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Introduction: Laparoscopy is a visual biosensor that can obtain real-time
images of the body cavity, assisting in minimally invasive surgery. Laparoscopic
cholecystectomy is one of the most frequently performed endoscopic surgeries
and the most fundamental modular surgery. However, many iatrogenic
complications still occur each year, mainly due to the anatomical recognition
errors of surgeons. Therefore, the development of artificial intelligence (AI)-
assisted recognition is of great significance.
Methods: This study proposes a method based on the lightweight YOLOv11n
model. By introducing the efficient multi-scale feature extraction module,
DWR, the real-time performance of the model is enhanced. Additionally, the
bidirectional feature pyramid network (BiFPN) is incorporated to strengthen the
capability of multi-scale feature fusion. Finally, we developed the LC-YOLOmatch
semi-supervised learning framework, which effectively addresses the issue of
scarce labeled data in the medical field.
Results: Experimental results on the publicly available Cholec80 dataset show
that this method achieves 70% mAP50 and 40.8% mAP50-95, reaching a new
technical level and reducing the reliance on manual annotations.
Discussion: These improvements not only highlight its potential in automated
surgeries but also significantly enhance assistance in laparoscopic procedures
while effectively reducing the incidence of complications.

KEYWORDS

laparoscopic sensing, surgical AI, real-time detection, multi-scale feature fusion, semi-
supervised learning, image segmentation

1 Introduction

Cholecystectomy is one of the most common surgeries in general surgery, with
approximately 1.2 million such operations performed globally each year. Among them,
about 92% are carried out through laparoscopic techniques (Jones et al., 2025), marking the
wide application of minimally invasive surgical technology in modern medicine. However,
due to differences in economic development levels, medical equipment conditions, and
surgical training systems among various regions, the incidence of surgical complications
varies significantly (Okoroh and Riviello, 2021). For young surgeons, mastering this
routine surgery is not only a basic requirement for career development but also an
important guarantee for patient safety.
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To help young doctors master the operation skills more quickly
and reduce the risk of surgical complications, many research teams
have been dedicated to developing real-time surgical recognition
systems in recent years (Cao et al., 2023; Tang et al., 2024).
These systems can analyze and guide the key steps of the surgical
process in real time through artificial intelligence technology,
thereby shortening the learning curve and improving surgical
efficiency (Kou et al., 2023). Currently, various deep learning-based
methods have been applied in this field. For instance, segmentation
systems based on the U-Net architecture can accurately identify
anatomical structures in the surgical field (Kihira et al., 2022); while
transformer-based models, with their strong ability to extract global
features, have demonstrated excellent performance in complex
scenarios (Tang et al., 2023). Additionally, many studies have
applied mature detection models such as YOLOv5, YOLOv8,
and Segment Anything Model (SAM) to surgical video analysis,
achieving very satisfactory results (Ping et al., 2023) (Sivakumar
et al., 2025). Currently, the new generation of YOLO11 series
has shown outstanding speed and accuracy in various detection
and segmentation tasks (Ali and Zhang, 2024). This project
adopts the YOLO11n model and makes improvements to meet
the requirements of real-time accuracy for laparoscopic surgery.
We enhance the efficiency of multi-scale feature extraction by
combining the DWR module with the core module C3K2 of YOLO,
and introduce BiFPN to improve the ability of multi-scale feature
fusion, achieving a more efficient and accurate model.

Although this method has made significant technical
progress, its practical application still faces many challenges.
The primary issue is the excessively high cost of data annotation
(Vijayanarasimhan and Grauman, 2009). Although there are
abundant sources of surgical videos, the fine annotation of multiple
organs within them requires a considerable amount of time and
effort from professional surgeons. A single high-quality annotated
image may take several hours or even longer. Therefore, even for
a relatively small dataset (such as one containing 1,000 images),
it demands a huge investment of human and material resources.
Moreover, since surgical video data often contain sensitive patient
privacy information, publicly available datasets are extremely
limited. Even when some datasets are accessible, their annotation
standards vary significantly among different research teams,
making it difficult to achieve generalization (Wei et al., 2018). This
scarcity of data and inconsistency in annotation severely restrict
the development and promotion of related technologies.

To address the aforementioned issues, we have developed a
framework based on semi-supervised learning. Specifically, we first
train an initial weight for our improved model using a small
amount of high-quality labeled data. Then, we use this model to
predict the unlabeled data and generate pseudo-labels. Meanwhile,
we balance the quality and quantity of the pseudo-labels through
confidence screening. Subsequently, we apply strong augmentation
to the unlabeled images, predict them using the model weights,
and supervise them with the pseudo-labels. We optimize the model
through one-norm regularization, effectively reducing the reliance
on manual labeling. Experimental results show that this method not
only significantly reduces the labeling cost but also greatly enhances
the utilization of large-scale unlabeled data by the model.

In conclusion, the deep learning method proposed in this
study demonstrates high accuracy and efficient data utilization

capabilities, and has good clinical promotion value. It is expected
to become an important tool for assisting surgeons’ training and
surgical operations in the future.

The key contributions of this work include the following:

• This study employed all the videos from the Cholec80 dataset
to construct a comprehensive dataset by uniformly sampling
images across different surgical stages and diverse scenarios.

• We have developed an innovative method called LC-YOLO,
which has improved the accuracy and real-time performance
of scene segmentation and target detection in laparoscopic
cholecystectomy.

• We innovatively constructed the LC-YOLOmatch framework,
reducing the high reliance on manually labeled data and
enhancing the utilization rate of labeled data.

• It clearly expounds the motivation for seeking an automated-
assisted laparoscopic cholecystectomy solution, providing a
method for artificial intelligence-assisted surgery.

2 Related work

This section reviews the relevant literature on artificial
intelligence in laparoscopic cholecystectomy, laying the theoretical
foundation for the LC-YOLOmatch framework proposed in this
study. This framework aims to enhance the segmentation accuracy
of target images in laparoscopic cholecystectomy and effectively
address the issue of insufficient manual annotation in existing
studies.

2.1 CNN-based methods

In recent years, convolutional neural network (CNN) has
been widely used for the automatic segmentation and recognition
of anatomical structures in laparoscopic videos (Jalal et al.,
2023; Kitaguchi et al., 2020; Ward et al., 2021). Shinozuka
et al. (2022) adopted EfficientNet-B7 as the basic algorithm to
develop a deep convolutional neural network (CNN) model, which
can accurately identify the surgical stages during laparoscopic
cholecystectomy. Lee et al. (2024) combined CNN with long
short-term memory networks (LSTM) on this basis, conducting
time series analysis on video frame sequences to determine the
surgical progress in real time. Madani et al. (2022) designed two
CNN models: GoNoGoNet for identifying safe and dangerous
areas, and CholeNet for recognizing anatomical structures.
The model performance was evaluated through 10-fold cross-
validation, achieving good intersection over union (IoU) and F1
scores. However, all these methods rely on high-quality manual
annotations, and the real-time performance in complex scenarios
still needs to be optimized.

2.2 YOLO-based methods

The YOLO model has been widely used in laparoscopic videos
for real-time detection and localization of key anatomical structures
(Pan et al., 2024; Lai et al., 2023). Compared with traditional
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CNN models, YOLO has a significant advantage in speed and is
suitable for real-time intraoperative applications. Tokuyasu et al.
(2021) developed a model based on YOLOv3 to identify four key
anatomical landmarks (common bile duct, cystic duct, lower edge
of the medial segment of the left liver, and Rouviere’s sulcus) during
cholecystectomy. Although the average precision in quantitative
evaluation was not high, expert surgeons subjectively assessed that
the model could successfully identify key anatomical landmarks in
most test videos. Yang et al. (2024) introduced a channel attention
(CA) mechanism into the backbone network of YOLOv7, which
improved mAP, precision, and recall. Smithmaitrie et al. (2024)
used YOLOv7 to detect two anatomical landmarks, Rouviere’s
sulcus and the lower edge of liver segment IV, and deployed it in the
operating room for real-time detection and visualization guidance
of anatomy. Generally, YOLO is mostly used for object detection,
and its image segmentation capability is often overlooked.

2.3 Pseudo-labeling technology

In medical image segmentation, pseudo-labels are particularly
suitable for scenarios where data annotation is costly and there is an
abundance of unlabeled data, such as laparoscopic surgery images
(Wu et al., 2023; Wang et al., 2021). Due to the characteristics
of laparoscopic cholecystectomy images, including high noise,
complex anatomical structures, and low contrast, pseudo-labels
can effectively expand the training data and enhance the model’s
generalization ability in complex scenarios. Owen et al. (2022)
introduced a computer vision model that was trained to identify
key structures in laparoscopic cholecystectomy images, namely the
cystic duct and cystic artery. This model utilized label relaxation to
address the ambiguity and variability in annotations and adopted
pseudo-label self-supervised learning to leverage unlabeled data
for training. The model was trained using 3,050 labeled and 3,682
unlabeled frames of cholecystectomy images and achieved an IoU
of 65% and a target presence detection F1 score of 75%. Three
expert surgeons verified the model’s output and found it to be
accurate and promising.

3 Materials and methods

3.1 Dataset

Our main dataset is derived from the renowned Cholec80,
which originated from the research of A.P. (Twinanda et al., 2016).
It contains 80 laparoscopic cholecystectomy surgery videos, along
with organized and labeled information at different stages of the
surgeries. To achieve better results, we adopted the labeling method
from the research of Tashtoush et al. (2025). We manually extracted
544 images from the first three videos and conducted detailed
polygonal labeling on them. For the remaining 77 videos, to avoid
repetitive labeling of similar images, we automatically extracted
one frame every minute from each surgery video, and removed
interfering images that were not within the surgical field, such as
severe lens contamination, lens cleaning, and the lens moving out of
the surgical area. In total, we obtained 2,550 unlabeled images. We
allocated 323 labeled images from the first segment of the Cholec80

video to the training dataset, 133 standard images from the second
segment to the validation dataset, and 88 standard images from the
third segment to the test dataset. As shown in Figure 1, it is the
display of our image and manual annotation.

3.2 LC-YOLO architecture

As shown in Figure 2, the overall structure diagram of our LC-
YOLO model is presented. This model is based on the yolov11n
model. Before extracting the features of the 4th, 6th, and 10th
layers of the backbone network in the neck network, we add a
convolutional layer to uniformly adjust the number of channels
to 256. This is to enable better input of multi-scale features into
the BIFPN layer for more complex feature fusion. To enhance
the model’s ability to detect small targets and perform precise
positioning, we add a set of modules for extracting features from
the lower layers of the backbone network, such as the edges,
textures, corner points and other basic features of the image. We
replace all the C3K2 modules in the model with C3K2-DWRseg
modules to enhance the model’s multi-scale feature extraction
ability and efficiency to adapt to the real-time requirements of
medical applications. We replace concat with BiFPN to improve the
ability of multi-scale feature fusion and achieve more precise model
performance.

3.3 C3K2-DWRseg module

As shown in Figure 3, we analyzed the core structure of the
C3K2-DWRseg module. DWR is an innovative expansion-style
residual proposed by Wei et al. (2018). This module consists of
three branches, each of which uses different dilated convolutions
to expand the receptive field. The dilated rates are 1, 3, and 5.
The traditional Bottleneck is used to control the dimension of
features, aiming to reduce the computational cost while retaining
important features. We innovatively combined the Bottleneck with
the DWR module to form the Bottleneck-DWRSeg. This approach
reduces the computational cost while rapidly extracting multi-
scale features, highlighting the real-time performance of the model.
Then, we replaced the Bottleneck in C3K2 with our Bottleneck-
DWRSeg, ultimately forming the C3K2-DWRseg module.

3.4 BiFPN module

As shown in Figure 4, this is our Bi-FPN layer (Tan et al.,
2020). In contrast to the traditional feature pyramid network
(FPN), which has a unidirectional flow, multi-scale feature fusion
seeks to combine features of varying resolutions more efficiently.
Unlike FPN, which is restricted to a single input node, Bi-FPN
nodes can process information from multiple inputs, facilitating
the integration of both low-level and high-level semantic features.
Within the Bi-FPN structure, feature fusion occurs in both bottom-
up and top-down directions, allowing the model to capture cross-
scale features more effectively. In our proposed model, multi-layer
features are utilized as inputs for each Bi-FPN layer.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1706021
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Long et al. 10.3389/frai.2025.1706021

FIGURE 1

Diagram illustrating the display of images and labels.

FIGURE 2

The structure of LC-YOLO.

3.5 LC-YOLOmatch framework

To address the issue of scarce manually labeled images, we
aim to make rational use of unlabeled images. Drawing on the
framework of FixMatch (Sohn et al., 2020), as shown in Figure 5,

we have designed the LC-YOLOmatch framework. Firstly, we train
the initial weights using the labeled images in LC-YOLO. Then, we
use this weight model to predict the unlabeled images. To solve the
problem of the accuracy of pseudo-labels, we utilize the confidence
function provided by YOLO to filter out the qualified pseudo-labels.
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FIGURE 3

The structure of C3K2-DWRseg module.

Using the qualified pseudo-labels as supervision, we again use the
initial weight model to predict the strongly enhanced processed
unlabeled images, achieving consistent regularization and further
enhancing the model’s capabilities.

4 Experiment

4.1 Experimental evaluation

For assessing the model’s performance, we utilize the standard
quantification metrics commonly employed in YOLO. In this
context, TP denotes the count of true positive samples, FP refers to
the number of false positive samples, and FN indicates the number
of false negative samples. Precision (P) evaluates the fraction of
model-predicted positive samples that are genuinely true positives.
A higher value signifies more accurate predictions by the model and
fewer instances of negative samples being misclassified as positive.
The Equation 1 is presented as follows:

P = TP
TP + FP

(1)

R indicates the ratio of all actual positive samples that the
model is capable of accurately predicting as positive. A higher
value reflects greater coverage of positive samples by the model and
fewer overlooked positive instances. The Equation 2 is formulated

as follows:

R = TP
TP + FN

(2)

mAP50 represents the mean average precision when the
intersection over union (IoU, the ratio of intersection to union)
exceeds 0.5. It is used to evaluate whether the overlap between the
predicted mask and the actual mask bounding box exceeds 50%.
This metric can comprehensively assess the model’s performance
in segmentation tasks.

mAP50-95 denotes the average of the mean average precision
computed across varying IoU thresholds (ranging from 0.5 to 0.95
with increments of 0.05). This measure offers a more extensive
evaluation of the model’s performance under diverse detection
rigor levels, demands greater overall capabilities from the model,
and exhibits enhanced robustness and generalization power.

In order to balance the trade-off between precision and recall,
the F1 value is defined in the Equation 3 as:

F1 = 2 × P × R
P + R

(3)

4.2 Experimental setup

The proposed model was implemented on a computer
equipped with a 12GB memory RTX 4080 graphics card using
Pytorch 1.21.1 and Python 3.9.7. The optimizer used SGD, the
maximum number of training epochs was set to 200, the learning
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rate was set to the default value of 0.01, and the image input was
640*640.

Our LC-YOLO function architecture is developed based on
the Ultralytics code library (Jocher et al., 2022). For the weak
enhancement, the default data augmentation settings of YOLOv11
are adopted. For the strong enhancement, color jittering is used:
randomly adjust the brightness, contrast, saturation and hue of
the image, with the parameters being a brightness factor of 0.5, a
contrast factor of 0.5, a saturation factor of 0.5 and a hue factor
of 0.2. The larger the value of these factors, the more obvious
the color change of the image; random grayscale conversion: The
default probability is set to 0.2 to convert the image to a grayscale
image; Gaussian blur: The default probability is set to 0.5 to perform
Gaussian blur processing on the image; occlusion: Randomly select

FIGURE 4

The structure of BiFPN module.

a rectangular area on the image and mask to occlude it, and the
pixel values of this area are randomly filled, while the values of the
corresponding area in the mask are set to 255.

Finally, the loss function of our semi-supervised framework
LC-YOLOmatch consists of two parts. One part is the supervised
loss �lc-yolo, and the other part is the semi-supervised loss �lcyolo-
match. The total loss function of the model is �lc-yolo+β�lcyolo-match,
where β is a fixed scalar hyperparameter used to balance the
weights of the two parts of the loss.

For labeled segmentation samples, ��c-yolo also employs the
cross-entropy loss function to calculate the difference between the
predicted results of the labeled images after weak enhancement
and the true labels. N is the batch size of the labeled samples;
H represents the cross-entropy; pn is the true label distribution
of the sample zn, which is a pixel-level label distribution;
p�c-yolo(y|α(zn)) is the model’s prediction distribution for the
weakly enhanced labeled image α(zn), which is also a pixel-level
prediction distribution.

The Equation 4 is defined as:

llc-yolo = 1
N

N∑

n=1
H

(
pn, plc-yolo(y|α(zn))

)
(4)

For unlabeled segmented samples, the �lc-yolo-match algorithm
first predicts the pseudo labels for the unlabeled images after
weak enhancement. Then, it predicts the same images after strong
enhancement and calculates the cross-entropy loss between the
prediction results and the pseudo labels. To ensure the reliability of
the pseudo labels, only when the maximum prediction probability
of the model for the weakly enhanced images is greater than the
preset threshold τ , will the pseudo label be retained and the loss be

FIGURE 5

The framework of LC-YOLOmatch.
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TABLE 1 The result of YOLOv5n.

YOLOv5n Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50-95)

All 88 280 0.519 0.636 0.574 0.611 0.315

Allis 2 2 0.000 0.000 0.000 0.014 0.009

Bag 2 2 0.832 0.500 0.622 0.500 0.060

Cautery 43 44 0.799 0.724 0.760 0.782 0.509

Forceps 43 59 0.418 0.593 0.487 0.524 0.206

Gallbladder 65 65 0.409 0.523 0.460 0.445 0.229

Liver 78 108 0.531 0.769 0.621 0.691 0.355

calculated. Here, μN is the batch size of the unlabeled samples, μ is
the ratio of unlabeled images to labeled images; qb is the predicted
distribution of the model for the weakly enhanced unlabeled images
α(ub), which is a pixel-level prediction distribution; q̂b is the pseudo
label, that is, q̂b = argmax(qb), where the position with the
maximum value for each pixel is taken as the pseudo label; A(ub)
represents the image after strong enhancement of the unlabeled
image ub. The Equation 5 is defined as:

llc-yolomatch = 1
μN

μN∑

b=1

1
(
max(qb) ≥ τ

)
H

(
q̂b, plc-yolomatch(y|A(ub))

)

(5)
Through this modified loss function, the LC-YOLOmatch

method can effectively utilize both labeled and unlabeled data to
enhance the performance of the image segmentation model.

5 Results

5.1 Comparative experiment

Firstly, to evaluate the performance of our enhanced model,
we conducted both comparative and ablation studies. To ensure
the fairness and consistency of the experiments, during the
experimental phase, we adopted a uniform experimental setup
and dataset across all trials. To minimize potential bias caused by
parameter differences, all participating YOLO models utilized the
smallest model variant. We employed the Wilcoxon signed-rank
test to conduct pairwise comparisons of all image measurement
indicators to evaluate the performance differences between the
model and the optimized model. Meanwhile, we excluded
categories with only two samples to ensure the reliability of
the statistical analysis. The results showed that all the indicators
included in the analysis presented P < 0.05, indicating significant
statistical significance. The YOLO models were initially designed
for detection tasks. Starting from YOLOv5 7.0 (Jocher et al.,
2022), a segmentation function was introduced. The segmentation
models selected for comparison included YOLOv5n, YOLOv6n,
YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n. The training
set used 323 images manually annotated by us. We adopted the
method of data augmentation to increase the sample size of
the training set and ensured the consistency of the training set
images. We simulated the frequent interference such as camera
shake, smoke, and blood stains that occur during laparoscopic

surgery operations. We used random rotation by 90 degrees and
image blurring as the image enhancement mode to simulate the
surgical scene. We generated two variants for each image. After
preprocessing, we obtained a training set comprising 948 images,
which was approximately three times the size of the original dataset.

As shown in Tables 1–7, we obtained the results of each
comparison model through five operations while maintaining the
same division of the training set, validation set, and test set. Among
them, the number of allis and bag instances in the test set is too
small, so we do not make a separate comparison. The value of
the All classification in YOLO is simply the average of the values
of each classification, without considering the impact of different
instance numbers of each classification, resulting in a deviation
in the results. We recalculated and adopted the average based on
the instance numbers. As shown in Figures 6a–c, the results are
the comparison graphs of F1 value, mAP50, and mAP50-95 for
each model. It can be seen that our LC-YOLO segmented 280
instances in 88 images, and it achieved the highest values in all
categories. The F1 value was 21.7% higher than that of the base
model YOLOv11n and 0.3% higher than that of the second-place
yolov6n. The mAP50 was 25.2% higher than that of YOLOv11n and
5.9% higher than that of yolov6. The mAP50-95 was 28.1% higher
than that of YOLOv11n and 6.7% higher than that of yolov6. The
improvement in performance is very significant. At the same time,
we observed that after multiple iterations of YOLO, its performance
in the image segmentation project did not improve with the version
iterations, indicating a huge room for optimization.

Our LC-YOLO model still performed outstandingly in the
subcategories. It ranked first in the cautery, gallbladder, and liver
categories. Specifically, in the cautery category, our mPA50 was
3.1% higher than that of the second-place yolov5n, and our mPA50-
95 was 3.5% higher than that of yolov8n. In the gallbladder
category, our F1 was 0.47% higher than that of the second-place
yolov6n, and our mPA50 was 4.8% higher than that of the second-
place model. Our mPA50-95 was 0.35% higher than that of yolov8.
In the liver category, our F1 was 2.3% higher than that of yolov6n,
and our mPA50 was 5.7% higher than that of yolov6n. Our mPA50-
95 was 1.2% higher than that of yolov6n. Although we did not
achieve the top ranking in the forceps category, we still improved
the F1 by 2.5%, mAP50 by 11.3%, and mAP50-95 by 0.5% compared
to the original model YOLOv11n. These figures indicate that our
LC-YOLO model has more precise and stable performance in the
segmentation of laparoscopic cholecystectomy scenes, which can
better assist surgeries and has certain clinical significance.
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TABLE 2 The result of YOLOv6n.

YOLOv6n Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.637 0.639 0.631 0.657 0.341

Allis 2 2 0.088 0.500 0.150 0.100 0.034

Bag 2 2 0.824 0.500 0.635 0.496 0.198

Cautery 43 44 0.866 0.585 0.702 0.736 0.430

Forceps 43 59 0.545 0.407 0.469 0.441 0.184

Gallbladder 65 65 0.584 0.692 0.634 0.665 0.283

Liver 78 108 0.633 0.750 0.687 0.731 0.433

TABLE 3 The result of YOLOv8n.

YOLOv8n Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.675 0.518 0.575 0.619 0.324

Allis 2 2 1.000 0.000 0.000 0.131 0.004

Bag 2 2 1.000 0.000 0.000 0.499 0.010

Cautery 43 44 0.856 0.682 0.760 0.808 0.518

Forceps 43 59 0.655 0.373 0.465 0.559 0.244

Gallbladder 65 65 0.579 0.385 0.457 0.492 0.222

Liver 78 108 0.668 0.63 0.649 0.651 0.361

TABLE 4 The result of YOLOv9t.

YOLOv9t Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.535 0.674 0.593 0.604 0.324

Allis 2 2 0.000 0.000 0.000 0.000 0.000

Bag 2 2 0.492 0.492 0.492 0.249 0.0499

Cautery 43 44 0.718 0.695 0.706 0.740 0.479

Forceps 43 59 0.493 0.627 0.553 0.561 0.236

Gallbladder 65 65 0.527 0.631 0.576 0.577 0.288

Liver 78 108 0.499 0.731 0.594 0.612 0.342

TABLE 5 The result of YOLOv10n.

YOLOv10n Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.437 0.730 0.541 0.594 0.313

Allis 2 2 0.105 0.500 0.176 0.0865 0.026

Bag 2 2 0.426 0.500 0.462 0.252 0.101

Cautery 43 44 0.605 0.841 0.702 0.771 0.499

Forceps 43 59 0.340 0.576 0.427 0.425 0.180

Gallbladder 65 65 0.414 0.646 0.500 0.504 0.241

Liver 78 108 0.444 0.806 0.571 0.681 0.362

5.2 Ablation study

We conducted ablation experiments based on the YOLOv11n
as the baseline model to systematically evaluate the impact of each
module architecture on the model performance. The same training

set, validation set, and test set division method as mentioned
above was adopted in the experiments. As shown in Table 8, we
summarized the results based on 88 images and 280 instance
segmentation. The results show that our complete model LC-
YOLO performs the best in overall performance, ranking first
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TABLE 6 The result of YOLOv11n.

YOLOv11n Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.431 0.668 0.520 0.556 0.284

Allis 2 2 0.000 0.000 0.000 0.000 0.000

Bag 2 2 0.772 0.5 0.622 0.502 0.1

Cautery 43 44 0.658 0.773 0.711 0.739 0.484

Forceps 43 59 0.34 0.627 0.437 0.433 0.2

Gallbladder 65 65 0.355 0.55 0.426 0.395 0.191

Liver 78 108 0.436 0.731 0.551 0.655 0.314

TABLE 7 The result of LC-YOLO.

LC-YOLO Images Instances Mask (P) Mask (R) Mask (F1) Mask (mAP50) Mask (mAP50–95)

All 88 280 0.586 0.712 0.633 0.696 0.364

Allis 2 2 0.217 0.500 0.303 0.224 0.091

Bag 2 2 0.545 0.500 0.521 0.498 0.150

Cautery 43 44 0.714 0.727 0.714 0.806 0.536

Forceps 43 59 0.497 0.407 0.448 0.482 0.201

Gallbladder 65 65 0.529 0.800 0.637 0.697 0.289

Liver 78 108 0.623 0.824 0.703 0.773 0.438

in recall rate, F1 value, mAP50, and mAP50-95 metrics. In the
ablation experiments, the introduction of the BiFPN module or
the DWRseg module alone significantly improved the performance
compared to the baseline model YOLOv11n. Specifically, in
the sub-classification tasks, YOLO+BiFPN performed best in the
Cautery classification; YOLO+DWRseg performed best in the
Forceps classification; while LC-YOLO, which integrates both
the BiFPN and DWRseg modules, excelled in the Gallbladder and
Liver classifications, especially achieving the best results in the
crucial Gallbladder and Liver anatomical organ classification tasks
in gallbladder removal surgery.

5.3 Comparison experiment with
pseudo-labels

In this part, we introduce LC-YOLO into our LC-YOLOmatch
framework and use unlabeled images to further optimize the model.
We generate pseudo-labels for the unlabeled images by setting
different confidence thresholds τ , as shown in Figure 7, which
presents the number of pseudo-label instances generated from
2,550 unlabeled images within the confidence interval of 0.5 to
0.95. Although a higher confidence threshold can filter out more
accurate labels, it also leads to a significant loss of annotations,
resulting in a linear decrease in the number of annotations. We set
the confidence threshold τ to 0.6, with 323 manually labeled images
in the training set, and the number of unlabeled images is set to
0 times, two times, three times, and eight times the labeled data,
respectively. The validation set and test set are divided as described
above. As shown in Table 9, our LC-YOLOmatch framework can

effectively utilize unlabeled data resources to improve the model.
Based on the overall instance segmentation results of the test set, it
can be seen that the LC-YOLOmatch with unlabeled data achieves
an average improvement of 16.6% in the Mask(P) metric, 8%
in the Mask(R) metric, 9.7% in the Mask (F1) metric, 14.2% in
the mAP50 metric, and 9.8% in the mAP50-95 metric compared
to the LC-YOLO model. Among them, the best performance
is achieved when the ratio of labeled to unlabeled data is 1:2
and 1:3. An excessively high proportion of unlabeled data may
introduce too much noise and lead to performance degradation.
As shown in Figure 8, compared to the initial baseline model
yolov11, our improved LC-YOLOmatch achieves a comprehensive
performance improvement. We conducted tests using the publicly
available standard laparoscopic cholecystectomy video provided
by the Institute of Research and Innovation in Digestive Surgery
(IRCAD) Cancer Center for the Digestive System in France (a
globally renowned minimally invasive surgery training center)
(Mutter and Marescaux, 2004). As shown in Figure 9, this figure
presents the test scene from the surgical video.

6 Discussion

The achievements made by the LC-YOLOmatch framework
not only highlight the improvement in scene detection and
segmentation capabilities during laparoscopic cholecystectomy,
but also have significant implications for both theory and
practice. From a theoretical perspective, our research results
contribute to enhancing the multi-scale feature extraction and
fusion capabilities of YOLO, providing new ideas for solving
the theoretical problem of understanding complex surgical
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FIGURE 6

The scatter plot of the comparative experiment. (a) Comparison of mask (F1) values. (b) Comparison of mask (mAP50) values. (c) Comparison of
mask (mAP50-95) values.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1706021
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Long et al. 10.3389/frai.2025.1706021

TABLE 8 This is the result of the ablation experiment.

Class Model Images Instances Mask (P) Mask (R) Mask (F1) mAP50 mAP50–95

All YOLOv11n 88 280 0.431 0.668 0.520 0.556 0.284

YOLO + BiFPN 88 280 0.701 0.581 0.626 0.649 0.359

YOLO + DWRseg 88 280 0.559 0.700 0.614 0.665 0.364

LC-YOLO 88 280 0.586 0.712 0.633 0.696 0.364

Cautery YOLOv11n 43 44 0.658 0.773 0.711 0.739 0.484

YOLO + BiFPN 43 44 0.840 0.716 0.774 0.814 0.523

YOLO + DWRseg 43 44 0.820 0.726 0.770 0.770 0.497

LC-YOLO 43 44 0.714 0.727 0.714 0.806 0.536

Forceps YOLOv11n 43 59 0.340 0.627 0.437 0.433 0.200

YOLO + BiFPN 43 59 0.671 0.322 0.434 0.478 0.189

YOLO + DWRseg 43 59 0.480 0.542 0.509 0.485 0.220

LC-YOLO 43 59 0.497 0.407 0.448 0.482 0.201

Gallbladder YOLOv11n 65 65 0.355 0.550 0.426 0.395 0.191

YOLO + BiFPN 65 65 0.651 0.574 0.610 0.644 0.358

YOLO + DWRseg 65 65 0.460 0.723 0.562 0.643 0.315

LC-YOLO 65 65 0.529 0.800 0.637 0.697 0.289

Liver YOLOv11n 78 108 0.436 0.731 0.551 0.655 0.314

YOLO + BiFPN 78 108 0.685 0.667 0.687 0.681 0.381

YOLO + DWRseg 78 108 0.565 0.787 0.653 0.750 0.422

LC-YOLO 78 108 0.623 0.824 0.703 0.773 0.438

The optimal value is displayed in bold.

FIGURE 7

The number of pseudo-labels generated by different confidence levels.

scene information, and opening up the integration method
between YOLO and semi-supervised frameworks. At the practical
application level, the optimization of this algorithm not only

improves the accuracy of image recognition but also reduces
the reliance on manual labeling. In the actual application of
surgical assistance systems, it can effectively enhance the real-time
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TABLE 9 The impact of using LC-YOLOmatch on the results and the number of unlabeled images on the model.

Class label ratio Images Instances Mask (P) Mask (R) Mask (F1) mAP50 mAP50–95

All 1:0 88 280 0.553 0.638 0.598 0.595 0.297

1:2 88 280 0.647 0.736 0.687 0.698 0.395

1:3 88 280 0.683 0.700 0.653 0.700 0.408

1:8 88 280 0.655 0.631 0.629 0.640 0.382

Cautery 1:0 43 44 0.809 0.769 0.787 0.805 0.516

1:2 43 44 0.787 0.756 0.771 0.819 0.550

1:3 43 44 0.815 0.841 0.828 0.856 0.597

1:8 43 44 0.817 0.773 0.795 0.831 0.576

Forceps 1:0 43 59 0.417 0.339 0.370 0.354 0.122

1:2 43 59 0.615 0.593 0.604 0.523 0.255

1:3 43 59 0.664 0.458 0.535 0.556 0.282

1:8 43 59 0.681 0.362 0.461 0.462 0.214

Gallbladder 1:0 65 65 0.586 0.692 0.635 0.595 0.240

1:2 65 65 0.600 0.738 0.663 0.712 0.333

1:3 65 65 0.676 0.723 0.699 0.781 0.390

1:8 65 65 0.565 0.646 0.603 0.541 0.274

Liver 1:0 78 108 0.559 0.731 0.638 0.654 0.345

1:2 78 108 0.653 0.824 0.730 0.754 0.445

1:3 78 108 0.532 0.778 0.634 0.681 0.423

1:8 78 108 0.646 0.725 0.684 0.734 0.470

The optimal value is displayed in bold.

performance and stability of the system, and has important
application value.

During the semi-supervised experiment, we selected a certain
number of unlabeled images each time, which might have had
a certain accidental influence on the results. However, through
multiple tests, we found that this algorithm could maintain a
high accuracy rate in most cases, indicating that the performance
improvement has a certain inevitability. From the perspective of the
algorithm’s principle, its precise extraction and efficient integration
mechanism of features is a necessary factor for improving the
recognition accuracy, which is consistent with our theoretical
understanding of the image recognition process. When combined
with our proposed semi-supervised framework, the model not only
significantly improves the utilization efficiency of limited labeled
data but also achieves better segmentation performance than these
methods. It is important to note that this improvement relies on
a large number of pseudo-labels and our specific semi-supervised
strategy, and thus direct comparisons with fully supervised or
models of different paradigms such as SAM2, SegFormer, and
MedSAM are not strictly comparable or fair. Based on this, we
have not included the above models in the main experimental
comparisons for now. In future research, we plan to integrate
these advanced models into our semi-supervised framework to
ensure a more comprehensive and fair comparison under the
same conditions.

The experimental data set used in this study covers various
categories, including major instruments and anatomical structures.

In the actual surgical environment, the main clinical value
of our model lies in its ability to continuously identify key
anatomical structures, including the cystic duct, cystic artery,
gallbladder boundary, and potential vascular injury areas, during
the critical steps of establishing the critical view of safety
(CVS). Although a 70% mAP50 might be considered moderate
from a purely algorithmic perspective, our frame-by-frame error
analysis indicates that the model provides stable detection results
throughout most surgical stages, which is crucial for intraoperative
assistance. In our test set, the optimized semi-supervised YOLO
framework successfully identified the cystic duct area in over
85% of the visually exposed frames, while maintaining a low
false positive rate of highlighting in regions without anatomical
landmarks. This level of consistency can effectively support
surgeons, especially those with less experience, by reducing the
possibility of misidentifying the connection between the cystic duct
and the common bile duct, thereby lowering the risk of major
bile duct injury. Additionally, the semi-supervised enhancement
method we adopted simulates the visual challenges similar to
those in environments with heavy smoke, bleeding, or instrument
occlusion, reflecting the actual surgical challenges and improving
the model’s stability. However, in real laparoscopic surgeries, there
are more diverse instruments and anatomical structures, which
may affect the generalization performance evaluation of the model
in these scenarios. Since the experimental environment was set
up for laparoscopic cholecystectomy, we were unable to fully
test the algorithm’s performance in other surgical systems, which
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FIGURE 8

The comparison chart of model performance.

FIGURE 9

The standard laparoscopic cholecystectomy video test sample diagram.

may lead to certain deviations in our efficiency assessment of the
algorithm in actual large-scale applications. Secondly, we used
a unified threshold for filtering, which may not be suitable for
all classifications. In multi-classification tasks, using a constant

and uniform confidence level to filter pseudo-labels is difficult to
balance the quantity and quality of labels to the optimal value.
Furthermore, we found that as shown in Figure 10, our model
often misclassifies the two arc-shaped quadrilaterals outside the
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FIGURE 10

This is figure of common misjudgments in pseudo-label generation. (Left) unlabelled image data; (right) misjudged pseudo-label.

laparoscope lens as liver. The possible reason is that the laparoscope
lens is circular, while the captured image is rectangular. The
receptive field around the lens is affected by the lens light source,
and the gray value is not zero, so it cannot be identified as the
background. In subsequent experiments, it may be necessary to
preprocess the images to obtain better results.

Future research can combine this algorithm with other more
advanced semi-supervised frameworks to further enhance its
adaptability and intelligence level. Additionally, the application of
this algorithm in more complex surgeries, such as laparoscopic
gastric cancer radical surgery, can be explored to provide further
technical support for surgical automation.

7 Conclusions

In summary, LC-YOLO-match has made significant progress in
the automatic segmentation task of laparoscopic cholecystectomy
scenarios. By introducing the BiFPN module and the DWRseg
module, LC-YOLO not only achieved breakthroughs in high
detection rate and segmentation accuracy, outperforming
multiple baseline models, but also maintained a low number

of parameters and GFLOPs. Additionally, we proposed
the LC-YOLOmatch framework, which effectively utilizes
unlabeled data to alleviate the problem of scarce labeled data.
Experimental results show that this method achieved 70%
mAP50 and 40.8% mAP50-95, surpassing the previous best
levels of 55.6 and 28.4% respectively, reaching a new technical
level. These results highlight the potential of customized deep
learning methods in automated surgery, especially in achieving
high performance with limited manually labeled data. The
outstanding performance of LC-YOLO-match not only provides
a direction for future improvements but also lays the foundation
for further integration into clinical workflows, ultimately
contributing to assisting surgeries and reducing the occurrence
of complications.
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