embedded in A, then
the matrix that represents the oblique subspace projection onto V;
alongVyy = V1@ -~ ® V1 ® V1 @ --- @V, ie, the matrix
that projects onto the subspace of the input regressor x; along the
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complementary regressors subspace x(j), is denoted by Py and it
is defined as

Py = Az(AlTQ(Z)Az)TAlTQ(Z)» (7)
where 1 is the generalized inverse of Moore-Penrose
(pseudoinverse), Qg is the orthogonal projector onto

Null(AE)) C Vﬁl‘), computed as Q) =
orthogonal projector needed to find the base onto Vj;, and

computed as P(l) = A(l) (A};)A(D)TA?}),

Iy — Py, Py is the

being Null (-) the null space
of a matrix.
Considering y; = fi(x;), as presented in Equation 2, the

objective is to find an oblique projection matrix such that

1 =Pypp (8)

where y is the output of the SVM regression model and Py
is the oblique projection matrix onto the subspace spanned by

the nonlinear transformation of the It

input variable, along the
direction defined by the other variables, represented by (I). As
presented in Caicedo et al. (2019), proper kernel evaluations can be
used to obtain these projection matrices. Therefore, a base for the
subspace that represents the nonlinear transformation of the input

regressor x; can be found by using the kernel matrix €, where

2 = K, x0), ©)
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with xgi) =1[0,---,x[i],- -, x[i — m],---,0]. In the same way, a
basis for the subspace that represents the nonlinear transformation
of the complementary regressors x(j) is defined by the kernel matrix
(;), where

o = kalf, x),

) (10)

,X1[i - m])"’)xl—l[i]>"’>xl—1[i -
sxili = ml - lil, - xli = mll In

and ng =[xl
ml, 0, 0,151 [i], - -
summary, the column space of ; represents the subspace for
the nonlinear transformation of the variable x;, onto which it
will project the estimated output of the model, and the column
space of &) represents the reference subspace for the projection.
Using both kernel matrices, the nonlinear oblique projection can
be defined as

Py = ﬂz(ﬂzTQ(Z)ﬂz)TﬂlTQ(Z), (11)

where Q(l) =1Iy— P(l)’ and P([) = ﬂ(l)(ﬂg)ﬂ(l))Tﬂa). For more
details on the proof of Equation 11, please refer to Caicedo et al.
(2019).

The nonlinear version for the oblique projections presented in
Equation 11 can be used to decompose the output of a dynamic
model into additive components, each representing the nonlinear
dynamic contribution of the input variables on the output. In
this study, the focus is placed on retrieving the first-order main
effects (ie., j/l), as this main effect provides the most direct
interpretation of each input regressor’s partial contribution. It is
crucial to discuss the role of second- and higher-order terms in
this framework.

While the NObSP methodology can be formally extended to
compute interaction effects (e.g., y;;,) by defining a target subspace
Q) (Caicedo et al.,, 2019), this interaction effect introduces a
significant interpretive challenge. The fundamental issue lies not
in the projection method, but in the functional nature of the
(unknown) interaction itself.

NObSP, by design, finds the total partial contribution of
a regressor (e.g., ). If the underlying model contains a
- x3), the
projection—which is analogous to setting other inputs to zero—

simple multiplicative interaction (e.g., fiy = xi

successfully isolates the main effects, as the interaction term x; -
0, vanishes.

However, this behavior cannot be guaranteed for an arbitrary
nonlinear function. Consider, for example, a model with a non-
separable additive interaction, such as f(x1,x) = fi(x1) +
fn(x2) + cos(x; + x3). In this case, the NObSP projection for
x1 (analogous to setting x, = 0) will correctly retrieve the
total contribution § =~ fi(x;) + cos(x;), and the projection
for x, will retrieve 3, ~ fu(x2) 4+ cos(xz). The interaction
term cos(-) becomes additively coupled (or blended) with both
main effects.

Thus, NObSP is performing correctly; it reveals exactly what the
black-box model is doing. The challenge, which remains an open
research problem, is one of decoupling: how to further separate
the “pure” main effect (e.g., fi(x1)) from its share of the non-
separable interaction (e.g., cos(x;)) when a pre-defined structure

cannot be imposed.
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Given this challenge, this paper adopts a pragmatic and clear
quantitative approach. First, the sum of all identified main effects is
computed as

(12)

P
Ymain = Zyl'
=1

Then, the interaction residual, Finteraction, 15 defined as the
difference between the full black-box model output and the sum
of the main effects, i.e.,

A

r
Tinteraction = Y _&main = 5’ - Zj}l (13)
I=1

This residual Tipteraction Serves as a direct, quantitative
measure of the total contribution of all second- and higher-
The magnitude of this
residual (e.g., its variance or RMSE) directly illustrates the

order non-separable interactions.
relative importance of these higher-order contributions. A
small residual indicates the first-order decomposition is a
faithful representation (the system is largely additive), while a
large residual indicates that complex, high-order interactions
are dominant.

Additionally, to apply NODbSP to new testing data, the
projection matrices should be computed, which imply to
find the kernel matrices £; and (). These operations are
computationally expensive.

2.3 Out-of-sample extension for NObSP

The vectors y; can be seen as the nonlinear contributions on the
output of the I-th input feature. NObSP provides a way to compute
each one of the contributions for a single input instance. To better
illustrate this fact, notice that oblique projections arise naturally
from a weighted least-squares problem of the form

2 (14)

& = min||Qp (y — e

with §, = €@;,. Then, given an input instance x? € R’ the
model predictions could be decomposed 7@ = YJ_, )A/E’), where
?5” = ;. 2 sxli —

7 = K, x0), and x{” = [0, x[il, -

m],---,0], where

ey cae),
k=1

where C represents the column space. The values 5};:‘) indicate the
nonlinear contribution of the I-th input feature. Therefore,

& = (@ e)'ely. (15)

Finally, considering a new input sample x = [x;[n],--- ,x1[n—
m), -+, x[n],- -+, x[n — ml]], the output of the model can be

approximated by
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Input: Regressor matrix with training samples X €

RV<(rm+r) " matrix of support vectors for the model
Xgy € RNgvx(l"m-%—f')’
kernel function with Ngy the number of support

vectors,

the kernel parameters for the

and the « coefficients that solve the
SVM problem in the dual space.

Output: Matrix which contains the first-order
contributions of each input regressor on
the estimated output Y e RW-m1)xr — and the
coefficients for the out-of-sample extension a; €
RVsv for 1={1,...,r}.

© y < Qca as in Equation 6.

for 1=1—r do
for i=1— N do

for j=1—-Ns, do

5251’” <—K(X§i), Xé\J/)) as in Equation 9

g b W N =

(1,7) (1) (7) : :

Sl(l) HK(X(I)’XSV) as in Equation 10
end for

end for

P <) (20

Q) «Iv-Pq)
11: Pl/(l) :ﬂl(ﬂIQ(l)Ql)TQIQ(l) as in Equation 11

21))'ef;)

° 9 N9

Y

12: y1 < Py 1)y as in Equation 8

13: & < (212;)7@lj; as in Equation 16
14: end for

15: Y « concatenate all y;

Algorithm 1. Nonlinear Subspace Projection (NObSP).

I~ Y K, xsy)ewy. (16)
I=1

In this way, for new data points x, the output of the
model is given by y; = K(x;xsv)a), where xgy are the
support vectors and x; = [0,---,x[n],--- ,xy[n — m],---,0],
with n representing the time. In addition, the partial nonlinear
contribution of the I regressor does not require the computation
of the oblique projections.

Algorithm 1~ summarizes the
decomposition of the output using NObSP and for the computation

of the out-of-sample extension.

computation for the

2.4 Simulation study

Figure 2 graphically represents the main objective for the

simulations presented in this paper. First, an SVM regression model

N
n=1>

where N represents the number of samples. Then, the dynamical
system is decomposed using NObSP, which produces an additive
model. Each component of the decomposed model represents the

is trained by using the set of observations {u;[n], uz[n], y[n]}

nonlinear contribution of each input variable, or the interaction
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effects, on the output. Finding the dynamic functional relation
between each input and the output allows understanding the
contribution of each variable to the output. The knowledge of the
input/output dynamics relation might facilitate the management
of each branch and would reduce the complexity of the model
or even design simpler and appropriate control systems. For the
simulations presented in this paper, interaction effects among the
input variables on the output are not considered.

The simulations consider Wiener and Hammerstein block-
oriented design for the nonlinear system. Specifically, this paper
uses the same system design presented by Castro-Garcia and
Suykens (2016). In Castro-Garcia and Suykens (2016), the
researchers used the g-notation for system identification, where
g 'u[n] = u[n — 1]. For the first branch, as presented by Castro-
Garcia and Suykens (2016), the nonlinear block is given by

filn] = 2°[n], 17)

where z[n] is the input sequence to the nonlinear block and
Gi(g) is a linear discrete-time transfer function defined in the
g-operator notation:

B
@@=;g,

where

Bi(g) = 0.0089¢> — 0.0045g> — 0.0045¢ -+ 0.0089,
A1(q) = q° — 2.5641* + 2.2185q — 0.6456.

For the second branch, the nonlinear block is given by
faln] = sinc (z[n]) 2[n), (18)

where

sinc (z[n]) = M,
z[n]
and the linear block is given by
By(q)
Ga(gq) = ,
2(q) @)

where

Ba(q) = 0.0047¢° + 0.01424° + 0.0142q + 0.0047,
Ay(q) = q° — 2.458¢% + 2.262q — 0.7654.

The output of the model is the result of two additive
components, one per branch, such that

ylnl = x1[n] + x2[n] + 1,

where 7 is a Gaussian noise, x] [#] and x;[n] are defined below for
each block-structure. The output for the Wiener system is given by

ywlnl = Gi(@)fi (u1[n]) + G2(q)f2 (u2[n]) +n,

where x;[n] = Gi(q)fi(ui[n]) represents the linear transformation
Gi(q) applied on the sequence f;(u;[n]), while fi and f, are
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yInl = f(uy, uz)

Complex Nonlinear System
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FIGURE 2

Proposed decomposition scheme using NObSP. The complex black-box model is decomposed into nonlinear systems that represent the decoupled

nonlinear contribution of each input variable on the output.

ynl = fi(uy) + fo(uy)

Additive Nonlinear Systems
(Interpretable Model)

defined in Equations 17, 18, respectively. Here, x;[n] represents
the unobservable internal output of the i-th branch, which is
the “ground truth” signal that the NObSP decomposition aims
to retrieve. In addition, the output for a Hammerstein system is
given by

yulnl = fi (Gi(@ui[n]) + £ (G2(Quz[n]) + 1,

where x;[n] = f; (Gi(q)ui[n]), for i = {1,2}.

Two input signals were created for both scenarios to construct
the training and test datasets. For u;[n], N samples were drawn
from a pseudo-binary random sequence (PBRS). This signal was
chosen because its broadband spectral properties are ideal for
exciting a wide range of system dynamics, a standard practice in
system identification. The signal was generated with the function
pbrs, where the parameters used were an order of 99, a length of
N samples, and a seed of 99 different binary elements, computed
using a random sequence obtained from the function rand, both
functions from MATLAB R2022b. For uy[n], N samples were
drawn from a sinusoidal signal u;[n] = sin (217 §). This signal
was chosen to test the model’s ability to identify and separate a
purely frequency-specific component.

Since the quality of the projections depends on the performance
of the model. Several simulations were performed to test the
robustness of the projections.

The tests performed are described below. For each simulation
test (i.e., each combination of N, m, SNR, or amplitude ratio), the
experiment was repeated 15 times with different random seeds for
the noise generation (n). The RMSE values presented in the figures
represent the average result of these 15 trials, providing a robust
measure of performance.

These simulation parameters were chosen to connect with
practical, real-world contexts. The number of samples N reflects the
data availability from an experiment. The model order m represents
the system’s memory or complexity; a real-world chemical process
might have a large m, while a simple electronic circuit might have

1 The code used for the simulations, for reproducibility of the results,
can be found in the following repository: https://github.com/JoeCode91/
EAAI_SystemDynamicldenification_Interpretability.
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a small m. Finally, the SNR reflects the quality of the measurement
sensors and the level of ambient noise in a physical plant.

2.4.1 Model order and number of training
samples

The impact of the model order had been evaluated m, and the
number of training samples used to fit the model, N. For each
pair of variable values, the Root Mean Squared Error (RMSE) was
computed between the predicted output and the real output. The
RMSE was also calculated for the model output and the estimated
projections, i.e., the estimated nonlinear contributions of each
branch x1[n], and x,[#n].

For the simulation, the following ranges of values were used:
N takes values between 50-8,000 observations, while the order of
the model, m, varies between 5 and 200. Since the Wiener and the
Hammerstein structures impose different dynamics on the output
signal, such dynamics are expected to affect the optimal values for
N and m in both block-system structures, thereby affecting the
projections. The goodness of the fit was evaluated based on the
estimations on a test dataset.

2.4.2 Influence of external noise

The robustness of the projections to external noise was
evaluated by changing the signal-to-noise ratio (SNR) of the output
signal. Simulations had been performed for values of SNR ranging
from 0.8 dB up to 18 dB. This simulation used the values for N and
m, in the SVM model, that produced the lowest RMSE.

The impact of changing the amplitude of noise in the output
was computed for the model output, as well as for the estimated
projections and the out-of-sample extension model (Equation 15).

2.4.3 Influence on the relative difference in
amplitude for both branches

As shown in Figure 2, the main objective of NObSP is to
decomposed the output y into an additive model where y =
X; + X3 + X;2. However, it is important to estimate the effect

frontiersin.org
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FIGURE 3
Block system approach. This figure presents the frequency response of the filters, first row, the nonlinear blocks, second row, and the output for the
Wiener and the Hammerstein block-system structure, using the PBRS and the sinusoidal signal as input.

of changing the relative magnitudes of the components, i.e.,
what happens when the magnitude of x; is larger than the
magnitude of x; and vice versa. In Caicedo et al. (2019), it was
shown that, for the static case, NObSP is able to retrieve the
dynamics of different components, even if there were differences
in magnitude. The static case algorithm also determined when
the contribution to the output of an input regressor was close
to zero.

The impact of the changes in relative amplitude between the
signal x; and x;, is evaluated for both nonlinear block structures.
The relative gain values range from 0.1 to 1, i.e., the amplitude
of the signal x; varies between 0.1 to 1 times the magnitude of
x3. In total, four simulations had been performed, two for each
system structure, one varying the relative amplitude of x; using
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as reference x,, and varying the relative amplitude of x, using x;
as reference.

3 Results

In Figure 3, in the top row, it is shown the normalized frequency
responses for both linear systems G; and G,. The second row
presents the nonlinear functions used for each model branch. On
the left, the function f; (1) = z3[n] is presented, and on the right,
the function f,(n) = sinc (z[n]) z*[n]. The third row indicates the
output of the Wiener system, y,,[#], when using the PBRS signal as
input for the first branch and the sinusoid as input for the second
branch. The fourth row displays the output for the Hammerstein
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Normalized RMS Error obtained for the fit of the output, and the estimated partial (non)linear contributions of the input regressors on the output.

system, y[n], using the same input configuration as for the Wiener
case. As can be seen, the dynamics for both systems are entirely
different: yyw [n] presents a smoother behavior, mainly caused by
the application of a low-pass filter after the input signals have been
non-linearly transformed. While in yg[#], the nonlinear function
was applied after filtering the input signals, which results in a more
complex behavior than yw[n].

Figure 4 presents the evolution of the error for the different
values of N and m. The first column shows the RMSE for the global
fit of the model, i.e., how the model was able to fit the output
using the input signals. The second and the third columns show
the RMSE for the estimated projections X1 and x. The first row
indicates the results for the Wiener structure, while the second row
displays the results for the Hammerstein structure. Remarkably,
for the output, first column, it can be seen that the Wiener and
the Hammerstein systems present a different behavior, having a
minimum for the RMSE error in different regions of the figure.
For the Wiener block structure, the minimum RMSE is given by
a low model order, m, but a large number of observations N. In
contrast, the Hammerstein structure also requires a low model
order, m, but a smaller number of observations, N. In addition,
as can be seen, the RMSE for the projections behaves similarly for
the Wiener and the Hammerstein structures. Besides, as the model
order increases, the error in the projections increases. Notably,
the minimum RMSE error in the projections is produced for
the same values of N and m that minimize the RMSE for the
model output, which indicates, as expected, that the performance
of the decomposition algorithm is related to the performance of
the model.

Figure 5 presents the results for the model fit, as well as for
the estimated contributions, X1 and X, using test data. The first
column shows the results for the Wiener structure, while the second
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column shows the results for the Hammerstein structure. The first
row shows the estimated output of the model, the second row
displays the estimated projections, and the third row presents the
calibration plot to analyze the regression output. First, as can be
seen in both cases, the model is able to predict the behavior of
the output signal accurately. In the second row, it is shown that
NODSP is able to accurately retrieve the signals x; and x;. In the
case of the Wiener structure, the dynamics of x;, generated using
the PBRS signal, present some peaks that NObSP cannot reproduce.
However, NODbSP can estimate the nonlinear contributions for the
general dynamics of the signal and the projections. The third row
displays the calibration plots, showing that for X; in the Wiener
structure, the problem with the peaks causes horizontal lines that
deviate from the identity line, which represents a model without
errors. The calibration plot indicates a suitable dispersion around
the identity line for the other projections. However, a small span
error is observed, which is caused by errors due to scaling factors.

Figure 6 presents the RMSE curves for a test set. Here,
the behavior of the models has been evaluated for different
values of N and m. The left columns display the results
for the Wiener structure, while the right columns display
the results for the Hammerstein structure. The first column
shows the results using the projection matrices, and the second
column shows the results from the out-of-sample extension.
As expected, this figure displays a similar behavior of the
RMSE for both the projections and the results obtained
using the out-of-sample extension. It is important to highlight
that the results for the out-of-sample extension present some
peaks, which might be produced due to an ill-conditioned
least-square problem, mainly caused by rank-deficient kernel
matrices. This effect is more remarked for the Hammerstein
system structure.
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Results form NObSP applied to Wiener and Hammerstein block system structure. The first row displays the model fit in magenta and the real output
in black. The second row presents the real nonlinear contribution of the input variables on the output and, in magenta, the estimated contributions

using NObSP. The third row shows the calibration plots to analyze how well the algorithm predicts the projections. In some images, the x-axis limits
are set for visualization effects; however, the behavior of the dynamic is similar in the entire interval.
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Figure 7 displays the results for the changes in SNR. The first
row presents the results for the Wiener block structure and the
second for the Hammerstein block structure. The first column
shows the results for the output fit, while the second and the
third ones present the results for the projections ¥; and x,. The
figure shows that when SNR increases, the fit error decreases for
both the Wiener and the Hammerstein systems, which is to be
expected. Additionally, the projections, x1 and X, for the Wiener
system seem to be independent of the SNR within the range of
variation. Similarly, the projections for the Hammerstein system
seem to decrease; however, they exhibit a higher RMSE than the
Wiener structure.

Figure 8 presents the results for the changes in the relative
amplitude between the signals x; and x,. As can be seen, changing
the relative amplitude of x; in relation to x,, in both system
structures, increases the error in the model fit, although not
significantly. However, the error of the projections decreases. When
changing the relative amplitude of x; in relation to x;. It can be
seen that the fit of the model improves when the amplitudes of the
signal are equivalent. As in the previous case, the projection errors
also decrease.

3.1 Computational performance validation

To quantitatively validate the practical impact of the
computational cost reduction, a timing analysis was conducted.
The experiment compares the execution time of two methods for
decomposing the model output y:
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1. NObSP: The original approach, which requires the re-
computation of the full projection matrices Py (Equation 11)
for the entire dataset. The complexity of this method is
dominated by operations on the N x N kernel matrices, leading
to O(N?) complexity.

2. Out-of-sample extension: The efficient method (Equation 16),
which calculates the &; coefficients. The complexity of this step
scales with O(Nd?), where d is the number of support vectors
and, critically, d < N.

The average execution time (over 15 simulations) was recorded
for both methods across the full range of model orders (m)

and sample sizes (N) used in the study. “Speedup Ratio” was
Time(Full NObSP)

then calculated as Time(OOS Extension)

to quantify the relative
performance gain.

Figure 9 presents the results of this analysis for both the Wiener
and Hammerstein system simulations. The data clearly shows a
dramatic increase in the speedup ratio as the number of samples N
grows, while the model order m has a comparatively minor impact.
For the Wiener system, the OOS extension was found to be over 75
times faster, and for the Hammerstein system, over 147 times faster,
at the largest sample size (N = 8,000).

A non-monotonic behavior is also observed (i.e., the speedup
ratio occasionally drops as N increases). This is likely attributable
to the numerical properties of the kernel matrices being solved
in NObSP method (Equation 16). The efficiency of the underlying
numerical solver used to compute the pseudoinverse can vary
depending on the specific characteristics of the matrix at different
scales (e.g., its condition number), causing these local variations in
computational time.
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Despite this numerical variance, the overall behavior is
consistent with the theoretical complexity. The O(N?) complexity
of the Full NObSP method causes its execution time to grow
cubically, becoming computationally prohibitive for large
datasets. Conversely, the OOS extension’s cost scales much
more favorably, as it avoids operations on the large N x N
matrices. This provides strong quantitative
validation—demonstrating a speedup of more than two

identification problems.

4 Discussion

experiment

theoretically, but also practically, superior for large-scale system

This paper presents an extension of NObSP for the
decomposition of the output of a nonlinear dynamical system.

orders of magnitude—that the OOS extension is not just
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The extension allows the decomposition of a model, initially

frontiersin.org


https://doi.org/10.3389/frai.2025.1706566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Pena-Campos et al.

identified as a nonlinear mean average system using SVM, into
additive components where each one represents the nonlinear
contribution of each input signal on the dynamics of the output.
In the literature, some methodologies exist that allow retrieving
the functional relationship between inputs-outputs in a black-box
model. However, these methods require to define a priori the
relevant effects of interest for the designer, which can bias the
identified model, e.g., functional ANOVA models (Abramovich and
Angelini, 2006). Other post hoc methods can retrieve the functional
relation for static models, such as the Partial Dependence plot
(PDP) (Burkart and Huber, 2021). In addition, Volterra series can
be used for dynamic system identification. However, a review of the
literature suggests that this method does not allow to estimate the
partial nonlinear dynamic contribution of each independent input
(Cheng et al., 2017; Dalla Libera et al., 2021). Likewise, in Pei et al.
(2022), the authors proposed a framework to replicate traditional
methods for structural health monitoring using sigmoidal neural
networks, which improves the interpretability of the resulting
model. Pei et al. (2022), used domain knowledge to identify the
dominant features and approximate their contributions using
sigmoidal neural networks, thereby fitting the specified function
approximation using a linear combination of these learned features.
Even though these sigmoidal functions are generic, this method
is specific for NN and imposes a specific model architecture
by the association of some types of nonlinearities, which can
incorporate domain knowledge. Additionally, in the context of
optimization, this training method produces a local search. In
contrast, NObSP is a more general framework since it allows
the retrieval of the nonlinear contribution of the inputs without
additional processing from an already trained black box model.
In this sense, the global search developed by the minimization
of the approximation error in the training process is not biased
by NObSP methodology, and the functional relation between the
input regressors and the output is not restricted by any condition.
These characteristics allow the use of NObSP in different domains
without the necessity of domain knowledge. NObSP was initially
developed for LS-SVM static regression models by Caicedo et al.
(2019). This study shows that NObSP is able to retrieve the partial
nonlinear dynamic contribution of each input variable on the
output for Wiener and Hammerstein block-system structures. In
Figure 4, it is observed that the goodness of the model fit directly
impacts the performance of NObSP. Therefore, in order to obtain
an adequate decomposition, it is crucial first to have a model that
fits the data satisfactorily.

In general, SVM performs a nonlinear transformation on the
input data and maps it to a Hilbert space, facilitating the solution
of the regression problem on the transformed space since, in this
space, the model is considered linear. For this reason, SVM is only
able to identify functions that lie on a Hilbert space. Interestingly,
the kernel matrix represents a low-rank approximation of the
hyperplane where the transformed data lies, which in turn means
a low-rank approximation of the manifold of the identified model.
Since the number of observations, N, determines the size of the
kernel matrices, it impacts the projections due to the fact that
the maximum rank for the kernel matrix is N. More specifically,
the size of the kernel determines the number of vectors that
represent the column space of the hyperplane in the Hilbert space.
Considering this fact, Wiener structures seem to generate subspaces
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of larger dimensions, while the Hammerstein model needs fewer
basis vectors to span the subspace of the nonlinear transformations.
This issue might indicate that the manifold where the input and
output observations lie might be more complex for the Wiener
structure than for the Hammerstein structure.

Another approach to the out-of-sample extension is to consider
that 3, = Py ()3, then 31 = Py Rca = Qcay, where a; € R™. And
solving using least squares, it is obtained &; = (SZEQC)TSZE}Z. The
decomposition of the output model y, = K(x, XSV)&Xj retrieved
by the @, coefficients just need one evaluation of the kernel but
the output is noisier than that given by the projections. This issue
may be caused by the fact that there is an overlap of the subspaces,
ie, (e C(R) # ¥, where C(Rj) = Span(L;). The subspaces for
each input variable are not disjointed, probably due to the low-rank
approximation caused by the number of support vectors and the
number of data samples. Nevertheless, the decomposition of the
output model using &,; coefficients obtained by solving weighted
least squares, i.e., yy = K(xj, XSV)&XJ‘ produces the same results as
the projection matrices since y, C C(®;). However, to compute
the contribution of each input regressor, the kernel function needs
to be evaluated.

In addition, concerning the out-of-sample extension, it was
shown that the & coefficients can capture the dynamics of
the system, largely reducing NObSP computational time and
complexity. However, in some cases, ill-conditioned matrices
can produce inflated coefficients, which negatively impacts the
performance of the decomposition. Here, it is important to take
into consideration several aspects. First, SVM is able to reproduce
functions that lie in a Hilbert space. Regarding the application
of the methodology to more complex systems beyond the tested
Wiener and Hammerstein structures, the theoretical limits of the
SVM model itself must be considered. SVMs, and specifically the
LS-SVM framework used in this work, are established as universal
approximators for functions that reside within a Reproducing
Kernel Hilbert Space (RKHS) (Suykens J. A. K. et al., 2002; Vapnik,
1999).

These spaces are known to contain functions that are smooth
and continuous. The NObSP algorithm, being a post-hoc geometric
methodology, is designed to decompose the function already
learned by the SVM. Therefore, it is intuited that NObSP can
successfully retrieve the partial components of any system that the
underlying SVM can accurately model. As long as the system’s
nonlinear dynamics are not so irregular as to fall outside the RKHS
(e.g., highly discontinuous functions) that the SVM is capable of
approximating, the decomposition is expected to be valid.

A formal mathematical proof defining the precise functional
boundaries (e.g., which specific compositions of f(-) and G(q))
are identifiable by an SVM and, subsequently, decomposable by
NObSP remains a complex and open question that is outside
the scope of this paper. Furthermore, the practical success of
this decomposition relies on the numerical stability of the kernel
matrices (Equation 11), which must be well-conditioned (Caicedo
etal., 2019).

Considering the changes in the SNR of the output signal, it
can be seen in Figure 6 that the fit of the model and the estimated
projections x; and X, improves at the SNR increase. This behavior
is expected since the quality of the projections depends directly
on the quality of the model fit. For this reason, before applying
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the decomposition, it is important to guarantee that the model fit
is accurate. If this condition is not fulfilled, then NObSP will not
perform properly. In such cases, the estimated manifold where the
input and output observation lies might be under-fitted or over-
fitted. The effect of each one of those phenomena on the projections
is yet to be studied.

Concerning the changes in the relative magnitudes of the
estimated projections, it is shown in Figure 8 that when the signals
are comparable in magnitude, the normalized RMSE value is lower
than when there is a significant relative difference in magnitude.
Interestingly enough, increasing the magnitude of the component
x; reduces the RMSE for the fitting in the model output. When the
PBRS signal is analyzed, it can be found that it does not belong to
a Hilbert space but in a Bounded Variation space since its second
derivative is discontinuous (Parhi and Nowak, 2021). Therefore, by
increasing the relevance of the discontinuous components on the
output, the output signal diverges more and more from a Hilbert
space. In Figure 6, it can be seen that for the Wiener structure, the
borders of x; are not well captured by NObSP, which is where the
second derivative of the function is discontinuous.

To finalize, it is important to note that the main objective of
this paper is not to identify whether the system contains a Wiener
or a Hammerstein structure nor to propose a new identification
algorithm but to provide an algorithm to decompose the output
of an already identified system into independent components
related to each input variable. In this sense and outside of the
scope discussed in Rudin (2019), the methodology proposed in
this manuscript begins with an accurate black-box model that
could predict the behavior of the system. Based on this model and
using a geometric approach, the interpretation algorithm projects
the influence of each input regressor over the other regressors
using the kernel matrix of the model, obtaining the marginal
functional relation between the input regressors and the output.
Once these signals are obtained, in the literature, there exist several
methods that are able to identify each component of a Wiener
or a Hammerstein structure (Castro-Garcia and Suykens, 2016;
Bottegal et al., 2018; Bottegai et al., 2017; Falck et al., 2009). In
addition, some open questions require further studies, such as:
What type of composition of input signals, nonlinear functions, and
linear transformations can be identified accurately using SVM? Can
NODBSP be applied to other nonlinear identification methods? Can
NODSP allow a suitable retrieval of the second-order interaction
between inputs?

5 Conclusion

This research demonstrates that Non-linear Oblique Subspace
Projections (NObSP) are a viable and effective method for
retrieving interpretability from black-box Support Vector Machine
(SVM) models used in dynamic system identification. This work
showed that a rigorous geometric decomposition, specifically
one that handles correlated regressors, can successfully retrieve
the blended dynamics of a nonlinear system. This moves
beyond simple feature attribution by reconstructing the full, non-
parametric contribution of each input regressor. As the simulation
results in the previous section confirmed, NObSP effectively
decomposed the identified SVM model into its constituent Wiener
and Hammerstein sub-systems, accurately retrieving the partial
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dynamics. The method’s robustness was also validated against
significant signal noise, showing that decomposition quality
improves as the Signal-to-Noise Ratio (SNR) increases.

The research findings also provide insight into the modeling
of nonlinear dynamics. The analysis of the training requirements
showed that the Wiener structure requires a larger number of
training samples (N) than the Hammerstein structure for an
accurate fit. This suggests a higher functional complexity in the
identified manifold, characterized by the presence of more abrupt
signal changes and discontinuities. These discontinuities require a
richer, higher-dimensional basis (i.e., more support vectors) for the
SVM to model accurately. On the practical side, this work validated
an efficient out-of-sample extension. The computational analysis
demonstrated a dramatic reduction in execution time, confirming
that the O(Nd?) method is scalable and practically superior
in executipon time, while producing comparable decomposition
results to the O(N?) approach for large datasets.

Future research should focus on extending this geometric
framework to other black-box models. Extending NObSP to
neural networks, for example, is a significant challenge, as it
would require developing a new mathematical formulation to
handle the lack of an explicit kernel structure and to manage the
high-dimensional, coupled nonlinearities introduced by activation
functions. This validation of NObSP on sequential, dynamic
data also suggests a promising direction for future work. It
demonstrates that a rigorous geometric decomposition is a viable
methodology for interpreting sequential data, offering a path
toward true functional decomposition in other complex sequential
model architectures, such as Transformers or Long Short-Term
Memory (LSTMs).
while this work validated the
robustly using established simulation benchmarks (Wiener

Finally, methodology
and Hammerstein), a crucial next step is the application of this
framework to real-world experimental data. This will be essential to
test the method’s performance against non-ideal conditions, such
as unmodeled cross-couplings and non-Gaussian noise, which are
common in physical and industrial processes.
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