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Artificial intelligence and
precision medicine: a pilot study
predicting optimal ceftaroline
dosage for pediatric patients
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Background: Accurate drug dosing in pediatrics is complicated by age-related
physiological variability. Standard weight-based dosing may result in either
subtherapeutic exposure or toxicity. Machine learning (ML) models can capture
complex relationships among clinical variables and support individualized
therapy.

Methods: We analyzed clinical and pharmacokinetic data from 20 pediatric
patients enrolled in the PUERI study (January 2020-November 2021, ASST
Grande Ospedale Metropolitano Niguarda, Milan, Italy). Eight ML models-
including linear regression (LR), ridge regression (RR), lasso regression (LaR),
Huber regression (HR), random forest (RF), XGBoost, LightGBM, and a neural
network (MLP)-were trained to predict ceftaroline doses that would achieve
plasma concentrations close to the therapeutic target of 10 mg/L. Model
performance was evaluated using mean absolute error (MAE), root mean squared
error (RMSE), and the coefficient of determination (R?). To ensure interpretability,
we applied local interpretable model-agnostic explanations (LIME) to identify
the most influential predictors of dose.

Results: MLP (MAE 1.53 mg, R? 0.94) and XGBoost (MAE 2.04 mg, R? 0.89)
outperformed linear models. Predicted doses were more frequently aligned with
therapeutic concentrations than those clinically administered. Model-based
simulated concentrations fell within the therapeutic range in approximately 85%
of cases, and the best ML models showed over 90% patient-level clinical. RF,
LightGBM and XGBoost achieved the highest clinical alignment, with 94.2, 924
and 91.5% of patients reaching therapeutic levels. Renal function markers, such
as serum creatinine and azotemia, together with anthropometric parameters
including weight, height, and body mass index, were consistently the most
influential features.

Conclusion: Advanced ML models can optimize ceftaroline dosing in pediatric
patients and outperform traditional dosing strategies. Combining predictive
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accuracy with interpretability (via LIME) supports clinical trust and may enhance
precision antibiotic therapy while reducing the risks of antimicrobial resistance

and toxicity.

KEYWORDS

artificial intelligence, ceftaroline, drug dosing, explainable Al, machine learning,
pediatric pharmacokinetics, personalized medicine

1 Introduction

The correct administration of antibiotics in pediatrics represents
a complex challenge for modern pharmacotherapy. Unlike adults,
children exhibit significant physiological variability related to age,
weight, renal function, and liver maturation, all of which critically
influence drug metabolism and elimination (Willems et al., 2021).
Standardized dosing based on simple proportional formulas (e.g.,
mg/kg) is often insufficient to ensure effective therapy
personalization, exposing patients to the risk of overdosing, which
can lead to adverse effects, or underdosing, with potential
therapeutic failure (Anderson and Holford, 2008; Kearns et al.,
2003). This challenge is compounded by the growing threat of
antimicrobial resistance (AMR). Inappropriate dosing not only risks
therapeutic failure but also accelerates the selection and proliferation
of drug-resistant bacterial strains, rendering treatments less effective
and contributing to one of the most critical global public health
threats of this century, with an estimated 10 million deaths per year
by 2050 (Murray et al., 2022; Ahmed et al., 2024). In this context,
Artificial Intelligence (AI) and Machine Learning (ML) techniques
are emerging as innovative tools to address the complexities of
personalized medicine, with a particular focus on optimizing drug
dosages (Arnold et al., 2025; Smith et al., 2020). By analyzing vast
amounts of clinical data and identifying complex patterns among
physiological variables, AI models offer a novel approach to
individualized pharmacotherapy. This capability enables clinicians
to predict optimal antibiotic dosages based on specific patient
characteristics, thereby improving treatment efficacy and reducing
toxicity risks (Poweleit et al., 2023). Ceftaroline, a fifth-generation
cephalosporin, has gained attention for its broad spectrum of action,
which includes resistant pathogens like Methicillin-Resistant
Staphylococcus Aureus (MRSA; Welte et al., 2019). However, its
optimal dosage in pediatric patients remains a challenge due to the
scarcity of clinical data and significant interindividual variability.
While standard doses are outlined in ceftaroline’s summary of
product characteristics, ensuring therapeutic drug concentrations
while avoiding toxicity is crucial. This critical balance underscores
the urgent need for individualized dosing strategies (Ruggiero et al.,
2019). This study leverages multiple regression models to predict the
optimal ceftaroline dose required to achieve a target therapeutic
plasma concentration of 10 mg/L. We compare these Al-predicted
doses with those actually administered to identify potential instances
of under- or overdosing. We also employ Explainable AI (XAI)
technologies, such as Local Interpretable Model-agnostic
Explanations (LIME), to enhance model interpretability by
highlighting the most influential patient characteristics in dose
prediction. This research aims to demonstrate how Al can increase
the accuracy of ceftaroline administration, paving the way for safer

and more effective treatments for pediatric patients.
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2 Materials and methods
2.1 Study design and data source

This
“Observational,

utilized data from the

open-label,

retrospective  analysis

single-center, sequential,
pharmacokinetic and tolerability study of ceftaroline in pediatric
patients from 2 to 24 months of age, with suspected or confirmed
infection (PUERI)” The PUERI study was conducted between
January 2020 and November 2021 at the Pediatric Department of
the ASST Grande Ospedale Metropolitano Niguarda (Milan, Italy).
The study adhered to the Declaration of Helsinki and Good Clinical
Practice guidelines and was approved by the Niguarda Hospital
Ethics Committee (protocol no. 189-042019, April 15, 2019).
Written informed consent was obtained from parents or legal
guardians.

2.2 Patient population and data collection

The dataset
demographic information from 21 pediatric patients; one was

comprised pharmacological, clinical, and
excluded due to insufficient data, yielding a final cohort of 20.
Ceftaroline therapy was prescribed at physician discretion, with
documentation of infusion parameters, dosage, and administration
time. Opportunistic plasma sampling used residual specimens from
routine clinical procedures. Variables collected are detailed in
Supplementary Table S1.

2.3 Data preprocessing and feature
selection

Prior to model development, the dataset underwent a systematic
preprocessing pipeline. First, missing data were handled by mean
imputation for each numerical feature. Categorical variables were then
converted into a numerical format. To ensure uniform scaling and
improve model stability, all selected features were standardized to a
mean of 0 and a standard deviation of 1. The features used for training,
including anthropometric, biochemical, and derived variables, e.g.,
BMI and the ratio between target and real plasma concentrations (DV
ratio), were selected based on their clinical relevance and availability
(Table 1). Time elapsed since the first drug administration (TIME)
and Infusion rate (mg/h; RATE) were included as retrospective
descriptors of the pharmacokinetic context at sampling and were not
used for prospective pre-dose prediction. DV ratio was used only as
an exploratory feature during training and had no role in dose
optimisation. For patients with multiple treatment cycles, each cycle
was treated as a distinct event to ensure accurate representation.
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TABLE 1 Features used in the ML models for dose prediction.

Feature ‘ Description

TIME Time since the start of the infusion
(minutes)

RATE Infusion rate (mL/min)

HT Patient’s height (cm)

WT Patient’s body weight (kg)

SCR Serum creatinine level (mg/dl)

AZOTEMIA Blood urea nitrogen concentration (mg/
dl)

AST Aspartate Aminotransferase level (U/L)

ALT Alanine Aminotransferase level (U/L)

Albumin Blood albumin concentration (g/dl)

Schwartz formula eGFR estimated using the Schwartz

formula

Revised Schwartz equation eGFR using the revised Schwartz formula

BMI Body Mass Index calculated from height
and weight
DV ratio Ratio between target and real plasma

concentration

2.4 Model development and evaluation

The dataset included 20 pediatric patients, contributing a total of
58 pharmacokinetic events. Since several patients had more than one
therapeutic cycle, events were treated as independent units. The 80/20
split was performed at the event level (46 training events and 12
independent test events) using a fixed random seed of 42. The
independent test set was not used during hyperparameter tuning or
model selection. This approach was used to evaluate model
generalization and prevent overfitting. We utilized a range of eight ML
regression models to predict the personalized optimized ceftaroline
dose, including linear regression (LR), ridge regression (RR), Lasso
Regression (LaR), Huber regression (HR), Random Forest (RF),
XGBoost, LightGBM, and a Neural Network (MLP). Each model was
trained with the optimized dose (Optimized AMT) as the dependent
variable. Model performance was evaluated on the test set using
standard metrics for regression tasks: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination
(R?), Absolute (MAPE;
Supplementary file 2).

and Mean Percentage  Error

2.5 Model validation and overfitting control

To ensure robustness given the limited sample size, all models
were internally validated using a leave-one-out cross-validation
(LOOCYV) strategy, which maximizes data utilization and provides an
unbiased estimate of generalization performance. Additionally,
bootstrap resampling (1,000 iterations) was performed to derive 95%
confidence intervals for MAE, RMSE and R? and to assess model
stability. Regularization techniques (L1/L2 penalties) were applied to
linear models, while early stopping and dropout were used for tree-
based and neural architectures to minimize overfitting and improve
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generalization. Hyperparameter tuning for RE, XGBoost, LightGBM
and MLP was performed outside the LOOCV framework, using
predefined configurations based on best practices in the literature.

2.6 Explainable Al analysis and dose
comparison

After model training, we calculated a personalized optimized dose
for each patient by minimizing the absolute deviation between the
predicted drug concentration and the target value of 10 mg/L. This
Optimized AMT was then compared to the dose actually administered
clinically (AMT) to identify potential under- or overdosing. Finally,
to enhance model interpretability, the best-performing models were
analyzed using Local Interpretable Model-agnostic Explanations
(LIME). This technique was used to identify the most significant
clinical variables contributing to the dose predictions, providing
insight into the key features driving the model’s recommendations.
LIME was implemented using 5,000 perturbed samples, a kernel
width of 0.75, quantile-based discretization, and a fixed random
seed of 42.

3 Results
3.1 Model performance and comparison

The ML models demonstrated varying capabilities in predicting the
Optimized AMT. A key metric was the R? score, which represents the
proportion of variability in the dependent variable explained by the
model. The Neural Network showed the highest R* score at 0.94,
followed by Random Forest (0.93), XGBoost (0.89), and LightGBM
(0.84). The performance of linear models was generally lower, with the
Linear Regression achieving an R? of 0.74 and the Ridge, Lasso, and
Huber models ranging from 0.35 to 0.54. Prediction accuracy was
further assessed using Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). The Neural Network achieved the lowest MAE
(1.53 mg) and RMSE (3.38 mg), indicating high accuracy. XGBoost also
performed exceptionally well, with a low MAE of 2.04 mg and RMSE
of 4.70 mg. In contrast, linear models showed higher errors, with Ridge
Regression having the largest MAE (7.92 mg) and RMSE (9.94 mg). A
summary of the performance metrics for all models is presented in
Table 2, the whole results are uploaded in Supplementary file 2.

3.2 Clinical alignment of predicted doses

The clinical utility of the models was evaluated by comparing
simulated plasma concentrations derived from predicted doses with the
therapeutic range. Clinical alignment was defined as the proportion of
patients whose model-predicted dose resulted in simulated plasma
concentrations falling within the predefined therapeutic window of
1-10 mg/L. RF achieved the highest clinical alignment (94.2% within
range). XGBoost and LGBM performed well (91.5 and 92.4% within
range, respectively). In contrast, the MLP and LR showed lower
alignment (~49.9%), underscoring that models with slightly higher error
may still yield more clinically relevant recommendations. Administered
versus predicted doses for all models are provided in Table 3.
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TABLE 2 Performance comparison of all ML models used in the study.

Model MAE (mg)  RMSE (mg) R2
Linear Regression 4.34 7.19 0.74
Ridge Regression 7.92 9.94 0.51
Lasso Regression 7.61 9.58 0.54
Huber Regression 7.20 11.41 0.35
Random Forest 421 6.10 0.93
XGBoost 2.04 4.70 0.89
LightGBM 2.92 5.59 0.84
Neural Network 1.53 3.38 0.94

3.3 Visual representation of model
performance

To clearly assess the accuracy and clinical coherence of the best-
performing model (XGBoost), two graphical analyses were generated
and are presented in Figure 1. Figure 1A shows the relationship
between the predicted and observed ceftaroline doses, highlighting a
strong correspondence between the two values across patients. This
result confirms the model’s ability to capture individual variability in
dosing requirements. Figure 1B presents the Visual Predictive Check
(VPC), which compares the observed plasma concentrations with
those simulated using the optimized doses predicted by the XGBoost
model (Supplementary file 2; Ratain et al., 2003). Approximately 85%
of the simulated plasma concentrations fall within the therapeutic
range of 1-10 mg/L. Although some variability is still present, which
is expected in a small pediatric cohort, the overall consistency of the
results supports the validity of XGBoost as a robust proof-of-concept
tool for individualized dose optimization.

To further validate the models predictive consistency, an
additional VPC was performed by comparing the observed plasma
concentrations with those simulated using the optimized doses
predicted by the XGBoost model. As shown in Figure 2, the observed
and simulated concentration curves exhibited a consistent overall
trend across patients, confirming that the model accurately captured
the shape and magnitude of the plasma concentration distribution.
Approximately 85% of simulated concentrations and 37.5% of
observed concentrations were within the therapeutic range of
1-10 mg/L, supporting the model’s ability to enhance dosing precision
and minimize the risk of sub- or supra-therapeutic exposure. It is
important to distinguish patient-level clinical alignment (91-94%
depending on the model) from the Visual Predictive Check, where
approximately 85% of simulated concentrations fell within the
therapeutic window. Moreover, the VPCs demonstrated that the model
preserved patient-specific exposure patterns while recentering the
simulated concentrations around the therapeutic target (~10 mg/L),
indicating that the XGBoost-based optimization improved the dose
homogeneity without diminishing interindividual variability.

3.4 Correlation between clinical variables
and dose

A correlation matrix was used to analyze the linear relationships
between the clinical variables and the target dose. This analysis was
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crucial for identifying the variables with the greatest impact on dose
prediction and for understanding the underlying relationships in the
data. As expected, physiological parameters like WT (r = 0.82), HT
(r=0.76), and SCR (r=0.68) showed the strongest positive
correlations with the dose. This reflects their direct influence on drug
pharmacokinetics. Other variables, such as albumin and liver function
parameters (AST, ALT), showed weaker correlations, suggesting a less
significant direct impact on dose prediction. Figure 3 displays the
complete correlation matrix, highlighting the relationships among all
variables.

3.5 Explainable Al with LIME

In this study, one of the main objectives was to ensure the
interpretability of the predictions made by the ML models. LIME
creates a simpler model to explain the behaviour of a complex model
for a single prediction, highlighting the features that contributed most
to a specific outcome. This approach proved invaluable for local
interpretation at an individual patient level. LIME analyses
consistently identified WT, HT, SCR, and azotemia as the most
influential features across models, with additional contributions from
albumin and liver enzymes in some cases. The five most important
predictors across models are summarized in Table 4. An illustrative
LIME example for MLP is shown in Figure 4, which highlights how
specific clinical variables influenced the Optimized AMT for an
individual patient. The example shown corresponds to the best-
performing model, the Neural Network, selected for its superior
predictive accuracy and robustness.

4 Discussion

This study presents a comprehensive evaluation of various ML
models for predicting an optimized Ceftaroline dose, focusing on
both predictive accuracy and clinical utility. Our results establish a
clear hierarchy of performance, with advanced models like the MLP
and XGBoost demonstrating excellent predictive capability.
Specifically, the MLP achieved a MAE of 1.53 mg and an R* of 0.94,
while XGBoost performed similarly with an MAE of 2.04 mg and an
R? of 0.89. The performance of these models significantly surpassed
that of traditional linear methods. RR and LaR, for instance, yielded
notably lower R* scores (0.51 and 0.54, respectively) and higher
MAEs (7.92mg and 7.61 mg), confirming their limitations in
capturing the complex, non-linear relationships inherent in
pharmacokinetic data. Similarly, HR, while more stable with outliers,
did not match the performance of the tree-based and neural models,
achieving a MAE of 7.20 mg and an R? of 0.35. The efficacy of gradient
boosting was further underscored by LightGBM, which delivered
performance metrics close to those of XGBoost (MAE of 2.92 mg and
R? of 0.84). Beyond mathematical accuracy, our analysis revealed a
crucial finding regarding the clinical utility of the models. While the
MLP provided the most precise predictions from a statistical
standpoint, ensemble models like RF and XGBoost showed superior
performance in producing clinically meaningful recommendations.
Specifically, XGBoost, RF and LGBM predicted doses that resulted in
therapeutic plasma concentrations for 91.5, 94.2 and 92.4% of
patients, respectively, while the MLP and LR achieved lower
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TABLE 3 Comparison between clinically administered doses and model-predicted optimized doses (mg) for representative patients.

Dose Admin XGBoost

(maq).

102.0 102.4 97.4 102.0 102.3 101.9 99.7 100.4 101.6
420 46.9 422 420 415 442 453 439 419
88.2 89.7 88.3 88.2 87.5 88.1 87.4 87.9 88.1
37.2 383 39.3 37.2 37.4 38.0 38.6 37.9 37.3
60.0 67.5 60.4 60.0 60.5 632 64.3 63.7 60.4
66.0 63.1 67.1 67.0 65.9 65.8 67.3 65.9 66.7
96.0 83.5 91.4 96.0 953 91.9 89.4 90.6 95.7
105.0 106.7 102.6 105.0 106.8 1055 103.9 104.1 105.6
60.0 67.2 58.1 60.0 60.7 63.4 62.1 63.0 59.8
49.8 56.6 51.7 49.8 47.1 523 54.1 53.6 50.9
100.2 93.6 96.2 100.2 100.5 97.8 98.1 99.3 100.7
49.8 439 450 49.8 49.8 467 473 47.0 495
36.92 36.5 38.1 36.9 37.1 36.8 36.9 37.2 37.0
39.8 35.7 39.0 39.8 40.0 385 37.9 38.1 39.7
75.0 724 79.5 75.0 75.1 75.6 77.8 76.2 75.8
26.96 284 321 27.0 27.3 29.1 29.8 293 27.8
49.8 485 492 49.8 49.8 49.1 489 493 49.9
75.0 74.0 80.4 75.0 75.5 76.0 78.3 76.8 753
30.0 29.6 33.0 30.0 30.2 314 32,0 315 30.6
102.0 107.2 101.7 102.0 100.2 1045 102.1 102.7 101.9

Predictions from each model are shown alongside the corresponding administered dose. LR, Linear Regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; MLP, Neural
Network; RR, Ridge Regression; LaR, Lasso Regression; HR, Huber Regression; LGBM, Light Gradient Boosting Machine.

Visual Predictive Check (VPC) - XGBoost (Therapeutic range: 1-10 mg/L)

Model 5th-95th percentile
" = Model median
% Observed (simulated)
Therapeutic lower (1 mg/L)
| Therapeutic upper (10 mgiL)

25 5.0 75 10.0 125 15.0 17.5 20.0
Patient

Visual representation of model performance (XGBoost). Left Observed vs. predicted ceftaroline doses. The dashed red line represents the identity line
(y = x); blue points correspond to individual patients. Right Distributional visual predictive check (VPC). The shaded yellow area represents the 5th—95th
percentile prediction interval derived from 1,000 bootstrap simulations, and the orange line indicates the model median. Blue crosses show the
observed plasma concentrations. The dashed red lines delimit the therapeutic range (1-10 mg/L). This VPC illustrates the agreement between the
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FIGURE 1
observed data and the predictive distribution generated by the model, rather than a point-by-point fit.

alignment (~49.9%). This discrepancy highlights a critical point for
clinical decision support systems: a low mathematical error does not
always equate to high clinical relevance. The high accuracy of the
MLP may stem from its ability to model complex, non-linear patterns
that lead to highly precise yet potentially out-of-range dose
predictions. Conversely, the ensemble models, despite slightly lower
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accuracy, consistently recommended doses that fall within a clinically
safe and effective therapeutic window, making them more valuable in
a real-world setting. This suggests that, for dose optimization, models
that prioritize a high percentage of clinically aligned predictions may
be more valuable than those focused solely on minimizing
mathematical error. The interpretability of these models was a
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Visual Predictive Check (VPC): Observed vs Simulated (XGBoost)
Therapeutic range: 1-10 mg/L
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FIGURE 2

Combined visual predictive check (XGBoost). Blue line: median observed plasma concentrations (DV) per patient. Black line: median simulated
concentrations obtained from model-predicted optimized doses. Red dashed lines: therapeutic range limits (1-10 mg/L). This combined VPC compares the
observed and model-simulated concentration trends across patients. The divergence between curves reflects the difference between empirical dosing and
model-optimized dosing, confirming the model's ability to reproduce the overall distributional pattern while reducing inter-patient variability.

FIGURE 3

OCC 3R ¥1[v0.090.220.040.04
TIME 38 ¥v0.09-0.180.030.03
DV -0.090.09;¥4v0.000.000.00
AMT -0.220.180.00)8[+:0.000.00
MDV -0.040.030.00-0.0Q8Ju¥Gy
EVID -0.040.030.00-0.0(G: X Mly
CMT -
GENDER -0.150.120.060.220.030.03
AGE -0.280.260.01:%4+0.000.00

Prematurity 0.0512-110.000.00
SCR -0.060.040.080.390.030.03
AZOTEMIA -0.01-0.020.0C{:2--0.030.03
AST -0.080.090.0

ALT -0.080.100.0€:71-0.040.04

Albumin (g/dl) -0.050.030.020.360.000.00

Schwartz formula -0.170.170.090.11-0.040.04

Revised Schwartz equation -0.070.060.10-0.110.030.03
.oﬂomo.m
~0.000.240.000.00
DV_prev -0.020.00-0.050.270.010.01
DV_future -0.230.22-0.020.09-0.030.03

€18:10.010.01

DV_ratio -0.140.140.000.420.020.02
Optimized_AMT -0.060.080.060.010.010.01

)
O w E=
S¥ZERL
o E < =

CMT -

Correlation Matrix
0.060.01-0.080.080.050.170.0
0.040.020.090.100.030.170.06-0.

034

0.48) n).o.aso.n-o.1@o.zqozn.osono.o1

-0.030.000.010.010.000.030.030.01-0.040.00-0.040.030.01-0.060.010.030.02-0.01
-0.030.000.010.010.000.030.030.01-0.040.00-0.040.030.01-0.060.010.030.02-0.01

.om.zso.zono.zm.zoo.ozn.zs@.oso.z:&o.zso.uo.m.n

31/-1:0.020.23-0.140.06
-1:0.000.22-0.140.08

-0.038lv - (R:130.420.13-0.240.170.170.170.330.12 ¢ -0.100.020.160.19

o kK

F=
E|
>
'8

GENDER -

AZOTEMIA = &

Albumin (g/dl) = ¢
DV_future

Schwartz formula
Optimized_AM

Correlation matrix of clinical variables. The figure highlights the linear relationships between key predictors, such as WT, HT, SCR, and the AMT.
Variables like albumin, AST, and ALT show weaker correlations, indicating a less direct influence on the target variable.

1.00

0.75

0.50

-0.25

-0.00

--0.25

-0.50

-0.75

Frontiers in Artificial Intelligence

06

frontiersin.org


https://doi.org/10.3389/frai.2025.1702087
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Frasca et al.

TABLE 4 The top five features contributing to dose predictions across ML
models.

Model Top 5 Features

Linear Regression Weight (WT), Height (HT), SCR,

Azotemia, Age

Ridge Regression Weight (WT), Height (HT), SCR,

Azotemia, Age

Lasso Regression Weight (WT), Height (HT), SCR,

Azotemia, Albumin

Huber Regression Weight (WT), Height (HT), SCR,

Azotemia, Age

Random Forest Weight (WT), Height (HT), SCR,

Azotemia, Albumin

XGBoost Weight (WT), Height (HT), SCR,
Azotemia, AST

LightGBM Weight (WT), Height (HT), SCR,
Azotemia, AST

Neural Network Weight (WT), Height (HT), SCR,

Azotemia, AST

LIME - NN

ovatio <= 000 { | RSN
Prematurity <= -0.44 4 _
GENDER <= -1.09 4 -
AZOTEMIA > 0.36 -
HT <= -0.27 ]
AST > 0.72 1 Il
-0.26 < Revised Schwartz equation <= 1.01 4
-0.73 < WT <= -0.29
Albumin (g/dl) <= -0.05 4

-0.08 < Schwartz formula <= 0.39

FIGURE 4

LIME explanation for a representative patient generated by MLP. The
graph illustrates the contribution of individual clinical variables to the
predicted dose. Positive contributions indicate variables that
increased the predicted dose, while negative contributions represent
variables that reduced the prediction.

cornerstone of our study, achieved through both correlation analysis
and the application of LIME. Correlation analysis validated the strong
influence of key physiological parameters, such as WT, HT, and SCR,
which aligns with established pharmacokinetic principles for
Ceftaroline. Notably, we observed a strong correlation between WT
and HT (r=0.89) and between SCR and blood urea nitrogen
(r =0.72). The application of LIME to “black-box” models, such as
the MLP, provided critical, per-patient explanations for predictions.
This is vital for clinical adoption as it allows physicians to trust and
understand the reasoning behind a recommended dose, ensuring
consistency with their expertise. Our analysis of feature importance
confirmed the central role of renal parameters like SCR and azotemia
in predicting dosage, which is consistent with the primary route of
Ceftaroline elimination (Zhou et al., 2021). However, given the
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pharmacokinetic vulnerability of neonatal and especially preterm
patients, all model-derived optimized doses in this study were
considered strictly exploratory and were not used for clinical
decision-making. Moreover, the uneven distribution of renal function
markers in this small cohort may bias model behaviour and dose
suggestions, and this potential source of error cannot be robustly
quantified without larger prospective datasets. Conversely, the
appearance of features such as AST and ALT among locally important
variables in LIME explanations is likely influenced by multicollinearity
and small-sample variability, and was therefore not interpreted as
indicating a direct mechanistic role in dose-concentration prediction.
Interestingly, our analysis also uncovered subtle sex-based differences,
with males tending to require slightly higher doses. While modest,
this finding suggests that sex-specific physiological factors, such as
differences in body composition or renal function, may warrant
further investigation to enhance the precision and equity of future
dosing models. Traditional population pharmacokinetic (popPK)
models remain the cornerstone of dose optimization, offering
valuable mechanistic insights into how drugs are absorbed,
distributed, metabolized, and eliminated. However, these models
often require predefined structural assumptions and may not easily
capture the complex, non-linear relationships that exist among
clinical variables in real-world settings. In this work, we propose a
complementary, data-driven perspective: the use of ML to model
such variability directly from clinical data, without relying on strict
compartmental structures. Rather than replacing popPK approaches,
our method can enhance them, helping clinicians explore patient-
specific factors and identify subtle interactions that traditional
frameworks might overlook especially for peculiar population such
as infants. The inclusion of explainability tools such as LIME further
bridges the gap between computational modeling and clinical
reasoning, allowing predictions to be interpreted in a way that aligns
with medical decision-making.

5 Significance of the study and
limitations

This study, although based on a limited pediatric cohort (n = 20),
serves as a proof of concept for the application of ML in personalized
dose optimization. The small sample size reflects the well-known
challenges of conducting pharmacokinetic research in neonates and
young infants but nonetheless provides valuable insights in this
difficult-to-study population. The strong performance of advanced
models warrants validation in larger, multicenter cohorts. Despite
the limited sample size, the risk of model overfitting was carefully
mitigated through the use of LOOCV and bootstrap-based
validation, combined with regularization and early stopping
strategies. The convergence and performance metrics remained
stable across validation iterations, supporting the reliability of the
findings within the intended proof-of-concept framework.
Nevertheless, larger multicentric datasets and external validation
will be essential to confirm model generalizability and clinical
applicability. Future research will also explore the use of synthetic
data generation to expand training variability and further enhance
model robustness. Formal hypothesis testing for pairwise model
comparison was not performed because paired statistical tests are
underpowered and unstable in datasets of this size; therefore, model
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performance is reported descriptively using LOOCV metrics and
bootstrap confidence intervals.

6 Conclusion

Advanced ML models, particularly XGBoost, RE and MLP,
improve the prediction of ceftaroline dosing in pediatric patients.
While MLP achieved the greatest statistical accuracy, ensemble
models demonstrated superior clinical alignment, underscoring the
importance of balancing precision with therapeutic applicability. The
successful application of LIME and correlation analysis further
validates that ML models can be both powerful and interpretable, a
prerequisite for their seamless integration into clinical practice. The
analysis of clinical parameters reaffirmed the predominant role of
renal function and anthropometric characteristics in dose
determination, which is consistent with known pharmacological
principles. These findings advocate for Al-driven dose optimization
to advance personalized pediatric pharmacotherapy and contribute to
mitigating AMR (Branda and Scarpa, 2024).
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Glossary

Al - Artificial Intelligence

AMR - Antimicrobial Resistance

AMT - Amount administered

ALT - Alanine Aminotransferase

AST - Aspartate Aminotransferase

BMI - Body Mass Index

DV ratio - Ratio between target and real plasma concentration
eGFR - Estimated Glomerular Filtration Rate
HR - Huber Regression

LaR - Lasso Regression

LGBM - Light Gradient Boosting Machine

LIME - Local Interpretable Model-agnostic Explanations
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LR - Linear Regression

MAE - Mean Absolute Error
MAPE - Mean Absolute Percentage Error
MLP - Neural Network

PK - Pharmacokinetics

RF - Random Forest

RMSE - Root Mean Squared Error
RR - Ridge Regression

SCR - Serum Creatinine

WT - Weight

HT - Height

XALI - Explainable AI

XGBoost - Extreme Gradient Boosting
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