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Introduction: The Counter-Strike 2 skin market has developed into a multi-
billion-dollar digital asset ecosystem, characterized by high volatility, low
liquidity, and pricing inefficiencies that differ substantially from traditional
financial markets. Despite the growing economic relevance of virtual items, no
previous study has systematically examined the use of artificial intelligence for
skin trading.

Methods: This work designs and evaluates an automated trading system that
applies deep learning models, specifically Long Short-Term Memory networks
and Neural Hierarchical Interpolation for Time Series, to forecast skin prices
and guide trading decisions. A dataset of 12,000 unique skins from the Steam
Market, covering the period from May 2024 to April 2025, was collected using
the CSGOskins.gg application programming interface. To reflect real market
conditions, the trading strategy incorporated the Steam Market restrictions
of a seven-day minimum holding period and a ten percent transaction cost,
and was benchmarked against a traditional buy-and-hold strategy. Backtesting
was performed multiple time horizons of two, three, and 6 months. Portfolio
selection was based on risk and return criteria, including a Sharpe ratio greater
than one, a Sortino ratio greater than two, and a return on investment above five
percent.

Results: Artificial intelligence consistently outperforms buy-and-hold,
particularly in smaller, more concentrated portfolios and over longer time
horizons. For example, in 6-month simulations, artificial intelligence portfolios
achieved returns approaching 20%, compared to 5% to 10% for buy-and-hold,
with excess returns as high as 75% in small portfolios. Larger portfolios reduced
absolute returns but improved risk-adjusted performance, confirming that
diversification enhances stability while diluting raw profitability. Analysis of
portfolio composition by rarity further revealed that artificial intelligence favors
moderately rare and liquid skins such as Mil-Spec, resembling mid-cap equity
investment strategies, while buy-and-hold accumulates rarer skins, analogous
to small-cap holdings that rely on scarcity premiums.

Discussion: These findings highlight that even in virtual goods markets, the
trade-offs between return, risk, and diversification reflect established principles
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of modern portfolio theory. The study demonstrates both the feasibility and the
potential of artificial intelligence-based trading systems in the Counter-Strike 2
skin economy, contributing methodological advances and practical insights for
participants in this emerging digital asset market.

KEYWORDS

digital assets, deep learning, artificial intelligence, algorithmic trading, virtual economy,
skins market, Counter-Strike 2

1 Introduction

The Counter-Strike 2 (CS2) skin market has emerged as a
sophisticated digital asset exchange, presenting opportunities for
algorithmic trading systems. Unlike traditional financial markets,
which rely on centralized exchanges and order books, CS2 skins
are traded through peer-to-peer transactions. This decentralized
structure creates unique inefficiencies that can be exploited through
artificial intelligence (AI)-driven trading strategies. A growing
body of research has focused on applying artificial intelligence to
financial forecasting, emphasizing the potential for deep learning
models to enhance price prediction accuracy and optimize trading
strategies (Chopra and Sharma, 2021).

The CS2 skin market, with an estimated valuation of $4.1
billion as of February 2025, operates within a framework that
blends elements of collectibles markets and financial derivatives
(ID’Anastasio, 2025). Unlike traditional exchanges, where pricing
mechanisms are driven by centralized order books, the skin market
relies on direct peer-to-peer transactions, leading to significant
price discrepancies across different platforms (Thorhauge and
Nielsen, 2021). These inefficiencies create opportunities for
algorithmic trading strategies capable of exploiting short-term
arbitrage opportunities.

The valuation of CS2 skins is influenced by multiple factors,
with artificial scarcity playing a dominant role (Ladeira et al., 2023).
In addition to scarcity, cosmetic appeal introduces a subjective
dimension to pricing, as buyer preferences for particular patterns
and wear conditions can create price variations for identical skin
types. External influences further contribute to price fluctuations,
particularly the impact of e-sports events and developer updates (Jo
and Lewis, 2024). Championship victories often drive demand for
related skins, while game updates introduce exogenous shocks that
significantly alter market valuations. These dynamics distinguish
skin markets from traditional financial securities, necessitating
specialized predictive models.

In recent vyears, artificial intelligence has revolutionized
algorithmic trading in traditional financial markets. Techniques
such as recurrent neural networks (RNNs), long short-term
memory (LSTM) networks, and more recently, advanced
architectures like Neural Hierarchical Interpolation for Time Series
(NHITS), have demonstrated remarkable success in modeling
complex temporal patterns and forecasting asset prices (Hochreiter
and Schmidhuber, 1997; Challu et al.,, 2023). These Al-based
approaches enable the development of automated trading systems
that can adapt to rapidly changing market conditions, optimize
portfolio allocations, and manage risk more effectively than
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traditional rule-based strategies (Siami-Namini et al., 2018; Schifer
etal., 2025).

Despite the proven efficacy of Al-based trading algorithms
in equities, commodities, and cryptocurrencies (Amirzadeh et al.,
2022; Ozer and Sakar, 2022), their application to digital gaming
assets such as CS2 skins remains largely unexplored. The unique
characteristics of the skin market, including high volatility,
illiquidity, and the influence of non-financial factors, present both
challenges and opportunities for the deployment of Al-based
trading systems. Recent studies in adjacent fields, such as non-
fungible tokens (NFTs) and virtual item markets, suggest that
machine learning can be leveraged to identify pricing inefficiencies,
forecast demand surges, and automate trading decisions with
significant success (Xiong et al., 2024; Horky et al., 2022; Dawod
etal., 2023).

The goal of this work is to design, develop, and validate
an automated trading system for CS2 skin trading, tailored to
maximize capital gains. The proposed system leverages data-driven
trading strategies, ensuring that buy and sell decisions align with
market trends and predefined risk levels. By incorporating financial
performance metrics and risk-adjusted evaluation criteria, the bot
aims to identify and execute profitable trades with optimal timing.
The system is designed to dynamically adjust its strategy based on
market conditions, allowing for efficient portfolio management and
risk mitigation. Ultimately, this approach enhances the profitability
and reliability of skin trading for users by providing a structured,
algorithmic method to navigate the CS2 market.

The remainder of this paper is organized as follows: Section 2
presents related work in the field, Section 3 details the methodology
for data collection and the development of Al-based trading
strategies. Section 4 presents the results in terms of investment
profitability, risk, time horizons, and portfolio construction. This
section also discusses these findings in the context of existing
literature and market dynamics, and Section 5 concludes with the
main contributions of this work.

2 Related work

Algorithmic trading strategies, such as statistical arbitrage and
pairs trading, have been widely adopted in traditional financial
markets to exploit pricing inefficiencies between correlated assets
(Thomaidis et al., 2006). These methods typically depend on the
ability to take both long and short positions, allowing traders
to profit from price divergences and subsequent convergences
(Thomaidis et al., 2006). However, such approaches are not directly
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transferable to the CS2 skin market due to structural constraints.
Specifically, the absence of short-selling mechanisms for skins
eliminates the possibility of hedging through negative positions.
Additionally, the Steam marketplace enforces a seven-day trading
restriction, which precludes high-frequency trading strategies that
rely on rapid execution and order turnover (Thorhauge, 2023).
These limitations necessitate the development of alternative, Al-
driven trading strategies that are specifically adapted to the unique
characteristics of virtual goods markets.

Artificial
significantly advanced the field of financial time series forecasting
(Lin and Marques, 2024). Models such as RNN and LSTM
have demonstrated strong capabilities in capturing non-linear

intelligence, particularly deep learning, has

temporal dependencies in asset prices. Ensemble methods, which
combine multiple machine learning models, have further improved
prediction robustness and mitigated overfitting by leveraging
diverse perspectives on historical data (Song et al., 2024). While
these AI methodologies have been extensively applied to equity
and cryptocurrency markets, their application to virtual asset
markets such as CS2 skins, remains largely unexplored. Recent
studies in gaming economies suggest that Al can be effective for
dynamic pricing, trend prediction, and fraud detection, but there is
a notable absence of research focused on predictive modeling and
automated trading for CS2 skins specifically.

Modern Al trading bots in the crypto and digital asset space
are designed to optimize not just for absolute returns but for risk-
adjusted performance, with the Sharpe ratio serving as a primary
benchmark. These bots use machine learning to dynamically adjust
position sizes, stop-losses, and asset allocations in response to
changing volatility and market regimes, directly targeting higher
Sharpe ratios and lower drawdowns. Systematic reviews confirm
that Al trading systems are routinely backtested and evaluated
using risk-adjusted metrics, including the Sharpe ratio, Sortino
ratio, and maximum drawdown, to ensure robust performance
across diverse market conditions (Dakalbab et al., 2024).

Effective trading systems must balance profitability with risk
management. In traditional finance, the Sharpe ratio serves as
a standard metric for evaluating risk-adjusted returns. However,
the CS2 skin market presents unique challenges: the value of
skins is closely linked to the game’s lifecycle, player demand, and
periodic game updates, necessitating specialized, time-weighted
risk models. Portfolio diversification strategies must consider not
only price correlations between different skins but also their
sensitivity to developer interventions and shifts in competitive
gameplay meta. Constructing a resilient portfolio thus requires
a nuanced approach, balancing high-value, rare items with more
liquid, mid-tier assets to mitigate exposure to market volatility and
unpredictable demand shocks (Reichenbach, 2025).

The use of artificial intelligence and machine learning in
studying virtual economies has gained increasing attention as
these markets evolve into complex, data-rich ecosystems that
mirror real-world economic structures. Virtual economies in
online games operate with mechanisms analogous to traditional
markets, emphasizing the need for quantitative and predictive
modeling approaches (Chambers, 2011). More recent studies have
applied AI to measure inflation, price volatility, and transaction
dynamics within digital marketplaces. A deep learning framework
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was proposed to assess inflation and predict pricing behavior in
virtual economies (Stephens and Exton, 2021). Complementary
studies have examined how Al contributes to financial insights
in metaverse and in-game economies, in-game product pricing
was modeled to identify optimal valuation strategies, offering a
basis for integrating Al-based price forecasting in virtual markets
(Budak and Ozen, 2022). The behavioral dimension has also
been addressed through machine learning analyses of user trading
patterns (Aspembitova et al, 2021), which modeled strategy
clusters in cryptocurrency markets, which is an approach equally
relevant to understanding behavioral heterogeneity in virtual asset
trading. These studies provide empirical support for applying Al
to the CS2 skin market, where complex interactions among rarity,
player behavior, and liquidity drive asset valuation.

Despite the growing popularity and economic significance
of virtual item trading, there is currently no published research
investigating the use of Al-based trading strategies for CS2 skins.
Existing work has focused on automating transactions and ensuring
fair pricing through trading bots, but comprehensive studies on
predictive modeling, automated decision-making, and portfolio
optimization in this domain are lacking. This gap stresses the
need for research that adapts and extends AI methodologies
to address the specific challenges and opportunities of the CS2
skin market.

3 Methods

3.1 Data collection

Historical price data for CS2 skins were collected from the
Steam Market via the CSGOskins.gg API, which provides daily
price information for individual items. Due to API limitations, the
dataset covers the period from May 1, 2024, to April 30, 2025,
comprising 12,000 unique skins. Only Steam Market listings were
considered to ensure price consistency. The dataset was partitioned
into training (8.3%), validation (41.6%), and test (50%) sets to
capture diverse market conditions, optimize model parameters,
and rigorously evaluate out-of-sample performance. This split
mitigates overfitting and supports reliable assessment of the
trading strategies. This split configuration was selected to ensure
a sufficient horizon for hyperparameter optimization and robust
out-of-sample testing, given the limited lyear historical dataset
available (May 2024-April 2025). Figure 1 provides representative
visual examples of CS2 weapon skins, illustrating the spectrum of
rarity levels and associated aesthetic features.

To ensure data integrity, only skins with complete daily
price records for the full observation period (May 2024 to
April 2025) were included in the analysis. No imputation,
interpolation, or normalization procedures were applied, as
each forecasting model was trained independently for each
skin using its raw daily price data. This approach avoided
potential biases introduced by synthetic data filling or scaling
transformations, allowing the models to learn directly from
the natural market variability. Outliers were retained, as they
represent genuine fluctuations in market behavior rather than
data errors.

frontiersin.org


https://doi.org/10.3389/frai.2025.1702924
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Guede-Fernandez et al.

10.3389/frai.2025.1702924

FIGURE 1

Representative examples of CS2 skins across rarity levels, arranged from common to ultra-rare. From left to right: (1) Glock-18 — Franklin
(Well-Worn) (Industrial Grade), (2) AK-47 — Redline (Field-Tested) (Mil-Spec), and (3) StatTrak™ USP-S — Monster Mashup (Well-Worn) (Restricted). All
images are® Valve Corporation, retrieved from the public Steam Community Market for non-commercial, academic illustration purposes only.

3.2 Artificial intelligence based forecasting
models: NHITS and LSTM

To generate trading signals, we implemented two state-
of-the-art deep learning models: NHITS and LSTM networks.
Both models were independently trained and validated for
each individual skin item, allowing the forecasting process
to capture the unique price dynamics, volatility, and trading
patterns associated with each asset. NHITS is designed to
capture long-term dependencies and seasonality in time series
data, and has demonstrated superior performance on various
forecasting benchmarks (Challu et al, 2023). In our study,
NHITS was trained on historical price spreads to produce
next-day forecasts. LSTM networks are well-established for
modeling sequential data and short-term trends in financial time
series (Hochreiter and Schmidhuber, 1997; Siami-Namini et al.,
2018). The LSTM model was used to predict short-term price
movements and spread changes. The use of the LSTM and
NHITS models was guided by the objective of assessing the
feasibility of Al-based forecasting in the CS2 skin market using
two distinct deep learning paradigms. LSTM represents a recurrent
neural network architecture particularly suited for capturing
sequential dependencies and temporal dynamics, while NHITS
is a multilayer perceptron-based hierarchical model designed for
efficient and interpretable long-term forecasting. The purpose
was not to identify the optimal forecasting framework but to
establish a methodological baseline for subsequent exploration.
For both models, hyperparameter optimization was conducted
using Bayesian optimization (Snoek et al, 2012). To ensure
computational efficiency and feasibility for real-time trading, only
five distinct hyperparameter configurations were sampled and
evaluated for each model and each skin. The specific parameter
ranges are detailed in Table 1. Despite the individualized training,
training and inference for each model and each skin were
completed in under 1 min.

For each skin, the model with the lowest validation mean
quantile loss (MQLoss) was selected for trading. MQLoss is a
regression loss function commonly used in time series forecasting
to evaluate the accuracy of predicted quantiles. Unlike traditional
metrics such as mean squared error or mean absolute error,
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which assess the average magnitude of prediction errors, MQLoss
specifically measures how well the model predicts a particular
quantile (the median or the 90th percentile) of the target
distribution. This is particularly useful in financial forecasting,
where understanding the distribution of possible outcomes—rather
than just the average—is crucial for risk management and decision-
making (Matheson and Winkler, 1976; Koenker and Bassett, 1978).
Mathematically, the quantile loss for a quantile q is defined as

N
1 N ~
Quantile Loss = N gmax (q i =) (q@—1) - (yi —)’i)) (1)

where y; is the true value, J is the predicted value, and N is the
number of observations. By minimizing the MQLoss for median
level on the validation set for each skin, the selected model is
optimized not just for average accuracy, but for robust performance
across different possible market scenarios.

Each
using two forecasting architectures. For

skin  was modeled and trained independently

skin, both
models were trained and validated separately, and the model

each

achieving the highest return on investment (ROI) during the
validation phase was selected for subsequent out-of-sample
performance evaluation.

3.3 Automatic trading strategy design

The trading strategies were implemented and backtested using
the Backtrader Python framework. To comply with Steam Market
rules, a seven-day minimum holding period was enforced: trades
could only be executed at least seven days after the previous
transaction. The strategy utilizes next-day price forecasts to inform
entry and exit decisions, aiming to maximize returns while
minimizing transaction frequency and costs.

3.3.1 Trading logic
At each time step f, the model retrieves the actual closing
price and the predicted price for ¢ + 7. If no position is open and
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Model Parameters Description Values

NHITS input_size Length of input window 30 (6M), 15 (3M), 10 (2M)
start_padding_enabled Whether to enable start padding True
n_blocks Number of blocks in the stack 5x [1]
mlp_units Number of units in each MLP layer 5 x [[64,64]]

n_pool_kernel_size

MaxPooling kernel size

(LLLLL], (2], [4....], [8,4.2,1,1]

n_freq_downsample

Interpolation expressivity ratios

(8,4,2,1,1], [L,1,1,1,1]

learning_rate Initial learning rate (log-uniform distribution) loguniform(1e-4, le-2)
scaler_type Scaler type used None

max_steps Max number of training iterations 500

batch_size Number of series in batch [1,4,10]
windows_batch_size Number of windows in batch [128, 256, 512]

random_seed

Random seed

randint(1, 20)

LSTM input_size

Length of input window 30 (6M), 15 (3M), 10 (2M)
encoder_hidden_size Hidden size of LSTM cells [64, 128]
encoder_n_layers Number of LSTM layers [2,4]

learning_rate Initial learning rate (log-uniform distribution) loguniform(le-4, le-2)
scaler_type Scaler type used robust

max_steps Max number of training iterations 500

batch_size Number of series in batch [1, 4]

random_seed Random seed

randint(1, 20)

the predicted price exceeds the current price (after accounting for
transaction costs), a buy order is triggered. If a position is open
and the predicted price is lower than the current price, a sell order
is executed. Portfolio value is updated after each trade to track
cumulative performance.

3.3.2 Holding period and transaction cost

A strict seven-day holding period is enforced, reflecting
Steam’s trading restrictions. Trades cannot be executed more
frequently than once every seven days per asset. A transaction
selling cost of 10% per trade is incorporated to simulate real-
world Steam conditions and assess strategy robustness. The buy-
and-hold strategy, where an asset is purchased at the start
of the period and held throughout, serves as the baseline
for comparison.

3.4 Benchmarking and performance
metrics

To rigorously evaluate the effectiveness of the Al-based trading
strategies, performance was bench-marked against a buy-and-hold
baseline using a comprehensive set of return and risk-adjusted
metrics. These metrics provide a multi-faceted view of profitability,
risk exposure, and strategy robustness. Return on Investment
(ROI) measures the percentage gain or loss relative to the initial
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capital invested. It is a straightforward indicator of profitability,
calculated as:

Net Profit

ROl=———
Initial Investment

100 2)

While ROI indicates absolute returns, it does not account for
the risk or volatility taken to achieve those returns, which is critical
in volatile markets such as virtual assets. Sharpe ratio evaluates risk-
adjusted returns by comparing the excess return of the strategy over
a risk-free rate to the standard deviation (volatility) of returns. It is
defined as:

E[R, — Ry]
%p

Sharpe Ratio = (3)

where Ry is the portfolio return, Rf the risk-free rate, and o
the standard deviation of portfolio returns. A higher Sharpe ratio
indicates more efficient compensation for risk, with values above 1
generally considered good (Schifer et al., 2025; Sharpe, 1966). This
metric is essential for assessing whether the AI models improve
returns without disproportionately increasing risk. The Sortino
ratio refines the Sharpe ratio by focusing solely on downside
volatility, negative deviations from a target return, rather than total
volatility. It is computed as:

E[R, — Rf]

0d

(4)

Sortino Ratio =
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where o, is the standard deviation of downside. This provides
a more accurate measure of downside risk, which is particularly
relevant for trading strategies sensitive to drawdowns.

In addition, backtesting was conducted over multiple time
windows (last two, three, and 6 months) to ensure robustness
across market regimes. For each window, the above metrics were
computed on the subsequent out-of-sample period to simulate
realistic trading scenarios, avoid lookahead bias and simulate
realistic trading conditions. Performance metrics were computed
over the out-of-sample evaluation period following model training
and validation. For the 6-month analysis, this corresponds to a
1-month training window, a 5-month validation period used for
model selection, and a subsequent 6-month testing window where
trading decisions were executed. The same relative proportions
were maintained for the shorter two- and 3-month configurations,
with metrics calculated over their respective testing horizons. This
design ensured that all reported results reflect true out-of-sample
performance, independent of model fitting or hyperparameter
tuning phases.

3.5 Portfolio construction

Portfolios were constructed by selecting skins based on
historical performance. Optimization criteria included maximizing
the Sharpe ratio, ROI, and Sortino ratio, with thresholds set to
ensure both profitability and risk control (Sharpe ratio > 1, Sortino
ratio > 2, ROI > 5%). Portfolios consisted of one unit per selected
skin, and profitability was assessed over multiple time horizons
(2 months, 3 months, and 6 Months). The impact of skin rarity
on portfolio performance was also analyzed. The thresholds were
selected for portfolio inclusion following the criteria: Sharpe ratio
> 1, Sortino ratio > 2, and ROI > 5%. These thresholds were
applied in the portfolio construction process to prioritize not only
profitability but also the efficiency and quality of returns, in line
with best practices in quantitative finance and risk management.
The detailed description for each criteria is next discussed:

e Sharpe Ratio > 1: Sharpe Ratio measures the excess return
per unit of total portfolio volatility, providing a standardized
means to compare risk-adjusted performance across different
strategies. A Sharpe ratio above 1 is widely regarded as
indicative of a good risk-adjusted return, meaning the
portfolio delivers returns that sufficiently compensate for the
risk taken. Portfolios with a Sharpe ratio below 1 may not
be offering adequate reward for the volatility endured, while
those above 1 are generally considered attractive to investors
seeking efficient risk management.

e Sortino Ratio > 2: Sortino Ratio refines the Sharpe ratio by
focusing exclusively on downside risk (the standard deviation
of negative returns) rather than total volatility. This makes it
particularly relevant for strategies or assets with asymmetric
return distributions or frequent positive price spikes, as is
common in speculative or high-growth markets. A Sortino
ratio above 2 is typically interpreted as a sign of strong risk-
adjusted performance, indicating that the portfolio generates
high returns relative to its downside risk exposure.
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e ROI >5%: ROI is a basic measure of absolute profitability.
Setting a minimum threshold of 5% ensures that only
portfolios with meaningful net gains, after accounting for
transaction costs and market frictions, are considered. This
filter helps exclude portfolios that may perform well on a risk-
adjusted basis but fail to deliver sufficient absolute returns to
justify active trading.

Both the Al-based and BH portfolios were constructed from
the same initial pool of candidate skins but differ in the selection
mechanism used to form the final holdings. Skins were first filtered
using performance-based inclusion criteria (Sharpe ratio > 1,
Sortino ratio > 2, ROI > 5%) to ensure that only statistically
robust and actively traded items were considered. After filtering,
all eligible skins were ranked by their ROI, providing a consistent
and quantitative basis for selection. The AI strategy dynamically
selected skins from this ranked list based on predicted short-
term profitability, whereas the BH portfolio included the top-
ranked skins without predictive adjustments. Consequently, the
two portfolios may contain partially overlapping but not identical
compositions, reflecting their distinct investment philosophies.
This approach enables a fair yet realistic comparison between an
active, prediction-driven strategy and a passive benchmark that
mirrors conventional market exposure.

3.6 Rarity

CS2 skin rarity, which directly influences market value, was
recorded for each asset in the portfolio. The CS2 rarity system
includes eight tiers, from Consumer Grade (most common) to
Extraordinary (rarest), as detailed in Table 2. Rarity not only
drives the price premium of individual skins but also exerts a
significant influence on market liquidity. Assets in the highest
rarity tiers often experience elevated price levels and increased
volatility, as their scarcity creates conditions of thin market
depth and wider bid-ask spreads. This reduced depth of order
books limits trade frequency, making rare skins relatively illiquid
despite their high notional values. In contrast, lower-rarity items
function as more liquid instruments, with higher trading volumes,
narrower spreads, and greater ease of convertibility into real or
platform-specific currency (Chordia et al., 2000; Mago et al,
2017). Therefore, the skins rarity was analyzed to assessment of
how rarity affects both individual skin performance and overall
portfolio outcomes.

4 Results and discussion

4.1 Performance evaluation of Al-based
and buy-and-hold trading strategies

Figure 2 presents the ROIL, Sharpe ratio, and excess return for
various portfolio strategies based on CS2 skin trading. The analysis
was conducted under a standardized trading configuration: each
skin was held for seven days between purchase and sale, with only
one unit of each skin acquired, and a ten percent commission
applied at the point of sale. Skins were selected according to
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predefined criteria (Sharpe ratio greater than one, Sortino ratio
greater than two, and ROI above five percent) to ensure that
strong candidates were included in each portfolio. Performance
was evaluated across three distinct investment horizons: 2 months

TABLE 2 Classification of CS2 skin rarities and their characteristics.

10.3389/frai.2025.1702924

(2M), 3 months (3M), and 6 months (6M), using historical data
available up to April 30, 2025.

The figure compares the performance of the Al-based trading
strategy with a BH benchmark across different portfolio sizes and
time horizons. Several consistent patterns emerge. Increasing the
number of skins in the portfolio is associated with a decline in
ROI for both strategies. For example, in the 2-month horizon,
the AI strategy achieves ROI values around 15-20% in smaller

Description portfolios before stabilizing close to 10% as portfolio size exceeds
3,000 skins. By contrast, the buy-and-hold strategy hovers near
Consumer The most common skins, typically received as random drops zero in small portfolios and approaches approximately 5% in larger
Grade after matches or leveling up. They feature minimal design ones. Importantly, ROI for the AI method increases with longer
changes and have low market value. horizons, reaching values above 20% in the 6-month evaluation,
Industrial Slightly less common than Consumer Grade, with modest while BH remains comparatively flat around 5-10%. This confirms
grade design enhancements. Also obtained through post-match that Al strategies consistently outperform buy-and-hold in terms of
drops and usually inexpensive. . . K
profitability, with the advantage becoming more pronounced over
Mil-Spec Also called “Rare” skins, often found in weapon cases. They extended horizons, although diversification reduces its magnitude
have more intricate designs and serve as the baseline for many foli d .
skin collections. as portfolios expand (Sun and Govind, 2017).
Sharpe ratios improve with portfolio size for both approaches,
Restricted Less common than Mil-Spec, featuring more elaborate designs. . . .
Topi ) reflecting  enhanced  risk-adjusted  performance through
ypically obtained from weapon cases and have moderate
market value. diversification. In the 2-month horizon, Al-driven portfolios
Classified A higher rarity tier with infrequent drops from weapon cases. reach. Sharpe r.atlh()s around 7-8, while buy_and_h()ld porthhOS
Known for unique and visually appealing designs that are stabilize near similar levels. At three and 6 months, however, Al
more desirable. portfolios exhibit a clear advantage, with Sharpe ratios rising above
Covert Among the rarest in standard weapon cases. Coveted for their 10-12 in lafge pOl’thliOS, Compared with 7-9 for buY'and'hOId-
distinctive, elaborate designs and high market value. This demonstrates that Al strategies deliver superior risk-adjusted
Contraband Skins removed from the game and no longer obtainable returns, par tlcularly over longer horizons, consistent with ﬁndmgs
through normal means. Their rarity and exclusivity increase in traditional financial markets where diversification reduces
their market value. idiosyncratic risk while improving stability.
Extraordinary Includes ultra-rare items like knives and gloves. Extremely rare The excess return (ROIp; — ROIpy) further illustrates the
and highly valued within the CS2 community. performance gap. At the 2-month horizon, excess returns fluctuate
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FIGURE 2
Comparison of portfolio performance between the artificial intelligence (Al)-driven strategy (red) and the buy-and-hold benchmark (blue) over 2-,
3-, and 6-month horizons. The top, middle, and bottom rows show return on investment (ROI), Sharpe ratio, and excess return, respectively, across
increasing portfolio sizes.
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widely in small portfolios, occasionally exceeding 50%, before
stabilizing around 5-10% for portfolios larger than 2,000 skins.
With longer horizons, the advantage of AI compounds: in the 6-
month evaluation, small AI-driven portfolios achieve excess returns
close to 75%, while larger, diversified portfolios still maintain
an advantage of roughly 10-15%. These patterns align with
evidence from equity markets, where predictive or active trading
strategies tend to generate higher abnormal returns in concentrated
portfolios, but diversification moderates these benefits as portfolio
size grows (Sutiene et al., 2024; Chen, 2025).

4.2 Comparative analysis of portfolio
composition by skin rarity

Figure 3 illustrates the evolution of portfolio composition
across different rarity categories in CS2, comparing the Buy-
and-Hold benchmark with the Al-driven trading strategy over
horizons of 2, 3, and 6 months. Rarity in CS2 is structured in an
ascending hierarchy from more common to more exclusive items:
Consumer Grade, Industrial Grade, Mil-Spec, Restricted, Covert,
and Extraordinary.

Across both methods (AI and BH) and all time horizons,
the portfolios exhibit a layered composition reflecting this rarity
structure. In smaller portfolios, common items such as Consumer
and Industrial skins dominate, but as portfolio size increases, the
share of more valuable categories, particularly Restricted, Mil-
Spec, and Covert, grows in importance. This trend stabilizes for
larger portfolios, where the rarity distribution converges toward
relatively stable patterns, especially visible at the 3- and 6-month

10.3389/frai.2025.1702924

horizons. This suggests that diversification drives portfolios toward
a composition that approximates the broader market structure.

When comparing strategies, clear differences emerge. Al-
driven portfolios exhibit a strong and consistent tilt toward Mil-
Spec and Consumer skins. For example, in the 2-month horizon,
Mil-Spec accounts for roughly 35-45% of total portfolio value in AL,
compared with around 20-25% in Buy-and-Hold. This indicates
that the AI strategy systematically favors moderately rare and
liquid items, likely reflecting their balance between affordability,
tradability, and predictive profitability. By contrast, Buy-and-Hold
portfolios place greater weight on higher-rarity items such as
Restricted and Covert, which together represent about 50-60%
of value in the 3-month and 6-month horizons, compared with
30-40% in the equivalent Al cases.

A particularly notable divergence appears in the 6-month
Al horizon. Here, Consumer and Mil-Spec together exceed 60%
of the total portfolio value, while Restricted and Covert fall
below 30%. This reallocation toward more common categories
suggests that, over longer horizons, the Al strategy prioritizes
liquidity and turnover rather than exposure to scarcity-driven
appreciation. In contrast, the Buy-and-Hold approach continues
to accumulate rarer skins, consistent with its passive reliance on
scarcity premiums.

This divergence between AI and Buy-and-Hold parallels
The AI
strategy’s preference for Mil-Spec and Consumer skins resembles

well-established phenomena in financial markets.

institutional investors’ bias toward mid-cap and liquid equities,
which combine reasonable return potential with market depth.
Conversely, Buy-and-Holds tilt toward Restricted and Covert
parallels small-cap and illiquid equity exposure, where scarcity
and liquidity risks drive long-term premiums. Prior financial
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studies support this interpretation: liquidity risk and size effects
are recognized as key drivers of returns, with illiquid assets
demanding higher expected returns (Choy and Wei, 2020), while
more liquid mid-cap assets often deliver superior risk-adjusted
outcomes over certain horizons (Pdstor and Stambaugh, 2003).
Thus, the ADs systematic allocation toward less rare categories
can be viewed as a rational preference for liquidity and turnover,
whereas Buy-and-Hold emphasizes scarcity-value accumulation.

4.3 Positioning Al-based trading within
financial and digital markets

The findings of this study position CS2 skin trading within
the broader landscape of financial asset management, revealing
that market behaviors and portfolio dynamics in virtual economies
closely follow principles established in modern finance. The AI-
based strategy’s systematic preference for moderately rare and
liquid items, such as Mil-Spec skins, parallels mid-cap equity
investment strategies, which optimize the balance between liquidity
and expected returns. Conversely, the buy-and-hold strategy’s
concentration in rarer, less liquid skins mirrors small-cap investing,
where scarcity premiums and illiquidity underpin long-term
value appreciation. The consistent application of risk-adjusted
performance metrics—such as the Sharpe and Sortino ratios—
further reinforces these analogies, situating digital asset trading
firmly within the framework of portfolio theory and emphasizing
that the trade-offs between risk, return, and diversification extend
beyond traditional financial markets.

These insights also align with developments in cryptocurrency
and NFT markets, Al has been successfully deployed for price
forecasting, volatility modeling, and automated trading (Nelson
et al., 2017; Fischer and Krauss, 2018; Aydogdu and Aydin, 2024).
Similar to CS2 skins, both cryptocurrencies and NFTs exhibit
high volatility, limited liquidity, and value driven by scarcity and
aesthetic appeal. The use of deep learning architectures such as
LSTM and NHITS in this study reflects a shared methodological
foundation with AI models in decentralized finance, highlighting
the adaptability of these techniques to alternative and behaviorally
influenced digital markets.

From a practical perspective, the results demonstrate the
potential of Al-driven trading frameworks to extend beyond
conventional securities toward virtual and hybrid digital assets.
The combination of backtesting, quantitative risk thresholds, and
portfolio optimization techniques used here provides a replicable
foundation for FinTech innovation. These systems can support
automated asset allocation, cross-market arbitrage, and risk-
adjusted portfolio construction-tools that are increasingly relevant
for asset managers navigating emerging digital economies. As the
boundaries between gaming, blockchain, and finance continue to
blur, Al-enhanced trading strategies offer new opportunities for
portfolio diversification, liquidity management, and sustainable
growth within the FinTech ecosystem.

The CS2 skin market represents a niche, player-driven digital
economy with structural properties distinct from conventional
financial markets. Trading activity is largely governed by game
engagement cycles, cosmetic preferences, and limited supply
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mechanisms, resulting in lower liquidity and greater price
sensitivity to non-financial factors such as esports events or game
updates (Lehdonvirta, 2009; Hamari and Keronen, 2017). These
behavioral and scarcity-driven dynamics explain the Al strategy’s
preference for moderately rare and more liquid skins, which
provide a more stable basis for short-term predictive modeling
compared to highly rare items, whose prices are dominated by
collector behavior and infrequent transactions. Similar findings
have been reported in studies of virtual goods and NFT markets,
where Al and econometric models perform better on assets with
higher trading frequency and clearer price signals (Nadini et al.,
2021; Dowling, 2022).

4.4 Limitations and future work

While these findings reinforce the feasibility of Al-driven
trading in digital goods markets, several limitations must be
acknowledged. First, the analysis was based on a single year of
data (May 2024 to April 2025) due to application programming
interface restrictions, which may not capture longer-term market
cycles. Extending to multi-year datasets would enable stronger tests
of robustness across regimes. Second, portfolio construction was
limited to threshold-based selection criteria for risk and return
metrics. Incorporating more sophisticated portfolio optimization
techniques such as mean-variance optimization, could enhance
adaptability. Third, this study did not include visual diagnostics,
such as quantile fan charts or predictive price distribution plots,
which could help illustrate asymmetries in forecast uncertainty.
Incorporating these visual tools would enhance interpretability and
allow a more detailed assessment of downside and upside risks in
predictive modeling. Finally, the study focused solely on the Steam
Market, which, while liquid, excludes third-party platforms with
alternative pricing mechanisms and liquidity conditions. Studying
these complementary markets would provide a more complete view
of opportunities and risks in the CS2 trading ecosystem.

Future research could extend the analysis along several
dimensions to strengthen the generalization and robustness
of findings. First, expanding the time horizon beyond a single
year would enable assessment of strategy performance across
different market cycles. Second, future research should extend
beyond the simple threshold-based portfolio construction used
in this study. While this approach effectively demonstrated
the feasibility and potential of Al-driven trading in the CS2
skin market, the application of more sophisticated portfolio
optimization frameworks such as mean-variance optimization,
Black-Litterman models, or robust optimization, could provide
deeper insights into risk-return trade-offs and improve overall
Additionally,
training procedure would allow the model to incorporate new

performance. implementing a rolling-window
data over time, enhancing adaptability to market fluctuations and
improving predictive robustness. Although this dynamic training
setup was not applied here due to computational constraints
and the exploratory focus on proof-of-concept validation, it
represents a promising avenue for future work to further refine
model performance and stability. Future research should extend
this analysis to include more advanced architectures, such as
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Transformer-based models, convolutional neural networks, or
foundation models like TimeGPT, to further enhance predictive
performance and generalizability. Finally, extending the study
beyond the Steam Market to include third-party exchanges
with alternative pricing structures and liquidity conditions
would provide a more comprehensive understanding of skin
trading ecosystems.

5 Conclusion

This study successfully designed, developed, and validated
an automated trading system tailored for CS2 skin trading. By
applying financial performance metrics the system identifies and
executes trades that align with predefined profitability and risk
thresholds. First, through extensive backtesting across different
portfolio sizes and time horizons, the analysis demonstrates
Al consistently outperforms buy-and-hold in terms of ROI,
and this advantage becomes stronger with longer horizons,
although it is moderated by portfolio size. Second, diversification
improves Sharpe Ratios for both approaches, yet AI portfolios
systematically achieve higher risk-adjusted returns. Third, excess
returns over buy-and-hold can be substantial in small portfolios
and extended horizons, but the relative advantage decreases with
greater diversification. These findings highlight the potential of
Al-based trading strategies to generate superior profitability and
risk-adjusted performance, particularly in targeted, concentrated
portfolios rather than broad, highly diversified ones. By drawing
parallels with equity markets, the results reinforce that even
in alternative asset classes such as CS2 skins, the trade-offs
between return, risk, and diversification conform to established
principles of modern portfolio theory. AI strategies in CS2
trading behave much like mid-cap equity traders, systematically
allocating toward moderately rare items that balance liquidity
and predictive stability. By contrast, the buy-and-hold approach
resembles a small-cap investor, accumulating rarer, less liquid
skins whose long-term value is driven by scarcity premiums.
Importantly, as portfolio size expands, diversification dampens
rarity concentration, leading both strategies toward a composition
that reflects  the
of skins.

increasingly overall market distribution
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