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Constructing a risk screen for 
attention difficulty in U.S. adults 
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methods
Ying Song 1, Yansun Sun 2, Zedan Guo 1 and Li Yi 1*
1Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 2Department of 
Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China

Background: Concentration difficulty is recognized as a hallmark of various 
neurologic and neuropsychiatric disorders. However, an accurate estimation of 
epidemiological risk factors for concentration difficulty remains severely limited.
Aims: The study aimed to develop an interpretable machine-learning (ML) 
model to predict risk factors of concentration difficulty among adults in the 
United States.
Methods: A total of 9,971 participants were included from the 2015–2016 cycle 
of the National Health and Nutrition Examination Survey (NHANES). Six ML 
algorithms, including Logistic Regression, ExtraTrees classifier, Bagging, Gradient 
Boosting, Extreme Gradient Boosting (XGBoost), and Random Forest (RF), were 
applied in this study. Model performance was evaluated using the area under the 
receiver operating characteristic curve (AUC), accuracy, precision, specificity, 
decision curve analysis (DCA), and calibration plots. Finally, a nomogram was 
constructed based on the best performing model.
Results: Of these, 2,146 participants aged 20 years and older were analyzed. 
Logistic regression exhibited the best clinical predictive value in both internal 
and external validation sets, with AUCs of 0.881 and 0.818, respectively. The 
DCA curve revealed that logistic regression exhibited the greatest net benefits 
in the internal cohort, whereas the RF model provided the largest net benefits in 
the external cohort (threshold: 0.2–0.3).
Conclusion: Logistic regression exhibited the highest clinical value in 
predicting concentration difficulty. These findings provide valuable insights 
for the recognition, management, and effective interference strategies for 
concentration difficulty.

KEYWORDS

machine learning, NHANES, concentration difficulty, neuropsychiatric disorders, 
logistic regression

Introduction

Concentration difficulty is a common complaint among psychopathological patients as 
well as a hallmark of neurologic and neuropsychiatric disorders, including anxiety, major 
depressive disorder (MDD), schizophrenia, post-traumatic stress disorder (PTSD), and 
Alzheimer’s disease (AD) (Hallion et al., 2018; Keller et al., 2019; Khanna et al., 2017; Luck et 
al., 2019). For example, patients with anxiety disorders exhibit a higher prevalence of 
concentration issues across various age groups (Rodrigues et al., 2019). Individuals with 
schizophrenia are characterized by impaired concentration and altered processing speed 
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(Egeland et al., 2003). Among patients with mild-to-moderate AD, 
concentration impairments are observed in more than 80% (Gilmour 
et al., 2019). Concentration difficulties are also frequently reported in 
patients with post-stroke aphasia (Schumacher et al., 2019). 
Recognition and management remain challenging, as no specific 
biochemical or imaging abnormalities are available, particularly in 
patients with overlapping etiologies or uncertain causes (Hallion et al., 
2018). Therefore, the best treatment procedures are often missed, 
leading to poor outcomes in psychosocial and occupational domains 
and adding to the overall burden on society worldwide (Bornert and 
Bouret, 2021).

Large-scale national surveys were conducted to identify 
prevalence and risk factors pertaining to concentration difficulties. 
Existing models of attention describe the association between risk 
factors and concentration difficulties, contributing to symptom 
evaluations (Cao et al., 2023; Gong et al., 2022). However, systematic 
estimation of risk prediction model for attention difficulty remains 
insufficient. Traditionally, the interaction between these risk factors 
and their clinical values has been limited (Fardell et al., 2023; Epstein 
and Kumra, 2014). In addition, a majority of existing risk prediction 
models for concentration difficulties were limited to children and 
teenagers, including attention-deficit/hyperactivity disorder (ADHD), 
which may not apply to adult patients. Thus, it is of great clinical 
significance to establish precise risk screen models for concentration 
difficulties and to optimize the management of high-risk 
adult individuals.

Artificial intelligence (AI) is increasingly applied to identify early 
indications of diseases. As a key branch of AI, machine learning (ML) 
algorithms can analyze diverse features, thereby improving diagnostic 
accuracy (Alber et al., 2019). ML applications have achieved major 

breakthroughs in various medical fields. For example, ML model 
improves the prediction of heart failure, stroke, cancer, and psychiatric 
disorders (Chen et al., 2023; Li et al., 2022; Huang et al., 2020; 
Elemento et al., 2021; Dwyer et al., 2018). These findings suggest that 
ML could be a powerful technique for enhancing diagnostic accuracy, 
risk prediction, and intervention strategies.

To our knowledge, few studies have concentrated on the 
prediction of risk factors in concentration difficulty using ML 
approaches, especially in adult patients. This study is aimed at 
developing and validating the risks associated with concentration 
difficulties when using six ML models based on the NHANES 
database. The inclusion and exclusion criteria of this study are shown 
in Figure 1.

Materials and methods

Study design and participants

According to a nationally representative database, NHANES is 
sponsored by the Centers for Disease Control and Prevention (CDC) 
and aims to assess the health and nutrition status of both adults and 
children in the United States (Cheng et al., 2023). The survey samples 
the U.S. civilian population using a stratified, multistage probability 
design and collects nationally representative data based on 
demographic data, diet, physical examination, laboratory measures, 
and questionnaires (Song et al., 2022).

A total of 9,971 adults from the 2015–2016 NHANES cycles were 
included in the study, and demographic, physical examination, 
laboratory, and questionnaire data were analyzed. A total of 24 

FIGURE 1

Flowchart of the study population. BMI, body mass index.
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predictors related to concentration difficulty were considered. After 
excluding individuals with missing data on uric acid (N = 3,717), 
triglycerides (N = 1), phosphorus (N = 1), iron (N = 2), depression 
(N = 915), anxiety (N = 7), concentration difficulty (N = 5), as well as 
patients who had a history of liver disease (N = 240), stroke (N = 3), 
coronary heart disease (N = 23), sleep duration (N = 22), income 
criteria (N = 366), insulin (N = 2,496), smoking status (N = 3), 
hypertension (N = 2), body mass index (BMI, N = 20), and kidney 
disease (N = 2), the final sample consisted of 2,146 participants.

Concentration difficulties

The 2015–2018 NHANES survey assessed attention difficulties 
using a disability questionnaire supplied in a Mobile Examination 
Center. The questionnaire collected respondent-level interview data 
on serious difficulties associated with hearing, seeing, concentrating, 
walking, dressing, and running errands. Its development involved 
extensive input from federal agencies, consultants, and experts from 
external research community. The primary outcome for this analysis 
was based on responses (yes or no) to the questions: Do you have 
serious difficulty concentrating? (Fardell et al., 2023).

Other covariates

Known risk factors, along with demographic and disease 
characteristics of clinical importance, were selected as candidate 
variables for the prediction model (Kim et al., 2016). In this study, 
demographic factors include age (20–80 years), sex (male and female), 
and income criteria (Zhou et al., 2024). Lifestyle variables comprised 
BMI, sleep duration, and smoking status (subjects having smoked 
fewer than 100 cigarettes in one’s lifetime or not) (Aronow and 
Frishman, 2018; Yakushiji et al., 2018; Aaron and Hughes, 2007; 
Deierlein et al., 2022; Huang et al., 2021). Health-related variables 
included in the questionnaire were hypertension, coronary heart 
disease, stroke, cancer, liver disease, kidney disease, anxiety, and 
depression. Laboratory data consisted of concentrations of calcium, 
cholesterol, chloride, glucose, insulin, iron, potassium, sodium, 
phosphorus, triglycerides, and uric acid in blood.

Machine learning model development

LASSO regression is a powerful technique for creating 
parsimonious models while mitigating issues related to overfitting 
(Tsur et al., 2020). In this study, the LASSO regression model was 
constructed using the optimal alpha parameter to select variables most 
strongly associated with concentration difficulties and to calculate the 
importance values for each feature (Cai et al., 2023). During the 
elimination process, 5-fold cross-validation was applied to optimize 
the hyperparameters for each model. For feature selection, the top 14 
meaningful variables selected by LASSO regression were incorporated 
into ML models for prediction.

The dataset was randomly partitioned into a training set (80%, 
N = 1716) and a testing set (20%, N = 430). Feature selection and 
hyperparameter tuning were conducted on the training set to develop 
models for each ML algorithm, and the trained models were applied 

on the testing set for evaluation. A grid search with 5-fold cross-
validation was used to optimize the hyperparameters of 
each algorithm.

Six ML algorithms were conducted. Logistic regression, a 
generalized linear model, is commonly used for solving binary 
problems. In this study, logistic regression with L2 regularization was 
conducted to reduce the effects of feature correlation and prevent 
overfitting. Bagging is an ensemble learning algorithm that integrates 
bootstrapping and aggregation techniques (Mehrbakhsh et al., 2024). 
Gradient boosting can effectively reduce bias and variance by 
optimizing the loss function during the learning process (Wijaya et al., 
2024). RF employs bootstrap resampling to repeatedly and randomly 
select B samples from the training sample set, in which N is the 
training set, and the remaining samples serve as the test set (Zhong et 
al., 2023). The ExtraTrees classifier adds innovative algorithmic steps 
based on the traditional algorithm of Decision Tree (DT) and provides 
very strong additional randomness to suppress overfitting (Lin et al., 
2024). As an optimized Gradient Boosting algorithm, the Extreme 
Gradient Boost (XGBoost) avoids the overfitting issue by 
incorporating a regularization component in the objective function 
and approximates the loss function using the second-order Taylor 
expansion (Bi et al., 2020).

Figure 2 shows a diagram of the concentration difficulty risk 
prediction framework.

Evaluation of a machine learning model

The performance of the prediction model was evaluated through 
confusion matrix, accuracy (the percentage of positive samples to all 
samples), AUC (area under the curve), precision (the correct 
proportion of the predicted positive samples), specificity (the 
proportion of predicted negative samples to negative samples), F1 (the 
harmonic means of precision and recall), and recall (the proportion 
of predicted positive samples to all positive samples) (Kumar et al., 
2022; Liu et al., 2022). In addition, DCA was performed to evaluate 
whether a model has utility in supporting clinical decisions by 
calculating the net benefit over a range of threshold probabilities 
(Raita et al., 2019). The vertical axis represents the standardized net 
benefit, while the horizontal axes depict the risk threshold. The greater 
standardized net benefit (reflected by a larger area under the curve) 
indicates that the model’s clinical decision is more advantageous 
(Zhang et al., 2024). Moreover, the calibration curves were used to 
assess the model calibration between the predicted probabilities and 
the actual probabilities (Gu et al., 2024; Xiang et al., 2024). In addition, 
to further validate the performance of the prediction model, 
participants from the 2017–2018 NHANES cycle were included as an 
external validation set. The primary outcomes used to assess the 
accuracy and clinical efficacy of the model in this external validation 
cohort were the AUC, DCA, and calibration curves.

Development of the nomogram

The nomogram functions by integrating various prognostic and 
determinant data is used to estimate the individual probability of a 
clinical occurrence (Balachandran et al., 2015). The nomogram links 
each variable with its corresponding score, and the cumulative sum of 
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all the variable scores defines the total score (Lv et al., 2021). In this 
study, a nomogram was developed based on the results of the 
multivariable logistic regression model to predict 
concentration difficulty.

Statistical methods

Data analyses were performed using R software (4.1.3, http://
www.Rproject.org) and Python (version 3.12.2, https://www.python.
org). Descriptive statistics were used to characterize the participants, 
and Chi-squared tests were used to analyze categorical variables, 
expressed as frequency (%). A p-value of <0.05 was considered 
statistically significant.

Results

Characteristics of participants

A total of 2,146 participants were included in the analysis. Table 1 
presents the descriptive characteristics of the study population. 
Approximately, 9.8% (N = 211) of participants had concentration 
difficulty while 90.2% (N = 1935) had no concentration difficulty. 
Further, based on the income criteria, 36.3% (N = 780), 14.2% 
(N = 304), and 49.5% (N = 1,062) had low, moderate, and high 
income, respectively. Among the participants, 63.7% (N = 1,366) had 
no hypertension, while 36.3% (N = 780) had hypertension. Moreover, 
4.3% (N = 93), 3.7% (N = 79), 4.6% (N = 99), and 3.7% (N = 79) adults 
had a history of coronary heart diseases, stroke, liver disease, and 
kidney disease, respectively, with a statistical significance of p of <0.05.

Variable selection

In LASSO algorithm, the optimal alpha parameter was 0.002. The 
top 14 appropriate variables included in this study are sex, age, 
income, BMI, sleep duration, stroke, kidney disease, liver disease, 
anxiety, depression, cholesterol, chloride, glucose, and sodium.

Comparison of models

In this study, 5-fold cross-validation in combination with grid 
search was employed to determine the optimal regularization 
parameters for each model in the internal cohort. A confusion matrix 
was used to calculate various statistical metrics, including accuracy, 
sensitivity, specificity, positive and negative predictivity, and F1 score, 
as well as to evaluate the performance of each model (Guesné et al., 
2024). Confusion matrices were constructed for six models in the 
internal validation sets to evaluate the performance of the models 
(Figure 3).

As shown in Figure 4 and Table 2, logistic regression demonstrated 
the highest predictive performance, with an AUC curve of 0.881 in the 
internal validation cohort and an AUC curve of 0.818 in the external 
validation cohort (Figures 4A,B). Table 2 further shows that logistic 
regression achieved the highest accuracy (0.930) in the internal 
validation sets when identifying concentration difficulty. In addition, 
logistic regression had higher recall score (0.405) and F1 score (0.500) 
compared with other models (Table 2).

Considering the significance of overcoming the limitations of 
traditional statistical metrics, DCA was employed to evaluate the 
clinical utility of each ML model (Zheng et al., 2023). Figure 4 
illustrates the net benefit of each model along with the threshold 

FIGURE 2

Study design to construct machine learning models to predict the risk of concentration difficulty. ML, machine learning.
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TABLE 1  General characteristics of participants.

Concentration No Yes p-value

N 1935 211 –

Sex – – 0.934

 � Male 932 (48.2%) 101 (47.9%) –

 � Female 1,003 (51.8%) 110 (52.1%) –

Age (years) 49.1 ± 17.3 53.4 ± 16.9 <0.001

Income criteria – – <0.001

 � Low income 658 (34.0%) 122 (57.8%) –

 � Median income 269 (13.9%) 35 (16.6%) –

 � High income 1,008 (52.1%) 54 (25.6%) –

BMI (kg/m2) 29.3 ± 7.0 31.0 ± 7.1 0.001

Hypertension – – <0.001

 � No 1,258 (65.0%) 108 (51.2%) –

 � Yes 677 (35.0%) 103 (48.8%) –

Smoking status – – <0.001

 � No 1,104 (57.1%) 90 (42.7%) –

 � Yes 831 (42.9%) 121 (57.3%) –

Anxiety – – <0.001

 � Daily 219 (11.3%) 101 (47.9%) –

 � Weekly 275 (14.2%) 45 (21.3%) –

 � Monthly 255 (13.2%) 25 (11.8%) –

 � A few times a year 709 (36.6%) 30 (14.2%) –

 � Never 477 (24.7%) 10 (4.7%) –

Depression – – <0.001

 � Daily 45 (2.3%) 64 (30.3%) –

 � Weekly 88 (4.5%) 48 (22.7%) –

 � Monthly 156 (8.1%) 32 (15.2%) –

 � A few times a year 646 (33.4%) 48 (22.7%) –

 � Never 1,000 (51.7%) 19 (9.0%) –

Liver disease – – <0.001

 � No 1860 (96.1%) 187 (88.6%) –

 � Yes 75 (3.9%) 24 (11.4%) –

Stroke – – <0.001

 � No 1877 (97.0%) 190 (90.0%) –

 � Yes 58 (3.0%) 21 (10.0%) –

Coronary heart disease – – <0.001

 � No 1861 (96.2%) 192 (91.0%) –

 � Yes 74 (3.8%) 19 (9.0%) –

Kidney disease – – <0.001

 � No 1876 (97.0%) 191 (90.5%) –

 � Yes 59 (3.0%) 20 (9.5%) –

Phosphorus (mmol/L) 1.2 ± 0.2 1.2 ± 0.2 0.756

Triglycerides (mmol/L) 1.4 ± 1.3 1.6 ± 0.9 0.090

Uric acid (μmol/L) 324.1 ± 85.4 322.8 ± 86.1 0.835

Sodium (mmol/L) 138.7 ± 2.0 138.6 ± 2.3 0.719

(Continued)
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probability. The results revealed that the net benefit of six ML 
algorithms was not significantly different in internal validation sets. 
With the risk thresholds ranging between 0.20 and 0.30, logistic 
regression exhibited the greatest net benefit (Figure 4C). Figure 4D 
depicts the net benefit curves of each model in the external validation 
cohort. Among the risk thresholds ranging from 0.20 to 0.30, RF 
demonstrates the highest net benefit value (Figure 4C).

Figures 4E,F present the calibration curve of each model in the 
internal and external validation cohort, respectively. Gradient 
Boosting exhibited superior calibration in the internal validation sets, 
whereas logistic regression achieved better calibration in the external 
validation sets (Figures 4E,F).

Construction and evaluation of nomogram

Given the superior clinical predictive performance of Logistic 
Regression, a nomogram was developed by incorporating 14 key risk 

variables to validate concentration difficulty. The nanogram showed 
that daily depression corresponded to the highest risk score (100 
points), followed by glucose (82 points) and chloride (75 points). For 
each independent risk factor, the individual score can be determined 
using the topmost line of the scale; then, the total score can be 
calculated using the lower total point scale. Clinical practitioners can 
evaluate the probability of attention difficulty by identifying each 
patient’s characteristic on the corresponding axis, awarding points, 
and adding them to obtain the total score. Higher total scores indicate 
a higher probability of concentration difficulty (Figure 5).

Discussion

In this study, an ML model was developed to investigate the key 
features of the model for predicting risk factors associated with 
concentration difficulties using nationally representative samples 
from the NHANES database among adults from the United States. 

TABLE 1  (Continued)

Concentration No Yes p-value

Potassium (mmol/L) 4.0 ± 0.3 4.0 ± 0.4 0.011

Iron (μmol/L) 15.3 ± 6.3 15.1 ± 6.4 0.686

Glucose (mmol/L) 5.8 ± 2.0 6.5 ± 3.2 <0.001

Chloride (mmol/L) 103.3 ± 2.9 103.6 ± 3.2 0.117

Cholesterol (mmol/L) 5.0 ± 1.1 5.0 ± 1.2 0.844

Calcium (mmol/L) 2.3 ± 0.1 2.3 ± 0.1 0.475

Sleep duration (hours) 7.6 ± 1.5 8.0 ± 2.0 0.003

Insulin (μmol/L) 84.6 ± 123.0 92.1 ± 80.0 0.383

BMI, body mass index.

FIGURE 3

The confusion matrix for six models in the internal validation. (A) Logistic regression; (B) ExtraTrees classifier; (C) Bagging classifier; (D) Gradient 
boosting; (E) XGBoost; (F) RF. XGBoost, extreme gradient boosting; RF, random forest.
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FIGURE 4

The AUC, DCA, and calibration curve of each model in the internal and external validation cohort. (A,C,E) Internal validation sets; (B,D,F) External 
validation sets. AUC, area under characteristic curve; DCA, decision curve analysis; XGBoost, extreme gradient boosting; RF, random forest.

TABLE 2  The performance of the six prediction models in the internal validation set.

Models Accuracy AUC Precision Specificity Recall F1

Logistic regression 0.930 0.881 0.652 0.980 0.405 0.500

ExtraTrees classifier 0.923 0.841 0.667 0.990 0.216 0.327

Bagging 0.926 0.877 0.727 0.992 0.216 0.333

Gradient boosting 

classifier
0.926 0.865 0.647 0.985 0.297 0.407

XGBoost 0.919 0.869 0.550 0.977 0.297 0.386

RF 0.919 0.846 0.600 0.990 0.162 0.255

AUC, area under characteristic curve; XGBoost, extreme gradient boosting; RF, random forest; F1, the harmonic means of precision and recall.
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Approximately 14 important features were selected based on the 
LASSO regression, and six machine learning algorithms were 
employed for risk prediction. The results demonstrated that Logistic 
Regression exhibited the best clinical predictive value in both the 
internal and external validation sets, with an AUC of 0.881 and 
0.818, respectively. Our findings revealed that the Logistic 
Regression model showed great potential in identifying the risk of 
concentration problems.

The results also revealed that Logistic Regression achieved 
higher accuracy (0.930) than other models and also exhibited the 
highest recall value (0.405) and F1 score (0.500). According to the 
DCA curve, all ML methods had a large net interest in the internal 
validation cohort. Of all ML methods, the Logistic Regression 
exhibited the highest net interest when the threshold probability 
varied between 0.2 and 0.3. The DCA curve exhibited that the RF 

model outperforms other models in the external validation 
cohort, indicating that RF had greater net benefit than other 
strategies. However, the AUC score (0.846) was comparatively 
lower than that in other models, and it exhibited the lowest recall 
value (0.162) and F1 score (0.255). Furthermore, the calibration 
plots revealed that the Gradient Boosting classifier exhibited 
superior calibration in the internal validation cohort, whereas the 
Logistic Regression demonstrated better calibration in the 
external validation cohort. These findings indicate that Logistic 
Regression and Gradient Boosting achieved strong agreement 
between the ideal and observed events in the internal and external 
validation cohorts, respectively. Overall, Logistic Regression 
surpasses the performance of other models, offering decision-
making support for diagnosing attention disorders and guiding 
treatment interventions.

FIGURE 5

Nomogram for predicting the risk of developing concentration difficulties. BMI, body mass index.
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Similarly, other studies have reported similar results, indicating 
that Logistic Regression outperformed other algorithms. For example, 
Song et al. discovered that Logistic Regression exhibited an advanced 
performance when compared to other algorithms in predicting 
postoperative delirium (POD) in elderly patients, with an AUC of 
0.783 (Tiwari et al., 2023). Fu et al. showed that the Logistic Regression 
method demonstrated superior effect in diagnosing intracranial 
infection, with the highest AUC value (0.847) and accuracy (0.869) 
(Fu et al., 2022). These studies demonstrated that Logistic Regression 
is a good choice for modeling as it has powerful function of handling 
high-dimensional spatial data effectively.

The results of this study support the previously known features 
associated with concentration difficulties, such as age, depression, 
stroke, kidney disease, liver disease, and anxiety (Paelecke-Habermann 
et al., 2005; Xu et al., 2022; Viggiano et al., 2020; Weissenborn et al., 
2005; Najmi et al., 2012). Among them, depression is the most 
important feature for predicting concentration disorders. The findings 
also showed a positive correlation between depression and impaired 
attention. Another research revealed that patients with ADHD had a 
20% lower rate of depression after receiving treatment when compared 
with the untreated group (Chang et al., 2016). Similarly, compared 
with healthy individuals, patients with MDD had lower levels of brain-
derived neurotrophic factor (BDNF) and poorer performance in 
attention (Teng et al., 2021). Except for depression, a previous study 
also considered anxiety as a common diagnostic criterion for 
concentration difficulty (Hao et al., 2025). It is known that the elderly 
have a significant tendency to attention disorders. Nevertheless, 
impairments in attention can also be detected in individuals of 
different age groups, including those with epilepsy (Brissart et al., 
2019). Commodari and Guarnera (2008) performed an age-related 
attentive efficiency and found that subjects aged 55–59 outperformed 
subjects aged 60–65. Compared to Commodari’s study, this study 
performed a survey on individuals aged more than 20, which is a more 
comprehensive way. Fisk et al. (2002) demonstrated that stroke 
survivors are more likely to have attention deficits than those without 
stroke. Even subcortical “mini-strokes” may exhibit significant 
difficulties with attention (Soleimani et al., 2023). Both liver diseases 
and kidney diseases have significant effects in attention. For example, 
a review reported by Pepin et al. demonstrated significant 
improvements in attention in patients with chronic kidney disease 
(CKD) after kidney transplantation (Pépin et al., 2021). In addition, 
there have been various reports of cognitive decline in patients with 
hepatic encephalopathy or renal encephalopathy. Impairment in 
attention is one of the characteristics of patients with minimal hepatic 
encephalopathy (Bajaj et al., 2008). The findings indicated that the risk 
factors we identified as being associated with concentration difficulty 
were both reliable and practicable.

In this study, unexpected features that are easily ignored in 
clinical practice were also identified, such as BMI, glucose, and 
chloride. For example, van Mil et al. (2015) found that children with 
a higher birth weight exhibited fewer attention issues, particularly 
when their birth weight was below 3.6 kg. However, few studies have 
examined the relationship between BMI and adult concentration. 
Although previous studies have revealed that both type 1 and type 2 
diabetes contribute to attention disorders, the correlation between 
serum glucose levels and an impairment in attention has been rarely 
documented to date. The findings also revealed that the serum 
glucose of the participants may contribute to attention issues. In 
addition, to our knowledge, this is the first study to identify serum 

chloride as a risk factor for attention difficulties. Nevertheless, the 
fundamental biological process behind the decrease in attention still 
requires additional investigation.

The ML models developed in this study accurately assessed 
attention disorders, which may facilitate medical institutions in 
adopting intervention strategies to reduce associated risks. In addition, 
these models can be used in clinical consultations, particularly in 
remote areas where detailed evaluation is not possible. Moreover, the 
nomogram revealed important risk characteristics associated with 
attention disorders. Clinicians can use this tool to evaluate the risk of 
attention difficulty in individuals, thereby enabling more accurate 
identification and prioritization on effective treatment strategies.

This study had several strengths. First, although ML has been 
widely applied in predicting concentration difficulties, a majority of 
previous studies have focused on children. Second, this study is the first 
to apply ML algorithms to construct six models for the prediction of 
concentration difficulties in adults. Third, to improve the performance 
of the model, a cross-validated grid search was employed to evaluate the 
hyperparameter values for each algorithm. Finally, the performance of 
the prediction models was assessed using an external validation cohort.

This study had several limitations. First, although questionnaires 
have been commonly used to assess attention disorders in previous 
studies, they remain subjective and susceptible to interference from 
several factors. Second, since relevant data were acquired from the 
United States, the performance of the proposed model remained 
unclear in other populations, such as Chinese. In our future research, 
we will focus on validating the model across diverse populations.

Conclusion

The Logistic Regression model achieved the strongest predictive 
performance, with the highest AUCs in the validation sets [internal 
(0.881) and external (0.818)]. Logistic Regression also provided the 
largest net benefits in the internal cohort. Depression was identified 
as the most critical predictor in the nomogram analysis.
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