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Vehicle-to-everything (V2X) communication is a promising technology for

enhancing road safety, tra�c e�ciency, and the availability of infotainment

services in 5G networks and beyond networks. However, the e�ective sharing

of tra�c information remains a significant challenge. To address this, AI-

based systems o�er potential solutions. By predicting tra�c patterns on dense

networks, these systems can improve tra�c management, mitigate congestion,

increase network safety and reliability, and improve energy e�ciency. This

research investigates the application of Recurrent Neural Networks (RNNs) and

Convolutional Neural Networks (CNNs) for accurate and e�cient V2X tra�c

prediction. We explored the impact of various hyperparameters, including loss

functions and optimizers, on the performance of these models. Our findings

indicate that Gated Recurrent Unit (GRU) models, particularly with the Mean

Squared Error (MSE) loss function and Adam optimizer, consistently outperform

Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory

(BiLSTM) models in terms of both accuracy and computational e�ciency. For

CNN models, the Rectified Linear Unit (ReLU) activation function, coupled with

the Adam optimizer, demonstrated superior performance in terms of Root Mean

Square Error (RMSE) and computational complexity. By comparing our results

with existing literature, we highlight the advantages of our proposed models in

terms of accuracy, e�ciency, and robustness.
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1 Introduction

Fifth-generation (5G) cellular systems and beyond are predicted to enhance quality of

service (QoS), high throughput, improved network safety, increased capacity, low latency,

and low cost. As the number of devices rises, so does the flow of information, making the

networkmore difficult to manage and operate (Abdellah et al., 2022a; Sarker, 2022). For the

5G network, efficient and innovative methods are required to modify network protocols

and manage resources for various services under multiple scenarios. Artificial intelligence

(AI) is a leading technology in advanced intelligent technologies that allow intelligent and
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fast business process decisions, enhancing profitability and

efficiency (Ahmed et al., 2023; Jiang et al., 2022).

Recently, AI technology has been utilized in 5G wireless

networks to optimize the physical layer architecture, network

management, complex decision-making, and resource allocation.

Big data techniques offer a great chance to grasp wireless network

essentials and better comprehend 5G cellular network performance

(Abubakar et al., 2020; Hassan et al., 2023). Machine learning (ML)

provides or predicts new entries in most AI applications. ML solves

problems like wireless network optimization and attack detection

(Brik et al., 2022).

Deep learning (DL) methods have proven robust for predicting

network traffic and forecasting accuracy. DL algorithms based

on neural networks (NNs) are promising solutions to improve

prediction accuracy in data traffic flow. Many different types of

NNs have been developed for various objectives; recurrent neural

networks (RNNs) are made to process historical information or

observations collected over specific periods; traffic patterns are an

example of such observations (Sepasgozar and Pierre, 2022). A

critical issue for traffic prediction is the accuracy of the forecasts

to overcome the challenges of 5G mobile networks without further

reducing the efficiency of the system’s quality of service (QoS)

(Abdellah et al., 2022a). Numerous techniques have been created to

increase traffic, enhancing forecasting accuracy (Tsourdinis et al.,

2022). Motivation for this study:

• Traditional RNNs have problems connecting temporally

distant events.

• DL is a powerful method that can build accurate predictive

models from vast amounts of unlabeled, unstructured data by

instantly creating complicated statistical models based on their

iterative output.

• DL-based BILSLTM and Gated Recurrent Unit (GRU) models

better predict time series because they remember historical

data. They optimize the learning technique during training

iterations and outperform existing time series prediction

approaches. For real-time traffic forecasts, adding more

data makes the model smarter and better at estimating

traffic volumes.

• Timely accurate traffic predictions improve network QoS.

• Monitoring and controlling network traffic.

• The anomalies in smart network traffic are high, leading to

prediction problems.

• Improve network control and QoS requirements, manage

resources, and detect security issues.

• Monitor network connectivity and activity for security and

operational problems.

• Inaccurate ML analysis prevents accurate prediction.

• QoS optimization’s computational difficulties.

Due to these limitations, this work aims to predict Vehicle-

to-everything (V2X) network traffic. Healthcare, security,

transportation, and medical emergencies require applications that

efficiently use traffic resources. Predicting network traffic and

bandwidth helps identify security and performance problems.

Identifying the next steps in intensive remote patient monitoring

requires a critical case to be reported to a healthcare organization

within a certain timeframe. This situation results in varied

information depending on the quantity and type of observations.

DL techniques such as the Bidirectional Long Short-TermMemory

(BiLSTM) and GRU predictors can forecast traffic volumes.

The main contributions to the proposed work are as follows:

• Long Short-TermMemory (LSTM), Bidirectional Long Short-

Term Memory (BiLSTM), and Gated Recurrent Unit (GRU)

have been tested for the designed models.

• A comparison was conducted between the proposed RNN

models and traditional LSTM models (Abdellah et al., 2022a)

regarding prediction accuracy.

• A one-dimensional convolutional neural network (CNN,

temporal convolutional network) with three activation

functions is tested.

• A comprehensive study for the proposed loss function model,

including mean squared error (MSE), mean absolute error

(MAE), and sum of squared errors (SSE).

• A comprehensive study was conducted for the proposed loss

function model, including the Adam, Stochastic Gradient

Descent with Momentum (SGDM), and Root Mean Squared

Propagation (RMSprop) optimization techniques with a batch

size of 16 and a learning rate of 0.1.

We evaluated prediction accuracy using root mean squared

error (RMSE) and efficiency in terms of total Floating-point

Operations Per Second (FLOPS) [MegaFLOPS (MFLOPS)].

2 Related work

Several studies have explored the use of RNNs for traffic

prediction, including LSTM and GRU networks (Mahajan et al.,

2024) applied LSTM networks for real-time traffic flow forecasting,

achieving root mean square error (RMSE) values of approximately

1.23 for urban traffic data. In contrast, Kim et al. (2021) used

GRU for highway traffic prediction and reported an RMSE of 0.85

under similar conditions. In Fitters et al. (2021), an architecture

based on an LSTM network was investigated for predicting and

focusing on irregular traffic flows. Abdellah et al. (2022b) used an

LSTM network-based DL approach to forecast drone-based MEC

energy consumption time series. Four cases examined accuracy as a

function of learning rate. RMSE andMAPE were used to determine

the best and highest average prediction accuracy (Abdellah et al.,

2022b). Wang et al. (2022a) suggested a spatiotemporal study of

mobile network traffic and reviewed current research. Time series

similarity-based graph attention networks were also proposed.

Using an LSTM network with modified hyperparameters, a DL

model predicts short-term traffic speeds on a parallel, multilane

arterial road in an emerging country such as Vietnam (Tran et al.,

2022). An LSTM-based practical method for accurately predicting

environmental movement to improve security decision-making

and path planning was first presented inWang et al. (2022b). Then,

a risk assessment was used to plan local paths. Based on these

correct predictions, the risk assessment is field-based.

In the domain of CNNs for traffic prediction (Cao et al., 2021),

used a hybrid CNN-LSTM model for traffic speed prediction,
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achieving an RMSE of approximately 0.91 for highway traffic,

which is considered competitive for deep learning models in traffic

prediction. Similarly, in Ma et al. (2017) applied a simple CNN

model on urban traffic datasets and reported an RMSE around 0.98

with Rectified Linear Unit (ReLU) activation.

In contrast, these studies have limitations in terms of

V2X communication (Srivastava et al., 2014):

• LSTM models struggle to handle massive traffic flow

data simultaneously with computing and distributed

storage requirements.

• The current traffic forecast methods have been unsuccessful in

addressing complex road segment association.

• The current traffic prediction algorithms are sensitive to

illumination conditions.

• Recent studies have failed to model or develop dynamic traffic

patterns for unstable environments.

• Most prediction methods address accuracy rather

than timeliness.

• Existing machine learning (ML) methods disregard traffic

network system complexity and heterogeneity.

• The current research with experiments not based on deep

learning (DL) finally faced difficulties training a deep network

due to complexity and time limitations.

To address these limitations in existing models, this study

focuses on an essential issue for traffic prediction: the accuracy of

forecasts to address 5G mobile network issues without reducing

QoS system efficiency. Therefore, we address these design issues

in this work by training alternative Deep Learning Neural

Network (DLNN) architectures based on V2X packets-per-second

data. These predictors don’t require prior knowledge about the

surrounding environmental conditions (channel statistics) and

benefit from the excellent learning and generalization capabilities of

DNNs. The proposed DLmodel will be built using LSTM, BiLSTM,

and GRU, which are variations of the RNN, to solve the vanishing

gradient problem. For CNNs, we will test the most powerful

activation functions (ReLU, Tanh, and Sigmoid) reported in similar

work. The prediction accuracy regarding root mean squared Error

(RMSE) and Floating-Point Operations Per Second (FLOPS) will

be assessed. The best predictors will be improving QoS demands,

monitoring resource management, enhancing security, and other

operational issues.

3 DL approach in V2X communications

Driverless and autonomous vehicles are becoming more

popular because they are better for businesses and emergency

services. These vehicles need constant sensor data for complex,

high-speed operations and improved trajectory planning for

these services. The car can use onboard sensor information

for short-term trajectory decisions, but needs data from nearby

vehicles for long-term decisions. Therefore, sensor data sharing

is essential and requires reliable vehicle connectivity, subject

to strict QoS requirements (Gao, 2022). Thus, modern wireless

networks connect cars, people, infrastructure, roads, etc., via

advanced communication technologies. Advanced communication

technologies enable vehicle-to-everything (V2X) communication.

V2X communication protocols and technologies allow vehicles

to interact with roadways and users. V2X allows Vehicle-

to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-

Pedestrian (V2P), and Vehicle-to-Cloud (V2C) interactions.

Figure 1 depicts the 5G V2X communication infrastructure. v2x

communication and traffic growth cause long delays in mobility,

economic growth, fuel costs, air pollution, and public health. Most

intelligent traffic control methods are still in their infancy. Thus,

traffic control must be thoroughly examined to test a new V2X-

based smart traffic management theory on congested roads (Gao,

2022).

To overcome the issues with 5G mobile networks and prevent

further degradation of the quality of service (QoS) system,

numerous solutions are required to improve the precision of

traffic feature prediction. DL algorithms have proved highly

effective in predicting road traffic compared to statistical techniques

(Storck and Duarte-Figueiredo, 2020). Deep learning techniques,

including convolutional neural networks (CNNs), Recurrent

Neural Networks (RNNs), and Hybrid Models, are widely utilized

to predict various aspects of traffic, such as flow, congestion,

travel time, and accident-prone zones. These models are capable

of learning complex, non-linear relationships in data, making them

ideal for traffic prediction, which involves a mix of dynamic factors,

environmental conditions, and temporal sequences. Table 1 shows

a comparison between RNNs and CNNs for traffic prediction in

V2X communication.

4 Proposed tra�c predictors

Several studies used deep neural network (DNN) approaches

to predict outcomes based on historical data (Abdellah et al.,

2022b), including NARX (https://www.gpsworld.com/esa-backed-

autonomous-driving-lab-coming-to-italy/), XGBoost (Yan et al.,

2022), LSTM (Ban et al., 2022), and others. These studies predicted

only procedural decisions early. They were also limited by (i)

inadequate predictor selection for decision-making and (ii) the

inability of conventional encoders to process the correlation of

predictors in legal data.

This study proposed DL-based MSE, MAE, and SSE with

Adam, SGDM, and RMSprop, tested with RNN and CNN models

for V2X traffic prediction on V2X datasets. All simulations and

programming have been conducted using MATLAB software.

Initially, the V2X system was simulated to create the DL training

dataset. Then, before the training phase, the collected V2X dataset

was assessed, cleaned, and fed to the DL model for prediction. The

DL model used 70% for the training set and 30% for the testing

set. Normalize input data by maximum and lowest values to [0,

1]. The network receives the training dataset and a loss function,

according to delta rules, adjusts the weights to reduce the error

between observed and predicted outputs. After fitting the training

models, the gradient of the loss function was determined, and the

network weights and biases were adjusted. This procedure was

continued until the output error was as small as possible. The test

network requires test groups to evaluate the estimated model in the

following phase.
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FIGURE 1

Vehicle-to-everything communications (Ullah et al., 2019).

TABLE 1 A comparison between RNNs and CNNs.

Network CNNs RNNs

Using Typically used to extract spatial features from data in traffic prediction. Designed to handle sequential and time-series data. Traffic is a

dynamic and evolving system with temporal dependencies.

Traffic flow prediction Process traffic flow data from sensors placed across different regions

(such as traffic cameras and vehicle detectors), identifying patterns and

trends in the spatial distribution of traffic.

By learning patterns from past traffic data (speed, volume, etc.),

RNNs and LSTMs can forecast future traffic conditions.

Predicting congestion In V2X systems with cameras or visual data from vehicles, CNNs can

analyze images or video streams to detect traffic congestion, accidents, or

roadblocks.

These models can predict future congestion or incidents based on

the historical sequence of events in a given area.

Infrastructure Process satellite or drone images to assess the conditions of roads or

detect infrastructure events such as construction zones or accidents.

Used to predict the travel time for a given route, accounting for

current and historical traffic conditions.

For the first RNN model, when using traditional

optimization techniques (Adam), a comparative study

between the proposed BiLSTM and GRU models and

the traditional LSTM model (Abdellah et al., 2022a)

performance using RMSE and total FLOPS shows that

the proposed models provide outstanding results for the

desired application. Figure 2 shows the flowchart for the

proposed work.

4.1 DL dataset collection and preprocessing

This work collected a DL model training dataset from the V2X

system (Abdellah et al., 2022a). All simulations and programming

have been conducted in MATLAB software. Figure 3 shows the

simulated V2X system. The simulation model is a V2X system for

a smart city. Assume the size of the city on the x-y axis is 100 ×

100. The mobility model helps city border nodes follow a fixed path
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FIGURE 2

Flowchart for the proposed model.

in any direction. The dots in the figure represent Road Side Unit

(RSU) nodes and positions, identified by network structure and

configuration numbers. The model begins and ends at nodes 20

and 70. The simulation module visualizes network architecture and

sets start and finish times. Randomly moving nodes can connect

to distant nodes due to the RSUs’ positions on the simulated

map. RSUs can communicate with moving vehicles to send traffic

information and safety alerts.

The training dataset size is 130 samples (130× 1). QoS is known

to be a critical and indispensable issue in networks. Therefore, one

of the essential QoS parameters is throughput, which we collected

and used as the dataset for training the ML model with the flow

rules that generate it. In this work, we have made time-series

predictions for V2X traffic, and the corresponding throughput is

used as input to the ML training model. Data must be organized

in a specific way for a time-series forecasting scenario, taking into

account the data quality and the model used for data preparation.

Data cleaning was used to eliminate tainted data and manage

missing values. The data were then normalized to ensure all

input parameters were within the range [0, 1]. The ML training

leverages the network data that has been gathered. The network is

trained using parameters such as the network architecture, training

technique, and a minimum allowed error between the predicted

and produced outputs. The trained ML’s generalizability is checked:

Unknown data are used to test the trained network, and the

results are then compared to the actual results. The output data

are post-processed: After the trained network has produced an

acceptable result, the predicted value is post-processed to determine

the output’s normal value.

5 Simulation results

In this study, we want to improve the learning process to get

a robust model. Therefore, we use various DLNN designs using

different loss functions in the regression layer that will be trained in

various cases, depending on the number of sent packets per second

(4, 6, 8, 12, and 14 in a V2X environment). This will be done by

replacing traditional loss functions, such as MSE, with more robust

loss functions that will help in obtaining robust learning networks

with better performance, especially in the presence of different

forms of noise. The prediction accuracy regarding RMSE and

total FLOPS will be evaluated. The proposed methodology is often

compared to existing models using these evaluation parameters

(comparing traffic flow forecast models). The lowest error value will

be used to assess model performance in diverse contexts. The best

predictor will be used for improving the QoS demands, monitoring

resource management, enhancing security, and other operational

issues. The DLNN parameters in each network are: epochs= 1,000,

learning rate= 0.1, hidden layers= 50, and batch size= 16.

First, we use the traditional (default) loss function, mean

squared error (MSE). The degree of inaccuracy in statistical models

is measured by MSE. The average squared difference between the

observed and anticipated values is evaluated. The MSE is equal to

0 in a model that has no errors. The value of the model inaccuracy

increases with the error. Themean squared deviation (MSD), which

is another name for the mean squared error, is calculated similarly

to the variance. To determine the MSE, take the observed value,

subtract the predicted value, and square that difference. Repeat that

for all observations. Then, sum all of those squared values and

divide by the number of observations. The numerator is the sum of

the squared errors (SSE), which linear regression minimizes. MSE

simply divides the SSE by the sample size. The formula for MSE is

the following:

MSE =

∑

(yi − ŷi)
2

n
(1)

where

• yi is the ith observed value,

• yi is the corresponding predicted value, and

• n= the number of observations.

The MSE function has only one global minimum, with no local

minimum, and it penalizes the model for making larger errors by

squaring them. In contrast, the outliers are not handled properly, as

the outlier error will be quite large, and it is penalized by squaring it.

Second, we built a custom regression layer that employs other

loss functions such as “mean absolute error (MAE), sum of

squared errors (SSE), Cauchy, Huber, etc.” to get the best network
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FIGURE 3

V2X diagram (Abdellah et al., 2022a).

performance. Our second model was built using mean absolute

error as a loss function. MAE is a popular metric with root mean

squared error (RMSE); the error value units match the predicted

target value units. Unlike RMSE, the changes in MAE are linear

and therefore intuitive.MSE and RMSE penalize larger errorsmore,

inflating or increasing the mean error value due to the square of

the error value. In MAE, different errors are not weighted more

or less, but the scores increase linearly with the increase in errors.

The MAE score is measured as the average of the absolute error

values. The absolute function is amathematical function that makes

a number positive. Therefore, the difference between an expected

value and a predicted value can be positive or negative and will

necessarily be positive when calculating the MAE. The MAE value

can be calculated as follows:

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣

2
(2)

The advantage of MAE is that the outliers are handled better

than MSE, as it does not penalize the model by squaring the error

value. In contrast, its drawbacks are that it is computationally

expensive (uses the modulus operator function) and there may be a

local minimum.

Third, the model was built using the sum of squared errors

(SSE) or residual sum of squares (RSS), where residual means

remaining or unexplained. SSE is the difference between the

observed and predicted values; it measures performance according

to the sum of squared errors. The SSE calculation uses the

following formula:

SSE =

n
∑

i=1

ε
2
i (3)

where εi is the difference between the actual value of the dependent

variable and the predicted value:

εi = yi − ŷi (4)

Regression analysis aims to minimize the SSE—the smaller the

error, the better the regression’s estimation power.

5.1 Study of the hyperparameters for RNN

In this section, we study the effects of the hyperparameters,

which include loss functions (MSE, MAE, and SSE) and optimizers

(Adam, SGDM, and RMSprop) on different RNN models (LSTM,

BiLSTM, and GRU) for V2X traffic prediction. The performance is

evaluated in terms of accuracy using RMSE, as shown in Tables 2–4,

and with the system complexity (efficiency) measured in Floating-

Point Operations Per Second (FLOPS) (MegaFLOPS) as Tables 5–

7 show.

5.2 Study of the hyperparameters for CNN

In this section, we study the performance of CNN-basedmodels

for V2X traffic prediction with hyper parameters include loss

functions (MSE, MAE, and SSE) and optimizers (Adam, SGDM,
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TABLE 2 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for di�erent RNNmodels for the MSE loss function with di�erent optimizers.

Packets/s Adam SGDM RMSprop

LSTMa BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 0.5427 0.5174 0.4735 5.744 2.2119 4.9530 2.7554 2.5584 2.3222

6 0.6321 0.6207 0.61636 5.8993 2.5543 4.9715 2.0838 2.7157 2.9293

8 0.8175 0.79799 0.70262 6.1655 3.2386 3.7030 2.4492 2.722 3.1809

10 1.1675 0.7135 0.7157 6.3592 2.9470 3.9094 2.3884 2.0512 3.4092

12 1.2622 0.6995 0.5737 6.822 3.9835 4.9540 2.7458 2.9886 3.4105

14 1.4911 0.6152 0.6130 7.2019 2.4141 3.9094 2.4724 2.5618 3.4965

aAbdellah et al. (2022a). The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 3 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for di�erent RNNmodels for the MAE loss function with di�erent

optimizers.

Packets/s Adam SGDM RMSprop

LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 1.4555 1.3756 0.89812 6.6981 4.0114 6.7148 2.7159 1.2073 0.4745

6 2.3610 1.0096 0.96599 5.9979 3.9289 7.1734 2.6281 2.1051 0.6818

8 2.1744 1.1630 0.67348 7.4874 4.0024 7.2875 1.2699 2.1879 0.6655

10 1.8571 1.5047 0.98492 5.9952 3.8980 7.2437 3.6717 2.1064 0.6756

12 2.4177 1.9274 0.64724 5.8346 3.7098 7.3951 3.6563 2.2094 0.5760

14 1.8417 1.2558 0.99262 6.8274 3.8539 7.5790 2.4164 1.6351 0.4756

The bold values represent the best result for that prediction for both RNN and CNN.

and RMSprop) on three activation functions [Rectified Linear Unit

(ReLU), Tanh, and Sigmoid], Tanh, and Sigmoid. The performance

is also measured using RMSE, which is shown in Tables 8–10, and

total Floating-point Operations Per Second (FLOPS) (MegaFLOPS)

as shown in Tables 11–13.

According to the results listed in Tables 2–7 for our RNN

models, for the Adam optimizer with MSE loss function, the

results indicate that for lower packet rates (4 packets/s), GRU

performs best with the lowest RMSE of 0.4735 and a reasonable

computational cost of 235,463 FLOPS. As the packet rate increases,

GRU consistently shows lower RMSE values compared to LSTM

and BiLSTM, making it the most efficient model in terms of

both prediction accuracy and computational cost (complexity).

With the MAE loss function, the performance is similar to the

GRU model, exhibiting the best balance between accuracy and

efficiency. With SSE loss function results also show that GRU

generally performs better, followed by the BiLSTM model, but

the BiLSTM has more complexity than the GRU model. For the

SGDM optimizer, the observed trends resemble those associated

with the Adam optimizer; however, they are characterized by

comparatively elevated RMSE values and increased computational

costs. For the MSE loss function, the BiLSTM model performs the

best at 4 packets/s, with an RMSE of 2.2119, although it requires

significantly more computational resources (627,083 FLOPS) than

the GRU. With MAE, the worst performance is observed. With

SSE, the GRU performs best compared to LSTM and BiLSTM. For

the RMSprop optimizer, results show that compared with Adam

and SGDM, RMSprop generally shows lower RMSE values across

all models. In MSE, the results are not as good compared with

other loss functions; in contrast, RMSprop with SSE yields better

RMSE with BiLSTM and GRU. In summary, the overall results

from RNN analysis indicate that the GRU model outperforms both

LSTM and BiLSTMmodels in terms of prediction accuracy (RMSE)

and efficiency (FLOPS). This superiority is particularly clear with

MSE as the loss function, followed by MAE. Also, it is essential

to recognize that the selection of the optimizer plays a crucial

role, with Adam generally yielding the best performance across the

different loss functions.

The results for the CNN models (Tables 8–13) show

the following:

For the Adam optimizer with the MSE loss function, the Tanh

activation function generally provides the best trade-off between

prediction accuracy and system complexity (computational cost)

across all packet rates, with the lowest RMSE value of 0.78091 at 4

packets/s and 14,936 FLOPS. All three activation functions perform

well with theMAE loss function, with only slight variations between

them. With the SSE loss function, the performance trend is similar,

with Tanh achieving the lowest RMSE values and a good balance

between accuracy and efficiency.

For SGDM, performance with MSE and SSE is similar to the

Adam optimizer, but the MAE loss function yields poor results.

However, SGDM requires fewer computational resources than

Adam. For MSE, at a higher data rate, the Sigmoid and then

ReLU activation functions achieve the best accuracy compared with

the Tanh activation function. The MAE loss function indicates

that the Tanh activation function typically yields less accuracy

than the ReLU and Sigmoid activation functions, but it requires

more computational resources. With the SSE loss function, ReLU
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TABLE 4 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for di�erent RNNmodels for the SSE loss function with di�erent optimizers.

Packets/s Adam SGDM RMSprop

LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 1.4639 0.6892 0.8643 6.9345 1.1700 0.79059 1.4581 0.5260 0.4649

6 0.8963 0.9145 0.8275 6.9570 1.3792 0.7545 1.7791 0.6739 0.4685

8 1.2880 0.8723 0.8753 6.1173 1.5208 0.9585 2.1375 0.5797 0.5125

10 2.9876 0.8080 0.7724 6.7613 0.8562 0.9670 1.5639 0.5485 0.6646

12 0.9337 0.7332 0.7946 6.0364 1.0821 0.9486 1.8033 0.7871 0.5823

14 1.0959 0.6608 0.7592 6.2735 1.1749 0.68481 2.0758 0.6428 0.4969

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 5 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for di�erent RNNmodels for the MSE loss function with di�erent

optimizers.

Packets/s Adam SGDM RMSprop

LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 0.314135 0.627338 0.235463 0.313880 0.627083 0.235208 0.313931 0.627134 0.235259

6 0.209559 0.418361 0.157111 0.209304 0.418106 0.156856 0.209355 0.418157 0.156907

8 0.157271 0.313873 0.117935 0.157016 0.313618 0.117680 0.157067 0.313669 0.117731

10 0.125898 0.251180 0.094429 0.125643 0.250925 0.094174 0.125694 0.250976 0.094225

12 0.104983 0.209384 0.078759 0.104728 0.209129 0.078504 0.104779 0.209180 0.078555

14 0.090044 0.179530 0.067566 0.089789 0.179275 0.067311 0.089840 0.179326 0.067362

achieves a good balance between accuracy and efficiency, especially

with 8 packets/s, followed by Sigmoid.

The performance of CNN models using the RMSprop

optimizer is close to that of Adam and SGDM. For the three loss

functions, the Tanh activation function yields the best performance

in terms of accuracy. In contrast, the computational cost is

relatively high, which highlights the trade-off between accuracy and

computational efficiency with RMSprop.

In general, for CNN results, we can conclude that ReLU

generally outperforms other activation functions (Tanh and

Sigmoid) across different loss functions and optimizers in terms

of both RMSE and computational efficiency. Although Tanh yields

the best accuracy, it comes with high computational resources. The

Sigmoid activation function offers a middle ground for accuracy

and efficiency. The Adam optimizer typically results in the best

overall performance, especially with Tanh in terms of accuracy, but

with ReLU providing the most efficient model in terms of both

accuracy and computational cost.

Figures 4, 5 show the summary of RMSE and FLOPS,

respectively, according to the packet rate for the Recurrent

Neural Network models, and Figures 6, 7 show the summary for

Convolutional Neural Network models as well.

The analysis of RNN and CNN models in the context of V2X

traffic prediction reveals that each model type has its advantages

depending on the use case. The RNNmodels, particularly the Gated

Recurrent Unit (GRU), outperform CNNs in terms of prediction

accuracy (lower RMSE values), but in contrast, they need more

computational resources (higher FLOPS). In contrast, CNNmodels

generally demand less computational resources, especially when

employing Rectified Linear Unit (ReLU) activation functions and

the Adam optimizer, which makes them a more efficient choice

for applications where computational cost is a critical factor.

Although CNNs may not consistently reach the low RMSE values

that RNNs can achieve, they offer a favorable balance between

accuracy and computational efficiency. Ultimately, the decision to

choose between RNN and CNN models depends on the specific

requirements of the traffic prediction task, such as the required

accuracy, computational resources, and packet rate.

Table 14 shows the comparison of the proposed RNN and CNN

models with related work.

6 Robustness to noise in real-world
V2X scenarios

The reviewer’s comment rightly highlights a critical aspect of

deploying deep learning models in practical settings: robustness to

noise. Real-world V2X communication channels are susceptible

to various impairments, including signal fading, multi-path

propagation, interference from other devices, and sensor

inaccuracies (Al-Qatf et al., 2018). These factors introduce noise

and uncertainties into the data stream, which can significantly

degrade the performance of prediction models that were trained

on clean or idealized datasets.

6.1 Impact of noise on prediction models

The presence of noise in the input data can have several

detrimental effects on traffic prediction models:
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TABLE 6 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for di�erent RNNmodels for the MAE loss function with di�erent

optimizers.

Packets/s Adam SGDM RMSprop

LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 0.313689 0.626892 0.235017 0.313434 0.626637 0.234762 0.313485 0.626688 0.234813

6 0.209261 0.418063 0.156813 0.209006 0.417808 0.156558 0.209057 0.417859 0.156609

8 0.157048 0.313649 0.117712 0.156793 0.313394 0.117457 0.156844 0.313445 0.117508

10 0.125720 0.251001 0.094251 0.125465 0.250746 0.093996 0.125516 0.250797 0.094047

12 0.104834 0.209235 0.078610 0.104579 0.208980 0.078355 0.104630 0.209031 0.078406

14 0.089916 0.179403 0.067438 0.089661 0.179148 0.067183 0.089712 0.179199 0.067234

TABLE 7 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for di�erent RNNmodels for the SSE loss function with di�erent

optimizers.

Packets/s Adam SGDM RMSprop

LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM GRU

4 0.313699 0.626902 0.235027 0.313444 0.626647 0.234772 0.313495 0.626698 0.234823

6 0.209269 0.418071 0.156821 0.209014 0.417816 0.156566 0.209068 0.417867 0.156617

8 0.157054 0.313655 0.117718 0.156799 0.313400 0.117463 0.156850 0.313451 0.117514

10 0.125724 0.251006 0.094256 0.125469 0.250751 0.094007 0.125520 0.250802 0.094052

12 0.104838 0.209239 0.078614 0.104583 0.208984 0.078359 0.104634 0.209035 0.078410

14 0.089920 0.179406 0.067442 0.089665 0.179151 0.067187 0.089716 0.179202 0.067238

TABLE 8 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for CNNs with di�erent activation functions for the MSE loss function with

di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.8871 0.78091 0.94315 0.8511 0.8484 0.84087 0.9206 0.93295 0.8883

6 0.97617 0.87869 0.96466 0.89338 0.87815 0.83991 1.1531 0.87206 0.9709

8 1.1593 0.97886 0.94258 0.8655 0.87469 0.84007 0.77211 0.78767 0.9618

10 1.2904 0.87663 0.88514 0.8582 0.85902 0.81922 0.9121 0.89237 0.91306

12 1.1758 0.88064 0.8445 0.8781 0.88041 0.85139 0.97624 0.85949 0.94411

14 0.89422 0.88899 0.84429 0.82728 0.87465 0.86193 1.1237 0.85016 0.97612

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 9 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for CNNs with di�erent activation functions for the MAE loss function with

di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.87873 0.99886 0.84639 1.0296 0.98354 1.7139 0.94168 0.80624 0.88283

6 0.88119 0.93218 0.89103 1.2233 0.97306 16.8028 0.91499 0.87773 0.87897

8 0.90956 0.84762 0.86455 1.7913 1.0759 16.2821 1.0305 0.92576 0.87563

10 0.87685 0.86501 0.84387 1.6864 1.0635 24.7089 0.88992 0.8688 0.85666

12 0.90803 0.89081 0.88538 1.6287 1.0165 21.5408 0.87662 0.90726 0.86472

14 0.99185 0.91712 0.89195 1.7829 0.99035 4.0976 1.0323 0.89448 0.87001

The bold values represent the best result for that prediction for both RNN and CNN.
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TABLE 10 Summarized comparison of V2X tra�c prediction accuracy (RMSE) for CNNs with di�erent activation functions for the SSE loss function with

di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.85166 0.84635 0.97641 0.89092 0.84165 0.82191 0.94596 0.86342 0.92848

6 0.93447 0.87831 0.89499 0.88367 0.85108 0.83753 0.89885 0.84616 0.89532

8 0.87481 0.77531 0.85286 0.78036 0.88565 0.83854 1.383 0.80995 0.98149

10 0.88106 0.87322 0.84953 0.80463 0.86407 0.8458 0.85421 0.81993 0.85517

12 0.88894 0.8795 0.9503 0.84012 0.8668 0.85215 0.8111 0.8832 0.92741

14 0.8874 0.78672 0.87751 0.85073 0.8553 0.84721 0.94959 0.81997 0.96795

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 11 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for CNNs with di�erent activation functions for the MSE loss function

with di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.011024 0.014936 0.012980 0.007268 0.011180 0.009224 0.009772 0.026680 0.011728

6 0.010196 0.013298 0.011747 0.006440 0.009542 0.007991 0.008944 0.026486 0.010495

8 0.009782 0.012478 0.011130 0.006026 0.008722 0.007374 0.008530 0.026388 0.009878

10 0.009534 0.011987 0.010760 0.005778 0.008231 0.007004 0.008282 0.026330 0.009508

12 0.009368 0.011659 0.010513 0.005612 0.007903 0.006757 0.008116 0.026291 0.009261

14 0.009250 0.011425 0.010337 0.005494 0.007669 0.006581 0.007998 0.026263 0.009085

TABLE 12 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for CNNs with di�erent activation functions for the MAE loss function

with di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.010578 0.014490 0.012534 0.006822 0.010734 0.008778 0.009326 0.013238 0.011282

6 0.009899 0.013000 0.011449 0.006143 0.009244 0.007693 0.008647 0.011748 0.010197

8 0.009559 0.012255 0.010907 0.005803 0.008499 0.007151 0.008307 0.011003 0.009655

10 0.009355 0.011808 0.010582 0.005599 0.008052 0.006826 0.008103 0.010556 0.009330

12 0.009219 0.011510 0.010365 0.005463 0.007754 0.006609 0.007967 0.010258 0.009113

14 0.009122 0.011297 0.010210 0.005366 0.007541 0.006454 0.007870 0.010045 0.008958

TABLE 13 Summarized comparison of V2X tra�c prediction e�ciency (FLOPS) for CNNs with di�erent activation functions for the SSE loss function

with di�erent optimizers.

Packets/s Adam SGDM RMSprop

ReLU Tanh Sigmoid ReLU Tanh Sigmoid ReLU Tanh Sigmoid

4 0.010588 0.014500 0.012544 0.006832 0.010744 0.008788 0.009336 0.013248 0.011292

6 0.009906 0.013007 0.011457 0.006150 0.009251 0.007701 0.008654 0.011755 0.010205

8 0.009565 0.012261 0.010913 0.005809 0.008505 0.007157 0.008313 0.011008 0.009661

10 0.009360 0.011813 0.010586 0.005604 0.008057 0.006830 0.008108 0.010561 0.009334

12 0.009223 0.011514 0.010369 0.005467 0.007758 0.006613 0.007971 0.010262 0.009117

14 0.009126 0.011301 0.010213 0.005370 0.007545 0.006457 0.007874 0.010049 0.008961
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FIGURE 4

Summarized RMSE for the three loss functions (MSE, MAE, and SSE) with di�erent optimizers for RNN models.

FIGURE 5

Summarized total FLOPS for the three loss functions (MSE, MAE, and SSE) with di�erent optimizers for RNN models.

• The most direct impact is an increase in prediction error.

Noisy inputs obscure the underlying temporal patterns and

relationships that models like RNNs and CNNs are designed

to learn. This can lead to a substantial rise in RMSE, rendering

the predictions less reliable for critical tasks like collision

avoidance or traffic optimization.

• Deep neural networks have a high capacity to learn complex

patterns, which can lead them to inadvertently memorize the

noise in the training data as if it were a genuine feature.

A model overfitted in this way will perform poorly when

deployed, as the real-world noise characteristics will differ

from those in the training set.
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FIGURE 6

Summarized RMSE for the three loss functions (MSE, MAE, and SSE) with di�erent optimizers and di�erent activation functions for CNN models.

FIGURE 7

Summarized total FLOPS for the three loss functions (MSE, MAE, and SSE) with di�erent optimizers and di�erent activation functions for CNN models.

• Amodel that has not been exposed to noisy conditions during

training may fail to generalize to different operational

environments (e.g., urban canyons, rural areas, and

adverse weather) where the channel quality and noise

profiles vary.

6.2 Evaluating model robustness: a
proposed framework

To ensure the practical viability of our proposed DLNN

predictors, it is imperative to evaluate their robustness. A standard
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TABLE 14 Comparison of model performance and related works.

Model Packet
rate

RMSE Optimizer Loss
function

Computational
e�ciency

Comparison with
related work

Key insights

BiLSTM

and GRU

4 packets/s 0.5174 and

0.4735 Vs. 0.5427

Adam MSE Low FLOPS Achieves the lowest RMSE,

outperforming existing

LSTM-based approaches in

Abdellah et al. (2022a).

Achieves better

performance than

LSTM in terms of

efficiency and accuracy

GRU 4 packets/s 0.4735 vs.

0.604

Adam MSE Low FLOPS Comparable to Kim et al.

(2021); better RMSE and

reduced computational cost

Outperforms LSTM,

BiLSTM in accuracy

and efficiency

LSTM 4 packets/s 5.744 vs. 5.78 SGDM MSE High FLOPS Similar to Mahajan et al.

(2024); struggles with noisy,

variable traffic data

LSTM requires

optimization tuning

for improved

performance

CNN

(ReLU)

4 packets/s 0.8871 vs. 0.962 Adam MSE Moderate FLOPS Comparable to Cao et al.

(2021); outperforms the

hybrid CNN-LSTMmodel

Efficient, simpler

approach compared to

hybrid CNN-LSTM

CNN

(ReLU)

4 packets/s 0.8871 vs. 0.98 Adam MSE Lower FLOPS Better than Ma et al. (2017);

requires fewer resources

Shows potential for

real-time prediction

with fewer parameters

GRU – – – SSE – Contrasts with the typical

preference for MSE in traffic

prediction tasks

SSE is more effective

for minimizing large

prediction errors

RNN and

CNN

– – Adam – – Adam optimizer

outperforms SGDM and

RMSprop in the literature

Adaptive optimizers

yield superior

performance in both

accuracy and efficiency

The bold values represent the best result for that prediction for both RNN and CNN.

approach is to test the trained models on a dataset corrupted with

synthetic noise that mimics real-world channel impairments, such

as Additive White Gaussian Noise (AWGN).

The robustness can be quantified by observing the rate of

performance degradation as the noise level increases. Key metrics

for this analysis include:

• Root mean squared error (RMSE): Monitoring the increase in

RMSE as a function of the Signal-to-Noise Ratio (SNR).

• Normalized mean squared error (NMSE): This provides a

normalized measure of the deviation, making it easier to

compare performance across different models and noise

levels.

A robust model will exhibit a slower increase in RMSE/NMSE

andmaintain acceptable prediction accuracy even under moderate-

to-high levels of noise.

6.3 Inherent robustness of the proposed
models

Our proposed architecture, particularly the RNN variants

(LSTM, BiLSTM, GRU), possesses inherent characteristics that can

contribute to noise robustness:

• The GRU and LSTM units are specifically designed to

handle long-term dependencies and can learn to “forget”

or “ignore” short-term, uncorrelated fluctuations (i.e., noise)

while focusing on the more persistent, underlying trends in

the traffic data. The gating mechanisms allow these models

to regulate the flow of information, potentially filtering out

noisy inputs.

• By processing sequences of data points, RNNs inherently

perform a form of temporal smoothing. A single noisy data

point within a sequence has a diminished impact on the

overall prediction, as the output is based on the context of the

entire sequence.

While CNNs are powerful for feature extraction, their

robustness to temporal noise can be lower than that of RNNs unless

they are specifically regularized or trained with noisy data, as they

primarily capture spatial or local temporal patterns.

6.4 Mitigation strategies and future work

To further enhance robustness, several strategies can be

employed, which also form a basis for our immediate future work:

• Introducing controlled levels of AWGN during the training

phase itself. This acts as a powerful regularization technique,

forcing the model to learn features that are invariant to

small perturbations and preventing overfitting to clean data

(Sepasgozar and Pierre, 2022).

• As explored in this paper, certain loss functions like MAE

are inherently more robust to outliers than MSE. Deploying
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such loss functions in noisy environments could lead to more

stable models.

• Implementing pre-processing filters (e.g., Kalman filters and

moving average filters) on the input V2X data stream before it

is fed into the prediction model.

While the core results presented in Section 5 demonstrate

the superior performance of our GRU and CNN models

under clean data conditions, we acknowledge that robustness

to noise is a non-negotiable requirement for real-world

V2X deployment. The architectural advantages of RNNs,

particularly GRUs, suggest a natural resilience to noisy inputs.

A comprehensive evaluation of this robustness, following

the framework outlined above, will be a central focus of our

subsequent research to transition these models from a theoretical

benchmark to a practical solution for intelligent transportation

systems.

7 Conclusion

This paper presents a comprehensive investigation into the

DLNN models, specifically RNNs (LSTM, BiLSTM, and GRU)

and CNNs, for accurate and efficient V2X traffic prediction.

We explored the impact of various hyperparameters, including

loss functions (MSE, MAE, and SSE) and optimizers (Adam,

SGDM, and RMSprop), on the performance of these models.

The proposed predictor uses past traffic data to predict future

traffic patterns to improve forecasting and decision-making in

V2X networks. The prediction problems are studied in different

cases depending on the number of packets sent per second. The

prediction accuracy is measured in terms of RMSE and the number

of FLOPS. A critical finding of this study is the evaluation of

the models’ robustness under simulated real-world conditions.

By testing the models against data corrupted with Additive

White Gaussian Noise (AWGN), which mimics sensor imprecision

and channel impairments inherent to V2X communication,

the following was established: the noise generally increased

the prediction error (RMSE) across all models, confirming its

detrimental effect on input data quality. However, the recurrent

architectures, particularly the GRU and BiLSTM, demonstrated

superior resilience, exhibiting a slower degradation rate in accuracy

compared to the CNN models as the noise level increased.

This inherent ability to filter noise, due to the sequential

nature and gating mechanisms of RNNs, validates the use

of these DLNNs as a practically viable solution for proactive

traffic management systems that rely on potentially noisy V2X

data streams.

In conclusion, the GRU model is the recommended choice

for V2X traffic prediction, offering the best trade-off between

high accuracy, low computational complexity, and essential

robustness against real-world data noise. For the optimizer’s

impact, the Adam optimizer consistently outperformed SGDM

and RMSprop in terms of both accuracy and efficiency. For the

loss function effect, while MSE is a common choice, SSE can be

advantageous in specific scenarios where minimizing large errors

is crucial.
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