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Physics-constrained GAN boosts
OAM correction in ocean
turbulence

Xiaoji Li and Zhiyuan Wang*

Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education, Guilin University
of Electronic Technology, Guilin, China

Introduction: This study addresses the challenge of improving wavefront
correction for Orbital Angular Momentum (OAM) in oceanic turbulence using
a physics-constrained Generative Adversarial Network (GAN).

Methods: We integrated physical constraints into a deep learning framework to
reconstruct degraded input images (SSIM = 0.62). The model was trained with
varied loss settings, including a baseline model, spectral constraints (+Spec), and
spatial constraints (+Ortho).

Results: The dual-constraint approach (+Ortho+Spec) reached a near-optimal
SSIM of 0.98. Ablation studies revealed that while +Ortho boosted modal purity
to 95.7%, the dual-constraints achieved 98.4% purity. Power spectral density
analysis via KL divergence confirmed the dual-constraints’ superiority (KL = 0.56)
over the baseline (KL = 2.47).

Discussion: These results demonstrate that integrating both spatial and
spectral constraints effectively optimizes reconstruction, purity, and spectral
fidelity, offering a robust solution for OAM correction in underwater optical
communication systems.

KEYWORDS

machine learning, physics-constrained GAN, OAM, oceanic turbulence correction,
underwater optical communication

1 Introduction

Underwater optical wireless communication (UOWC) systems have emerged as a
promising technology for high-bandwidth data transmission, yet they face fundamental
limitations due to the complex nature of the oceanic channel (Vali et al., 2025; Baykal et al.,
2022). Among the various multiplexing techniques, Orbital Angular Momentum (OAM)
beams are particularly valuable for increasing channel capacity, as their helical phase
fronts carry distinct topological charges that serve as independent information carriers
(Wang and Willner, 2014; Guo et al., 2023). However, the reliability of OAM-based links is
severely compromised by oceanic turbulence, which induces complex inhomogeneities in
the propagation medium.

It is crucial to distinguish the specific impact of wavefront distortions
from general intensity fluctuations in OAM systems. While oceanic turbulence
manifests as both scintillation (intensity fluctuation) and phase aberrations, their
effects on signal integrity differ fundamentally. Intensity fluctuations primarily
degrade the Signal-to-Noise Ratio (SNR), leading to signal fading. In contrast,
wavefront distortions directly perturb the helical phase structure that defines
OAM modes. This phase disruption destroys the orthogonality between modes,
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inducing severe inter-modal cross-talk that cannot be resolved by
simple intensity smoothing. Therefore, restoring the wavefront’s
structural integrity—specifically the phase singularity—is a
prerequisite for recovering the channel capacity, necessitating
correction strategies that go beyond mere image denoising
(Subramaniam et al., 2020).

these
Machine Learning (ML) and Deep Learning (DL) into optical

In response to challenges, the integration of
communication systems has evolved significantly in recent years. A
comprehensive survey by Amirabadi et al. highlights the growing
reliance on these data-driven techniques for channel modeling
and signal processing (Amirabadi et al.,, 2024). In the realm of
UOWC, Deep Reinforcement Learning (DRL) has emerged as
a powerful tool for system optimization. For instance, Rathour
utilized DRL to enhance link performance in dynamic underwater
environments (Rathour, 2023), while Shin et al. applied similar
strategies for multidimensional beam optimization (Shin et al,
2024). Complementing these adaptive approaches, Simon et al.
proposed energy-adaptive neural networks to improve efficiency
in underwater IoT networks (Simon et al., 2025), and Shafi et al.
explored spatial diversity techniques to mitigate oceanic channel
impairments (Shafi et al., 2025). Beyond system-level optimization,
DL architectures have been successfully deployed to improve signal
integrity, with Igbal et al. demonstrating significant reductions in
symbol error rates for short-reach optical networks (Igbal et al.,
2024). Regarding OAM systems specifically, Ye et al. developed
hybrid optical-electronic Convolutional Neural Networks (CNNs)
for efficient OAM demultiplexing (Ye et al., 2024), and Cai et al.
achieved accurate recognition of composite vortex beams even
under moderate-to-strong turbulence (Cai et al., 2024). To address
turbulence-induced distortions, recent studies have advanced
from general underwater image enhancement (Liu, 2025) to
precise wavefront reconstruction. Baharlou et al. introduced
hybrid networks for single-shot aberration correction (Baharlou
et al, 2025), while Zhang et al. utilized neural operators for
depth-heterogeneous turbulence correction (Zhang et al., 2025).
Notably, Long et al. demonstrated that physics-informed neural
networks could achieve in situ wavefront correction, validating
the efficacy of combining data-driven learning with physical laws
(Long et al., 2024).

Despite these advancements, generative models, particularly
Generative Adversarial Networks (GANs), which treat wavefront
correction as an image-to-image translation task, often show
potential but face limitations (Pradhyumna and Mohana,
2022). Models like pix2pix map distorted intensity profiles to
their ideal counterparts (Isola et al, 2016). However, these
conventional implementations frequently overlook the inherent
physical laws governing light-turbulence interactions (Newman
et al, 2011). By relying predominantly on pixel-wise loss
functions (e.g., L1 or L2 norms), standard GANs tend to
optimize visual similarity (intensity restoration) while neglecting
the preservation of topological charge integrity and spectral
dynamics (Zhan et al., 2021).

This oversight results in two critical deficiencies in current
methods. First, the reconstructed beams often exhibit reduced
mode orthogonality due to residual phase errors, limiting
the achievable channel separation (Wulff et al., 2023; Zhang
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et al, 2024). Second, the generated turbulence compensation
often fails to align with the theoretical Power Spectral
Density (PSD) of oceanic turbulence (e.g., von Kiarmén
model), leading to poor generalization under non-stationary
Although
as spatial orthogonality (+Ortho) or spectral regularization

scattering conditions. isolated constraints, such
(4+Spec), have been explored, their separate application fails to
capture the synergistic physical interdependencies required for
robust correction.

To address these

physics-constrained  GAN

challenges, this study proposes a
that

optimizes OAM wavefront correction. By integrating a dual-

framework systematically
constraint mechanism—combining spatial orthogonality priors
with
architecture, we bridge the gap between data-driven image

spectral compliance regularization—into the pix2pix
generation and optical physics. Our approach not only achieves
0.98) but,

importantly, restores modal purity to near-optimal levels

superior reconstruction fidelity (SSIM = more
(98.4%) and ensures strict adherence to Kolmogorov turbulence
statistics. This unified framework offers a robust solution for
maintaining high-capacity OAM communications in turbulent
marine environments.

2 Methods

As illustrated in Figure 1, the OAM transmission system
(1) OAM
beam generation, (2) turbulent oceanic propagation channel,
and (3) The workflow
demonstrates intensity  profiles

schematic comprises three functional modules:

receiver-side wavefront correction.
MATLAB-simulated OAM
undergoing distortion through the marine turbulence channel,
followed by image reconstruction via the physics-constrained GAN
correction model.

2.1 Fundamentals of Laguerre—Gaussian
(LG) beams

LG beates. In cylindrical coordinates, the LG beam propagating
along the z-axis can be expressed as:

IL|
L _ c /2 L[ 27
Loy b2 ==z [55] 1 [35)

ikr’z

2 .
exp [wz—zz)] X exp [2(22“12{)] x exp(iL6)
exp[—i(2p + L + 1)arctan%] (D)

where p denotes the radial mode index governing concentric
intensity nodes, L represents the topological charge generating
helical wavefronts and orbital angular momentum hL per
1 + (z/zr)? defines the z-dependent beam
Jra)% /A is the
2 /A
encodes the wavelength 2, and LIE(~) specifies the radial intensity

photon, w(z) = wy
radius, with wo being the waist size, zp =
Rayleigh range characterizing focal confinement, k =

profile via associated Laguerre polynomials. The phase structure
includes wavefront curvature explikr’z/(2(z*> + 212{))], azimuthal
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FIGURE 1
OAM transmission and correction system in an oceanic turbulence channel.
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phase singularity exp(iL6), and mode-order-dependent Gouy
shift exp[—i(2p + |L| + 1)tan~"!(z/zr)], collectively sustaining
the characteristic doughnut-shaped intensity and OAM-carrying
properties under paraxial propagation (Allen et al, 1992;
Miyamoto, 2004).

2.2 Limitations of the standard Pix2pix
framework

GANs integrate two neural networks—the Generator (G)
and Discriminator (D)—that undergo adversarial training to
iteratively optimize their performance (Goodfellow et al., 2020;
Sun, 2025). The generator synthesizes realistic outputs from
random noise or degraded inputs. Within underwater optical
communication systems, where OAM modes suffer from marine
turbulence-induced distortion, the generator processes turbulence-
distorted OAM data (e.g., light-field images) and learns to
reconstruct distortion-free or minimally distorted representations.
Concurrently, the discriminator evaluates whether inputs derive
from authentic, distortion-free datasets or are synthetic outputs
from the generator, assigning a probability score to quantify the
likelihood of authenticity.

Pix2pix, a conditional GAN variant, specializes in image-to-
image translation (Lin, 2023). For OAM turbulence correction, this
framework maps distorted light-field images to their undistorted
equivalents, minimizing a composite loss function:

Lpix2pix = Ex,y[logD(xa M + Ex[log(1 — D(x, G(x)))]

+Ally — G@Ih 2

where G denotes the generator and D the discriminator.
Critically, this framework suffers from three physical oversights:

(i) Spatial non-orthogonality: The pixel-wise L; loss disregards
the orthogonality of OAM modes, permitting residual modal
interference in reconstructions.

(ii) Turbulence-induced PSD
distortions deviate from the theoretical von Kdrman spectrum,

Spectral  misalignment:

lacking spectral-physical regularization.
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to

(iii)

incorporate known light-turbulence interaction physics, limiting

Physics-agnostic ~ optimization: Training fails

generalizability under non-stationary scattering conditions.

2.3 Proposed dual-constraint GAN
architecture

To address the limitations of conventional pix2pix in LG
beam reconstruction, we propose a physics-constrained GAN
framework. As illustrated in Figure 2, this architecture integrates
dual-domain physical priors into the adversarial training process
through three interconnected phases: reconstruction, physics-
constraint embedding, and optimization. In the reconstruction
phase, the generator G (based on a U-Net architecture, see
Table 1 for details) synthesizes a corrected wavefront G(x)
from the turbulence-distorted input x. To ensure physical
fidelity, we incorporate spatial orthogonality and spectral
compliance constraints into the unified optimization objective
Lgya, formulated as:

Laual = ExyllogD(x, y)] + Ex[log(1 — D(x, G(x)))]

+)‘v||}/ - G(X)HI + aLorthe + ﬁLSpec (3)

where the first two terms represent the adversarial loss, the third
term is the L1 reconstruction loss, and Loy, and Lgpec represent
the physical constraints weighted by hyperparameters o and S
(detailed settings provided in Table 1).

Crucially, the “embedding logic” of these physical constraints
is operationalized through parallel validation branches, as depicted
in the physics-constraint phase of Figure 2. In the spatial domain,
the spatial orthogonality loss (Lo,p,) enforces mode separation
by minimizing inter-modal cross-talk, calculated via the overlap
integral over the beam cross-section :

“)

LOrtho = Z Z //Q“;,e(n ¢)UP,[’(7, ¢)1’di’d¢|2

P

where ideally, the integral approaches zero for orthogonal
LG modes (up;). Simultaneously, in the frequency domain, the
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FIGURE 2

optimization phases.

Schematic diagram of the proposed physics-constrained GAN architecture, illustrating the data flow across reconstruction, physics-constraint, and

spectral alignment loss (Lspe) regularizes turbulence statistics by
minimizing the KL divergence between the generated images PSD,
S:(f), and the theoretical von Kdrmén spectrum, S,k (f):

o N
Solflog g2

Lspee = Dxa(S6(f) | S () = / NG

During the final optimization phase, gradients derived from
these physical constraints are aggregated with adversarial and
reconstruction gradients and backpropagated to update the
generator. This mechanism ensures that the model learns to correct
wavefronts that are not only visually consistent with the ground
truth but also rigorously adhere to the underlying physics of
optical propagation.

3 Numerical results and discussions

3.1 Simulation data set construction

Selecting a suitable and relevant channel model is fundamental
to evaluating the performance of Underwater Optical Wireless
Communication (UWOC) systems, as it determines the accuracy
of signal degradation simulation under realistic conditions. Various
statistical models have been proposed to characterize fading in

Frontiersin Artificial Intelligence

Free Space Optical (FSO) and UWOC links, including the log-
normal distribution for weak turbulence and the gamma-gamma
distribution for moderate-to-strong turbulence regimes (Armghan
et al., 2025). However, while these statistical models effectively
describe intensity fluctuations (scintillation), OAM-based systems
require a spatially resolved representation of wavefront phase
distortions. Therefore, employing a phase-screen model based
on the power spectral density of refractive index fluctuations
is essential to capture the spatial structure of turbulence-
induced aberrations.

To rigorously evaluate the performance of the physics-
constrained pix2pix, we constructed two complementary OAM
datasets simulating varying oceanic turbulence conditions. All
optical fields were synthesized in MATLAB using a unified paraxial
split-step beam propagation method.

3.1.1 Beam and propagation parameters

The simulation setup utilized a square aperture of [-3, 3] cm
sampled on a 512x512 grid. We generated zero-radial-order LG
beams (p = 0) with a waist radius of wy = 5 mm at a wavelength
of A = 532 nm. The beams were propagated over a distance of
Zy =
screen applied at each step to simulate the cumulative effect of

80 m, divided into 10 steps, with an independent phase

continuous turbulence.
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TABLE 1 Detailed implementation specifications and hyperparameter
settings of the proposed physics-constrained GAN.

Category Parameter Value/description

Architecture Generator U-Net (encoder-decoder with skip
structure connections)
Generator depth 15 Convolutional blocks (8 encoder, 7
decoder)
Discriminator PatchGAN (70 x 70 receptive field)
structure
Activation LeakyReLU (slope = 0.2) for
functions encoder/discriminator; ReLU for
decoder
Normalization Batch normalization
Input/output 512 x 512 pixels
resolution
Training Optimizer Adam (B1 = 0.5, 2 = 0.999)
Learning rate 0.0002 (constant for first 50 epochs,
linear decay to 0)
Batch size 1
Total epochs 100
Loss Adversarial loss 1
Weights weight
L1 Reconstruction 100.0
weight (\)
Spatial 0.5
orthogonality
weight (o)
Spectral 0.3
compliance weight
®)

3.1.2 Oceanic turbulence channel model

To ensure physical consistency with real-world marine
environments, the phase screens were generated based on
the classic Nikishov-Khmenko (NK) power spectrum model
of refractive-index fluctuations. This model characterizes the
turbulence PSD, ®,(«), incorporating the contributions of both
temperature and salinity fluctuations (Nikishov and Nikishov,
2000; Mirza et al., 2025):

d,(k) =0388x 10*8871/3,(711/3&%

X (ATe_AT‘S + Ase_AS‘s + ATse_ATS‘S (6)

where ¢ is the rate of dissipation of kinetic energy and xr
is the dissipation rate of mean-squared temperature. The specific
coeflicients for the spectral terms were selected based on standard
empirical values for seawater reported in Nikishov and Khmenko’s
foundational studies: A7 = 1.863 x 1072, Ag = 1.9 x 1074, and
Ars = 9.41 x 1073 (with @ = —2). The scalar dissipation was set
toe =107 *m?/s>.

To validate the
oceanographic conditions, we varied the refractive-index structure

model’s robustness across diverse

constant (Cfl = 10 8ype1/3) by adjusting xr to create three
representative regimes:

(i) Weak turbulence: Cﬁ =10"1m= 23
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(ii) Moderate turbulence: Cfl =10"Mm— 23,
(iii) Strong turbulence: Cﬁ =10"1Bm— 2/,

This parameter space ensures that the generated datasets
cover the majority of signal degradation scenarios encountered in

practical underwater optical communications (Du et al., 2023).

3.1.3 Dataset composition

For each turbulence regime defined above, we generated
two distinct datasets to comprehensively evaluate the model’s
reconstruction capabilities:

(i) Single-mode subset (10 classes): This subset consists of
single-aperture LG beams with topological charges ranging from
[l = 1to |l] = 10. It serves as the baseline for evaluating the
restoration of fundamental OAM modes.

(ii) Superposition subset (10 classes): This subset comprises
coherent superpositions of conjugate OAM pairs (i.e., combining
+1, and —I modes) for [ =
feature complex petal-like intensity structures, providing a more

1...10. These composite modes

challenging test for spatial reconstruction.

3.2 Analysis of OAM wavefront correction

results based on physics-constrained GAN

To quantitatively assess the restoration fidelity, we
reconstructed turbulence-degraded images (initial SSIM =
0.62) using distinct loss configurations, as illustrated in Figure 3
and summarized in Table 2. The baseline model, driven solely by
standard pix2pix loss, improved the SSIM to 0.84 but failed to
fully resolve the beam’s fine structure. Introducing the spectral
constraint (+Spec) yielded a marginal improvement (SSIM
= 0.86), whereas the spatial constraint (4Ortho) significantly
elevated the SSIM to 0.95.

Critically, the dual-constraint architecture (+Ortho+Spec)
achieved a near-optimal SSIM of 0.98. This performance leap
stems from the synergistic interaction of the constraints: the spatial
term (Loy,) restores the distinct topological structure of the
OAM modes by penalizing geometric distortions, while the spectral
term (Lspec) suppresses non-physical high-frequency artifacts. This
ensures the reconstruction is not only visually sharp but physically
consistent with the propagation properties of LG beams.

The ablation study in Figure 4 isolates the impact of physical
constraints on OAM mode purity. The baseline model yielded
a purity of 85.0%. Incorporating the spatial constraint (+Ortho)
resulted in the most significant single-factor gain, boosting purity
by 10.7% to 95.7%, whereas the frequency constraint (4Spec)
provided a modest increase of 1.5% (to 86.5%).

The dual-constraint framework achieved a peak purity of
98.4%, representing a 13.4% absolute improvement over the
baseline. Physically, this validates the necessity of the orthogonality
constraint (Lo,p,), which explicitly acts as a regularizer against
modal cross-talk. By minimizing the overlap integral between
different modes during training, the network learns to “unmix”
the turbulence-induced energy leakage, thereby preserving the
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a) Original Image (SSIM = 1.00

50 100 150 200 250 50 100
FIGURE 3

150 200 250 50 100 150 200 250

Comparative analysis of OAM wavefront correction using physically-constrained pix2pix under oceanic turbulence with SSIM evaluation. (a) Original
Image (undistorted reference); (b) Turbulence-Degraded Image (initial degraded state); (c) Baseline (original pix2pix loss, no physical constraints); (d)
+Spec (baseline + turbulence spectrum KL divergence, spectral constraints only); (e) +Ortho (baseline + phase orthogonality loss, spatial constraints
only); (f) +Ortho+Spec (baseline + dual constraints, spatial and spectral joint constraints).

TABLE 2 Comparison of SSIM values for different processing methods.

Subfigure  Description

(a) Original image (undistorted reference) 1.00

(b) Turbulence-degraded image (initial degraded 0.62
state)

(c) Baseline (original pix2pix loss, no physical 0.84
constraints)

(d) +Spec (baseline + turbulence spectrum KL 0.86

divergence, spectral constraints only)

(e) +Ortho (baseline + phase orthogonality loss, 0.95
spatial constraints only)

(f) +Ortho+Spec (baseline 4 dual constraints, 0.98
spatial and spectral joint constraints)

wavefront’s phase singularity and topological charge integrity even
under severe distortion.

To verify whether the generated images adhere to oceanic
turbulence statistics, we analyzed the PSD alignment using KL
divergence, as shown in Figure 5. The baseline model exhibited
a high divergence (KL = 2.47), indicating a spectral mismatch
where the network hallucinated artificial high-frequency texture to
mimic sharpness.

In contrast, the dual-constraint model minimized the KL
divergence to 0.56, achieving the closest alignment with the
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Ablation Study: Impact of Loss Components
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FIGURE 4
Ablation study impact of loss components.

theoretical von Kdrmén spectrum. This demonstrates that the
spectral loss (Lspec) effectively constrains the generator to replicate
the statistical distribution of the theoretical von Karmdan spectrum.
By aligning the output with the characteristic energy decay of the
inertial subrange, the model prevents the generation of “spatially
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FIGURE 5
Turbulence spectrum matching comparison.
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FIGURE 6
Training loss vs. epoch (total loss).
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FIGURE 7
Validation loss vs. epoch (total loss).

clear but physically erroneous” features, ensuring high spectral
fidelity essential for stable beam propagation.

To assess the influence of physical constraints on OAM
wavefront correction in oceanic turbulence, we analyzed the loss
trajectories of the unconstrained baseline pix2pix model and
the dual spatial-frequency constrained model across training and
validation sets. As depicted in Figure 6 (training loss vs. epoch), the
dual-constrained model achieved a lower initial loss (1.83 vs. 2.14
at epoch 0) and demonstrated accelerated convergence, with the
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final loss being markedly reduced compared to the baseline model.
Furthermore, Figure7 (validation loss vs. epoch) reveals that
the dual-constrained model maintained a superior performance
advantage throughout the training process, notably exhibiting a loss
0f 0.3 vs. 0.6 at epoch 40 and culminating in a lower final validation
loss at epoch 100. These results indicate that the dual constraints
effectively enhance training dynamics and generalization capability,
ultimately leading to more robust validation performance.
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FIGURE 8

Intensity distributions of distorted and compensated OAM beams with topological charges { = £1 to [ = £10

Finally, to comprehensively verify the performance of the
physics-constrained GAN, we examined the intensity profiles of
OAM beams spanning topological charges | = +1 to [ = %10
under oceanic turbulence conditions (C2 = 10713, = —2). In
the distorted state, all modes displayed pronounced deformation
and loss of symmetry, reflecting significant turbulence-induced
cross-talk. Following compensation, the beams recovered their
characteristic ring-shaped structures, with clear enhancements in
modal definition and orthogonality. As illustrated in Figure 8,
+6 to I = =£10) exhibited
substantial restoration of structural fidelity, underscoring the

higher-order modes (I =

model’s ability to maintain mode purity under severe turbulence.
Taken together, this final evidence confirms that incorporating dual
spatial-spectral constraints ensures robust OAM correction across
diverse modes, thereby enabling reliable transmission in turbulent
oceanic environments.

4 Conclusions

Employing the pix2pix framework, we quantified the impact
of physics priors on correcting OAM wavefront distortions in
oceanic turbulence. From degraded inputs (SSIM = 0.62), the
baseline model improved the SSIM to 0.84. A spectral KL constraint
(4Spec) marginally increased SSIM to 0.86 while strongly aligning
the output spectrum with the von Kidrman model (KL 2.47—
0.72; —70.9%). In contrast, a spatial phase-orthogonality constraint
(4Ortho) yielded substantial gains in structural fidelity (SSIM =
0.95; 4-0.11 over baseline) and mode purity (85.0%— 95.7%; +10.7
pp), while offering only a modest spectral reduction (KL 2.47—
2.08; —15.8%). The joint model (+Ortho+Spec) achieved the best
overall performance: SSIM = 0.98 (near 1.00), the lowest spectral
discrepancy (KL = 0.56; —77.3%), and the highest OAM purity
(98.4%; +13.4 pp). These ablations indicate that single-domain
priors are helpful but incomplete (4Spec raises purity only to
86.5%; +1.5 pp), whereas coupling spatial and spectral constraints
creates a holistic physics prior that simultaneously preserves
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OAM modal structure and enforces turbulence statistics. Training
dynamics corroborate this synergy, showing faster stabilization and
consistently lower losses than the baseline on both training and
validation sets.
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