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detection
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The proliferation of digital platforms has enabled fraudsters to deploy
sophisticated camouflage techniques, such as multi-hop collaborative attacks, to
evade detection. Traditional Graph Neural Networks (GNNs) often fail to capture
these complex high-order patterns due to limitations including homophily
assumption failures, severe label imbalance, and noise amplification during
deep aggregation. To address these challenges, we propose the Hypergraph-
based Contrastive Learning Network (HCLNet), a novel framework integrating
three synergistic innovations. Firstly, multi-relational hypergraph fusion encodes
heterogeneous associations into hyperedges, explicitly modeling group-wise
fraud syndicates beyond pairwise connections. Secondly, a multi-head gated
hypergraph aggregation mechanism employs parallel attention heads to capture
diverse fraud patterns, dynamically balances original and high-order features
via gating, and stabilizes training through residual connections with layer
normalization. Thirdly, hierarchical dual-view contrastive learning jointly applies
feature masking and topology dropout at both node and hyperedge levels,
constructing augmented views to optimize self-supervised discrimination under
label scarcity. Extensive experiments on two real-world datasets demonstrate
HCLNet’s superior performance, achieving significant improvements over the
baselines across key evaluation metrics. The model’s ability to reveal distinctive
separation patterns between fraudulent and benign entities underscores its
practical value in combating evolving camouflaged fraud tactics in digital
ecosystems.

KEYWORDS

fraud detection, gated hypergraph convolution, contrastive learning, multi-relational
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1 Introduction

The rapid proliferation of digital ecosystems has brought about unprecedented
convenience while also giving rise to increasingly sophisticated fraud patterns. In
domains spanning e-commerce, financial services, and social media, fraudulent activities
such as fake reviews, payment scams, and bot-driven spam collectively incur annual
losses exceeding $50 billion globally (Shehnepoor et al., 2021; Zou and Cheng, 2025).
Fraudsters now frequently employ coordinated strategies such as multi-hop or multi-
account camouflage to evade detection in environments including e-commerce, financial
transactions, and social platforms. Traditional rule-based systems and unimodal statistical
approaches often fall short in identifying such collaborative or cross-modal fraudulent
behaviors. Moreover, the shift toward data-driven decision-making has simultaneously
introduced a new threat surface: adversarial attacks that deliberately target machine
learning models, thereby undermining their reliability and trustworthiness (Lunghi et al.,
2023).
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Graph Neural Networks (GNNs) have emerged as a dominant
paradigm in fraud detection for their ability to model relational
and topological structures. By propagating information along
edges, GNNs capture local dependencies between entities (e.g.,
user-device-transaction triads), achieving state-of-the-art results
in benchmarks like YelpChi and Amazon (Dou et al., 2020).
However, GNN-based detectors face three critical challenges: (1)
Homophily assumption failure, where the fundamental GNN
principle that similar nodes connect is violated in fraud detection
because fraudulent entities often camouflage themselves by
interacting with legitimate nodes, leading to inaccurate information
propagation and reduced detection efficacy; (2) Extreme label
imbalance, as fraudulent nodes typically constitute less than
5% of graphs (Table 1), causing models to bias toward majority
classes (Wang X. et al., 2023), with the scarcity of labeled
frauds limiting supervised signal propagation and oversampling
techniques often introducing synthetic patterns absent in real
attacks (Xie et al., 2023); and (3) Inadequate high-order
modeling stems from standard graphs’ inability to capture the
multi-node interactions inherent in fraud rings (e.g., collusive
spamming). Specifically, pairwise edges cannot represent n-ary
relations, such as a group of users coordinating fake reviews
across products. This leads to fragmented detection of syndicate
behaviors. Furthermore, existing solutions like meta-paths require
manual design and lack adaptability to evolving fraud tactics
(Qin et al., 2022). Hypergraphs offer a natural solution but
struggle with noise amplification in deep aggregation (Yuan
et al., 2022). Additionally, the dynamic evolution of fraud
patterns—where tactics continuously adapt to bypass detection
systems—demands models capable of online adaptation without
catastrophic forgetting.

Despite these advances, existing methods exhibit clear
limitations in holistically addressing the triad of challenges:
homophily violation, label scarcity, and high-order relational
modeling. For instance, while spectral models like BWGNN
(Tang et al., 2022) and GHRN (Gao et al., 2023) effectively
handle heterophily, they rely on global graph decomposition and
scale poorly. Similarly, contrastive learning frameworks such as
CONSISGAD (Chen et al., 2024) and POCL (Zhang et al., 2024)
mitigate label imbalance but are confined to pairwise graphs,
failing to capture group-level fraud semantics. Hypergraph-based
approaches like TROPICAL (Haghighi et al., 2025) model high-
order relations yet lack explicit contrastive supervision to enhance
discriminability under extreme imbalance.

To bridge these gaps, we propose Hypergraph-based
Contrastive Learning Network (HCLNet), a novel framework
that combines hypergraph structure modeling and self-supervised
contrastive learning. Firstly, the multi-relational hypergraph
fusion encodes diverse associations into hyperedges to model
collaborative fraud rings (Section 3.1), which solves the problem
of inadequate high-order modeling by explicitly capturing multi-
node interactions beyond pairwise connections. Secondly, the
multi-head gated hypergraph aggregation mechanism (Section
3.2) adaptively fuses raw features with hypergraph semantics to
suppress noise propagation. This approach addresses homophily
assumption failure by employing parallel attention heads for
handling heterogeneous node connections and gating mechanisms

for balancing feature aggregation. Thirdly, the hierarchical dual-
view contrastive learning (Section 3.3) constructs augmented views
at both the node and hyperedge levels via self-supervision. This
enhances fraud pattern discrimination, alleviates label scarcity,
and tackles extreme label imbalance by leveraging unlabeled data
through dual-view self-supervised optimization. Our contributions
are summarized as follows:

• A hypergraph-contrastive fusion framework for fraud
detection. We propose a multi-relational hypergraph fusion
method that explicitly models high-order fraud patterns
through hyperedges, aiming to address the limitations of
pairwise connections in capturing collaborative fraud patterns
within traditional graph structures.

• Multi-head gated aggregation with noise suppression.
We design a hypergraph aggregation mechanism with
parallel attention heads and dynamic feature balancing gates,
which helps mitigate noise propagation while preserving
discriminative signals under heterophily conditions, thereby
enhancing robustness against camouflaged fraudsters.

• Hierarchical dual-view contrastive learning under label
scarcity. We develop a self-supervised framework that
coordinates node-level and hyperedge-level representations
through dual-view augmentation, demonstrating effectiveness
in handling label imbalance and achieving competitive
performance on real-world benchmarks.

Through extensive experiments, we demonstrate that HCLNet
achieves state-of-the-art performance on real-world fraud
detection benchmarks, effectively reconciling the limitations of
existing approaches while offering interpretable and scalable
fraud analysis.

2 Related works

2.1 Fraud detection

Predominant approaches in fraud detection fall into two
primary categories: homophily-enhancing models that strengthen
connections between similar nodes through edge re-weighting
(Dou et al., 2020), although manual graph modifications may
introduce bias. The second category includes spectral adaptive
models that utilize band-pass filters to address heterophily (e.g.,
Beta wavelets in BWGNN Tang et al., 2022 or high-pass filters in
GHRN Gao et al., 2023), but their dependence on global graph
spectrum decomposition hinders scalability. In fraudulent review
detection—particularly for platforms like Amazon and Yelp—
recent studies highlight three persistent challenges: extreme label
imbalance where fraudulent reviews constitute <5% of datasets
(Shehnepoor et al., 2021), bot-generated content that mimics
genuine patterns (Yao et al., 2017), and cold-start scenarios for
new users/items (Wang et al., 2017). To mitigate label imbalance,
researchers have developed multi-modal frameworks: Luca and
Zervas (2016) integrates behavioral patterns (e.g., rating bursts
and review gaps) to amplify sparse fraud signals; (Li et al.,
2016) focuses on textual features (e.g., linguistic anomalies and
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sentiment inconsistencies) to identify subtle fraudulent cues; and
Shehnepoor et al. (2017) utilizes graph structures to propagate
limited labels through relational contexts. For bot-generated
content, GAN-based approaches (Aghakhani et al., 2018) generate
synthetic fraud patterns to enhance detector robustness. To
address cold-start issues, attribute-enhanced domain adaptation
(You et al., 2018) leverages cross-domain feature transfer. Despite
these advances, most systems remain challenged by coordinated
group frauds due to their dependence on pairwise structures.
Recent work like POCL (Zhang et al., 2024) addresses temporal
dynamics through contrastive learning but remains confined
to pairwise graphs, limiting its ability to capture multi-node
fraud rings.

A recent line of research specifically targets the challenge
of learning under extremely limited labels. SpaceGNN (Dong
et al., 2025) projects nodes into multiple latent spaces and
employs distance-aware propagation to enhance information
aggregation, effectively identifying anomalies when labeled
data is scarce. Similarly, CGNN (Li et al., 2025) enriches
node representations by constructing a context graph that
captures long-range dependencies and high-order interactions,
demonstrating strong performance in fraud detection with
minimal supervision. Another notable approach, LGM-GNN
(Li et al., 2023), introduces a memory module to record and
integrate both local neighborhood patterns and global graph-level
prototypes, thereby strengthening the model’s ability to discern
fraudulent patterns from a holistic perspective. Despite their
effectiveness in handling label scarcity, these methods—including
the previously discussed CONSISGAD and POCL are inherently
built upon pairwise graph structures. This fundamental limitation
restricts their capacity to explicitly model the complex, multi-node
collaborative relationships that are characteristic of organized
fraud rings.

2.2 Hypergraph

Hypergraphs, where each hyperedge connects multiple
nodes, provide a natural mechanism for representing high-order
relationships that are common in fraud rings, coordinated attacks,
or group-based manipulations. Unlike traditional graphs, which
are limited to binary relations, hypergraphs can encode multi-
party transactions or multi-hop behaviors in a single structure.
Recent advancements in hypergraph representation learning
have demonstrated the effectiveness of capturing high-order
interactions in various domains. For example, HyperGCN (Yadati
et al., 2019) extends Graph Convolutional Networks (GCNs)
to hypergraphs by aggregating information across hyperedges,
enabling the modeling of complex group-wise relationships.
Similarly, HyperPath-based representation learning (Huang et al.,
2019) introduces a framework for hyper-networks by leveraging
hyper-paths to capture sequential dependencies, which could
be adapted for detecting evolving fraud patterns. UniGNN
(Huang and Yang, 2021) proposes a unified framework for
both graph and hypergraph neural networks, emphasizing the
importance of hypergraph structures in tasks requiring high-order
relational modeling. These approaches highlight the potential

of hypergraphs in encoding collaborative fraud behaviors that
traditional pairwise graphs cannot capture. Several works have
explored hypergraph-based methods for recommendation systems
and community detection, but their use in fraud detection remains
limited. Models like GAGA (Wang Y. et al., 2023) attempt to
Mitigating low homophily via neighborhood label aggregation but
fail to utilize contrastive supervision or exploit the full semantic
diversity of real-world interactions. Our method advances this
line of work by fusing multi-relational edge types into hyperedges
and learning discriminative embeddings through multi-head
gated attention.

2.3 Contrastive learning

In the field of fraud detection, contrastive learning has gained
significant attention for its ability to address core challenges
including label scarcity, data heterogeneity, and complex
relationship modeling. Traditional GNN-based fraud detection
methods are often constrained by the homophily assumption.
However, fraudulent entities frequently camouflage themselves by
interacting with benign nodes, leading to distorted information
propagation. Contrastive learning leverages unlabeled data
through self-supervised mechanisms to enhance representation
discriminability: for instance, the instance discrimination task
treats each instance as an independent class, generates positive
samples, and obtains negative samples through a global memory
bank and Noise Contrastive Estimation (NCE) (Wu et al., 2018).
This drives the model to learn distinctive features of fraudulent
entities. Nevertheless, negative samples in fraud scenarios
may contain semantically similar nodes (e.g., camouflaged
fraudsters masquerading as legitimate users). Directly repelling
such samples can degrade model performance. To mitigate
this, clustering-enhanced contrastive methods (Li et al., 2020;
Caron et al., 2020) introduce the prototype contrastive loss
(ProtoNCE), which employs cluster centers as proxy negative
samples to alleviate erroneous repulsion. For heterogeneous
graphs, recent structure-enhanced methods like STENCIL (Zhu
et al., 2022) optimize metapath-induced views by mining hard
negatives via structural embeddings, synthesizing challenging
samples to improve discrimination. Meanwhile, NNCLR
(Dwibedi et al., 2021) significantly advances self-supervised
visual representation learning by utilizing nearest neighbors
from a support set as positive examples within a contrastive loss
framework. Recently emerged negative-sample-free contrastive
learning (Chen and He, 2021; Grill et al., 2020) offers new
insights for fraud detection. These methods eliminate explicit
negative samples and avoid feature collapse via momentum
encoders, prediction heads, and gradient stopping, significantly
reducing dependence on batch size. This makes them more
adaptable to the extreme imbalance of fraud data. However,
existing methods exhibit three key limitations: (1) negative
sampling strategies struggle to distinguish semantically similar
camouflaged fraudsters, (2) pairwise graph constraints fail
to capture multi-node collaborative fraud patterns, and (3)
single-level contrastive frameworks lack explicit modeling of
group-wise interactions.
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FIGURE 1

The overview of the proposed HCLNet model.

3 Methodology

This section gives the design details of HCLNet, a fraud
detection model based on hypergraph and contrast learning,
which mainly consists of (1) Multi-relational hypergraph fusion,
(2) Multi-head gated hypergraph aggregation mechanism, (3)
Hierarchical dual-view contrastive learning framework, and (4)
Prediction and training. The structure of the model is shown in
Figure 1.

3.1 Multi-relation hypergraph fusion

For fraud detection tasks, homogeneous nodes such as
transaction records and user accounts often form complex
networks through multiple types of associations. Traditional
GNNs, however, only model pairwise node interactions,
struggling to capture multi-node collaborative fraud patterns—
such as gang-related collective fraud behaviors. To address
this limitation, we design a multi-relation hypergraph using

hypergraph theory to uniformly represent heterogeneous
interactions among homogeneous nodes and mine high-
order collaborative fraud features. Specifically, we define
the hypergraph as G = (V , E), where V = {v1, v2, . . . , vn}
denotes the set of homogeneous nodes (i.e., n = |V|) and
E = {e1, e2, . . . , em} represents the set of hyperedges (i.e.,
m = |E |).

The hypergraph construction involves three key steps.
Firstly, we symmetrize each original relation r ∈ R (dataset’s
relation set) to eliminate directional biases, aligning them with
the “reciprocal association” characteristic of fraud behaviors.
Next, using the symmetrized relations, we apply the connected
component algorithm to extract hyperedge sets Er , effectively
capturing multi-node collaborative patterns that traditional
graph models fail to represent. Finally, we fuse all Er to
obtain the global hyperedge set E = ⋃

r∈R Er and build
a node-hyperedge incidence matrix H ∈ {0, 1}n×m. This
matrix preserves semantic differences of various relations while
establishing cross-relation topological associations via high-order
hyperedge connections.
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3.2 Multi-head gated hypergraph
aggregation mechanism

To address the problem that traditional GNNs cannot
capture multi-node collaborative fraud patterns, we design a
Multi-Head Gated Hypergraph Aggregation Mechanism (MG-
HAM). Built upon hypergraphs, MG-HAM first captures fraud
patterns in multiple semantic spaces in parallel via multi-head
hypergraph convolution. It then uses a dynamic gated aggregator
to adaptively balance old and new features, and employs a gated
residual connection to ensure stable feature transmission and
alleviate gradient issues. Ultimately, it outputs node representations
that fuse high-order collaborative patterns with original feature
information, thereby significantly improving the accuracy of
fraud detection.

3.2.1 Multi-head hypergraph convolution
Multi-head hypergraph convolution combines the multi-head

attention mechanism with traditional hypergraph convolution,
enabling the multi-dimensional parallel capture of complex
fraud patterns. Through multiple independent attention heads,
it can simultaneously focus on different types of fraud signals—
such as collaborative fraud behaviors and abnormal transaction
patterns. Each attention head learns feature representations
in a distinct semantic space, thereby enhancing the model’s
expressive capability. The module first maps node features to the
hyperedge space via node-hyperedge aggregation, as shown in
Equation 1:

E(l) = H�X(l−1) (1)

where H ∈ {0, 1}n×m is the incidence matrix, X(l−1) ∈ R
n×d is

the node feature matrix from the (l − 1)-th layer, and d is the
dimension of node features. E(l) ∈ R

m×d denotes the hyperedge
feature for the l-th layer—specifically, it is the average of all node
features contained in the corresponding hyperedge.

Subsequently, via K independent attention heads, we learn
different representation spaces tailored to capture diverse fraud
patterns. For the l-th layer, this process yields two key outputs:
the similarity matrix A(l, k)

m ∈ R
m×m and the attention-

weighted hyperedge feature matrix E(l, k)
m ∈ R

m×dk , as shown in
Equations 2, 3:

A(l, k)
m = softmax

⎛
⎜⎝

(
E(l)W(l, k)

q

) (
E(l)W(l, k)

k

)�
√

dk

⎞
⎟⎠ (2)

E(l, k)
m = A(l, k)

m

(
E(l)W(l, k)

v

)
(3)

where dk = d/K stands for the feature dimension of the k-th head,
W(l,k)

q , W(l,k)
k , and W(l,k)

v ∈ R
d×dk are all learnable parameters.

Then, the enhanced hyperedge features are propagated back
to the relevant nodes, completing the closed-loop information
transmission of the convolution operation. Finally, the outputs of
the K attention heads are concatenated, and multi-dimensional
fraud features are fused via a linear transformation, as shown in

Equations 4, 5:

X(l, k) = HE(l, k)
m (4)

X(l)
m =

[
X(l, 1);X(l, 2); · · · ;X(l, K)

]
W(l)

o (5)

where [;] denotes concatenation, X(l, k) ∈ R
n×dk represents the

output of the k-th head in the l-th layer. W(l)
o ∈ R

d×d is a learnable
linear transformation weight matrix that maps the concatenated
multi-head features to a unified node feature space, fusing various
fraud pattern information captured by different attention heads.
X(l)

m ∈ R
n×d is thus the final output of the l-th layer after

undergoing multi-head hypergraph convolution.

3.2.2 Dynamic gated aggregator
The multi-head hypergraph convolution extracts high-order

collaborative fraud features X(l)
m , but the original node features

still contain basic information for fraud detection. Therefore, a
dynamic gated aggregator is designed, which learns the importance
weights of different attention heads through a gating mechanism,
highlighting the feature heads that contribute the most to fraud
detection and suppressing noise signals. Gate values are calculated
based on the original features and determine the fusion ratio
between the original features and the high-order features. The
process is detailed in Equations 6, 7:

G(l) = σ
(

W(l)
g X(l−1) + b(l)

g

)
(6)

X(l)
f = G(l) � X(l)

m +
(

1 − G(l)
)
� X(l−1) (7)

where W(l))
g ∈ R

d×d, b(l)
g ∈ R

d are learnable parameters, σ (·)
denotes the sigmoid activation function, and G(l) ∈ [0, 1]n×d is
a learnable feature-wise gating matrix that balances the ratio of
original features to high-order features in an element-wise manner.
X(l)

f ∈ R
n×d is the fused node feature obtained by dynamic gated

aggregation of the l-th layer.

3.2.3 Gated residual connection
The fused features X(l)

f from the dynamic gated aggregator
may exhibit fluctuations in feature distribution, leading to unstable
model training. To address this issue, we further propose a
gated residual connection, which introduces layer normalization to
mitigate these fluctuations while preserving the adaptive properties
of the gating mechanism and mitigating the vanishing gradient
problem in deep networks. This process is specifically detailed in
Equation 8:

X(l) = LayerNorm
(

X(l)
f

)
(8)

where LayerNorm(·) denotes the layer normalization, X(l) ∈ R
n×d

represents the node feature matrix updated from the (l−1)-th layer
via the MG-HAM. This provides high-quality inputs for subsequent
training tasks, not only improving the model’s capability to identify
fraud patterns, but also enhancing its generalization performance.
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For the convenience of subsequent derivation, we abstract the
entire mechanism as the function shown in Equation 9:

X(l) = MG-HAM(l)
(

X(l−1), H
)

(9)

3.3 Hierarchical dual-view contrastive
learning framework

Building upon the MG-HAM, we propose a Hierarchical
Dual-View Contrastive Learning Framework (HDV-CL) to further
enhance the model’s ability to identify fraud patterns and its
generalization performance. HDV-CL jointly optimizes node-level
and hyperedge-level representation learning while leveraging a
dual-view augmentation strategy to address the key challenges of
label scarcity and pattern complexity in fraud detection.

3.3.1 Data augmentation
The performance of contrastive learning hinges on high-quality

view generation. Considering the characteristics of hypergraph
structures and fraud patterns, we propose two complementary
data augmentation strategies—feature augmentation and topology
augmentation. Feature augmentation generates two independent
augmented views by introducing random masking and Gaussian
noise to the original node features X, as shown in Equation 10:

X(t) = X�M(t)+ε(t), M(t) ∼ Bernoulli(1−ε), ε(t) ∼ N (0, ωI2)
(10)

where t = 1, 2 denotes the t-th augmented view, M(t) ∈ {0, 1}n×d

is a masking matrix matching the dimension of the embedding
vectors. Each element is independently sampled from a Bernoulli
distribution, with a 1−ε probability of being set to zero. ε(t) denotes
Gaussian noise, whose intensity is regulated by ω. This operation
simulates feature missing scenarios, compelling the model to focus
on critical fraud features.

Topology augmentation randomly drops hyperedges from
the incidence matrix H, similarly generating two independent
augmented views, as shown in Equation 11:

H(t) = H
[
:, S(t)

]
, S(t) ∼ Bernoulli(1 − pedge) (11)

where S(t) ∈ {0, 1}m is a binary selection vector whose
dimension matches the number of hyperedges, and pedge denotes
the hyperedge dropout rate. This operation enhances the model’s
sensitivity to abnormal connection patterns by disrupting local
topological structures.

3.3.2 Node-level contrastive learning
Node-level contrastive learning aims to distinguish the

semantic differences between benign and fraudulent nodes in the
feature space. For the (l − 1)-th layer node features X(l−1, t) after
feature augmentation, we use MG-HAM to obtain its high-level
representation X(l, t), as shown in Equation 12:

X(l, t) = MG-HAM(l)
(

X(l−1, t), H(t)
)

(12)

Subsequently, for the node representations vi from X(l) and
v(l, t)

i from X(l, t), we map them to the contrastive space via the same
MLP projection head gφ(·), followed by L2 normalization, as shown
in Equation 13:

z(l)
i =

gφ

(
v(l)

i

)
∥∥∥gφ

(
v(l)

i

)∥∥∥
2

, z(l, t)
i =

gφ

(
v(l, t)

i

)
∥∥∥gφ

(
v(l, t)

i

)∥∥∥
2

(13)

Then, for the l-th layer, we employ the InfoNCE loss function to
compute the node-level contrastive loss between the original view
and the t-th augmented view, as shown in Equation 14:

L(l, t)
node = − 1

N

N∑
i=1

log
exp

(
z(l)�

i z(l, t)
i /τ

)
∑N

j=1 exp
(

z(l)�
i z(l, t)

j /τ
) (14)

where τ is the temperature hyperparameter to scale the similarity
distribution, and N denotes the number of negative samples.

3.3.3 Hyperedge-level contrastive learning
Hyperedge-level contrastive learning aims to enhance the

model’s ability to perceive high-order semantic structures. To
begin with, as per Equation 1, we can compute the representations
E(l, t) of E(l) across the two augmented views. For the hyperedge
representations e(l)

c from E(l) and e(l, t)
c from E(l, t), we use a

MLP projection head gψ (·) different from the one in node-level
contrastive learning to map them to the contrastive space and
perform normalization, as shown in Equation 15:

z(l)
c =

gψ

(
e(l)

c

)
∥∥∥gψ

(
e(l)

c

)∥∥∥
2

, z(l, t)
c =

gψ

(
e(l, t)

c

)
∥∥∥gψ

(
e(l, t)

c

)∥∥∥
2

(15)

Then, for the l-th layer, we employ the InfoNCE loss function to
compute the hyperedge-level contrastive loss between the original
view and the t-th augmented view, as shown in Equation 16:

L(l, t)
hyper = − 1

M

M∑
c=1

log
exp

(
z(l)�

c z(l, t)
c /τ

)
∑M

d=1 exp
(

z(l)�
c z(l, t)

d /τ
) (16)

where M denotes the number of negative hyperedges.

3.3.4 Hierarchical dual-view contrastive
integration

Finally, by hierarchically integrating node-level and hyperedge-
level contrastive learning from dual views and fusing multi-layer
representations, we define the total contrastive loss as the average
of the contrastive losses from the two pairs of views, as shown in
Equation 17:

Lcl =
1
2

2∑
t=1

[
1
L

L∑
l=1

(
L(l, t)

node + L(l, t)
hyper

)]
(17)

where L denotes the total number of layers in the network. Through
this HDV-CL, the model can leverage self-supervised contrastive
loss to enhance its representation capability when labeled data is
scarce, thereby improving the accuracy of fraud classification tasks.
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3.4 Prediction and training

HCLNet takes the output Xfinal from the final layer of MG-
HAM and feeds it into a two-layer MLP for prediction, as shown
in Equation 18:

Ŷ = softmax(W2 · ReLU(W1 · Xfinal)) (18)

where Ŷ contains the class probability distribution vector for each
node. The model uses this output to compute the class-weighted
cross-entropy loss Lcls, which combines with the hierarchical
contrastive loss Lcl to form the total loss function, as defined in
Equations 19, 20:

Lcls = − 1
n

n∑
i=1

wyi yi log(ŷi) (19)

Ltotal = Lcls + αLcl (20)

where yi is the true label of node vi, ŷi is the predicted probability
value for the corresponding class in its probability vector, and
n is the total number of nodes. The class weight wyi addresses
sample imbalance issues, while α serves as an adjustable weighting
coefficient for the contrastive loss.

4 Experiments

4.1 Experimental setup

4.1.1 Dataset and evaluation metrics
We evaluate the proposed HCLNet and all baselines on

following two real-world public fraud detection datasets:

• YelpChi graph dataset (Rayana and Akoglu, 2015) contains
hotel and restaurant reviews collected from the Yelp platform,
featuring three relation types: R-U-R (reviews posted by the
same user), R-S-R (reviews with identical star ratings for the
same product), and R-T-R (reviews posted in the same month
for the same product).

• Amazon graph dataset (McAuley and Leskovec, 2013)
contains musical instrument reviews with three defined
relations: U-P-U (users reviewing at least one common
product), U-S-U (users having at least one same star rating
within 1 week), and U-V-U (users with top-5% mutual review
TF-IDF similarities).

During the data preprocessing stage, we extract node features
and three heterogeneous relation matrices from both datasets.
When the dimensionality of node features exceeds 100, we employ
PCA to reduce them to 100 dimensions, preserving the essential
feature information. For multi-relational edge processing, we
ensure the symmetry of all relation matrices and extract connected
components from each relation matrix as hyperedges, retaining
only those containing multiple nodes. Subsequently, we merge
hyperedges from all relations to construct a hypergraph incidence
matrix and apply symmetric normalization, thereby effectively
capturing high-order interaction patterns in the graph. For each

dataset, following the setup in Tang et al. (2022), Zou and Cheng
(2025), and Haghighi et al. (2025), we chronologically select the
first 40% as the training set, the middle 40% as the validation set
for hyperparameter tuning, and the last 20% as the test set. Table 1
presents detailed statistics of both datasets.

To address class imbalance, we adopt fairness-aware evaluation
metrics to avoid bias toward any category (Luque et al., 2019).
Referring to relevant studies (Zou and Cheng, 2025; Xie et al.,
2023; Wang X. et al., 2023), we comprehensively assess model
performance using three metrics, including macro average
F1-macro score (F1-macro), the area under the ROC curve
(AUC), and geometric mean (GMean). GMean is defined
as

√
sensitivity × specificity, effectively measuring model

performance on imbalanced data.

4.1.2 Baselines
To evaluate the performance of the proposed model HCLNet,

we choose following competitive methods as baselines:

• GCN (Kipf, 2016) as a fundamental graph deep learning
model integrates node features and graph structural
information through local neighborhood aggregation,
effectively identifying collaborative fraud patterns, but
its transductive learning mechanism limits handling of
new nodes.

• GraphSAGE (Hamilton et al., 2017) is an inductive graph
model that generalizes node features from local neighbors
via neighbor sampling and learnable aggregation functions.
It is suitable for dynamic fraud scenarios like real-time fake
reviews in e-commerce.

• GPRGNN (Chien et al., 2020) improves upon GCN’s
aggregation by introducing learnable personalized
PageRank coefficients for weighted multi-hop neighbor
combination, capturing long-range dependencies in complex
fraud structures.

• CARE-GNN (Dou et al., 2020) dynamically selects attribute-
similar neighbors through reinforcement learning,
constructing an attribute-relation-topology tri-view
framework that effectively filters noisy connections and
enhances detection robustness.

• PC-GNN (Liu et al., 2021) employs confidence propagation
to handle label or structural noise, computing initial
confidence from node features and iteratively updating
it among neighbors, significantly improving fraud node
identification accuracy.

• CONSISGAD (Chen et al., 2024) employs a learnable data
augmentation mechanism to generate augmented samples
that preserve label consistency, coupled with a homophily-
aware GNN backbone, significantly improving graph anomaly
detection under limited supervision.

• SpaceGNN (Dong et al., 2025) employs a multi-space graph
neural network for node anomaly detection, leveraging
learnable space projection and distance-aware propagation
to enhance information aggregation and improve detection
accuracy under extremely limited labels.
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TABLE 1 Statistics of two datasets.

Dataset #Nodes (Fraud%) #Features Class $Class Relation #Relations

YelpChi 45,954 (14.53%) 32 Positive 6,677 R-U-R 49,315

R-S-R 3,402,743

Negative 39,277 R-T-R 573,616

Amazon 11,944 (6.87%) 25 Positive 821 U-P-U 175,608

U-S-U 3,566,479

Negative 11,123 U-V-U 1,036,737

• GHRN (Gao et al., 2023) identifies and prunes heterophilic
edges using high-frequency signals from the graph spectrum,
enhancing anomaly detection.

• BWGNN (Tang et al., 2022) employs Beta wavelets to
construct spectral-localized band-pass filters that address
the ’right-shift’ phenomenon in graph spectra, improving
anomaly detection.

• TROPICAL (Haghighi et al., 2025) introduces a transformer-
based hypergraph framework to capture high-order
relationships for detecting camouflaged fraudsters, effectively
identifying malicious actors blending with normal entities.

4.1.3 Implementation details
For all baselines, if the original hyperparameters are provided,

we use them directly; otherwise, the hyperparameter search space
is set as follows: learning rate in {0.01, 0.05, 0.001}, dropout in {0.3,
0.4, 0.5, 0.6}, weight decay in {10-3, 10-4, 10-5}, hidden dimension
in {16, 32, 64}. For HCLNet, we set dropout to 0.2, learning rate
to 0.005, weight decay to 10-4, hidden dimension and contrastive
projection dimension to 64, contrastive temperature τ to 0.8, and
contrastive loss weight α to 0.8. For the MG-HAM, 4 heads (K=4)
and 4 layers (L=4) are used for YelpChi, while 2 heads (K=2)
and 3 layers (L=3) are used for Amazon. For fair comparison, the
maximum number of training epochs is set to 500 for all models,
optimized using the Adam optimizer. Our implementation is based
on PyTorch 2.3.0 (with CUDA 12.1 and Python 3.12), trained on a
server equipped with one 48GB NVIDIA Virtual GPU.

4.2 Fraud detection performance

Table 2 presents the comparison results of HCLNet with other
baselines, where the following observations are noted:

(1) Among baselines, the foundational GCN suffers from
limitations of homophily assumption and shallow propagation,
yielding the lowest performance. GraphSAGE optimizes the
aggregation process through neighbor sampling and excels
in capturing local patterns, particularly standing out on
the Amazon dataset. However, traditional GNN models
generally struggle to effectively model the complex high-order
relationships in fraud detection. Additionally, GPRGNN
introduces learnable generalized PageRank coefficients to
capture long-range fraudulent associations, but it is sensitive
to noise and exhibits performance fluctuations.

(2) Among models specifically designed for fraud detection,
CARE-GNN demonstrates certain robustness in noisy
scenarios through its tri-view framework and reinforcement
learning-based neighbor selection. PC-GNN’s belief
propagation mechanism shows effectiveness in handling label
noise. CONSISGAD employs learnable data augmentation
but exhibits performance instability with high variance across
datasets, while SpaceGNN maintains modest competitiveness
through multi-space projection. These methods each have
their distinctive features, yet they still face limitations in
modeling complex relationships.

(3) Among the spectral analysis-based models, GHRN and
BWGNN demonstrate excellent performance on Amazon,
with BWGNN emerging as the optimal baseline model in both
F1-macro and GMean metrics. This success stems from the
Amazon’s structural properties, where its relatively balanced
node distribution and well-defined heterophilic edge patterns
create favorable conditions for spectral methods to effectively
identify anomalous high-frequency signals. The smaller node
count also contributes to lower computational complexity in
these spectral-based approaches.

(4) The recently proposed TROPICAL, which employs a
Transformer-based hypergraph learning approach to capture
high-order relations, has delivered outstanding performance
on YelpChi, establishing itself as the optimal baseline and
demonstrating the advantage of hypergraph learning in
modeling complex high-order dependencies. Our proposed
HCLNet achieves the best overall performance while exhibiting
distinct characteristics across datasets. On the large-scale and
complex YelpChi, HCLNet improves F1-macro, AUC, and
GMean by 2.09%, 2.23%, and 4.03%, respectively, over the best
baseline TROPICAL, highlighting its strength in challenging
scenarios. Although HCLNet’s F1-macro is slightly lower than
that of BWGNN and TROPICAL on Amazon, it still leads
on the other two metrics. This demonstrates that through
MG-HAM, and HDV-CL, HCLNet is able to maintain stable
and high performance across diverse fraud detection settings.

4.3 Ablation study

To systematically evaluate the effectiveness of each innovative
component in HCLNet, we design two sets of ablative experiments.
First, to validate the overall contribution of combining MG-HAM
and HDV-CL in HCLNet, we construct two fundamental variants:

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1703135
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wang et al. 10.3389/frai.2025.1703135

TABLE 2 Performance comparison of HCLNet with baselines over two datasets (mean ± standard deviation over ten runs).

Model YelpChi Amazon

F1-macro AUC GMean F1-macro AUC GMean

GCN 0.5661 ± 0.0125 0.6090 ± 0.0121 0.5284 ± 0.0539 0.6751 ± 0.0048 0.8705 ± 0.0004 0.7902 ± 0.0013

GraphSAGE 0.6363 ± 0.0141 0.8353 ± 0.0024 0.7550 ± 0.0027 0.7777 ± 0.0176 0.9445 ± 0.0033 0.8894 ± 0.0070

GPRGNN 0.6175 ± 0.0107 0.7439 ± 0.0023 0.6342 ± 0.0456 0.8335 ± 0.0954 0.9282 ± 0.0193 0.8597 ± 0.1240

CARE-GNN 0.6104 ± 0.0033 0.7710 ± 0.0009 0.7048 ± 0.0006 0.8921 ± 0.0007 0.9401 ± 0.0056 0.8852 ± 0.0002

PC-GNN 0.6412 ± 0.0000 0.7782 ± 0.0000 0.7134 ± 0.0000 0.8817 ± 0.0000 0.9665 ± 0.0000 0.8950 ± 0.0000

CONSISGAD 0.6242 ± 0.0540 0.8323 ± 0.0083 0.4709 ± 0.1133 0.8854 ± 0.0148 0.9320 ± 0.0041 0.8560 ± 0.0113

SpaceGNN 0.5717 ± 0.0004 0.6561 ± 0.0013 0.4462 ± 0.0041 0.8924 ± 0.0024 0.9308 ± 0.0028 0.8456 ± 0.0081

GHRN 0.6794 ± 0.0037 0.8110 ± 0.0027 0.6774 ± 0.0208 0.9026 ± 0.0084 0.9667 ± 0.0036 0.8913 ± 0.0042

BWGNN 0.7071 ± 0.0107 0.8378 ± 0.0088 0.6898 ± 0.0254 0.9126 ± 0.0030 0.9624 ± 0.0010 0.8953 ± 0.0096

TROPICAL 0.7543 ± 0.0068 0.8906 ± 0.0035 0.7894 ± 0.0090 0.9142 ± 0.0054 0.9345 ± 0.0137 0.8923 ± 0.0065

HCLNet 0.7701 ± 0.0066∗ 0.9105 ± 0.0010∗ 0.8212 ± 0.0033∗ 0.8944 ± 0.0043 0.9702 ± 0.0018∗ 0.8968 ± 0.0033∗

For each metric, the top-1 and top-2 performers among all models are highlighted in boldface and underlined, respectively. An asterisk (∗) indicates that HCLNet’s performance improvement
over the best baseline is statistically significant by the t-test (p < 0.01).

(a) HCLNet-hg, which removes the hypergraph module and
employs an MLP for node feature updating, while retaining HDV-
CL’s feature augmentation and node-level contrastive learning, and
(b) HCLNet-cl, which completely removes the HDV-CL module.
By comparing the fraud detection performance of these variants
against the full HCLNet, we assess the individual contributions of
each component to the overall model performance.

As shown in Figure 2, on both datasets, HCLNet achieves
optimal performance across all three evaluation metrics. Removing
the hypergraph module and MG-HAM in HCLNet significantly
degrades performance, underscoring the critical role of the
hypergraph structure in capturing complex fraud patterns.
Conversely, while retaining the hypergraph module, removing
HDV-CL in HCLNet still results in inferior performance compared
to the complete HCLNet, confirming the essential contribution of
contrastive learning to feature discriminability. Notably, HCLNet-
cl outperforms HCLNet-hg, suggesting that HDV-CL offers
stronger robustness even in the absence of the hypergraph
structure. Collectively, the synergy between MG-HAM and HDV-
CL enables HCLNet to effectively model complex relational
patterns and feature invariance for fraud detection.

On the basis of confirming the effectiveness of the overall
framework, we further deconstruct the HDV-CL by constructing
two additional variants: (b1) HCLNet-nd, which removes
node-level contrastive learning, and (b2) HCLNet-hp, which
removes hyperedge-level contrastive learning, to investigate their
individual contributions. The experimental results shown in
Table 3 indicate that removing either level of contrastive learning
leads to performance degradation, confirming the necessity of
the hierarchical design. It is worth noting that the absence of
node-level contrastive learning has a more significant impact
on the model, indicating that learning discriminative node
features is fundamental for improving detection performance. In
contrast, hyperedge-level contrastive learning provides valuable
supplementary information by capturing group-wise semantic
consistency. Together, they form a hierarchical feature learning

framework that enhances the model’s ability to identify fraud
patterns from both individual and group perspectives.

In summary, the organic integration of MG-HAM and
HDV-CL enables HCLNet to simultaneously leverage the
structural representation capabilities of hypergraphs and
the feature enhancement advantages of contrastive learning.
Furthermore, the node-level and hyperedge-level components
within the HDV-CL collectively enhance the model’s overall
performance in fraud detection tasks through feature optimization
at different granularities.

4.4 Parameter sensitivity

The proposed HCLNet incorporates two critical
hyperparameters, i.e., layer depth L governing hypergraph
convolution and hierarchical dual-view contrastive learning, and
head number K controlling multi-head hypergraph convolution.
To evaluate HCLNet’s robustness across hyperparameter
configurations, we conducted parameter sensitivity analysis
on YelpChi and Amazon datasets, systematically varying
L ∈ {1, 2, 3, 4, 5, 6} and K ∈ {1, 2, 4, 8} to examine their impact
on fraud detection performance. Figure 3 presents the parameter
sensitivity results.

Experimental results demonstrate distinct patterns across
datasets. YelpChi exhibits robust depth scalability, where
performance progressively improves as layers increase beyond
the third, stabilizing between the fourth and fifth layer. This
optimization stems from multi-head attention synergy. Under
four-head configuration, hierarchical contrastive learning
effectively coordinates feature representations across relational
perspectives while preserving task-specific focus. This collaborative
mechanism reaches optimal balance at the fourth layer, with gated
residual connections mitigating performance degradation even at
the sixth layer.
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FIGURE 2

Ablation study on two key components (mean over 10 runs). Statistical significance of pairwise differences of HCLNet against the best variant is
determined by the t-test (p < 0.01).

TABLE 3 Ablation study on HDV-CL components (mean ± std over 10 runs).

Variants YelpChi Amazon

F1-macro AUC GMean F1-macro AUC GMean

HCLNet-nd 0.7484 ± 0.0033 0.8895 ± 0.0011 0.8046 ± 0.0059 0.8863 ± 0.0058 0.9609 ± 0.0069 0.8906 ± 0.0086

HCLNet-hp 0.7601 ± 0.0107 0.9099 ± 0.0033 0.8205 ± 0.0014 0.8858 ± 0.0099 0.9673 ± 0.0029 0.8916 ± 0.0061

HCLNet-cl 0.7503 ± 0.0040 0.8947 ± 0.0017 0.8054 ± 0.0080 0.8801 ± 0.0065 0.9498 ± 0.0068 0.8844 ± 0.0076

HCLNet 0.7701 ± 0.0066∗ 0.9105 ± 0.0010∗ 0.8212 ± 0.0033∗ 0.8944 ± 0.0043∗ 0.9702 ± 0.0018∗ 0.8968 ± 0.0033∗

An asterisk (∗) indicates that HCLNet’s performance improvement over the best baseline is statistically significant by the t-test (p < 0.01). The highest scores are shown in bold.

FIGURE 3

Parameter sensitivity of L and K on YelpChi and Amazon datasets. Note that the values of L range from [1, 2, 3, 4, 5, 6] and K range from [1, 2, 4, 8].

Conversely, Amazon peaks at the third layer with dual-
head configuration, attributable to specialized division of labor:
one head processes dominant user browsing relationships while
the other isolates critical co-purchasing signals. This inter-head
isolation enables precise capture of decisive fraud evidence
at optimal depth. However, further layer increases degrade
intermediate-layer performance (4th–5th layer), where superfluous
heads introduce noise and additional layers dilute critical

signals through dominant relationships. Significantly, all head
configurations recover substantially at the sixth layer through gated
residual connections. Upon reaching critical depth, the gating
mechanism automatically fuses third-layer key signals with shallow
features, bypassing intermediate contamination through cross-
layer feature recombination.

In conclusion, parameter sensitivity analysis reveals
fundamental configuration principles: YelpChi benefits
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FIGURE 4

Embedding visualization of different models. The red and blue nodes represent fraudsters and benign entities respectively. (a) GCN. (b) GraphSAGE.
(c) GPRGNN. (d) CARE-GNN. (e) PC-GNN. (f) CONSISGAD. (g) SpaceGNN. (h) GHRN. (i) BWGNN. (j) TROPICAL. (k) HCLNet.

from progressive multi-head collaboration across diverse
relationships, while Amazon requires precise inter-head
isolation and depth-specific configuration. This divergence
reflects inherent topological differences in fraud patterns—
concentrated multidimensional signals vs. fragile critical evidence
requiring protection. The universal sixth-layer recovery on
Amazon ultimately demonstrates that in skewed relational
networks, effective depth design prioritizes cross-layer feature
preservation and recombination pathways over unlimited
feature transformation.

4.5 Interpretability exploration

We conducted a visual analysis of node embeddings on the
YelpChi graph dataset. To intuitively compare the performance of
different models, we employed t-SNE technique (van der Maaten,
2008) to map the outputs from the classification layer of various
models, just before their final layers, into a two-dimensional space
for dimensionality reduction. This visualization technique enables
clear observation and analysis of differences in the outputs of
the models.

The results, displayed in Figure 4, show fraud nodes in red and
benign nodes in blue. Figures 4a–e correspond sequentially to the
baseline models listed in Table 2, while f presents the visualization
result for HCLNet. In contrast to the other models, HCLNet
exhibits a distinct “isolation belt” effect. Within its visualization,
fraudulent and benign nodes form highly separated clusters with
sharp boundaries, clearly demarcated by a low-density transition
zone between them. This structural characteristic stems directly
from the synergistic interplay of HCLNet’s MG-HAM and HDV-
CL. Specifically, MG-HAM captures diverse relational patterns
in the hypergraph through its multi-head attention mechanism
operating in parallel. Each attention head focuses on feature
interactions within distinct semantic subspaces. Concurrently,
gated residual connections dynamically regulate the weighting
between previous and newly generated features. This ensures
crucial discriminative information is enhanced and preserved while
suppressing noise. This design fosters the formation of node
embeddings that exhibit high intra-group cohesion and low inter-
group coupling within the feature space.

Furthermore, HDV-CL explicitly enhances inter-class
separability through its dual-view node-level and hyperedge-level
contrastive learning optimization. At the node level, it forces
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embeddings of nodes belonging to the same class to converge
while pushing apart embeddings of nodes from different classes. At
the hyperedge level, it learns globally discriminative structures by
contrasting representations of hyperedges with different semantics.
Dual-view data augmentation further mimics real-world noise
interference, compelling the model to uncover essential features
rather than superficial correlations. In contrast, other models
lack such structured representation learning mechanisms and
fail to achieve comparable separation efficacy, resulting in poorer
performance on the fraud detection task.

5 Conclusion and future work

In this paper, we propose a novel hypergraph contrastive
learning framework called HCLNet for fraud detection that
addresses three core challenges: homophily assumption failure,
extreme label imbalance, and inadequate high-order modeling.
Through multi-relational hypergraph fusion, we encode complex
fraud syndicates into hyperedges to explicitly capture collaborative
fraud patterns. The multi-head gated hypergraph aggregation
mechanism (MG-HAM) dynamically filters noise while preserving
discriminative signals via parallel semantic subspace learning and
gated residual connections. Complementarily, our hierarchical
dual-view contrastive learning framework (HDV-CL) harnesses
self-supervision at both node and hyperedge levels to enhance
feature separability under label scarcity.

Despite promising results, our work still has several limitations
that warrant further investigation in future work. First, evaluation
on only two public datasets (YelpChi and Amazon) limits
generalizability. Future work should validate HCLNet in broader
fraud scenarios like financial transactions and insurance fraud
to assess cross-domain adaptability. Second, hypergraphs may
face scalability challenges with large-scale dynamic graphs due
to computational overhead. Future research should focus on
optimizations, such as sampling-based or hierarchical hypergraph
processing strategies, to improve computational efficiency. Third,
inherent biases in public datasets, such as platform-specific
user behaviors and annotation inconsistencies, may impact
model performance and fairness. Therefore, future studies should
incorporate more diverse and representative data sources and
explore the integration of debiasing techniques during training.
We believe HCLNet’s core ideas offer a valuable framework for
fraud detection, though realizing its full potential may require
domain-specific adaptations.
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