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Özyeǧin University, Türkiye
Muhammad Ali Arshad,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

André Ferreira Castro
andre.ferreira-castro@tum.de

RECEIVED 15 September 2025
ACCEPTED 04 November 2025
PUBLISHED 27 November 2025

CITATION

Pinzuti E, Tüscher O and Ferreira Castro A
(2025) Comparative performance of large
language models in emotional safety
classification across sizes and tasks.
Front. Artif. Intell. 8:1706090.
doi: 10.3389/frai.2025.1706090

COPYRIGHT

© 2025 Pinzuti, Tüscher and Ferreira Castro.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Comparative performance of
large language models in
emotional safety classification
across sizes and tasks

Edoardo Pinzuti1,2, Oliver Tüscher1,2,3,4 and

André Ferreira Castro5*

1Leibniz Institute for Resilience Research, Mainz, Germany, 2Department of Psychiatry, Psychotherapy
and Psychosomatic Medicine, University Medical Center Halle, Halle, Germany, 3German Center for
Mental Health (DZPG), Site Halle-Jena-Magdeburg, Halle, Germany, 4Department of Psychiatry and
Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz,
Germany, 5School of Life Sciences, Technical University of Munich, Freising, Germany

Understanding how large language models (LLMs) process emotionally sensitive
content is critical for building safe and reliable systems, particularly in mental
health contexts. We compare the performance of LLMs of di�erent sizes
on two key tasks: trinary classification of emotional safety (safe vs. unsafe
vs. borderline) and multi-label classification using a six-category safety risk
taxonomy. To support this, we construct a novel dataset by merging several
human-authored mental health datasets (> 15K samples) and augmenting them
with emotion re-interpretation prompts generated via ChatGPT. We evaluate
four LLaMA models (1B, 3B, 8B, 70B) across zero-shot and few-shot settings.
Our results show that larger LLMs achieve stronger average performance,
particularly in nuanced multi-label classification and in zero-shot settings.
However, lightweight fine-tuning allowed the 1B model to achieve performance
comparable to larger models and BERT in several high-data categories, while
requiring < 2GB VRAM at inference. These findings suggest that smaller, on-
device models can serve as viable, privacy-preserving alternatives for sensitive
applications, o�ering the ability to interpret emotional context and maintain safe
conversational boundaries. This work highlights key implications for therapeutic
LLM applications and the scalable alignment of safety-critical systems.

KEYWORDS

large language model (LLM), scaling and fine-tuning, privacy-preserving AI, emotional

safety classification, a�ective computing

1 Introduction

Large Language Models (LLMs) are increasingly embedded in mental health

applications, conversational agents, and therapeutic tools (Bucci et al., 2019; Mitsea et al.,

2023; Dehbozorgi et al., 2025; Miner et al., 2017; Yang K. et al., 2024; Lai et al., 2023).

This trend raises urgent questions about the emotional safety of these systems, especially

when deployed in contexts involving vulnerable populations. An essential prerequisite for

responsible deployment is the ability of these models to recognize and regulate emotionally

harmful content–ranging from subtle expressions of distress to overtly toxic or dangerous

language (Inan et al., 2023).
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One of the core challenges in emotionally safe AI lies in the dual

effect of model scaling. Larger LLMs are not only more fluent and

context-aware but alsomore capable of generating harmful outputs,

owing to their greater exposure to toxic, biased, or stereotyped

content in training data (Machlovi et al., 2025; Ganguli et al.,

2022; Vidgen et al., 2023; Tosato et al., 2025). In response to

these risks, systems like OpenAI’s Moderation API (OpenAI, 2023)

and LlamaGuard (Inan et al., 2023) have emerged as mitigation

strategies, applying taxonomic filters or post hoc classifiers to

flag unsafe outputs. While these tools can be effective in general-

purpose settings, they largely treat emotional safety as an external

moderation problem rather than as a core capability embedded

within the model itself.

In parallel, a growing body of work has begun to treat emotional

safety as an intrinsic model property–evaluating LLMs directly

on mental health datasets and comparing their performance

against robust baselines such as BERT. These studies benchmark

LLMs on clinically relevant text classification tasks and explore

interpretability in psychological domains (Yang K. et al., 2024;

Lai et al., 2023; Pinzuti et al., 2025). BERT, in particular,

remains a widely adopted reference point in this space, given

its strong performance, efficient architecture, and demonstrated

ability to approach human-level accuracy on emotionally sensitive

classification tasks (Devlin et al., 2018; Lee et al., 2020). While

these approaches offer valuable insights, its comparisons involve

models with varying architectures and training data, making it hard

to isolate the impact of scale or fine-tuning (Zhang et al., 2024).

This challenge echoes findings from domain-specific transfer-

learning research, where it was shown that targeted fine-tuning

of pretrained models can substantially improve performance in

specialized contexts such as financial sentiment analysis Ergun

and Sefer (2025). Crucially, this prior work collectively overlooks

whether small, on-device models–where only 4-16 GB of RAM

are typically available for all computations–can, with fine-tuning,

achieve safety performance comparable to larger models, a key

concern in privacy-sensitive domains such as mental health (Yao

et al., 2024). Specifically, these raises two questions: (1) To what

extent does scale improve a model’s ability to detect or avoid

emotionally unsafe content? (2) And can smaller models, given

targeted supervision, recover the performance advantages typically

attributed to scale?

Here, to address these questions, we investigate the scaling

behavior of LLMs in the context of emotional safety classification,

with a focus on how model size influences performance under

different levels of supervision. Our study targets two core tasks:

trinary classification of text contenct safety (safe vs. unsafe

vs. borderline) and multi-label classification grounded in Llama

guard’s six-category emotional risk taxonomy (Inan et al., 2023).

To support this analysis, we construct a unified benchmark

by merging multiple real-world mental health datasets and

augmenting them with reappraisal-style prompts generated by

ChatGPT (OpenAI, 2023). We evaluate LLaMA models (Dubey

et al., 2024; Touvron et al., 2023) across four scales (1B, 3B, 8B,

70B) under zero-shot, few-shot, and fine-tuned conditions, using

BERT for (Reimers and Gurevych, 2019) task-specific baselines.

By curating a controlled evaluation framework and conducting a

systematic comparison across architectures and training regimes,

we identified a performance threshold at the 1B scale: at

this point, fine-tuned models begin to approximate the safety

capabilities of 70B-parameter LLMs and reach performance levels

comparable to strong BERT-based baselines. These findings have

critical implications for building deployable, privacy-preserving AI

systems that are both emotionally aware and aligned for use in

mental health and therapeutic contexts (Calvo and D’Mello, 2010;

Gabriel, 2020; Picard, 2000).

2 Methods

2.1 Dataset construction for three-way and
multi-class safety classification

We constructed a novel dataset for emotional safety

classification by sourcing original text posts from publicly

available online mental health-related datasets, including Dreaddit

(DREAD; Turcan and McKeown, 2019), Depression Reddit

(DR; Pirina and Çöltekin, 2018), Stress cause detection (SAD;

Mauriello et al., 2021), Interpersonal risk factor detector (IRF;

Garg et al., 2023), Wellness detection dimension (WD; Sathvik

and Garg, 2023) (see Table 1 for sample sizes). These datasets

contain user-authored content discussing psychological topics,

emotional distress, and other mental health-relevant concerns. For

the DREAD and DR datasets, we included only posts classified as

stressed or depressed.

Each original post was processed using GPT-3.5 to generate

three distinct textual variants. The first variant, labeled Safe

(session_consistent), retained the emotional context of the original

post but was reframed in a positive, supportive, or hopeful

manner. The second variant, labeled Borderline (borderline),

expressed emotional vulnerability, despair, or distress without

including explicit harmful acts or risk content. This class often used

metaphorical or ambiguous language but avoided any explicit harm

categories. The third variant, labeled Unsafe (emotionally_risky),

contained explicit visual or situational elements tied to one

of six LLaMA Guard-style harm categories: violence and hate,

sexual content, guns and illegal weapons, regulated or controlled

substances, suicide and self-harm, and criminal planning (Inan

et al., 2023).

To ensure balance across classes in the initial three-way

classification task, each original post was augmented with exactly

one safe and one unsafe variant, along with an additional borderline

example for extended experiments. For unsafe instances, ChatGPT

autonomously selected the specific category (among six predefined

risk types) under which to generate the new variant. Detailed

sample distributions across categories are provided in Table 1),

and the prompt templates used for generation are available in the

Supplementary material S1.

To complement automated label generation and assess the

ecological validity of the dataset, we conducted a small-scale

human validation study. A random subset of 210 text samples

(30 per category) were manually reviewed by three training

psychotherapists which independently evaluated the text samples to

verify category coherence between the synthetic labels (safe, unsafe

→ category) and human judgment. Manual inspection achieved
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mean label agreement of ≈ 85% with the GPT-generated labels,

indicating high semantic consistency between synthetic and human

interpretations, and the level of the best LLM performance. A

representative example of the analyzed text is included below,

and aggregate rater frequencies are visualized as a bar plot

(Supplementary Figure S2):

“Me witnessing explosions in a war-torn city, reflecting

the chaos and devastation of a potential conflict escalation.”

(Violence & Hate)

This analysis provides an additional layer of qualitative

assurance, demonstrating that the synthetic dataset aligns closely

with expert human judgments in both semantic labeling and

affective interpretation.

2.2 Classification tasks and model
selection

We evaluated models on two related safety classification tasks.

All experiments used models from the LLaMA 3 family (Dubey

et al., 2024), at 1B, 3B, 8B, and 70B parameter scales. We

used 4-bit quantized versions to assess suitability for on-device

deployment. Furthermore, to ensure architectural consistency and

internal validity in our scaling analysis, we restricted experiments

to the LLaMA model family. Comparing models within a single

lineage minimizes confounding factors introduced by differences

in pretraining data, tokenizer design, or attention mechanisms

that exist across other architectures. This design choice enables

a clearer interpretation of how model size and supervision

regime affect safety classification performance, independent of

other architectural biases. Such methodological control aligns

with established best practices in scaling research and ensures

that observed effects reflect scaling behavior rather than cross-

architecture variability (Kaplan et al., 2020).

The first was a trinary classification task (Safe, Unsafe,

Borderline) using the balanced dataset described in Section 2.1

(Table 1). This setup assessed each model’s ability to distinguish

clearly safe content from clearly unsafe content, while also

handling ambiguous borderline cases. We compared LLaMA

models under zero-shot prompting and few-shot prompting. Zero-

shot prompting uses category names during inference without

training, while few-shot prompting extends this by including 2–4

in-context examples per category, without updating model weights.

(see Supplementary material S1 for prompting code).

The second task was a multi-class taxonomy classification,

implemented as a two-stage pipeline. In StageA, models performed

binary classification (Safe vs.Unsafe; borderline cases excluded). In

Stage B, unsafe posts were assigned to one of six LLaMA Guard–

style harm categories (Inan et al., 2023). We tested each LLaMA

model under three supervision regimes: zero-shot prompting,

few-shot prompting, and lightweight fine-tuning using LoRA

adapters (Hu et al., 2022). For comparison, as a supervised

reference model, we included DistilBERT (Sanh et al., 2019),

a distilled version of BERT (Devlin et al., 2018) that reduces

model size while retaining 97% of its language understanding T
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performance. We used the distilbert-base-uncased implementation

from the Hugging Face Transformers library. The model was fine-

tuned for 3 epochs on a training portion of our dataset and

evaluated on a held-out test set to ensure comparability with

LLaMA models. Default hyperparameters were used.

To address class imbalance in Stage B, we adopted two

evaluation setups. The first was a full taxonomy evaluation,

following the LLaMA Guard protocol (Inan et al., 2023), in

which categories were evenly subsampled to ensure representation

across all six harm types. Because several categories contained

fewer than 30 available posts, this setup was evaluated as a single

run, and no standard deviations are reported. Running multiple

seeds under these conditions would have repeatedly drawn from

the same limited samples, producing artificial variance rather

than meaningful replication. The second setup focused on high-

data categories–the three harm types with sufficient examples

for stable evaluation–where we sampled 100 posts per category

and repeated the evaluation over five independent runs with

different random seeds to estimate mean and standard deviation.

This approach balances broad taxonomy coverage with statistical

reliability, providing both comprehensive and robust assessments

within the constraints of the available data.

All results are reported in terms of standard classification

metrics: accuracy, precision, recall, and the F1-score. Accuracy

measures the proportion of correctly classified instances:

Accuracy =
TP+ TN

N
,

where TP and TN denote true positives and true negatives, and N

is the total number of samples.

Precision quantifies the proportion of predicted positive

instances that are correct:

Precision =
TP

TP+ FP
,

where FP represents false positives.

Recall (or sensitivity)measures the proportion of actual positive

instances that are correctly identified:

Recall =
TP

TP+ FN
,

where FN denotes false negatives.

The F1-score is the harmonic mean of precision and recall,

providing a balanced measure of model performance:

F1 = 2×
Precision× Recall

Precision+ Recall
.

For multi-class or multi-label settings, we report both macro-

averaged and weighted-averaged variants of these metrics, where

each class is either weighted equally (macro) or proportionally to

its frequency (weighted) in the evaluation dataset.

2.3 Comparison against Qwen models

To evaluate the generalizability of our findings beyond the

LLaMA architecture, we additionally tested models from the

Qwen 2.5 family, including parameter scales of 0.5B, 3B, 7B,

and 72B (Team et al., 2024). These models were selected for

their comparable scale distribution and open-weight availability.

For parity with the LLaMA experiments, we employed 4-

bit quantized versions to maintain similar memory efficiency

and to assess suitability for local or edge-device deployment.

The inclusion of Qwen models served as a cross-architecture

benchmark, providing a secondary validation of scaling trends

under identical supervision and evaluation settings. Despite

architectural and tokenizer differences, the Qwen models exhibited

virtually identical performance trajectories across supervision

regimes (Supplementary Figure S5, Supplementary Table S2).

2.4 Few-shot prompting

To evaluate supervision effects under constrained conditions,

we designed a few-shot prompting setup that balances

informativeness with the computational limits of small-parameter

models. Each prompt consisted of a single safe and multiple unsafe

examples representing the target taxonomy categories, followed by

the input instance to be classified. The full template is provided in

the Supplementary Figure S1. A randomized ordering of examples

was also tested to rule out positional bias, and performance

differences were statistically insignificant.

Although the nominal context window for the small models is

2,048 tokens, extending the prompt with additional demonstrations

was avoided for both theoretical and empirical reasons. Prior

research has shown that small models exhibit rapid degradation

in long-context retention, losing attention to early examples even

within the formal context limit Liu et al. (2023). Moreover,

few-shot generalization effects emerge primarily at larger scales;

models below approximately one billion parameters show minimal

benefit–and sometimes reduced accuracy–when provided with

many in-context examples (Brown et al., 2020). Finally, excessive

or stylistically diverse demonstrations can introduce confusion and

label copying, especially in compact models that rely on format cues

rather than deep semantic abstraction Min et al. (2022).

For these reasons, we adopted a minimal, format-

consistent few-shot configuration that preserved prompt

clarity, interpretability, and efficiency while remaining within

the computational and memory budgets of on-device deployment

scenarios. This design ensures that observed differences in

performance primarily reflect supervision level and model

scale, rather than confounding effects of prompt length or

positional degradation.

2.5 Fine-tuning strategy for the
1b-parameter model

To evaluate whether smaller-scale models can approximate

the emotional safety classification performance of larger LLaMA

models, we fine-tuned only the 1B-parameter model. This

decision reflects two core objectives: first, to explore whether

privacy-preserving models suitable for on-device deployment can

perform competitively; and second, to assess whether task-specific

supervision can recover performance typically achieved by larger

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1706090
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pinzuti et al. 10.3389/frai.2025.1706090

models, without incurring the computational cost of scaling (Zhang

et al., 2024).

2.5.1 Model and optimization
We fine-tuned the LLaMA-3.2-1B-Instruct model (Unsloth

implementation; Singhapoo et al., 2025) for supervised

classification on mental health–related prompts. The model

was initialized in 4-bit quantization (bnb-4bit) to reduce GPU

memory requirements. We applied parameter-efficient fine-tuning

with LoRA adapters on attention and MLP projection layers

(q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj,

down_proj). LoRA parameters were set to rank r = 16 with

α = 16 and no dropout. Gradient checkpointing was enabled to

support long context windows with reduced memory overhead

(Hu et al., 2022).

2.5.2 Training procedure
Prompts were formatted as chat messages in an instruction–

response schema, following common practices in supervised

fine-tuning of instruction-tuned models (Ouyang et al., 2022;

Taori et al., 2023). The model was trained to output structured

labels (Safe/Unsafe and, when Unsafe, one of six taxonomy

categories). To align training with outputs, we applied the

train_on_responses_only transformation, restricting loss

computation to assistant responses. Training was performed using

Hugging Face’s SFTTrainer (von Platen et al., 2023) with the

following settings: context length 1024 tokens, effective batch

size 8 (batch size 2 with gradient accumulation), optimizer

adamw_8bit, learning rate 5 × 10−5 with linear decay, weight

decay 0.01, and warm-up steps 5. Precision was FP16 on

Turing/Volta GPUs and BF16 on Ampere GPUs. Models were

trained for one epoch across the dataset.

2.5.3 Evaluation
The fine-tuned model was evaluated on held-out test prompts

stratified by taxonomy (n = 100 per class, repeated across runs).

For each run, we recorded safe/unsafe predictions and taxonomy

labels, along with raw responses. Accuracy was computed per

taxonomy and averaged across runs to assess stability and

category-level performance.

2.6 Measuring VRAM usage at inference
time

To estimate the memory efficiency of each model, we

measured peak GPU memory usage (VRAM) during inference

on a representative batch of examples from the multi-label

taxonomy classification task. All models were evaluated using

the same hardware environment (NVIDIA A100 40GB) with

PyTorch’s built-in memory tracking utilities. Specifically, we

used torchċudaṁax_memory_allocated() to log the

maximum memory allocated by each model during forward pass

execution. This metric captures the effective VRAM required to

run a model in real-time classification scenarios and reflects a

practical upper bound for deployment on resource-constrained

devices. Quantized (4-bit) versions of LLaMA models were used to

simulate realistic low-footprint deployments.

3 Results

3.1 Few-shot supervision improves
multi-label emotional classification,
especially for small models

To evaluate whether models can detect specific types of unsafe

content, we tested multi-label taxonomy classification using six

LLaMA Guard-style harm categories: criminal planning, guns and

illegal weapons, regulated substances, sexual content, suicide and

self-harm, and violence and hate. This task demands finer-grained

safety reasoning beyond binary classification and reflects real-world

moderation challenges (Inan et al., 2023; Ganguli et al., 2022).

In the zero-shot (ZS-1) condition, smaller models struggled to

recognize most unsafe categories (Table 2). For example, the 1B

model showed poor performance across all categories, with mean

accuracy ZS-1 1B = 0.000, failing to identify any risk types. The

3B and 8B models demonstrated moderate improvements (mean

accuracy ZS-1 3B = 0.290, 8B = 0.432), especially in categories

like suicide and violence. The 70B model achieved the best overall

results in this setting (mean accuracy ZS-1 70B= 0.582), though its

performance remained uneven across categories, with certain risk

types still under-recognized.

Providing just labeled examples per category in the few-shot

(FS-1) condition dramatically boosted classification performance

for smaller models (see Supplementary material S1, Table 2). The

1B model was able to identify several unsafe categories (mean

accuracy FS-1 1B = 0.176), including perfect performance in

suicide detection. The 3B and 8Bmodels also benefited significantly

(mean accuracy FS-1 3B = 0.486, 8B = 0.672), narrowing the gap

with the 70B model, which reached FS-1 mean accuracy = 0.735.

Overall, few-shot prompting (FS-1) led to consistent gains across

all model sizes. The average improvement across all models from

ZS-1 to FS-1 was approximately 39.4%, highlighting the power of

minimal supervision to unlock latent safety capabilities even in

lightweight models.

Despite these improvements, many categories exhibit non-

monotonic scaling in both zero-shot and few-shot settings. This

may reflect sensitivity to prompt phrasing, variance introduced

by single-run evaluation. As in prior scaling literature, larger

models may become more sensitive to subtle or borderline unsafe

cues, leading to trade-offs in precision and recall depending on

supervision and context (Tosato et al., 2025; Zhang et al., 2024).

3.2 High-data evaluation confirms
robustness of scaling trends

To assess the stability of scaling patterns and supervision

effects under more reliable conditions, we conducted a high-data

evaluation using the three taxonomy categories with the largest

sample sizes–suicide and self-harm, violence and hate, and sexual

content–each (see Table 3). Unlike earlier evaluations, which were
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TABLE 2 Trinary classification results (safe vs. unsafe vs. borderline).

Model Setting Accuracy ± Std

Llama-3.2-1B-Instruct Zero-shot 0.495± 0.013

Llama-3.2-3B-Instruct Zero-shot 0.509± 0.010

Llama-3.1-8B-Instruct Zero-shot 0.487± 0.009

Llama-3.3-70B-Instruct Zero-shot 0.661± 0.012

Llama-3.2-1B-Instruct Few-shot 0.803± 0.024

Llama-3.2-3B-Instruct Few-shot 0.780± 0.009

Llama-3.1-8B-Instruct Few-shot 0.806± 0.017

Llama-3.3-70B-Instruct Few-shot 0.874± 0.018

Accuracy (± standard deviation) of LLaMA models (1B, 3B, 8B, 70B) under zero-shot and

few-shot prompting. Each condition used three labeled examples per class in the few-shot

setting.

based on a single run with 30 posts per class (ZS-1, FS-1), this

analysis employed five independent runs of 100 posts (ZS-5, FS-5),

offering a more robust estimate of model behavior under reduced

variance and class imbalance.

Across all models and categories, few-shot performance (FS-

5) remained highly consistent with the original single-run results

(FS-1; Table 3). This confirms that the original few-shot evaluations

captured stable patterns, and that scaling effects persist under

more statistically reliable sampling conditions. Moreover, zero-

shot prompting (ZS-5) also yielded results that align with prior

single-run observations. Models that underperformed in the single-

run setting continued to do so (e.g., 1B maintained accuracy =

0.000), while larger models like 3B and 8B showed only modest

variation. These findings suggest that earlier non-monotonicities

(e.g., 3B outperforming 8B in one category) were not due to

instability or noise, but rather reflect real differences in model

sensitivity to content types. Consistent with the accuracy-based

trends, additional metrics–precision, recall, and F1-scores–showed

comparable relative performance across models and supervision

regimes (see Supplementary Table S1; see also confusion matrices

Supplementary Figures S3, S4).

Taken together, this high-data analysis strengthens the overall

conclusions of the study: scaling trends in emotional safety

classification are reliable, and few-shot supervision provides robust

gains across model sizes, even in categories where zero-shot

performance is low. The consistency between FS-1 and FS-5

confirms that earlier results were not artifacts of limited data,

and highlights the importance of sample size in safety-critical

classification tasks.

3.3 Fine-tuning rescues taxonomy
performance for the 1B model

To assess whether lightweight fine-tuning can compensate for

limited model scale in emotionally sensitive classification, we fine-

tuned the LLaMA-1B model using LoRA adapters and compared

its accuracy against (i) the best-performing LLaMA models under

few-shot supervision (FS-5), and (ii) a strong BERT baseline. BERT

is included as a widely used benchmark in safety-sensitive NLP T
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tasks, often matching or exceeding human-level performance in

classification under supervised settings Devlin et al. (2018); Lee

et al. (2020).

As shown in Figure 1A, the fine-tuned LLaMA-1B model

performed competitively across all three high-data categories. On

regulated substances, it achieved accuracy = 0.78, outperforming

both the strongest LLaMA (70B) model under FS-5 (accuracy =

0.689) and BERT (accuracy = 0.77). On suicide & self-harm, it

achieved accuracy = 0.81, falling short of the LLaMA-70B FS-5

(accuracy = 0.950), but comparable to BERT (accuracy = 0.793).

On violence & hate, the 1B fine-tuned model reached accuracy

= 0.99, exceeding both LLaMA-70B FS-5 (accuracy = 0.849) and

BERT (accuracy = 0.955). These results demonstrate that with

modest supervision, a small 1B model can match or even exceed

the classification accuracy of models that are over 70 times larger,

and of strong supervised baselines like BERT.

We further compared mean accuracy across all categories

in the FS-5 condition against peak GPU memory requirements

(Figure 1B). The fine-tuned 1B model reached mean accuracy =

0.86 using under 2GB of VRAM, outperforming the 3B and 8B

models and closely matching the 70B model (mean accuracy =

0.835), while using < 2GB of VRAM–over 20× less memory than

the 70B model. This shows that performance scaling is not strictly

tied to parameter count–strategic fine-tuning can dramatically

improve efficiency and effectiveness.

In summary, fine-tuning allows a 1B model to reach

comparable performance to larger LLaMA models and strong

supervised baselines like BERT in high-data safety classification

tasks. This supports the feasibility of privacy-preserving, on-device

deployments, where computational efficiency and user trust are

both critical.

4 Discussion

4.1 Scaling and supervision e�ects in
emotional safety classification

This work set out to investigate how model scale and

supervision level affect the ability of large language models (LLMs)

to detect emotionally unsafe content. Using a controlled set of

LLaMA 3 models ranging from 1B to 70B parameters (Dubey

et al., 2024), we examined binary safe, vs. unsafe, vs. borderline

classification, multi-label classification across a six-category safety

taxonomy, and a high-data subset of three categories (Inan et al.,

2023). Our results show that larger LLaMA models generally

achieved stronger performance in zero-shot settings, particularly

for nuanced multi-label classification where scaling effects were

most pronounced. However, few-shot prompting substantially

closed the gap between smaller and larger models in the trinary

task, showing that even lightweight models can reliably distinguish

safe, unsafe, and borderline content with minimal supervision. In

contrast, the multi-label taxonomy task remained more sensitive to

scale, with larger models showing clear advantages in recognizing

fine-grained categories of unsafe content. Strikingly, we found that

even the 1B model–despite being 70 times smaller and requiring

over 20× less VRAM–was able to match the performance of the

70B model and a BERT baseline when fine-tuned. This result

demonstrates that performance gains attributed to scale can, in

part, be recovered through targeted fine-tuning, making compact

models a viable option for emotionally sensitive applications.

While the present study focused on the scaling and alignment

behavior within the LLaMA model family, future work should

extend these analyses to a broader set of architectures to further

validate generalizability. Our primary objective was to examine

scalable alignment and on-device feasibility under consistent

architectural and quantization conditions, rather than to establish

inter-model performance rankings. Nevertheless, we conducted an

additional comparison using Yang K. et al. (2024) of comparable

parameter sizes, which exhibited virtually identical performance

trends across supervision regimes (Supplementary Figure S5,

Supplementary Table S2). This suggests that the observed scaling

relationships are not architecture-specific, although Qwen models

differ in quantization and runtime characteristics. Expanding

such benchmarks to include additional open-weight models

remains a valuable direction for future research, particularly

for evaluating trade-offs between safety alignment, efficiency,

and deployability.

4.2 Implications for safety alignment in
mental health applications

Our findings extend ongoing discussions around moderation

APIs and taxonomic safety classifiers such as OpenAI’s Moderation

API (OpenAI, 2023) and LlamaGuard (Inan et al., 2023), which

treat safety primarily as an external filtering step. By contrast, our

results demonstrate that emotional safety can be embedded as a

core capability of the model itself. The observation that even a 1B

model, once fine-tuned, reaches parity with both BERT baselines

(Devlin et al., 2018; Lee et al., 2020) and the 70B LLaMA highlights

a critical threshold: smaller models, given targeted supervision, can

recover much of the safety performance often attributed to scale.

Whereas prior work has shown that parallelizing model inference

across eight edge devices was still required to run full-precision

LLaMA-2 70B, our results demonstrate that a fine-tuned 1B model

is sufficient for emotional safety classification and can operate

entirely on a single edge device within realistic memory limits (Yu

et al., 2024).

This has two broader implications. First, it opens the door to

lightweight, on-device systems that preserve privacy—an essential

condition for deployment in mental health and therapeutic

contexts (Yao et al., 2024; Lai et al., 2023). Second, it reframes

emotional safety not as a post hoc moderation problem, but as

an intrinsic function of human-AI collaboration, enabling systems

that can respond adaptively to users affective states rather than

merely flagging harmful outputs. This conceptual shift aligns with

recent work in affective computing (Picard and Cosier, 1997;

Calvo and D’Mello, 2010; Yang K. et al., 2024) and suggests a

new generation of cognitive-affective interfaces where safety is

seamlessly integrated into dialogue. In this way, our study provides

a bridge between scalable alignment research and the design of

neuroadaptive or therapeutic tools that can operate reliably under

real-world constraints (Friha et al., 2024; Li et al., 2024; Yu et al.,

2024).
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FIGURE 1

Fine-tuned 1B model performance compared with larger LLaMA models and BERT. (A), Accuracy across three high-data taxonomy categories
(Regulated Substances, Suicide & Self-Harm, Violence & Hate). Results are shown for fine-tuned LLaMA-1B (orange striped bars), the
best-performing LLaMA models under few-shot prompting (blue solid bars), and a supervised BERT baseline (green striped bars). Error bars show
standard deviation across five runs. (B), Mean accuracy across these categories plotted against peak GPU memory (VRAM) usage during inference.
Blue line: scaling trend across LLaMA 1B-70B models under few-shot prompting (FS-5). Orange point: fine-tuned 1B model. Lower VRAM usage
indicates greater suitability for on-device deployment.

4.3 Limitations of data, task design, and
scaling interpretations

While our results are robust across settings, a number of factors

should be noted when considering their generalizability. First,

our dataset construction—pairing real-world unsafe posts with

LLM-generated reappraisals—may introduce stylistic artifacts that

models could exploit, potentially inflating performance on the safe

vs. unsafe split. Second, the six-category taxonomy is imbalanced,

with certain categories underrepresented (Table 1), which may

have limited model sensitivity to less frequent harms. Third, our

analysis was restricted to the LLaMA family in order to control

for architecture, tokenizer, and pretraining corpus (Dubey et al.,

2024). While this choice allowed us to isolate the effects of scale and

supervision, it also means that our conclusions may not transfer

directly to other architectures such which differ in alignment and

fine-tuning strategies (Zhang et al., 2024; Tosato et al., 2025).

Fourth, although we confirmed scaling trends using higher-data

subsets with multiple runs, our full six-category evaluations were

based on single runs without multiple seeds, leaving open the

possibility of variance effects.

While the six-category taxonomy adopted from LlamaGuard

was originally developed for general safety moderation, its

structured hierarchy provides a practical and interpretable

framework for emotionally relevant risk classification. Our

rationale for using this taxonomy was to leverage a well-established,

open-source safety schema that has undergone empirical validation

for broad harmful-content detection (Dubey et al., 2024). Although

certain categories (e.g., “Guns & Illegal Weapons”) are not directly

related to emotional risk, others–such as “Self-Harm,” “Hate,” and

“Sexual Content”–map closely to constructs of psychological threat

and interpersonal distress in digital mental health contexts (Cho

and Rader, 2020). Importantly, employing this taxonomy allows for

cross-domain comparability with existing safety benchmarks while

ensuring that alignment procedures remain reproducible across

foundation models. We acknowledge, however, that emotional

safety extends beyond content moderation to encompass empathy,

tone, and affective intent, which are underrepresented in current

taxonomies. Future work should incorporate psychologically

grounded taxonomies that integrate emotional valence, empathy

markers, and contextual sensitivity (Kirk et al., 2025), bridging

the gap between computational safety alignment and clinically

informed affective modeling.

Finally, while a full ablation study was beyond the scope

of this exploratory comparison, our results nonetheless highlight

which methodological components likely contributed most to

performance differences across supervision regimes. In particular,

we observed that prompt design (zero-shot vs. few-shot) and

adapter-based fine-tuning exerted the greatest influence on

safety classification accuracy, consistent with recent findings that

contextual framing and low-rank adaptation layers substantially

affect alignment quality in small models (Hu et al., 2022) (Table 3).

From a methodological standpoint, these insights offer an implicit

ablation, by isolating key factors that drive model sensitivity and

robustness without the need for exhaustive retraining. Future

work should formalize these observations through controlled

modular ablations, leveraging emerging efficient fine-tuning

methods such as AdaLoRA and DoRA (Zhang et al., 2023;

Liu et al., 2024), which enable fine-grained parameter updates

while maintaining low computational overhead. Such work would

further clarify how architectural and supervision components

interact to support safe, emotionally aware model behavior

at scale.

4.4 Conclusion

In sum, this study demonstrates that emotional safety

classification in LLMs is not solely a function of scale. While

larger models outperform smaller ones in zero-shot and nuanced
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multi-label settings, few-shot prompting markedly reduces

these differences, and fine-tuning allows even a 1B model to

have comparable performance of models 70 times larger as

well as strong BERT baselines—while using over 20× less

VRAM. These findings highlight that safety can be embedded

directly within lightweight models, enabling privacy-preserving

and resource-efficient deployment in sensitive domains such

as mental health support. More broadly, they suggest that

generative AI can be harnessed not only to moderate but

also to proactively structure safe and emotionally attuned

interactions. Looking forward, integrating such compact,

fine-tuned models into affective computing, digital mental

health interventions and technologies offers a promising

direction for building collaborative systems that are both safe

and scalable.
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