AUTHOR=Pinzuti Edoardo , Tüscher Oliver , Ferreira Castro André TITLE=Comparative performance of large language models in emotional safety classification across sizes and tasks JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1706090 DOI=10.3389/frai.2025.1706090 ISSN=2624-8212 ABSTRACT=Understanding how large language models (LLMs) process emotionally sensitive content is critical for building safe and reliable systems, particularly in mental health contexts. We compare the performance of LLMs of different sizes on two key tasks: trinary classification of emotional safety (safe vs. unsafe vs. borderline) and multi-label classification using a six-category safety risk taxonomy. To support this, we construct a novel dataset by merging several human-authored mental health datasets (> 15K samples) and augmenting them with emotion re-interpretation prompts generated via ChatGPT. We evaluate four LLaMA models (1B, 3B, 8B, 70B) across zero-shot and few-shot settings. Our results show that larger LLMs achieve stronger average performance, particularly in nuanced multi-label classification and in zero-shot settings. However, lightweight fine-tuning allowed the 1B model to achieve performance comparable to larger models and BERT in several high-data categories, while requiring < 2GB VRAM at inference. These findings suggest that smaller, on-device models can serve as viable, privacy-preserving alternatives for sensitive applications, offering the ability to interpret emotional context and maintain safe conversational boundaries. This work highlights key implications for therapeutic LLM applications and the scalable alignment of safety-critical systems.