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Background: Accurate drug dosing in pediatrics is complicated by age-related 
physiological variability. Standard weight-based dosing may result in either 
subtherapeutic exposure or toxicity. Machine learning (ML) models can capture 
complex relationships among clinical variables and support individualized 
therapy.
Methods: We analyzed clinical and pharmacokinetic data from 20 pediatric 
patients enrolled in the PUERI study (January 2020–November 2021, ASST 
Grande Ospedale Metropolitano Niguarda, Milan, Italy). Eight ML models-
including linear regression (LR), ridge regression (RR), lasso regression (LaR), 
Huber regression (HR), random forest (RF), XGBoost, LightGBM, and a neural 
network (MLP)-were trained to predict ceftaroline doses that would achieve 
plasma concentrations close to the therapeutic target of 10 mg/L. Model 
performance was evaluated using mean absolute error (MAE), root mean squared 
error (RMSE), and the coefficient of determination (R2). To ensure interpretability, 
we applied local interpretable model-agnostic explanations (LIME) to identify 
the most influential predictors of dose.
Results: MLP (MAE 1.53 mg, R2 0.94) and XGBoost (MAE 2.04 mg, R2 0.89) 
outperformed linear models. Predicted doses were more frequently aligned with 
therapeutic concentrations than those clinically administered. Model-based 
simulated concentrations fell within the therapeutic range in approximately 85% 
of cases, and the best ML models showed over 90% patient-level clinical. RF, 
LightGBM and XGBoost achieved the highest clinical alignment, with 94.2, 92.4 
and 91.5% of patients reaching therapeutic levels. Renal function markers, such 
as serum creatinine and azotemia, together with anthropometric parameters 
including weight, height, and body mass index, were consistently the most 
influential features.
Conclusion: Advanced ML models can optimize ceftaroline dosing in pediatric 
patients and outperform traditional dosing strategies. Combining predictive 
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accuracy with interpretability (via LIME) supports clinical trust and may enhance 
precision antibiotic therapy while reducing the risks of antimicrobial resistance 
and toxicity.

KEYWORDS

artificial intelligence, ceftaroline, drug dosing, explainable AI, machine learning, 
pediatric pharmacokinetics, personalized medicine

1 Introduction

The correct administration of antibiotics in pediatrics represents 
a complex challenge for modern pharmacotherapy. Unlike adults, 
children exhibit significant physiological variability related to age, 
weight, renal function, and liver maturation, all of which critically 
influence drug metabolism and elimination (Willems et al., 2021). 
Standardized dosing based on simple proportional formulas (e.g., 
mg/kg) is often insufficient to ensure effective therapy 
personalization, exposing patients to the risk of overdosing, which 
can lead to adverse effects, or underdosing, with potential 
therapeutic failure (Anderson and Holford, 2008; Kearns et al., 
2003). This challenge is compounded by the growing threat of 
antimicrobial resistance (AMR). Inappropriate dosing not only risks 
therapeutic failure but also accelerates the selection and proliferation 
of drug-resistant bacterial strains, rendering treatments less effective 
and contributing to one of the most critical global public health 
threats of this century, with an estimated 10 million deaths per year 
by 2050 (Murray et al., 2022; Ahmed et al., 2024). In this context, 
Artificial Intelligence (AI) and Machine Learning (ML) techniques 
are emerging as innovative tools to address the complexities of 
personalized medicine, with a particular focus on optimizing drug 
dosages (Arnold et al., 2025; Smith et al., 2020). By analyzing vast 
amounts of clinical data and identifying complex patterns among 
physiological variables, AI models offer a novel approach to 
individualized pharmacotherapy. This capability enables clinicians 
to predict optimal antibiotic dosages based on specific patient 
characteristics, thereby improving treatment efficacy and reducing 
toxicity risks (Poweleit et al., 2023). Ceftaroline, a fifth-generation 
cephalosporin, has gained attention for its broad spectrum of action, 
which includes resistant pathogens like Methicillin-Resistant 
Staphylococcus Aureus (MRSA; Welte et al., 2019). However, its 
optimal dosage in pediatric patients remains a challenge due to the 
scarcity of clinical data and significant interindividual variability. 
While standard doses are outlined in ceftaroline’s summary of 
product characteristics, ensuring therapeutic drug concentrations 
while avoiding toxicity is crucial. This critical balance underscores 
the urgent need for individualized dosing strategies (Ruggiero et al., 
2019). This study leverages multiple regression models to predict the 
optimal ceftaroline dose required to achieve a target therapeutic 
plasma concentration of 10 mg/L. We compare these AI-predicted 
doses with those actually administered to identify potential instances 
of under- or overdosing. We also employ Explainable AI (XAI) 
technologies, such as Local Interpretable Model-agnostic 
Explanations (LIME), to enhance model interpretability by 
highlighting the most influential patient characteristics in dose 
prediction. This research aims to demonstrate how AI can increase 
the accuracy of ceftaroline administration, paving the way for safer 
and more effective treatments for pediatric patients.

2 Materials and methods

2.1 Study design and data source

This retrospective analysis utilized data from the 
“Observational, single-center, open-label, sequential, 
pharmacokinetic and tolerability study of ceftaroline in pediatric 
patients from 2 to 24 months of age, with suspected or confirmed 
infection (PUERI).” The PUERI study was conducted between 
January 2020 and November 2021 at the Pediatric Department of 
the ASST Grande Ospedale Metropolitano Niguarda (Milan, Italy). 
The study adhered to the Declaration of Helsinki and Good Clinical 
Practice guidelines and was approved by the Niguarda Hospital 
Ethics Committee (protocol no. 189–042019, April 15, 2019). 
Written informed consent was obtained from parents or legal 
guardians.

2.2 Patient population and data collection

The dataset comprised pharmacological, clinical, and 
demographic information from 21 pediatric patients; one was 
excluded due to insufficient data, yielding a final cohort of 20. 
Ceftaroline therapy was prescribed at physician discretion, with 
documentation of infusion parameters, dosage, and administration 
time. Opportunistic plasma sampling used residual specimens from 
routine clinical procedures. Variables collected are detailed in 
Supplementary Table S1.

2.3 Data preprocessing and feature 
selection

Prior to model development, the dataset underwent a systematic 
preprocessing pipeline. First, missing data were handled by mean 
imputation for each numerical feature. Categorical variables were then 
converted into a numerical format. To ensure uniform scaling and 
improve model stability, all selected features were standardized to a 
mean of 0 and a standard deviation of 1. The features used for training, 
including anthropometric, biochemical, and derived variables, e.g., 
BMI and the ratio between target and real plasma concentrations (DV 
ratio), were selected based on their clinical relevance and availability 
(Table 1). Time elapsed since the first drug administration (TIME) 
and Infusion rate (mg/h; RATE) were included as retrospective 
descriptors of the pharmacokinetic context at sampling and were not 
used for prospective pre-dose prediction. DV ratio was used only as 
an exploratory feature during training and had no role in dose 
optimisation. For patients with multiple treatment cycles, each cycle 
was treated as a distinct event to ensure accurate representation.
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2.4 Model development and evaluation

The dataset included 20 pediatric patients, contributing a total of 
58 pharmacokinetic events. Since several patients had more than one 
therapeutic cycle, events were treated as independent units. The 80/20 
split was performed at the event level (46 training events and 12 
independent test events) using a fixed random seed of 42. The 
independent test set was not used during hyperparameter tuning or 
model selection. This approach was used to evaluate model 
generalization and prevent overfitting. We utilized a range of eight ML 
regression models to predict the personalized optimized ceftaroline 
dose, including linear regression (LR), ridge regression (RR), Lasso 
Regression (LaR), Huber regression (HR), Random Forest (RF), 
XGBoost, LightGBM, and a Neural Network (MLP). Each model was 
trained with the optimized dose (Optimized AMT) as the dependent 
variable. Model performance was evaluated on the test set using 
standard metrics for regression tasks: Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination 
(R2), and Mean Absolute Percentage Error (MAPE; 
Supplementary file 2).

2.5 Model validation and overfitting control

To ensure robustness given the limited sample size, all models 
were internally validated using a leave-one-out cross-validation 
(LOOCV) strategy, which maximizes data utilization and provides an 
unbiased estimate of generalization performance. Additionally, 
bootstrap resampling (1,000 iterations) was performed to derive 95% 
confidence intervals for MAE, RMSE and R2 and to assess model 
stability. Regularization techniques (L1/L2 penalties) were applied to 
linear models, while early stopping and dropout were used for tree-
based and neural architectures to minimize overfitting and improve 

generalization. Hyperparameter tuning for RF, XGBoost, LightGBM 
and MLP was performed outside the LOOCV framework, using 
predefined configurations based on best practices in the literature.

2.6 Explainable AI analysis and dose 
comparison

After model training, we calculated a personalized optimized dose 
for each patient by minimizing the absolute deviation between the 
predicted drug concentration and the target value of 10 mg/L. This 
Optimized AMT was then compared to the dose actually administered 
clinically (AMT) to identify potential under- or overdosing. Finally, 
to enhance model interpretability, the best-performing models were 
analyzed using Local Interpretable Model-agnostic Explanations 
(LIME). This technique was used to identify the most significant 
clinical variables contributing to the dose predictions, providing 
insight into the key features driving the model’s recommendations. 
LIME was implemented using 5,000 perturbed samples, a kernel 
width of 0.75, quantile-based discretization, and a fixed random 
seed of 42.

3 Results

3.1 Model performance and comparison

The ML models demonstrated varying capabilities in predicting the 
Optimized AMT. A key metric was the R2 score, which represents the 
proportion of variability in the dependent variable explained by the 
model. The Neural Network showed the highest R2 score at 0.94, 
followed by Random Forest (0.93), XGBoost (0.89), and LightGBM 
(0.84). The performance of linear models was generally lower, with the 
Linear Regression achieving an R2 of 0.74 and the Ridge, Lasso, and 
Huber models ranging from 0.35 to 0.54. Prediction accuracy was 
further assessed using Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE). The Neural Network achieved the lowest MAE 
(1.53 mg) and RMSE (3.38 mg), indicating high accuracy. XGBoost also 
performed exceptionally well, with a low MAE of 2.04 mg and RMSE 
of 4.70 mg. In contrast, linear models showed higher errors, with Ridge 
Regression having the largest MAE (7.92 mg) and RMSE (9.94 mg). A 
summary of the performance metrics for all models is presented in 
Table 2, the whole results are uploaded in Supplementary file 2.

3.2 Clinical alignment of predicted doses

The clinical utility of the models was evaluated by comparing 
simulated plasma concentrations derived from predicted doses with the 
therapeutic range. Clinical alignment was defined as the proportion of 
patients whose model-predicted dose resulted in simulated plasma 
concentrations falling within the predefined therapeutic window of 
1–10 mg/L. RF achieved the highest clinical alignment (94.2% within 
range). XGBoost and LGBM performed well (91.5 and 92.4% within 
range, respectively). In contrast, the MLP and LR showed lower 
alignment (~49.9%), underscoring that models with slightly higher error 
may still yield more clinically relevant recommendations. Administered 
versus predicted doses for all models are provided in Table 3.

TABLE 1  Features used in the ML models for dose prediction.

Feature Description

TIME Time since the start of the infusion 

(minutes)

RATE Infusion rate (mL/min)

HT Patient’s height (cm)

WT Patient’s body weight (kg)

SCR Serum creatinine level (mg/dl)

AZOTEMIA Blood urea nitrogen concentration (mg/

dl)

AST Aspartate Aminotransferase level (U/L)

ALT Alanine Aminotransferase level (U/L)

Albumin Blood albumin concentration (g/dl)

Schwartz formula eGFR estimated using the Schwartz 

formula

Revised Schwartz equation eGFR using the revised Schwartz formula

BMI Body Mass Index calculated from height 

and weight

DV ratio Ratio between target and real plasma 

concentration

https://doi.org/10.3389/frai.2025.1702087
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Frasca et al.� 10.3389/frai.2025.1702087

Frontiers in Artificial Intelligence 04 frontiersin.org

3.3 Visual representation of model 
performance

To clearly assess the accuracy and clinical coherence of the best-
performing model (XGBoost), two graphical analyses were generated 
and are presented in Figure 1. Figure 1A shows the relationship 
between the predicted and observed ceftaroline doses, highlighting a 
strong correspondence between the two values across patients. This 
result confirms the model’s ability to capture individual variability in 
dosing requirements. Figure 1B presents the Visual Predictive Check 
(VPC), which compares the observed plasma concentrations with 
those simulated using the optimized doses predicted by the XGBoost 
model (Supplementary file 2; Ratain et al., 2003). Approximately 85% 
of the simulated plasma concentrations fall within the therapeutic 
range of 1–10 mg/L. Although some variability is still present, which 
is expected in a small pediatric cohort, the overall consistency of the 
results supports the validity of XGBoost as a robust proof-of-concept 
tool for individualized dose optimization.

To further validate the model’s predictive consistency, an 
additional VPC was performed by comparing the observed plasma 
concentrations with those simulated using the optimized doses 
predicted by the XGBoost model. As shown in Figure 2, the observed 
and simulated concentration curves exhibited a consistent overall 
trend across patients, confirming that the model accurately captured 
the shape and magnitude of the plasma concentration distribution. 
Approximately 85% of simulated concentrations and 37.5% of 
observed concentrations were within the therapeutic range of 
1–10 mg/L, supporting the model’s ability to enhance dosing precision 
and minimize the risk of sub- or supra-therapeutic exposure. It is 
important to distinguish patient-level clinical alignment (91–94% 
depending on the model) from the Visual Predictive Check, where 
approximately 85% of simulated concentrations fell within the 
therapeutic window. Moreover, the VPCs demonstrated that the model 
preserved patient-specific exposure patterns while recentering the 
simulated concentrations around the therapeutic target (≈10 mg/L), 
indicating that the XGBoost-based optimization improved the dose 
homogeneity without diminishing interindividual variability.

3.4 Correlation between clinical variables 
and dose

A correlation matrix was used to analyze the linear relationships 
between the clinical variables and the target dose. This analysis was 

crucial for identifying the variables with the greatest impact on dose 
prediction and for understanding the underlying relationships in the 
data. As expected, physiological parameters like WT (r = 0.82), HT 
(r = 0.76), and SCR (r = 0.68) showed the strongest positive 
correlations with the dose. This reflects their direct influence on drug 
pharmacokinetics. Other variables, such as albumin and liver function 
parameters (AST, ALT), showed weaker correlations, suggesting a less 
significant direct impact on dose prediction. Figure 3 displays the 
complete correlation matrix, highlighting the relationships among all 
variables.

3.5 Explainable AI with LIME

In this study, one of the main objectives was to ensure the 
interpretability of the predictions made by the ML models. LIME 
creates a simpler model to explain the behaviour of a complex model 
for a single prediction, highlighting the features that contributed most 
to a specific outcome. This approach proved invaluable for local 
interpretation at an individual patient level. LIME analyses 
consistently identified WT, HT, SCR, and azotemia as the most 
influential features across models, with additional contributions from 
albumin and liver enzymes in some cases. The five most important 
predictors across models are summarized in Table 4. An illustrative 
LIME example for MLP is shown in Figure 4, which highlights how 
specific clinical variables influenced the Optimized AMT for an 
individual patient. The example shown corresponds to the best-
performing model, the Neural Network, selected for its superior 
predictive accuracy and robustness.

4 Discussion

This study presents a comprehensive evaluation of various ML 
models for predicting an optimized Ceftaroline dose, focusing on 
both predictive accuracy and clinical utility. Our results establish a 
clear hierarchy of performance, with advanced models like the MLP 
and XGBoost demonstrating excellent predictive capability. 
Specifically, the MLP achieved a MAE of 1.53 mg and an R2 of 0.94, 
while XGBoost performed similarly with an MAE of 2.04 mg and an 
R2 of 0.89. The performance of these models significantly surpassed 
that of traditional linear methods. RR and LaR, for instance, yielded 
notably lower R2 scores (0.51 and 0.54, respectively) and higher 
MAEs (7.92 mg and 7.61 mg), confirming their limitations in 
capturing the complex, non-linear relationships inherent in 
pharmacokinetic data. Similarly, HR, while more stable with outliers, 
did not match the performance of the tree-based and neural models, 
achieving a MAE of 7.20 mg and an R2 of 0.35. The efficacy of gradient 
boosting was further underscored by LightGBM, which delivered 
performance metrics close to those of XGBoost (MAE of 2.92 mg and 
R2 of 0.84). Beyond mathematical accuracy, our analysis revealed a 
crucial finding regarding the clinical utility of the models. While the 
MLP provided the most precise predictions from a statistical 
standpoint, ensemble models like RF and XGBoost showed superior 
performance in producing clinically meaningful recommendations. 
Specifically, XGBoost, RF and LGBM predicted doses that resulted in 
therapeutic plasma concentrations for 91.5, 94.2 and 92.4% of 
patients, respectively, while the MLP and LR achieved lower 

TABLE 2  Performance comparison of all ML models used in the study.

Model MAE (mg) RMSE (mg) R2

Linear Regression 4.34 7.19 0.74

Ridge Regression 7.92 9.94 0.51

Lasso Regression 7.61 9.58 0.54

Huber Regression 7.20 11.41 0.35

Random Forest 4.21 6.10 0.93

XGBoost 2.04 4.70 0.89

LightGBM 2.92 5.59 0.84

Neural Network 1.53 3.38 0.94
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alignment (≈49.9%). This discrepancy highlights a critical point for 
clinical decision support systems: a low mathematical error does not 
always equate to high clinical relevance. The high accuracy of the 
MLP may stem from its ability to model complex, non-linear patterns 
that lead to highly precise yet potentially out-of-range dose 
predictions. Conversely, the ensemble models, despite slightly lower 

accuracy, consistently recommended doses that fall within a clinically 
safe and effective therapeutic window, making them more valuable in 
a real-world setting. This suggests that, for dose optimization, models 
that prioritize a high percentage of clinically aligned predictions may 
be more valuable than those focused solely on minimizing 
mathematical error. The interpretability of these models was a 

TABLE 3  Comparison between clinically administered doses and model-predicted optimized doses (mg) for representative patients.

Dose Admin 
(mg).

LR RF XGBoost MLP RR LaR HR LGBM

102.0 102.4 97.4 102.0 102.3 101.9 99.7 100.4 101.6

42.0 46.9 42.2 42.0 41.5 44.2 45.3 43.9 41.9

88.2 89.7 88.3 88.2 87.5 88.1 87.4 87.9 88.1

37.2 38.3 39.3 37.2 37.4 38.0 38.6 37.9 37.3

60.0 67.5 60.4 60.0 60.5 63.2 64.3 63.7 60.4

66.0 63.1 67.1 67.0 65.9 65.8 67.3 65.9 66.7

96.0 83.5 91.4 96.0 95.3 91.9 89.4 90.6 95.7

105.0 106.7 102.6 105.0 106.8 105.5 103.9 104.1 105.6

60.0 67.2 58.1 60.0 60.7 63.4 62.1 63.0 59.8

49.8 56.6 51.7 49.8 47.1 52.3 54.1 53.6 50.9

100.2 93.6 96.2 100.2 100.5 97.8 98.1 99.3 100.7

49.8 43.9 45.0 49.8 49.8 46.7 47.3 47.0 49.5

36.92 36.5 38.1 36.9 37.1 36.8 36.9 37.2 37.0

39.8 35.7 39.0 39.8 40.0 38.5 37.9 38.1 39.7

75.0 72.4 79.5 75.0 75.1 75.6 77.8 76.2 75.8

26.96 28.4 32.1 27.0 27.3 29.1 29.8 29.3 27.8

49.8 48.5 49.2 49.8 49.8 49.1 48.9 49.3 49.9

75.0 74.0 80.4 75.0 75.5 76.0 78.3 76.8 75.3

30.0 29.6 33.0 30.0 30.2 31.4 32.0 31.5 30.6

102.0 107.2 101.7 102.0 100.2 104.5 102.1 102.7 101.9

Predictions from each model are shown alongside the corresponding administered dose. LR, Linear Regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; MLP, Neural 
Network; RR, Ridge Regression; LaR, Lasso Regression; HR, Huber Regression; LGBM, Light Gradient Boosting Machine.

FIGURE 1

Visual representation of model performance (XGBoost). Left Observed vs. predicted ceftaroline doses. The dashed red line represents the identity line 
(y = x); blue points correspond to individual patients. Right Distributional visual predictive check (VPC). The shaded yellow area represents the 5th–95th 
percentile prediction interval derived from 1,000 bootstrap simulations, and the orange line indicates the model median. Blue crosses show the 
observed plasma concentrations. The dashed red lines delimit the therapeutic range (1–10 mg/L). This VPC illustrates the agreement between the 
observed data and the predictive distribution generated by the model, rather than a point-by-point fit.
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FIGURE 2

Combined visual predictive check (XGBoost). Blue line: median observed plasma concentrations (DV) per patient. Black line: median simulated 
concentrations obtained from model-predicted optimized doses. Red dashed lines: therapeutic range limits (1–10 mg/L). This combined VPC compares the 
observed and model-simulated concentration trends across patients. The divergence between curves reflects the difference between empirical dosing and 
model-optimized dosing, confirming the model’s ability to reproduce the overall distributional pattern while reducing inter-patient variability.

FIGURE 3

Correlation matrix of clinical variables. The figure highlights the linear relationships between key predictors, such as WT, HT, SCR, and the AMT. 
Variables like albumin, AST, and ALT show weaker correlations, indicating a less direct influence on the target variable.
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cornerstone of our study, achieved through both correlation analysis 
and the application of LIME. Correlation analysis validated the strong 
influence of key physiological parameters, such as WT, HT, and SCR, 
which aligns with established pharmacokinetic principles for 
Ceftaroline. Notably, we observed a strong correlation between WT 
and HT (r = 0.89) and between SCR and blood urea nitrogen 
(r = 0.72). The application of LIME to “black-box” models, such as 
the MLP, provided critical, per-patient explanations for predictions. 
This is vital for clinical adoption as it allows physicians to trust and 
understand the reasoning behind a recommended dose, ensuring 
consistency with their expertise. Our analysis of feature importance 
confirmed the central role of renal parameters like SCR and azotemia 
in predicting dosage, which is consistent with the primary route of 
Ceftaroline elimination (Zhou et al., 2021). However, given the 

pharmacokinetic vulnerability of neonatal and especially preterm 
patients, all model-derived optimized doses in this study were 
considered strictly exploratory and were not used for clinical 
decision-making. Moreover, the uneven distribution of renal function 
markers in this small cohort may bias model behaviour and dose 
suggestions, and this potential source of error cannot be robustly 
quantified without larger prospective datasets. Conversely, the 
appearance of features such as AST and ALT among locally important 
variables in LIME explanations is likely influenced by multicollinearity 
and small-sample variability, and was therefore not interpreted as 
indicating a direct mechanistic role in dose–concentration prediction. 
Interestingly, our analysis also uncovered subtle sex-based differences, 
with males tending to require slightly higher doses. While modest, 
this finding suggests that sex-specific physiological factors, such as 
differences in body composition or renal function, may warrant 
further investigation to enhance the precision and equity of future 
dosing models. Traditional population pharmacokinetic (popPK) 
models remain the cornerstone of dose optimization, offering 
valuable mechanistic insights into how drugs are absorbed, 
distributed, metabolized, and eliminated. However, these models 
often require predefined structural assumptions and may not easily 
capture the complex, non-linear relationships that exist among 
clinical variables in real-world settings. In this work, we propose a 
complementary, data-driven perspective: the use of ML to model 
such variability directly from clinical data, without relying on strict 
compartmental structures. Rather than replacing popPK approaches, 
our method can enhance them, helping clinicians explore patient-
specific factors and identify subtle interactions that traditional 
frameworks might overlook especially for peculiar population such 
as infants. The inclusion of explainability tools such as LIME further 
bridges the gap between computational modeling and clinical 
reasoning, allowing predictions to be interpreted in a way that aligns 
with medical decision-making.

5 Significance of the study and 
limitations

This study, although based on a limited pediatric cohort (n = 20), 
serves as a proof of concept for the application of ML in personalized 
dose optimization. The small sample size reflects the well-known 
challenges of conducting pharmacokinetic research in neonates and 
young infants but nonetheless provides valuable insights in this 
difficult-to-study population. The strong performance of advanced 
models warrants validation in larger, multicenter cohorts. Despite 
the limited sample size, the risk of model overfitting was carefully 
mitigated through the use of LOOCV and bootstrap-based 
validation, combined with regularization and early stopping 
strategies. The convergence and performance metrics remained 
stable across validation iterations, supporting the reliability of the 
findings within the intended proof-of-concept framework. 
Nevertheless, larger multicentric datasets and external validation 
will be essential to confirm model generalizability and clinical 
applicability. Future research will also explore the use of synthetic 
data generation to expand training variability and further enhance 
model robustness. Formal hypothesis testing for pairwise model 
comparison was not performed because paired statistical tests are 
underpowered and unstable in datasets of this size; therefore, model 

TABLE 4  The top five features contributing to dose predictions across ML 
models.

Model Top 5 Features

Linear Regression Weight (WT), Height (HT), SCR, 

Azotemia, Age

Ridge Regression Weight (WT), Height (HT), SCR, 

Azotemia, Age

Lasso Regression Weight (WT), Height (HT), SCR, 

Azotemia, Albumin

Huber Regression Weight (WT), Height (HT), SCR, 

Azotemia, Age

Random Forest Weight (WT), Height (HT), SCR, 

Azotemia, Albumin

XGBoost Weight (WT), Height (HT), SCR, 

Azotemia, AST

LightGBM Weight (WT), Height (HT), SCR, 

Azotemia, AST

Neural Network Weight (WT), Height (HT), SCR, 

Azotemia, AST

FIGURE 4

LIME explanation for a representative patient generated by MLP. The 
graph illustrates the contribution of individual clinical variables to the 
predicted dose. Positive contributions indicate variables that 
increased the predicted dose, while negative contributions represent 
variables that reduced the prediction.
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performance is reported descriptively using LOOCV metrics and 
bootstrap confidence intervals.

6 Conclusion

Advanced ML models, particularly XGBoost, RF, and MLP, 
improve the prediction of ceftaroline dosing in pediatric patients. 
While MLP achieved the greatest statistical accuracy, ensemble 
models demonstrated superior clinical alignment, underscoring the 
importance of balancing precision with therapeutic applicability. The 
successful application of LIME and correlation analysis further 
validates that ML models can be both powerful and interpretable, a 
prerequisite for their seamless integration into clinical practice. The 
analysis of clinical parameters reaffirmed the predominant role of 
renal function and anthropometric characteristics in dose 
determination, which is consistent with known pharmacological 
principles. These findings advocate for AI-driven dose optimization 
to advance personalized pediatric pharmacotherapy and contribute to 
mitigating AMR (Branda and Scarpa, 2024).
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Glossary

AI - Artificial Intelligence

AMR - Antimicrobial Resistance

AMT - Amount administered

ALT - Alanine Aminotransferase

AST - Aspartate Aminotransferase

BMI - Body Mass Index

DV ratio - Ratio between target and real plasma concentration

eGFR - Estimated Glomerular Filtration Rate

HR - Huber Regression

LaR - Lasso Regression

LGBM - Light Gradient Boosting Machine

LIME - Local Interpretable Model-agnostic Explanations

LR - Linear Regression

MAE - Mean Absolute Error

MAPE - Mean Absolute Percentage Error

MLP - Neural Network

PK - Pharmacokinetics

RF - Random Forest

RMSE - Root Mean Squared Error

RR - Ridge Regression

SCR - Serum Creatinine

WT - Weight

HT - Height

XAI - Explainable AI

XGBoost - Extreme Gradient Boosting
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