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Understanding how large language models (LLMs) process emotionally sensitive
content is critical for building safe and reliable systems, particularly in mental
health contexts. We compare the performance of LLMs of different sizes
on two key tasks: trinary classification of emotional safety (safe vs. unsafe
vs. borderline) and multi-label classification using a six-category safety risk
taxonomy. To support this, we construct a novel dataset by merging several
human-authored mental health datasets (> 15K samples) and augmenting them
with emotion re-interpretation prompts generated via ChatGPT. We evaluate
four LLaMA models (1B, 3B, 8B, 70B) across zero-shot and few-shot settings.
Qur results show that larger LLMs achieve stronger average performance,
particularly in nuanced multi-label classification and in zero-shot settings.
However, lightweight fine-tuning allowed the 1B model to achieve performance
comparable to larger models and BERT in several high-data categories, while
requiring < 2GB VRAM at inference. These findings suggest that smaller, on-
device models can serve as viable, privacy-preserving alternatives for sensitive
applications, offering the ability to interpret emotional context and maintain safe
conversational boundaries. This work highlights key implications for therapeutic
LLM applications and the scalable alignment of safety-critical systems.

KEYWORDS

large language model (LLM), scaling and fine-tuning, privacy-preserving Al, emotional
safety classification, affective computing

1 Introduction

Large Language Models (LLMs) are increasingly embedded in mental health
applications, conversational agents, and therapeutic tools (Bucci et al., 2019; Mitsea et al.,
2023; Dehbozorgi et al., 2025; Miner et al,, 2017; Yang K. et al., 2024; Lai et al., 2023).
This trend raises urgent questions about the emotional safety of these systems, especially
when deployed in contexts involving vulnerable populations. An essential prerequisite for
responsible deployment is the ability of these models to recognize and regulate emotionally
harmful content-ranging from subtle expressions of distress to overtly toxic or dangerous
language (Inan et al., 2023).
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One of the core challenges in emotionally safe Al lies in the dual
effect of model scaling. Larger LLMs are not only more fluent and
context-aware but also more capable of generating harmful outputs,
owing to their greater exposure to toxic, biased, or stereotyped
content in training data (Machlovi et al., 2025; Ganguli et al,
2022; Vidgen et al., 2023; Tosato et al, 2025). In response to
these risks, systems like OpenAI’'s Moderation API (OpenAl, 2023)
and LlamaGuard (Inan et al.,, 2023) have emerged as mitigation
strategies, applying taxonomic filters or post hoc classifiers to
flag unsafe outputs. While these tools can be effective in general-
purpose settings, they largely treat emotional safety as an external
moderation problem rather than as a core capability embedded
within the model itself.

In parallel, a growing body of work has begun to treat emotional
safety as an intrinsic model property-evaluating LLMs directly
on mental health datasets and comparing their performance
against robust baselines such as BERT. These studies benchmark
LLMs on clinically relevant text classification tasks and explore
interpretability in psychological domains (Yang K. et al.,, 2024;
Lai et al, 2023; Pinzuti et al, 2025). BERT, in particular,
remains a widely adopted reference point in this space, given
its strong performance, efficient architecture, and demonstrated
ability to approach human-level accuracy on emotionally sensitive
classification tasks (Devlin et al., 2018; Lee et al., 2020). While
these approaches offer valuable insights, its comparisons involve
models with varying architectures and training data, making it hard
to isolate the impact of scale or fine-tuning (Zhang et al., 2024).
This challenge echoes findings from domain-specific transfer-
learning research, where it was shown that targeted fine-tuning
of pretrained models can substantially improve performance in
specialized contexts such as financial sentiment analysis Ergun
and Sefer (2025). Crucially, this prior work collectively overlooks
whether small, on-device models-where only 4-16 GB of RAM
are typically available for all computations—can, with fine-tuning,
achieve safety performance comparable to larger models, a key
concern in privacy-sensitive domains such as mental health (Yao
et al,, 2024). Specifically, these raises two questions: (1) To what
extent does scale improve a model’s ability to detect or avoid
emotionally unsafe content? (2) And can smaller models, given
targeted supervision, recover the performance advantages typically
attributed to scale?

Here, to address these questions, we investigate the scaling
behavior of LLMs in the context of emotional safety classification,
with a focus on how model size influences performance under
different levels of supervision. Our study targets two core tasks:
trinary classification of text contenct safety (safe vs. unsafe
vs. borderline) and multi-label classification grounded in Llama
guard’s six-category emotional risk taxonomy (Inan et al., 2023).
To support this analysis, we construct a unified benchmark
by merging multiple real-world mental health datasets and
augmenting them with reappraisal-style prompts generated by
ChatGPT (OpenAl, 2023). We evaluate LLaMA models (Dubey
et al.,, 2024; Touvron et al., 2023) across four scales (1B, 3B, 8B,
70B) under zero-shot, few-shot, and fine-tuned conditions, using
BERT for (Reimers and Gurevych, 2019) task-specific baselines.
By curating a controlled evaluation framework and conducting a
systematic comparison across architectures and training regimes,
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we identified a performance threshold at the 1B scale: at
this point, fine-tuned models begin to approximate the safety
capabilities of 70B-parameter LLMs and reach performance levels
comparable to strong BERT-based baselines. These findings have
critical implications for building deployable, privacy-preserving Al
systems that are both emotionally aware and aligned for use in
mental health and therapeutic contexts (Calvo and D’Mello, 2010;
Gabriel, 2020; Picard, 2000).

2 Methods

2.1 Dataset construction for three-way and
multi-class safety classification

We constructed a novel dataset for emotional safety
classification by sourcing original text posts from publicly
available online mental health-related datasets, including Dreaddit
(DREAD; Turcan and McKeown, 2019), Depression Reddit
(DR; Pirina and Coltekin, 2018), Stress cause detection (SAD;
Mauriello et al.,, 2021), Interpersonal risk factor detector (IRF;
Garg et al,, 2023), Wellness detection dimension (WD; Sathvik
and Garg, 2023) (see Table 1 for sample sizes). These datasets
contain user-authored content discussing psychological topics,
emotional distress, and other mental health-relevant concerns. For
the DREAD and DR datasets, we included only posts classified as
stressed or depressed.

Each original post was processed using GPT-3.5 to generate
three distinct textual variants. The first variant, labeled Safe
(session_consistent), retained the emotional context of the original
post but was reframed in a positive, supportive, or hopeful
manner. The second variant, labeled Borderline (borderline),
expressed emotional vulnerability, despair, or distress without
including explicit harmful acts or risk content. This class often used
metaphorical or ambiguous language but avoided any explicit harm
categories. The third variant, labeled Unsafe (emotionally_risky),
contained explicit visual or situational elements tied to one
of six LLaMA Guard-style harm categories: violence and hate,
sexual content, guns and illegal weapons, regulated or controlled
substances, suicide and self-harm, and criminal planning (Inan
et al., 2023).

To ensure balance across classes in the initial three-way
classification task, each original post was augmented with exactly
one safe and one unsafe variant, along with an additional borderline
example for extended experiments. For unsafe instances, ChatGPT
autonomously selected the specific category (among six predefined
risk types) under which to generate the new variant. Detailed
sample distributions across categories are provided in Table 1),
and the prompt templates used for generation are available in the
Supplementary material S1.

To complement automated label generation and assess the
ecological validity of the dataset, we conducted a small-scale
human validation study. A random subset of 210 text samples
(30 per category) were manually reviewed by three training
psychotherapists which independently evaluated the text samples to
verify category coherence between the synthetic labels (safe, unsafe
— category) and human judgment. Manual inspection achieved
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mean label agreement of ~ 85% with the GPT-generated labels,
indicating high semantic consistency between synthetic and human
interpretations, and the level of the best LLM performance. A TCUCE”
representative example of the analyzed text is included below, = - s & = — R
and aggregate rater frequencies are visualized as a bar plot 5—2
(Supplementary Figure S2):
“Me witnessing explosions in a war-torn city, reflecting
the chaos and devastation of a potential conflict escalation.” o E
(Violence & Hate) % f*_: 2 5 % % % g
This analysis provides an additional layer of qualitative Ay
assurance, demonstrating that the synthetic dataset aligns closely = g
with expert human judgments in both semantic labeling and :C)' ;
affective interpretation. L 5y E
2 5E ol olalel
5 58 g b5 g 3 5 &
> 24 B T g
2.2 Classification tasks and model £ =3 B
selection 5 g
S 8
We evaluated models on two related safety classification tasks. g % @ §
All experiments used models from the LLaMA 3 family (Dubey 2 3 o I
et al., 2024), at 1B, 3B, 8B, and 70B parameter scales. We <Z( o & o D R A §
used 4-bit quantized versions to assess suitability for on-device < § 3 ;—)
deployment. Furthermore, to ensure architectural consistency and =20 =
internal validity in our scaling analysis, we restricted experiments g
to the LLaMA model family. Comparing models within a single > £
lineage minimizes confounding factors introduced by differences 73" § " " H
in pretraining data, tokenizer design, or attention mechanisms A) g « R A I Bl B “é
that exist across other architectures. This design choice enables 0 <
a clearer interpretation of how model size and supervision g
regime affect safety classification performance, independent of -é
other architectural biases. Such methodological control aligns g —-:
with established best practices in scaling research and ensures 8% 5 < B8 olg ¥ §
that observed effects reflect scaling behavior rather than cross- %5 - = T 2
architecture variability (Kaplan et al., 2020). > 2
The first was a trinary classification task (Safe, Unsafe, _§
Borderline) using the balanced dataset described in Section 2.1 v z
(Table 1). This setup assessed each model’s ability to distinguish -~ a 2w o g & £
clearly safe content from clearly unsafe content, while also g = 13238 %
handling ambiguous borderline cases. We compared LLaMA p 2 E
models under zero-shot prompting and few-shot prompting. Zero- g g
shot prompting uses category names during inference without K % g 2| vl 2| g B %D
training, while few-shot prompting extends this by including 2-4 g § = 3228 g
in-context examples per category, without updating model weights. H 2
(see Supplementary material S1 for prompting code). g @ a 2w =28 B :E
The second task was a multi-class taxonomy classification, 2 > 2082 3 4 é
implemented as a two-stage pipeline. In Stage A, models performed § §
binary classification (Safe vs. Unsafe; borderline cases excluded). In g g
Stage B, unsafe posts were assigned to one of six LLaMA Guard- z g g _ = &g
style harm categories (Inan et al., 2023). We tested each LLaMA é. § % % = % é
model under three supervision regimes: zero-shot prompting, 9 & ﬁ =5 é g £
few-shot prompting, and lightweight fine-tuning using LoRA 2 = § :; et —E §
adapters (Hu et al,, 2022). For comparison, as a supervised 5 E’ § e gﬂ _;; _E
reference model, we included DistilBERT (Sanh et al., 2019), o 9:' - E § 5 § _ 2
a distilled version of BERT (Devlin et al., 2018) that reduces 2 ‘%" g & % E g § g
model size while retaining 97% of its language understanding = 8

Frontiersin Artificial Intelligence 03 frontiersin.org


https://doi.org/10.3389/frai.2025.1706090
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Pinzuti et al.

performance. We used the distilbert-base-uncased implementation
from the Hugging Face Transformers library. The model was fine-
tuned for 3 epochs on a training portion of our dataset and
evaluated on a held-out test set to ensure comparability with
LLaMA models. Default hyperparameters were used.

To address class imbalance in Stage B, we adopted two
evaluation setups. The first was a full taxonomy evaluation,
following the LLaMA Guard protocol (Inan et al, 2023), in
which categories were evenly subsampled to ensure representation
across all six harm types. Because several categories contained
fewer than 30 available posts, this setup was evaluated as a single
run, and no standard deviations are reported. Running multiple
seeds under these conditions would have repeatedly drawn from
the same limited samples, producing artificial variance rather
than meaningful replication. The second setup focused on high-
data categories—the three harm types with sufficient examples
for stable evaluation-where we sampled 100 posts per category
and repeated the evaluation over five independent runs with
different random seeds to estimate mean and standard deviation.
This approach balances broad taxonomy coverage with statistical
reliability, providing both comprehensive and robust assessments
within the constraints of the available data.

All results are reported in terms of standard classification
metrics: accuracy, precision, recall, and the Fl-score. Accuracy
measures the proportion of correctly classified instances:

TP + TN
Accuracy = T,

where TP and TN denote true positives and true negatives, and N
is the total number of samples.

Precision quantifies the proportion of predicted positive
instances that are correct:

TP

Precision = ———,
TP + FP

where FP represents false positives.
Recall (or sensitivity) measures the proportion of actual positive
instances that are correctly identified:

TP

Recall = ——,
TP + FN

where FN denotes false negatives.
The Fl-score is the harmonic mean of precision and recall,
providing a balanced measure of model performance:

Precision x Recall
Fl=2X ——Mm———.
Precision + Recall

For multi-class or multi-label settings, we report both macro-
averaged and weighted-averaged variants of these metrics, where
each class is either weighted equally (macro) or proportionally to
its frequency (weighted) in the evaluation dataset.

2.3 Comparison against Qwen models

To evaluate the generalizability of our findings beyond the
LLaMA architecture, we additionally tested models from the
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Qwen 2.5 family, including parameter scales of 0.5B, 3B, 7B,
and 72B (Team et al, 2024). These models were selected for
their comparable scale distribution and open-weight availability.
For parity with the LLaMA experiments, we employed 4-
bit quantized versions to maintain similar memory efficiency
and to assess suitability for local or edge-device deployment.
The inclusion of Qwen models served as a cross-architecture
benchmark, providing a secondary validation of scaling trends
under identical supervision and evaluation settings. Despite
architectural and tokenizer differences, the Qwen models exhibited
virtually identical performance trajectories across supervision
regimes (Supplementary Figure S5, Supplementary Table S2).

2.4 Few-shot prompting
To evaluate supervision effects under constrained conditions,

setup
informativeness with the computational limits of small-parameter

we designed a few-shot prompting that balances
models. Each prompt consisted of a single safe and multiple unsafe
examples representing the target taxonomy categories, followed by
the input instance to be classified. The full template is provided in
the Supplementary Figure S1. A randomized ordering of examples
was also tested to rule out positional bias, and performance
differences were statistically insignificant.

Although the nominal context window for the small models is
2,048 tokens, extending the prompt with additional demonstrations
was avoided for both theoretical and empirical reasons. Prior
research has shown that small models exhibit rapid degradation
in long-context retention, losing attention to early examples even
within the formal context limit Liu et al. (2023). Moreover,
few-shot generalization effects emerge primarily at larger scales;
models below approximately one billion parameters show minimal
benefit-and sometimes reduced accuracy-when provided with
many in-context examples (Brown et al., 2020). Finally, excessive
or stylistically diverse demonstrations can introduce confusion and
label copying, especially in compact models that rely on format cues
rather than deep semantic abstraction Min et al. (2022).

For these reasons, we adopted a minimal, format-
that preserved prompt
clarity, interpretability, and efficiency while remaining within

consistent few-shot configuration
the computational and memory budgets of on-device deployment
scenarios. This design ensures that observed differences in
performance primarily reflect supervision level and model
scale, rather than confounding effects of prompt length or

positional degradation.

2.5 Fine-tuning strategy for the
1b-parameter model

To evaluate whether smaller-scale models can approximate
the emotional safety classification performance of larger LLaMA
models, we fine-tuned only the 1B-parameter model. This
decision reflects two core objectives: first, to explore whether
privacy-preserving models suitable for on-device deployment can
perform competitively; and second, to assess whether task-specific
supervision can recover performance typically achieved by larger

frontiersin.org
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models, without incurring the computational cost of scaling (Zhang
etal., 2024).

2.5.1 Model and optimization

We fine-tuned the LLaMA-3.2-1B-Instruct model (Unsloth
2025) for
classification on mental health-related prompts. The model
was initialized in 4-bit quantization (bnb-4bit) to reduce GPU
memory requirements. We applied parameter-efficient fine-tuning

implementation; Singhapoo et al, supervised

with LoRA adapters on attention and MLP projection layers
(g_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,
down_proj). LoRA parameters were set to rank r = 16 with
a = 16 and no dropout. Gradient checkpointing was enabled to
support long context windows with reduced memory overhead
(Hu et al., 2022).

2.5.2 Training procedure

Prompts were formatted as chat messages in an instruction—
response schema, following common practices in supervised
fine-tuning of instruction-tuned models (Ouyang et al, 2022;
Taori et al., 2023). The model was trained to output structured
labels (Safe/Unsafe and, when Unsafe, one of six taxonomy
categories). To align training with outputs, we applied the
train_on_responses_only transformation, restricting loss
computation to assistant responses. Training was performed using
Hugging Face’s SFTTrainer (von Platen et al., 2023) with the
following settings: context length 1024 tokens, effective batch
size 8 (batch size 2 with gradient accumulation), optimizer
adamw_8bit, learning rate 5 x 107> with linear decay, weight
decay 0.01, and warm-up steps 5. Precision was FP16 on
Turing/Volta GPUs and BF16 on Ampere GPUs. Models were
trained for one epoch across the dataset.

2.5.3 Evaluation

The fine-tuned model was evaluated on held-out test prompts
stratified by taxonomy (n = 100 per class, repeated across runs).
For each run, we recorded safe/unsafe predictions and taxonomy
labels, along with raw responses. Accuracy was computed per
taxonomy and averaged across runs to assess stability and
category-level performance.

2.6 Measuring VRAM usage at inference
time

To estimate the memory efficiency of each model, we
measured peak GPU memory usage (VRAM) during inference
on a representative batch of examples from the multi-label
taxonomy classification task. All models were evaluated using
the same hardware environment (NVIDIA A100 40GB) with
PyTorch’s built-in memory tracking utilities. Specifically, we
used torchcudamax_memory_allocated() to log the
maximum memory allocated by each model during forward pass
execution. This metric captures the effective VRAM required to
run a model in real-time classification scenarios and reflects a
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practical upper bound for deployment on resource-constrained
devices. Quantized (4-bit) versions of LLaMA models were used to
simulate realistic low-footprint deployments.

3 Results

3.1 Few-shot supervision improves
multi-label emotional classification,
especially for small models

To evaluate whether models can detect specific types of unsafe
content, we tested multi-label taxonomy classification using six
LLaMA Guard-style harm categories: criminal planning, guns and
illegal weapons, regulated substances, sexual content, suicide and
self-harm, and violence and hate. This task demands finer-grained
safety reasoning beyond binary classification and reflects real-world
moderation challenges (Inan et al., 2023; Ganguli et al., 2022).

In the zero-shot (ZS-1) condition, smaller models struggled to
recognize most unsafe categories (Table 2). For example, the 1B
model showed poor performance across all categories, with mean
accuracy ZS-1 1B = 0.000, failing to identify any risk types. The
3B and 8B models demonstrated moderate improvements (mean
accuracy ZS-1 3B = 0.290, 8B = 0.432), especially in categories
like suicide and violence. The 70B model achieved the best overall
results in this setting (mean accuracy ZS-1 70B = 0.582), though its
performance remained uneven across categories, with certain risk
types still under-recognized.

Providing just labeled examples per category in the few-shot
(FS-1) condition dramatically boosted classification performance
for smaller models (see Supplementary material S1, Table 2). The
1B model was able to identify several unsafe categories (mean
accuracy FS-1 1B = 0.176), including perfect performance in
suicide detection. The 3B and 8B models also benefited significantly
(mean accuracy FS-1 3B = 0.486, 8B = 0.672), narrowing the gap
with the 70B model, which reached FS-1 mean accuracy = 0.735.
Overall, few-shot prompting (FS-1) led to consistent gains across
all model sizes. The average improvement across all models from
ZS-1 to FS-1 was approximately 39.4%, highlighting the power of
minimal supervision to unlock latent safety capabilities even in
lightweight models.

Despite these improvements, many categories exhibit non-
monotonic scaling in both zero-shot and few-shot settings. This
may reflect sensitivity to prompt phrasing, variance introduced
by single-run evaluation. As in prior scaling literature, larger
models may become more sensitive to subtle or borderline unsafe
cues, leading to trade-offs in precision and recall depending on
supervision and context (Tosato et al., 2025; Zhang et al., 2024).

3.2 High-data evaluation confirms
robustness of scaling trends

To assess the stability of scaling patterns and supervision
effects under more reliable conditions, we conducted a high-data
evaluation using the three taxonomy categories with the largest
sample sizes—suicide and self-harm, violence and hate, and sexual
content—each (see Table 3). Unlike earlier evaluations, which were
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TABLE 2 Trinary classification results (safe vs. unsafe vs. borderline).
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tasks, often matching or exceeding human-level performance in
classification under supervised settings Devlin et al. (2018); Lee
et al. (2020).

As shown in Figure 1A, the fine-tuned LLaMA-1B model
performed competitively across all three high-data categories. On
regulated substances, it achieved accuracy = 0.78, outperforming
both the strongest LLaMA (70B) model under FS-5 (accuracy =
0.689) and BERT (accuracy = 0.77). On suicide & self-harm, it
achieved accuracy = 0.81, falling short of the LLaMA-70B FS-5
(accuracy = 0.950), but comparable to BERT (accuracy = 0.793).
On violence & hate, the 1B fine-tuned model reached accuracy
= 0.99, exceeding both LLaMA-70B FS-5 (accuracy = 0.849) and
BERT (accuracy = 0.955). These results demonstrate that with
modest supervision, a small 1B model can match or even exceed
the classification accuracy of models that are over 70 times larger,
and of strong supervised baselines like BERT.

We further compared mean accuracy across all categories
in the FS-5 condition against peak GPU memory requirements
(Figure 1B). The fine-tuned 1B model reached mean accuracy =
0.86 using under 2GB of VRAM, outperforming the 3B and 8B
models and closely matching the 70B model (mean accuracy =
0.835), while using < 2GB of VRAM-over 20 x less memory than
the 70B model. This shows that performance scaling is not strictly
tied to parameter count-strategic fine-tuning can dramatically
improve efficiency and effectiveness.

In summary, fine-tuning allows a 1B model to reach
comparable performance to larger LLaMA models and strong
supervised baselines like BERT in high-data safety classification
tasks. This supports the feasibility of privacy-preserving, on-device
deployments, where computational efficiency and user trust are
both critical.

4 Discussion

4.1 Scaling and supervision effects in
emotional safety classification

This work set out to investigate how model scale and
supervision level affect the ability of large language models (LLMs)
to detect emotionally unsafe content. Using a controlled set of
LLaMA 3 models ranging from 1B to 70B parameters (Dubey
et al., 2024), we examined binary safe, vs. unsafe, vs. borderline
classification, multi-label classification across a six-category safety
taxonomy, and a high-data subset of three categories (Inan et al.,
2023). Our results show that larger LLaMA models generally
achieved stronger performance in zero-shot settings, particularly
for nuanced multi-label classification where scaling effects were
most pronounced. However, few-shot prompting substantially
closed the gap between smaller and larger models in the trinary
task, showing that even lightweight models can reliably distinguish
safe, unsafe, and borderline content with minimal supervision. In
contrast, the multi-label taxonomy task remained more sensitive to
scale, with larger models showing clear advantages in recognizing
fine-grained categories of unsafe content. Strikingly, we found that
even the 1B model-despite being 70 times smaller and requiring
over 20x less VRAM-was able to match the performance of the
70B model and a BERT baseline when fine-tuned. This result
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demonstrates that performance gains attributed to scale can, in
part, be recovered through targeted fine-tuning, making compact
models a viable option for emotionally sensitive applications.

While the present study focused on the scaling and alignment
behavior within the LLaMA model family, future work should
extend these analyses to a broader set of architectures to further
validate generalizability. Our primary objective was to examine
scalable alignment and on-device feasibility under consistent
architectural and quantization conditions, rather than to establish
inter-model performance rankings. Nevertheless, we conducted an
additional comparison using Yang K. et al. (2024) of comparable
parameter sizes, which exhibited virtually identical performance
trends across supervision regimes (Supplementary Figure S5,
Supplementary Table S2). This suggests that the observed scaling
relationships are not architecture-specific, although Qwen models
differ in quantization and runtime characteristics. Expanding
such benchmarks to include additional open-weight models
remains a valuable direction for future research, particularly
for evaluating trade-offs between safety alignment, efficiency,
and deployability.

4.2 Implications for safety alignment in
mental health applications

Our findings extend ongoing discussions around moderation
APIs and taxonomic safety classifiers such as OpenAI’s Moderation
API (OpenAl, 2023) and LlamaGuard (Inan et al., 2023), which
treat safety primarily as an external filtering step. By contrast, our
results demonstrate that emotional safety can be embedded as a
core capability of the model itself. The observation that even a 1B
model, once fine-tuned, reaches parity with both BERT baselines
(Devlin et al., 2018; Lee et al., 2020) and the 70B LLaMA highlights
a critical threshold: smaller models, given targeted supervision, can
recover much of the safety performance often attributed to scale.
Whereas prior work has shown that parallelizing model inference
across eight edge devices was still required to run full-precision
LLaMA-2 70B, our results demonstrate that a fine-tuned 1B model
is sufficient for emotional safety classification and can operate
entirely on a single edge device within realistic memory limits (Yu
etal., 2024).

This has two broader implications. First, it opens the door to
lightweight, on-device systems that preserve privacy—an essential
condition for deployment in mental health and therapeutic
contexts (Yao et al.,, 2024; Lai et al., 2023). Second, it reframes
emotional safety not as a post hoc moderation problem, but as
an intrinsic function of human-AI collaboration, enabling systems
that can respond adaptively to users affective states rather than
merely flagging harmful outputs. This conceptual shift aligns with
recent work in affective computing (Picard and Cosier, 1997;
Calvo and D’Mello, 2010; Yang K. et al., 2024) and suggests a
new generation of cognitive-affective interfaces where safety is
seamlessly integrated into dialogue. In this way, our study provides
a bridge between scalable alignment research and the design of
neuroadaptive or therapeutic tools that can operate reliably under
real-world constraints (Friha et al., 2024; Li et al., 2024; Yu et al.,
2024).
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Fine-tuned 1B model performance compared with larger LLaMA models and BERT. (A), Accuracy across three high-data taxonomy categories
(Regulated Substances, Suicide & Self-Harm, Violence & Hate). Results are shown for fine-tuned LLaMA-1B (orange striped bars), the
best-performing LLaMA models under few-shot prompting (blue solid bars), and a supervised BERT baseline (green striped bars). Error bars show
standard deviation across five runs. (B), Mean accuracy across these categories plotted against peak GPU memory (VRAM) usage during inference.
Blue line: scaling trend across LLaMA 1B-70B models under few-shot prompting (FS-5). Orange point: fine-tuned 1B model. Lower VRAM usage
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4.3 Limitations of data, task design, and
scaling interpretations

While our results are robust across settings, a number of factors
should be noted when considering their generalizability. First,
our dataset construction—pairing real-world unsafe posts with
LLM-generated reappraisals—may introduce stylistic artifacts that
models could exploit, potentially inflating performance on the safe
vs. unsafe split. Second, the six-category taxonomy is imbalanced,
with certain categories underrepresented (Table 1), which may
have limited model sensitivity to less frequent harms. Third, our
analysis was restricted to the LLaMA family in order to control
for architecture, tokenizer, and pretraining corpus (Dubey et al.,
2024). While this choice allowed us to isolate the effects of scale and
supervision, it also means that our conclusions may not transfer
directly to other architectures such which differ in alignment and
fine-tuning strategies (Zhang et al., 2024; Tosato et al, 2025).
Fourth, although we confirmed scaling trends using higher-data
subsets with multiple runs, our full six-category evaluations were
based on single runs without multiple seeds, leaving open the
possibility of variance effects.

While the six-category taxonomy adopted from LlamaGuard
was originally developed for general safety moderation, its
structured hierarchy provides a practical and interpretable
framework for emotionally relevant risk classification. Our
rationale for using this taxonomy was to leverage a well-established,
open-source safety schema that has undergone empirical validation
for broad harmful-content detection (Dubey et al., 2024). Although
certain categories (e.g., “Guns & Illegal Weapons”) are not directly
related to emotional risk, others-such as “Self-Harm,” “Hate,” and
“Sexual Content”-map closely to constructs of psychological threat
and interpersonal distress in digital mental health contexts (Cho
and Rader, 2020). Importantly, employing this taxonomy allows for
cross-domain comparability with existing safety benchmarks while
ensuring that alignment procedures remain reproducible across
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foundation models. We acknowledge, however, that emotional
safety extends beyond content moderation to encompass empathy,
tone, and affective intent, which are underrepresented in current
taxonomies. Future work should incorporate psychologically
grounded taxonomies that integrate emotional valence, empathy
markers, and contextual sensitivity (Kirk et al., 2025), bridging
the gap between computational safety alignment and clinically
informed affective modeling.

Finally, while a full ablation study was beyond the scope
of this exploratory comparison, our results nonetheless highlight
which methodological components likely contributed most to
performance differences across supervision regimes. In particular,
we observed that prompt design (zero-shot vs. few-shot) and
adapter-based fine-tuning exerted the greatest influence on
safety classification accuracy, consistent with recent findings that
contextual framing and low-rank adaptation layers substantially
affect alignment quality in small models (Hu et al., 2022) (Table 3).
From a methodological standpoint, these insights offer an implicit
ablation, by isolating key factors that drive model sensitivity and
robustness without the need for exhaustive retraining. Future
work should formalize these observations through controlled
modular ablations, leveraging emerging efficient fine-tuning
methods such as AdaLoRA and DoRA (Zhang et al, 2023;
Liu et al, 2024), which enable fine-grained parameter updates
while maintaining low computational overhead. Such work would
further clarify how architectural and supervision components
interact to support safe, emotionally aware model behavior
at scale.

4.4 Conclusion
In sum, this study demonstrates that emotional safety

classification in LLMs is not solely a function of scale. While
larger models outperform smaller ones in zero-shot and nuanced
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multi-label settings, few-shot prompting markedly reduces
these differences, and fine-tuning allows even a 1B model to
have comparable performance of models 70 times larger as
well as strong BERT baselines—while using over 20x less
VRAM. These findings highlight that safety can be embedded
directly within lightweight models, enabling privacy-preserving
and resource-efficient deployment in sensitive domains such
as mental health support. More broadly, they suggest that
generative Al can be harnessed not only to moderate but
also to proactively structure safe and emotionally attuned
interactions. Looking forward, integrating such compact,
fine-tuned models into affective computing, digital mental
health

direction for building collaborative systems that are both safe

interventions and technologies offers a promising

and scalable.
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