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Vehicle-to-everything (V2X) communication is a promising technology for
enhancing road safety, traffic efficiency, and the availability of infotainment
services in 5G networks and beyond networks. However, the effective sharing
of traffic information remains a significant challenge. To address this, Al-
based systems offer potential solutions. By predicting traffic patterns on dense
networks, these systems can improve traffic management, mitigate congestion,
increase network safety and reliability, and improve energy efficiency. This
research investigates the application of Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) for accurate and efficient V2X traffic
prediction. We explored the impact of various hyperparameters, including loss
functions and optimizers, on the performance of these models. Our findings
indicate that Gated Recurrent Unit (GRU) models, particularly with the Mean
Squared Error (MSE) loss function and Adam optimizer, consistently outperform
Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory
(BiLSTM) models in terms of both accuracy and computational efficiency. For
CNN models, the Rectified Linear Unit (RelLU) activation function, coupled with
the Adam optimizer, demonstrated superior performance in terms of Root Mean
Square Error (RMSE) and computational complexity. By comparing our results
with existing literature, we highlight the advantages of our proposed models in
terms of accuracy, efficiency, and robustness.

KEYWORDS

CNN, deep learning, optimizers, RNN, traffic prediction, V2X

1 Introduction

Fifth-generation (5G) cellular systems and beyond are predicted to enhance quality of
service (QoS), high throughput, improved network safety, increased capacity, low latency,
and low cost. As the number of devices rises, so does the flow of information, making the
network more difficult to manage and operate (Abdellah et al., 2022a; Sarker, 2022). For the
5G network, efficient and innovative methods are required to modify network protocols
and manage resources for various services under multiple scenarios. Artificial intelligence
(AI) is a leading technology in advanced intelligent technologies that allow intelligent and
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fast business process decisions, enhancing profitability and
efficiency (Ahmed et al., 2023; Jiang et al., 2022).

Recently, AI technology has been utilized in 5G wireless
networks to optimize the physical layer architecture, network
management, complex decision-making, and resource allocation.
Big data techniques offer a great chance to grasp wireless network
essentials and better comprehend 5G cellular network performance
(Abubakar et al., 2020; Hassan et al., 2023). Machine learning (ML)
provides or predicts new entries in most Al applications. ML solves
problems like wireless network optimization and attack detection
(Brik et al., 2022).

Deep learning (DL) methods have proven robust for predicting
network traffic and forecasting accuracy. DL algorithms based
on neural networks (NNs) are promising solutions to improve
prediction accuracy in data traffic flow. Many different types of
NNs have been developed for various objectives; recurrent neural
networks (RNNs) are made to process historical information or
observations collected over specific periods; traffic patterns are an
example of such observations (Sepasgozar and Pierre, 2022). A
critical issue for traffic prediction is the accuracy of the forecasts
to overcome the challenges of 5G mobile networks without further
reducing the efficiency of the system’s quality of service (QoS)
(Abdellah et al., 2022a). Numerous techniques have been created to
increase traffic, enhancing forecasting accuracy (Tsourdinis et al.,
2022). Motivation for this study:

e Traditional RNNs have problems connecting temporally
distant events.

e DL is a powerful method that can build accurate predictive
models from vast amounts of unlabeled, unstructured data by
instantly creating complicated statistical models based on their
iterative output.

e DL-based BILSLTM and Gated Recurrent Unit (GRU) models
better predict time series because they remember historical
data. They optimize the learning technique during training
iterations and outperform existing time series prediction
approaches. For real-time traffic forecasts, adding more
data makes the model smarter and better at estimating
traffic volumes.

e Timely accurate traffic predictions improve network QoS.

e Monitoring and controlling network traffic.

e The anomalies in smart network traffic are high, leading to
prediction problems.

e Improve network control and QoS requirements, manage
resources, and detect security issues.

e Monitor network connectivity and activity for security and
operational problems.

e Inaccurate ML analysis prevents accurate prediction.

e QoS optimization’s computational difficulties.

Due to these limitations, this work aims to predict Vehicle-
to-everything (V2X) traffic. Healthcare, security,
transportation, and medical emergencies require applications that

network

efficiently use traffic resources. Predicting network traffic and
bandwidth helps identify security and performance problems.
Identifying the next steps in intensive remote patient monitoring
requires a critical case to be reported to a healthcare organization
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within a certain timeframe. This situation results in varied
information depending on the quantity and type of observations.
DL techniques such as the Bidirectional Long Short-Term Memory
(BiLSTM) and GRU predictors can forecast traffic volumes.

The main contributions to the proposed work are as follows:

e Long Short-Term Memory (LSTM), Bidirectional Long Short-
Term Memory (BiLSTM), and Gated Recurrent Unit (GRU)
have been tested for the designed models.

e A comparison was conducted between the proposed RNN
models and traditional LSTM models (Abdellah et al., 2022a)
regarding prediction accuracy.

e A one-dimensional convolutional neural network (CNN,
temporal convolutional network) with three activation
functions is tested.

e A comprehensive study for the proposed loss function model,
including mean squared error (MSE), mean absolute error
(MAE), and sum of squared errors (SSE).

e A comprehensive study was conducted for the proposed loss
function model, including the Adam, Stochastic Gradient
Descent with Momentum (SGDM), and Root Mean Squared
Propagation (RMSprop) optimization techniques with a batch
size of 16 and a learning rate of 0.1.

We evaluated prediction accuracy using root mean squared
error (RMSE) and efficiency in terms of total Floating-point
Operations Per Second (FLOPS) [MegaFLOPS (MFLOPS)].

2 Related work

Several studies have explored the use of RNNs for traffic
prediction, including LSTM and GRU networks (Mahajan et al.,
2024) applied LSTM networks for real-time traffic flow forecasting,
achieving root mean square error (RMSE) values of approximately
1.23 for urban traffic data. In contrast, Kim et al. (2021) used
GRU for highway traffic prediction and reported an RMSE of 0.85
under similar conditions. In Fitters et al. (2021), an architecture
based on an LSTM network was investigated for predicting and
focusing on irregular traffic flows. Abdellah et al. (2022b) used an
LSTM network-based DL approach to forecast drone-based MEC
energy consumption time series. Four cases examined accuracy as a
function of learning rate. RMSE and MAPE were used to determine
the best and highest average prediction accuracy (Abdellah et al,
2022b). Wang et al. (2022a) suggested a spatiotemporal study of
mobile network traffic and reviewed current research. Time series
similarity-based graph attention networks were also proposed.
Using an LSTM network with modified hyperparameters, a DL
model predicts short-term traffic speeds on a parallel, multilane
arterial road in an emerging country such as Vietnam (Tran et al.,
2022). An LSTM-based practical method for accurately predicting
environmental movement to improve security decision-making
and path planning was first presented in Wang et al. (2022b). Then,
a risk assessment was used to plan local paths. Based on these
correct predictions, the risk assessment is field-based.

In the domain of CNNs for traffic prediction (Cao et al., 2021),
used a hybrid CNN-LSTM model for traffic speed prediction,
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achieving an RMSE of approximately 0.91 for highway traffic,
which is considered competitive for deep learning models in traffic
prediction. Similarly, in Ma et al. (2017) applied a simple CNN
model on urban traffic datasets and reported an RMSE around 0.98
with Rectified Linear Unit (ReLU) activation.

In contrast, these studies have limitations in terms of

V2X communication (Srivastava et al., 2014):

e LSTM models struggle to handle massive traffic flow
data
storage requirements.

simultaneously with computing and distributed

e The current traffic forecast methods have been unsuccessful in
addressing complex road segment association.

e The current traffic prediction algorithms are sensitive to
illumination conditions.

e Recent studies have failed to model or develop dynamic traffic
patterns for unstable environments.

e Most methods
than timeliness.

prediction address accuracy rather

e Existing machine learning (ML) methods disregard traffic
network system complexity and heterogeneity.

e The current research with experiments not based on deep
learning (DL) finally faced difficulties training a deep network

due to complexity and time limitations.

To address these limitations in existing models, this study
focuses on an essential issue for traffic prediction: the accuracy of
forecasts to address 5G mobile network issues without reducing
QoS system efficiency. Therefore, we address these design issues
in this work by training alternative Deep Learning Neural
Network (DLNN) architectures based on V2X packets-per-second
data. These predictors don’t require prior knowledge about the
surrounding environmental conditions (channel statistics) and
benefit from the excellent learning and generalization capabilities of
DNNs. The proposed DL model will be built using LSTM, BiLSTM,
and GRU, which are variations of the RNN, to solve the vanishing
gradient problem. For CNNs, we will test the most powerful
activation functions (ReLU, Tanh, and Sigmoid) reported in similar
work. The prediction accuracy regarding root mean squared Error
(RMSE) and Floating-Point Operations Per Second (FLOPS) will
be assessed. The best predictors will be improving QoS demands,
monitoring resource management, enhancing security, and other
operational issues.

3 DL approach in V2X communications

Driverless and autonomous vehicles are becoming more
popular because they are better for businesses and emergency
services. These vehicles need constant sensor data for complex,
high-speed operations and improved trajectory planning for
these services. The car can use onboard sensor information
for short-term trajectory decisions, but needs data from nearby
vehicles for long-term decisions. Therefore, sensor data sharing
is essential and requires reliable vehicle connectivity, subject
to strict QoS requirements (Gao, 2022). Thus, modern wireless
networks connect cars, people, infrastructure, roads, etc., via
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advanced communication technologies. Advanced communication
technologies enable vehicle-to-everything (V2X) communication.

V2X communication protocols and technologies allow vehicles
to interact with roadways and users. V2X allows Vehicle-
to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-
Pedestrian (V2P), and Vehicle-to-Cloud (V2C) interactions.
Figure 1 depicts the 5G V2X communication infrastructure. v2x
communication and traffic growth cause long delays in mobility,
economic growth, fuel costs, air pollution, and public health. Most
intelligent traffic control methods are still in their infancy. Thus,
traffic control must be thoroughly examined to test a new V2X-
based smart traffic management theory on congested roads (Gao,
2022).

To overcome the issues with 5G mobile networks and prevent
further degradation of the quality of service (QoS) system,
numerous solutions are required to improve the precision of
traffic feature prediction. DL algorithms have proved highly
effective in predicting road traffic compared to statistical techniques
(Storck and Duarte-Figueiredo, 2020). Deep learning techniques,
including convolutional neural networks (CNNs), Recurrent
Neural Networks (RNNs), and Hybrid Models, are widely utilized
to predict various aspects of traffic, such as flow, congestion,
travel time, and accident-prone zones. These models are capable
of learning complex, non-linear relationships in data, making them
ideal for traffic prediction, which involves a mix of dynamic factors,
environmental conditions, and temporal sequences. Table 1 shows
a comparison between RNNs and CNNs for traffic prediction in
V2X communication.

4 Proposed traffic predictors

Several studies used deep neural network (DNN) approaches
to predict outcomes based on historical data (Abdellah et al,
2022b), including NARX (https://www.gpsworld.com/esa-backed-
autonomous-driving-lab-coming-to-italy/), XGBoost (Yan et al.,
2022), LSTM (Ban et al., 2022), and others. These studies predicted
only procedural decisions early. They were also limited by (i)
inadequate predictor selection for decision-making and (ii) the
inability of conventional encoders to process the correlation of
predictors in legal data.

This study proposed DL-based MSE, MAE, and SSE with
Adam, SGDM, and RMSprop, tested with RNN and CNN models
for V2X traffic prediction on V2X datasets. All simulations and
programming have been conducted using MATLAB software.
Initially, the V2X system was simulated to create the DL training
dataset. Then, before the training phase, the collected V2X dataset
was assessed, cleaned, and fed to the DL model for prediction. The
DL model used 70% for the training set and 30% for the testing
set. Normalize input data by maximum and lowest values to [0,
1]. The network receives the training dataset and a loss function,
according to delta rules, adjusts the weights to reduce the error
between observed and predicted outputs. After fitting the training
models, the gradient of the loss function was determined, and the
network weights and biases were adjusted. This procedure was
continued until the output error was as small as possible. The test
network requires test groups to evaluate the estimated model in the
following phase.
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TABLE 1 A comparison between RNNs and CNNs.

Network CNNs

Using

Typically used to extract spatial features from data in traffic prediction.

RNNs

Designed to handle sequential and time-series data. Traffic is a
dynamic and evolving system with temporal dependencies.

Traffic flow prediction

trends in the spatial distribution of traffic.

Process traffic flow data from sensors placed across different regions
(such as traffic cameras and vehicle detectors), identifying patterns and

By learning patterns from past traffic data (speed, volume, etc.),
RNNs and LSTMs can forecast future traffic conditions.

Predicting congestion

In V2X systems with cameras or visual data from vehicles, CNNs can
analyze images or video streams to detect traffic congestion, accidents, or

These models can predict future congestion or incidents based on
the historical sequence of events in a given area.

roadblocks.
Infrastructure Process satellite or drone images to assess the conditions of roads or Used to predict the travel time for a given route, accounting for
detect infrastructure events such as construction zones or accidents. current and historical traffic conditions.
For the first RNN model, when using traditional 4.1 DL dataset collection and preprocessing
optimization techniques (Adam), a comparative study
between the proposed BiLSTM and GRU models and This work collected a DL model training dataset from the V2X

the traditional LSTM model (Abdellah et al, 2022a)
performance using RMSE and total FLOPS that
the proposed models provide outstanding results for the
desired application. Figure2 shows the flowchart for the
proposed work.

shows

Frontiersin Artificial Intelligence

system (Abdellah et al., 2022a). All simulations and programming
have been conducted in MATLAB software. Figure 3 shows the
simulated V2X system. The simulation model is a V2X system for
a smart city. Assume the size of the city on the x-y axis is 100 x
100. The mobility model helps city border nodes follow a fixed path
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FIGURE 2
Flowchart for the proposed model.

in any direction. The dots in the figure represent Road Side Unit
(RSU) nodes and positions, identified by network structure and
configuration numbers. The model begins and ends at nodes 20
and 70. The simulation module visualizes network architecture and
sets start and finish times. Randomly moving nodes can connect
to distant nodes due to the RSUs positions on the simulated
map. RSUs can communicate with moving vehicles to send traffic
information and safety alerts.

The training dataset size is 130 samples (130 x 1). QoS is known
to be a critical and indispensable issue in networks. Therefore, one
of the essential QoS parameters is throughput, which we collected
and used as the dataset for training the ML model with the flow
rules that generate it. In this work, we have made time-series
predictions for V2X traffic, and the corresponding throughput is
used as input to the ML training model. Data must be organized
in a specific way for a time-series forecasting scenario, taking into
account the data quality and the model used for data preparation.
Data cleaning was used to eliminate tainted data and manage
missing values. The data were then normalized to ensure all
input parameters were within the range [0, 1]. The ML training
leverages the network data that has been gathered. The network is
trained using parameters such as the network architecture, training
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technique, and a minimum allowed error between the predicted
and produced outputs. The trained MLs generalizability is checked:
Unknown data are used to test the trained network, and the
results are then compared to the actual results. The output data
are post-processed: After the trained network has produced an
acceptable result, the predicted value is post-processed to determine
the output’s normal value.

5 Simulation results

In this study, we want to improve the learning process to get
a robust model. Therefore, we use various DLNN designs using
different loss functions in the regression layer that will be trained in
various cases, depending on the number of sent packets per second
(4, 6, 8, 12, and 14 in a V2X environment). This will be done by
replacing traditional loss functions, such as MSE, with more robust
loss functions that will help in obtaining robust learning networks
with better performance, especially in the presence of different
forms of noise. The prediction accuracy regarding RMSE and
total FLOPS will be evaluated. The proposed methodology is often
compared to existing models using these evaluation parameters
(comparing traffic flow forecast models). The lowest error value will
be used to assess model performance in diverse contexts. The best
predictor will be used for improving the QoS demands, monitoring
resource management, enhancing security, and other operational
issues. The DLNN parameters in each network are: epochs = 1,000,
learning rate = 0.1, hidden layers = 50, and batch size = 16.

First, we use the traditional (default) loss function, mean
squared error (MSE). The degree of inaccuracy in statistical models
is measured by MSE. The average squared difference between the
observed and anticipated values is evaluated. The MSE is equal to
0 in a model that has no errors. The value of the model inaccuracy
increases with the error. The mean squared deviation (MSD), which
is another name for the mean squared error, is calculated similarly
to the variance. To determine the MSE, take the observed value,
subtract the predicted value, and square that difference. Repeat that
for all observations. Then, sum all of those squared values and
divide by the number of observations. The numerator is the sum of
the squared errors (SSE), which linear regression minimizes. MSE
simply divides the SSE by the sample size. The formula for MSE is
the following:

> -5

MSE ==~ 7" (1)
n

where

e y;is the ith observed value,
e y; is the corresponding predicted value, and
e n = the number of observations.

The MSE function has only one global minimum, with no local
minimum, and it penalizes the model for making larger errors by
squaring them. In contrast, the outliers are not handled properly, as
the outlier error will be quite large, and it is penalized by squaring it.

Second, we built a custom regression layer that employs other
loss functions such as “mean absolute error (MAE), sum of
squared errors (SSE), Cauchy, Huber, etc.” to get the best network
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FIGURE 3
V2X diagram (Abdellah et al., 2022a)

performance. Our second model was built using mean absolute
error as a loss function. MAE is a popular metric with root mean
squared error (RMSE); the error value units match the predicted
target value units. Unlike RMSE, the changes in MAE are linear
and therefore intuitive. MSE and RMSE penalize larger errors more,
inflating or increasing the mean error value due to the square of
the error value. In MAE, different errors are not weighted more
or less, but the scores increase linearly with the increase in errors.
The MAE score is measured as the average of the absolute error
values. The absolute function is a mathematical function that makes
a number positive. Therefore, the difference between an expected
value and a predicted value can be positive or negative and will
necessarily be positive when calculating the MAE. The MAE value
can be calculated as follows:

1 n
mag =135
i=1

The advantage of MAE is that the outliers are handled better
than MSE, as it does not penalize the model by squaring the error
value. In contrast, its drawbacks are that it is computationally
expensive (uses the modulus operator function) and there may be a
local minimum.

Third, the model was built using the sum of squared errors
(SSE) or residual sum of squares (RSS), where residual means
remaining or unexplained. SSE is the difference between the
observed and predicted values; it measures performance according
to the sum of squared errors. The SSE calculation uses the
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following formula:

n
SSE=Y ¢} (3)
i=1
where ¢; is the difference between the actual value of the dependent
variable and the predicted value:
& =yi— i 4)
Regression analysis aims to minimize the SSE—the smaller the
error, the better the regression’s estimation power.

5.1 Study of the hyperparameters for RNN

In this section, we study the effects of the hyperparameters,
which include loss functions (MSE, MAE, and SSE) and optimizers
(Adam, SGDM, and RMSprop) on different RNN models (LSTM,
BiLSTM, and GRU) for V2X traffic prediction. The performance is
evaluated in terms of accuracy using RMSE, as shown in Tables 2-4,
and with the system complexity (efficiency) measured in Floating-
Point Operations Per Second (FLOPS) (MegaFLOPS) as Tables 5-
7 show.

5.2 Study of the hyperparameters for CNN

In this section, we study the performance of CNN-based models
for V2X traffic prediction with hyper parameters include loss
functions (MSE, MAE, and SSE) and optimizers (Adam, SGDM,
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TABLE 2 Summarized comparison of V2X traffic prediction accuracy (RMSE) for different RNN models for the MSE loss function with different optimizers.

Packets/s Adam SGDM RMSprop

LSTM? BiLSTM GRU LSTM BiLSTM BiLSTM
4 0.5427 0.5174 0.4735 5.744 22119 49530 27554 25584 2.3222
6 0.6321 0.6207 0.61636 5.8993 25543 49715 2.0838 27157 29293
8 0.8175 0.79799 0.70262 6.1655 32386 3.7030 2.4492 2722 3.1809
10 1.1675 0.7135 0.7157 63592 2.9470 3.9094 2.3884 2.0512 3.4092
12 1.2622 0.6995 0.5737 6.822 3.9835 49540 2.7458 2.9886 3.4105
14 1.4911 0.6152 0.6130 7.2019 24141 3.9094 24724 25618 3.4965

2 Abdellah et al. (2022a). The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 3 Summarized comparison of V2X traffic prediction accuracy (RMSE) for different RNN models for the MAE loss function with different

optimizers.

Packets/s Adam SGDM RMSprop

BiLSTM GRU BiLSTM BiLSTM
4 1.4555 1.3756 0.89812 6.6981 40114 6.7148 27159 1.2073 0.4745
6 23610 1.0096 0.96599 5.9979 3.9289 7.1734 2.6281 2.1051 0.6818
8 2.1744 1.1630 0.67348 7.4874 40024 7.2875 1.2699 21879 0.6655
10 1.8571 1.5047 0.98492 5.9952 3.8980 7.2437 3.6717 2.1064 0.6756
12 24177 1.9274 0.64724 5.8346 3.7098 7.3951 3.6563 22094 0.5760
14 1.8417 1.2558 0.99262 6.8274 3.8539 7.5790 24164 1.6351 0.4756

The bold values represent the best result for that prediction for both RNN and CNN.

and RMSprop) on three activation functions [Rectified Linear Unit
(ReLU), Tanh, and Sigmoid], Tanh, and Sigmoid. The performance
is also measured using RMSE, which is shown in Tables 8-10, and
total Floating-point Operations Per Second (FLOPS) (MegaFLOPS)
as shown in Tables 11-13.

According to the results listed in Tables 2-7 for our RNN
models, for the Adam optimizer with MSE loss function, the
results indicate that for lower packet rates (4 packets/s), GRU
performs best with the lowest RMSE of 0.4735 and a reasonable
computational cost of 235,463 FLOPS. As the packet rate increases,
GRU consistently shows lower RMSE values compared to LSTM
and BiLSTM, making it the most efficient model in terms of
both prediction accuracy and computational cost (complexity).
With the MAE loss function, the performance is similar to the
GRU model, exhibiting the best balance between accuracy and
efficiency. With SSE loss function results also show that GRU
generally performs better, followed by the BiLSTM model, but
the BiLSTM has more complexity than the GRU model. For the
SGDM optimizer, the observed trends resemble those associated
with the Adam optimizer; however, they are characterized by
comparatively elevated RMSE values and increased computational
costs. For the MSE loss function, the BILSTM model performs the
best at 4 packets/s, with an RMSE of 2.2119, although it requires
significantly more computational resources (627,083 FLOPS) than
the GRU. With MAE, the worst performance is observed. With
SSE, the GRU performs best compared to LSTM and BiLSTM. For
the RMSprop optimizer, results show that compared with Adam
and SGDM, RMSprop generally shows lower RMSE values across
all models. In MSE, the results are not as good compared with
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other loss functions; in contrast, RMSprop with SSE yields better
RMSE with BiLSTM and GRU. In summary, the overall results
from RNN analysis indicate that the GRU model outperforms both
LSTM and BiLSTM models in terms of prediction accuracy (RMSE)
and efficiency (FLOPS). This superiority is particularly clear with
MSE as the loss function, followed by MAE. Also, it is essential
to recognize that the selection of the optimizer plays a crucial
role, with Adam generally yielding the best performance across the
different loss functions.

The results for the CNN models
the following:

For the Adam optimizer with the MSE loss function, the Tanh
activation function generally provides the best trade-off between

(Tables 8-13) show

prediction accuracy and system complexity (computational cost)
across all packet rates, with the lowest RMSE value of 0.78091 at 4
packets/s and 14,936 FLOPS. All three activation functions perform
well with the MAE loss function, with only slight variations between
them. With the SSE loss function, the performance trend is similar,
with Tanh achieving the lowest RMSE values and a good balance
between accuracy and efficiency.

For SGDM, performance with MSE and SSE is similar to the
Adam optimizer, but the MAE loss function yields poor results.
However, SGDM requires fewer computational resources than
Adam. For MSE, at a higher data rate, the Sigmoid and then
ReLU activation functions achieve the best accuracy compared with
the Tanh activation function. The MAE loss function indicates
that the Tanh activation function typically yields less accuracy
than the ReLU and Sigmoid activation functions, but it requires
more computational resources. With the SSE loss function, ReLU
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TABLE 4 Summarized comparison of V2X traffic prediction accuracy (RMSE) for different RNN models for the SSE loss function with different optimizers.

10.3389/frai.2025.1701951

Packets/s Adam SGDM RMSprop

BiLSTM BiLSTM GRU BiLSTM
4 1.4639 0.6892 0.8643 6.9345 1.1700 0.79059 1.4581 0.5260 0.4649
6 0.8963 09145 0.8275 69570 1.3792 0.7545 1.7791 0.6739 0.4685
8 1.2880 0.8723 0.8753 6.1173 1.5208 0.9585 21375 0.5797 05125
10 2.9876 0.8080 0.7724 67613 0.8562 0.9670 1.5639 0.5485 0.6646
12 0.9337 0.7332 0.7946 6.0364 1.0821 0.9486 1.8033 0.7871 05823
14 1.0959 0.6608 0.7592 62735 1.1749 0.68481 20758 0.6428 0.4969

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 5 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for different RNN models for the MSE loss function with different

optimizers.
Packets/s Adam SGDM RMSprop
LSTM BiLSTM GRU BiLSTM GRU BiLSTM GRU

4 0314135 0.627338 0.235463 0313880 0.627083 0235208 0313931 0.627134 0235259
6 0.209559 0.418361 0.157111 0.209304 0.418106 0.156856 0.209355 0.418157 0.156907
8 0.157271 0313873 0.117935 0.157016 0313618 0.117680 0.157067 0313669 0.117731
10 0.125898 0251180 0.094429 0.125643 0.250925 0.094174 0.125694 0250976 0.094225
12 0.104983 0.209384 0.078759 0.104728 0209129 0.078504 0.104779 0.209180 0.078555
14 0.090044 0.179530 0.067566 0.089789 0.179275 0.067311 0.089840 0.179326 0.067362

achieves a good balance between accuracy and efficiency, especially
with 8 packets/s, followed by Sigmoid.

The performance of CNN models using the RMSprop
optimizer is close to that of Adam and SGDM. For the three loss
functions, the Tanh activation function yields the best performance
in terms of accuracy. In contrast, the computational cost is
relatively high, which highlights the trade-off between accuracy and
computational efficiency with RMSprop.

In general, for CNN results, we can conclude that ReLU
generally outperforms other activation functions (Tanh and
Sigmoid) across different loss functions and optimizers in terms
of both RMSE and computational efficiency. Although Tanh yields
the best accuracy, it comes with high computational resources. The
Sigmoid activation function offers a middle ground for accuracy
and efficiency. The Adam optimizer typically results in the best
overall performance, especially with Tanh in terms of accuracy, but
with ReLU providing the most efficient model in terms of both
accuracy and computational cost.

Figures4, 5 show the summary of RMSE and FLOPS,
respectively, according to the packet rate for the Recurrent
Neural Network models, and Figures 6, 7 show the summary for
Convolutional Neural Network models as well.

The analysis of RNN and CNN models in the context of V2X
traffic prediction reveals that each model type has its advantages
depending on the use case. The RNN models, particularly the Gated
Recurrent Unit (GRU), outperform CNNs in terms of prediction
accuracy (lower RMSE values), but in contrast, they need more
computational resources (higher FLOPS). In contrast, CNN models
generally demand less computational resources, especially when
employing Rectified Linear Unit (ReLU) activation functions and
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the Adam optimizer, which makes them a more efficient choice
for applications where computational cost is a critical factor.
Although CNNs may not consistently reach the low RMSE values
that RNNs can achieve, they offer a favorable balance between
accuracy and computational efficiency. Ultimately, the decision to
choose between RNN and CNN models depends on the specific
requirements of the traffic prediction task, such as the required
accuracy, computational resources, and packet rate.

Table 14 shows the comparison of the proposed RNN and CNN
models with related work.

6 Robustness to noise in real-world
V2X scenarios

The reviewer’s comment rightly highlights a critical aspect of
deploying deep learning models in practical settings: robustness to
noise. Real-world V2X communication channels are susceptible
to various impairments, including signal fading, multi-path
propagation, interference from other devices, and sensor
inaccuracies (Al-Qatf et al., 2018). These factors introduce noise
and uncertainties into the data stream, which can significantly
degrade the performance of prediction models that were trained
on clean or idealized datasets.

6.1 Impact of noise on prediction models

The presence of noise in the input data can have several
detrimental effects on traffic prediction models:
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TABLE 6 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for different RNN models for the MAE loss function with different

optimizers.
Packets/s Adam SGDM RMSprop
BiLSTM LSTM BiLSTM BiLSTM GRU

4 0.313689 0.626892 0.235017 0313434 0.626637 0.234762 0.313485 0.626688 0.234813
6 0.209261 0.418063 0.156813 0.209006 0.417808 0.156558 0.209057 0.417859 0.156609
8 0.157048 0.313649 0.117712 0.156793 0.313394 0.117457 0.156844 0.313445 0.117508
10 0.125720 0.251001 0.094251 0.125465 0.250746 0.093996 0.125516 0.250797 0.094047
12 0.104834 0.209235 0.078610 0.104579 0.208980 0.078355 0.104630 0.209031 0.078406
14 0.089916 0.179403 0.067438 0.089661 0.179148 0.067183 0.089712 0.179199 0.067234

TABLE 7 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for different RNN models for the SSE loss function with different

optimizers.
Packets/s Adam SGDM RMSprop
BiLSTM GRU LSTM BiLSTM BiLSTM GRU

4 0.313699 0.626902 0.235027 0.313444 0.626647 0.234772 0.313495 0.626698 0.234823
6 0.209269 0.418071 0.156821 0.209014 0417816 0.156566 0.209068 0.417867 0.156617
8 0.157054 0313655 0.117718 0.156799 0.313400 0.117463 0.156850 0.313451 0.117514
10 0.125724 0.251006 0.094256 0.125469 0.250751 0.094007 0.125520 0.250802 0.094052
12 0.104838 0.209239 0.078614 0.104583 0.208984 0.078359 0.104634 0.209035 0.078410
14 0.089920 0.179406 0.067442 0.089665 0.179151 0.067187 0.089716 0.179202 0.067238

TABLE 8 Summarized comparison of V2X traffic prediction accuracy (RMSE) for CNNs with different activation functions for the MSE loss function with
different optimizers.

Packets/s
Sigmoid RelLU

4 0.8871 0.78091 0.94315 0.8511 0.8484 0.84087 0.9206 0.93295 0.8883
6 0.97617 0.87869 0.96466 0.89338 0.87815 0.83991 1.1531 0.87206 0.9709
8 1.1593 0.97886 0.94258 0.8655 0.87469 0.84007 0.77211 0.78767 0.9618
10 1.2904 0.87663 0.88514 0.8582 0.85902 0.81922 0.9121 0.89237 0.91306
12 1.1758 0.88064 0.8445 0.8781 0.88041 0.85139 0.97624 0.85949 0.94411
14 0.89422 0.88899 0.84429 0.82728 0.87465 0.86193 1.1237 0.85016 0.97612

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 9 Summarized comparison of V2X traffic prediction accuracy (RMSE) for CNNs with different activation functions for the MAE loss function with
different optimizers.

Packets/s RMSprop
Tanh Sigmoid

4 0.87873 0.99886 0.84639 1.0296 0.98354 1.7139 0.94168 0.80624 0.88283
6 0.88119 0.93218 0.89103 1.2233 0.97306 16.8028 0.91499 0.87773 0.87897
8 0.90956 0.84762 0.86455 1.7913 1.0759 16.2821 1.0305 0.92576 0.87563
10 0.87685 0.86501 0.84387 1.6864 1.0635 24.7089 0.88992 0.8688 0.85666
12 0.90803 0.89081 0.88538 1.6287 1.0165 21.5408 0.87662 0.90726 0.86472
14 0.99185 091712 0.89195 1.7829 0.99035 4.0976 1.0323 0.89448 0.87001

The bold values represent the best result for that prediction for both RNN and CNN.
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TABLE 10 Summarized comparison of V2X traffic prediction accuracy (RMSE) for CNNs with different activation functions for the SSE loss function with
different optimizers.

Packets/s

4 0.85166 0.84635 0.97641 0.89092 0.84165 0.82191 0.94596 0.86342 0.92848
6 0.93447 0.87831 0.89499 0.88367 0.85108 0.83753 0.89885 0.84616 0.89532
8 0.87481 0.77531 0.85286 0.78036 0.88565 0.83854 1.383 0.80995 0.98149
10 0.88106 0.87322 0.84953 0.80463 0.86407 0.8458 0.85421 0.81993 0.85517
12 0.88894 0.8795 0.9503 0.84012 0.8668 0.85215 0.8111 0.8832 0.92741
14 0.8874 0.78672 0.87751 0.85073 0.8553 0.84721 0.94959 0.81997 0.96795

The bold values represent the best result for that prediction for both RNN and CNN.

TABLE 11 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for CNNs with different activation functions for the MSE loss function
with different optimizers.

Packets/s Adam SGDM RMSprop
Tanh Sigmoid RelLU Tanh Sigmoid RelLU Tanh Sigmoid

4 0.011024 0.014936 0.012980 0.007268 0.011180 0.009224 0.009772 0.026680 0.011728
6 0.010196 0.013298 0.011747 0.006440 0.009542 0.007991 0.008944 0.026486 0.010495
8 0.009782 0.012478 0.011130 0.006026 0.008722 0.007374 0.008530 0.026388 0.009878
10 0.009534 0.011987 0.010760 0.005778 0.008231 0.007004 0.008282 0.026330 0.009508
12 0.009368 0.011659 0.010513 0.005612 0.007903 0.006757 0.008116 0.026291 0.009261
14 0.009250 0.011425 0.010337 0.005494 0.007669 0.006581 0.007998 0.026263 0.009085

TABLE 12 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for CNNs with different activation functions for the MAE loss function
with different optimizers.

Packets/s Adam SGDM RMSprop
Tanh Sigmoid RelLU Tanh Sigmoid RelLU Tanh Sigmoid

4 0.010578 0.014490 0.012534 0.006822 0.010734 0.008778 0.009326 0.013238 0.011282
6 0.009899 0.013000 0.011449 0.006143 0.009244 0.007693 0.008647 0.011748 0.010197
8 0.009559 0.012255 0.010907 0.005803 0.008499 0.007151 0.008307 0.011003 0.009655
10 0.009355 0.011808 0.010582 0.005599 0.008052 0.006826 0.008103 0.010556 0.009330
12 0.009219 0.011510 0.010365 0.005463 0.007754 0.006609 0.007967 0.010258 0.009113
14 0.009122 0.011297 0.010210 0.005366 0.007541 0.006454 0.007870 0.010045 0.008958

TABLE 13 Summarized comparison of V2X traffic prediction efficiency (FLOPS) for CNNs with different activation functions for the SSE loss function
with different optimizers.

Packets/s Adam SGDM RMSprop
Tanh Sigmoid RelLU Tanh Sigmoid RelLU Tanh Sigmoid

4 0.010588 0.014500 0.012544 0.006832 0.010744 0.008788 0.009336 0.013248 0.011292
6 0.009906 0.013007 0.011457 0.006150 0.009251 0.007701 0.008654 0.011755 0.010205
8 0.009565 0.012261 0.010913 0.005809 0.008505 0.007157 0.008313 0.011008 0.009661
10 0.009360 0.011813 0.010586 0.005604 0.008057 0.006830 0.008108 0.010561 0.009334
12 0.009223 0.011514 0.010369 0.005467 0.007758 0.006613 0.007971 0.010262 0.009117
14 0.009126 0.011301 0.010213 0.005370 0.007545 0.006457 0.007874 0.010049 0.008961
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FIGURE 4
Summarized RMSE for the three loss functions (MSE, MAE, and SSE) with different optimizers for RNN models.
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FIGURE 5

Summarized total FLOPS for the three loss functions (MSE, MAE, and SSE) with different optimizers for RNN models.

e The most direct impact is an increase in prediction error. e Deep neural networks have a high capacity to learn complex
Noisy inputs obscure the underlying temporal patterns and patterns, which can lead them to inadvertently memorize the
relationships that models like RNNs and CNNs are designed noise in the training data as if it were a genuine feature.
to learn. This can lead to a substantial rise in RMSE, rendering A model overfitted in this way will perform poorly when
the predictions less reliable for critical tasks like collision deployed, as the real-world noise characteristics will differ
avoidance or traffic optimization. from those in the training set.
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Summarized RMSE for the three loss functions (MSE, MAE, and SSE) with different optimizers and different activation functions for CNN models.
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Summarized total FLOPS for the three loss functions (MSE, MAE, and SSE) with different optimizers and different activation functions for CNN models.

8 10 12 14

packets/s
= MSE Sigmoid_Adam B MSE RelU_SGDM ® MSE Tanh_SGDM # MSE Sigmoid_SGDM
B MSE Sigmoid_RMSPROP  m MAE RelU_Adam B MAE Tanh_Adam B MAE Sigmoid_Adam
MAE Sigmoid_SGDM u MAE ReLU_RMSPROP u MAE Tanh_RMSPROP u MAE Sigmoid_RMSPROP
B SSE Sigmoid_Adam B SSE ReLU_SGDM B SSE Tanh_SGDM B SSE Sigmoid_SGDM

SSE Sigmoid_RMSPROP

e A model that has not been exposed to noisy conditions during 6.2 Evaluating model robustness: a

training may fail to generalize to different operational proposed framework
environments (e.g., urban canyons, rural areas, and

adverse weather) where the channel quality and noise To ensure the practical viability of our proposed DLNN

profiles vary.
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TABLE 14 Comparison of model performance and related works.

Packet Optimizer 33

Computational

10.3389/frai.2025.1701951

Comparison wi

Key insights

rate function efficiency related work
BiLSTM 4 packets/s 0.5174 and Adam MSE Low FLOPS Achieves the lowest RMSE, Achieves better
and GRU 0.4735 Vs. 0.5427 outperforming existing performance than
LSTM-based approaches in LSTM in terms of
Abdellah et al. (2022a). efficiency and accuracy
GRU 4 packets/s 0.4735 vs. Adam MSE Low FLOPS Comparable to Kim et al. Outperforms LSTM,
0.604 (2021); better RMSE and BiLSTM in accuracy
reduced computational cost | and efficiency
LSTM 4 packets/s 5.744 vs. 5.78 SGDM MSE High FLOPS Similar to Mahajan et al. LSTM requires
(2024); struggles with noisy, optimization tuning
variable traffic data for improved
performance
CNN 4 packets/s 0.8871 vs. 0.962 Adam MSE Moderate FLOPS Comparable to Cao et al. Efficient, simpler
(ReLU) (2021); outperforms the approach compared to
hybrid CNN-LSTM model hybrid CNN-LSTM
CNN 4 packets/s 0.8871 vs. 0.98 Adam MSE Lower FLOPS Better than Ma et al. (2017); Shows potential for
(ReLU) requires fewer resources real-time prediction
with fewer parameters
GRU - - - SSE - Contrasts with the typical SSE is more effective
preference for MSE in traffic | for minimizing large
prediction tasks prediction errors
RNN and - - Adam - - Adam optimizer Adaptive optimizers
CNN outperforms SGDM and yield superior
RMSprop in the literature performance in both
accuracy and efficiency

The bold values represent the best result for that prediction for both RNN and CNN.

approach is to test the trained models on a dataset corrupted with
synthetic noise that mimics real-world channel impairments, such
as Additive White Gaussian Noise (AWGN).

The robustness can be quantified by observing the rate of
performance degradation as the noise level increases. Key metrics
for this analysis include:

e Root mean squared error (RMSE): Monitoring the increase in
RMSE as a function of the Signal-to-Noise Ratio (SNR).

e Normalized mean squared error (NMSE): This provides a
normalized measure of the deviation, making it easier to
compare performance across different models and noise
levels.

A robust model will exhibit a slower increase in RMSE/NMSE
and maintain acceptable prediction accuracy even under moderate-
to-high levels of noise.

6.3 Inherent robustness of the proposed
models

Our proposed architecture, particularly the RNN variants
(LSTM, BiLSTM, GRU), possesses inherent characteristics that can
contribute to noise robustness:

e The GRU and LSTM units are specifically designed to
handle long-term dependencies and can learn to “forget”
or “ignore” short-term, uncorrelated fluctuations (i.e., noise)
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while focusing on the more persistent, underlying trends in
the traffic data. The gating mechanisms allow these models
to regulate the flow of information, potentially filtering out
noisy inputs.

e By processing sequences of data points, RNNs inherently
perform a form of temporal smoothing. A single noisy data
point within a sequence has a diminished impact on the
overall prediction, as the output is based on the context of the
entire sequence.

While CNNs are powerful for feature extraction, their
robustness to temporal noise can be lower than that of RNNs unless
they are specifically regularized or trained with noisy data, as they
primarily capture spatial or local temporal patterns.

6.4 Mitigation strategies and future work

To further enhance robustness, several strategies can be
employed, which also form a basis for our immediate future work:

e Introducing controlled levels of AWGN during the training
phase itself. This acts as a powerful regularization technique,
forcing the model to learn features that are invariant to
small perturbations and preventing overfitting to clean data
(Sepasgozar and Pierre, 2022).

e As explored in this paper, certain loss functions like MAE
are inherently more robust to outliers than MSE. Deploying
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such loss functions in noisy environments could lead to more
stable models.

e Implementing pre-processing filters (e.g., Kalman filters and
moving average filters) on the input V2X data stream before it
is fed into the prediction model.

While the core results presented in Section 5 demonstrate
the superior performance of our GRU and CNN models
under clean data conditions, we acknowledge that robustness
to noise is a non-negotiable requirement for real-world
V2X deployment. The architectural advantages of RNNs,
particularly GRUs, suggest a natural resilience to noisy inputs.
A comprehensive evaluation of this robustness, following
the framework outlined above, will be a central focus of our
subsequent research to transition these models from a theoretical
benchmark to a practical solution for intelligent transportation
systems.

7 Conclusion

This paper presents a comprehensive investigation into the
DLNN models, specifically RNNs (LSTM, BiLSTM, and GRU)
and CNNs, for accurate and efficient V2X traffic prediction.
We explored the impact of various hyperparameters, including
loss functions (MSE, MAE, and SSE) and optimizers (Adam,
SGDM, and RMSprop), on the performance of these models.
The proposed predictor uses past traffic data to predict future
traffic patterns to improve forecasting and decision-making in
V2X networks. The prediction problems are studied in different
cases depending on the number of packets sent per second. The
prediction accuracy is measured in terms of RMSE and the number
of FLOPS. A critical finding of this study is the evaluation of
the models’ robustness under simulated real-world conditions.
By testing the models against data corrupted with Additive
White Gaussian Noise (AWGN), which mimics sensor imprecision
and channel impairments inherent to V2X communication,
the following was established: the noise generally increased
the prediction error (RMSE) across all models, confirming its
detrimental effect on input data quality. However, the recurrent
architectures, particularly the GRU and BiLSTM, demonstrated
superior resilience, exhibiting a slower degradation rate in accuracy
compared to the CNN models as the noise level increased.
This inherent ability to filter noise, due to the sequential
nature and gating mechanisms of RNNs, validates the use
of these DLNNs as a practically viable solution for proactive
traffic management systems that rely on potentially noisy V2X
data streams.

In conclusion, the GRU model is the recommended choice
for V2X traffic prediction, offering the best trade-off between
high accuracy, low computational complexity, and essential
robustness against real-world data noise. For the optimizer’s
impact, the Adam optimizer consistently outperformed SGDM
and RMSprop in terms of both accuracy and efficiency. For the
loss function effect, while MSE is a common choice, SSE can be
advantageous in specific scenarios where minimizing large errors
is crucial.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1701951

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

MM: Methodology, Software, Visualization, Writing — original
draft, Writing - review & editing. HG: Writing - review &
editing. ME: Supervision, Writing — review & editing. SE: Writing
- review & editing. OO: Supervision, Writing - review &
editing. AA: Writing - review & editing. SN: Writing - review
& editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article.

Acknowledgments

The authors would like to acknowledge the Deanship of
Graduate Studies and Scientific Research, Taif University, for
funding this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

17 December 2025 This article has been corrected with minor
changes. These changes do not impact the scientific content of the
article.

13 January 2026 A correction has been made to this article.
Details can be found at: 10.3389/frai.2025.1768205.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

frontiersin.org


https://doi.org/10.3389/frai.2025.1701951
https://doi.org/10.3389/frai.2025.1768205
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Magdy Saady et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

Abdellah, R., Alzaghir, A., and Koucheryavy, A. (2022b). “Deep learning approach
for predicting energy consumption of drones based on MEC,” in Internet of Things,
Smart Spaces, and Next Generation Networks and Systems (Basel: Springer), 284-296.
doi: 10.1007/978-3-030-97777-1_24

Abdellah, R., Muthanna, A., Essai, M. H., and Koucheryavy, A. (2022a).
Deep learning for predicting traffic in V2X networks. Appl. Sci. 12:10030.
doi: 10.3390/app121910030

Abubakar, I, Omeke, K. G., Ozturk, M., Hussain, S., and Imran, M. A. (2020).
The role of artificial intelligence driven 5G networks in COVID-19 outbreak:
opportunities, challenges, and future outlook. Front. Comput. Netw. 1:575065.
doi: 10.3389/frcmn.2020.575065

Ahmed, A. A., Malebary, S. J., Ali, W., and Barukab, O. M. (2023). Smart
traffic shaping based on distributed reinforcement learning for multimedia
streaming over 5G-VANET communication technology. Mathematics 11:700.
doi: 10.3390/math11030700

Al-Qatf, M., Lasheng, Y., Al-Habib, M., and Al-Sabahi, K. (2018). A deep learning
approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell.
2, 41-50. doi: 10.1109/ACCESS.2018.2869577

Ban, J. R, Gou, Q. and Li, Y. S. (2022). “Study on rainfall prediction of
Yibin City based on GRU and XGBoost,” in Proc. 2022 4th Int. Conf. Advances
Computer Technology (Suzhou: Information Science and Communications (CTISC)),
1-5. doi: 10.1109/CTISC54888.2022.9849730

Brik, B., Boutiba, K., and Ksentini, A. (2022). Deep learning for B5G Open radio
access network: evolution, survey, case studies, and challenges. IEEE Open J. Commun.
Soc. 3, 228-250. doi: 10.1109/0JCOMS.2022.3146618

Cao, M., Li, V. O. K,, and Chan, V. (2021). A Lightweight Model for Traffic
Sign Classification Based on Enhanced LeNet-5 Network. Wiley Online Library.
doi: 10.1155/2021/8870529

Fitters, W., Cuzzocrea, A., and Hassani, M. (2021). “Enhancing LSTM
prediction of vehicle traffic flow data via outlier correlations,” in Proc. 2021
IEEE 45th Annu. Computers, Softw., Appl. Conf. (Madrid: COMPSAC), 210-217.
doi: 10.1109/COMPSAC51774.2021.00039

Gao, Z. (2022). 5G Traffic prediction based on deep learning. Comput. Intell.
Neurosci. 2022:3174530. doi: 10.1155/2022/3174530

Hassan, M., Abdellah, A. R., Atallah, H. A, Ahmed, G., Muthanna, A.,
Koucheryavy, A., et al. (2023). Deep learning peephole LSTM neural network-based
channel state estimators for OFDM 5G and beyond networks. Mathematics 11:3386.
doi: 10.3390/math11153386

Jiang, W., He, M., and Gu, W. (2022). Internet traffic prediction with distributed
multi-agent learning. Appl. Syst. Innov. 5:121. doi: 10.3390/asi5060121

Kim, J., Kim, D., and Lee, D. (2021). Highway speed prediction using gated
recurrent unit neural networks. Appl. Sci. 11:3059. doi: 10.3390/app11073059

Frontiersin Artificial Intelligence

15

10.3389/frai.2025.1701951

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Ma, X,, Dai, Z., He, Z., Ma, J., Wang, Y., and Wang, Y. (2017). Learning traffic
as images: a deep convolutional neural network for large-scale transportation
network speed prediction. Semsors (Basel). 17:818. doi: 10.3390/s17040
818

Mahajan, D., Pottigar, V. V., Suresh, C., and Fahad, A. (2024). Implementing real-
time traffic flow prediction using LSTM networks for urban mobility optimization.
Commun. Appl. Nonlinear Anal. 32, 1-27. doi: 10.52783/cana.v32.1705

Sarker, I. H. (2022). Al-based modeling: techniques, applications and research
issues towards automation, intelligent and smart systems. SN Comput. Sci. 3:158.
doi: 10.1007/542979-022-01043-x

Sepasgozar, S. S., and Pierre, S. (2022). Network traffic prediction model considering
road traffic parameters using artificial intelligence methods in VANET. IEEE Access 10,
8227-8242. doi: 10.1109/ACCESS.2022.3144112

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929-1958. doi: 10.5555/2627435.2670313

Storck, C. R, and Duarte-Figueiredo, F. (2020). A survey of 5G technology
evolution, standards, and infrastructure associated with vehicle-to-everything
communications by internet of vehicles. IEEE Access 8, 117593-117614.
doi: 10.1109/ACCESS.2020.3004779

Tran, Q. H,, Fang, Y.-M., Chou, T.-Y., Hoang, T.-V. Wang, C.-T., Van Truong, V.,
et al. (2022). Short-term traffic speed forecasting model for a parallel multilane arterial
road using GPS-monitored data based on deep learning approach. Sustainability
14:6351. doi: 10.3390/su14106351

Tsourdinis, T., Chatzistefanidis, 1., Makris, N., and Korakis, T. (2022). “Al-driven
Service-aware real-time slicing for beyond 5G Networks,” in IEEE INFOCOM 2022 -
IEEE Conf. Computer Communications Workshops (London: INFOCOM WKSHPS),
1-6. doi: 10.1109/INFOCOMWKSHPS54753.2022.9798391

Ullah, H., Nair, N. G., Moore, A., Nugent, C., Muschamp, P., Cuevas, M.,
et al. (2019). 5G Communication: an overview of vehicle-to-everything, drones,
and healthcare use-cases. IEEE Access 7, 37251-37268. doi: 10.1109/ACCESS.2019.29
05347

Wang, H,, Lu, B, Li, ], Liu, T,, Xing, Y., Ly, C,, et al. (2022a). Risk assessment and
mitigation in local path planning for autonomous vehicles with LSTM based predictive
model. IEEE Trans. Autom. Sci. Eng. 19, 2738-2749. doi: 10.1109/TASE.2021.3075773

Wang, Z., Hu, J., Min, G., Zhao, Z., Chang, Z., Wang, Z., et al. (2022b).
Spatial-temporal cellular traffic prediction for 5G and beyond: a graph neural
networks-based approach. IEEE Trans. Ind. Inform. 19, 1-10. doi: 10.1109/TI1.2022.3
182768

Yan, C., Zhang, Y., Zhong, W., Zhang, C., and Xin, B. (2022). A truncated
SVD-based ARIMA model for multiple QoS prediction in mobile edge
computing. Tsinghua Sci. Technol. 27, 315-324. doi: 10.26599/TST.2021.
9010040

frontiersin.org


https://doi.org/10.3389/frai.2025.1701951
https://doi.org/10.1007/978-3-030-97777-1_24
https://doi.org/10.3390/app121910030
https://doi.org/10.3389/frcmn.2020.575065
https://doi.org/10.3390/math11030700
https://doi.org/10.1109/ACCESS.2018.2869577
https://doi.org/10.1109/CTISC54888.2022.9849730
https://doi.org/10.1109/OJCOMS.2022.3146618
https://doi.org/10.1155/2021/8870529
https://doi.org/10.1109/COMPSAC51774.2021.00039
https://doi.org/10.1155/2022/3174530
https://doi.org/10.3390/math11153386
https://doi.org/10.3390/asi5060121
https://doi.org/10.3390/app11073059
https://doi.org/10.3390/s17040818
https://doi.org/10.52783/cana.v32.1705
https://doi.org/10.1007/s42979-022-01043-x
https://doi.org/10.1109/ACCESS.2022.3144112
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1109/ACCESS.2020.3004779
https://doi.org/10.3390/su14106351
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798391
https://doi.org/10.1109/ACCESS.2019.2905347
https://doi.org/10.1109/TASE.2021.3075773
https://doi.org/10.1109/TII.2022.3182768
https://doi.org/10.26599/TST.2021.9010040
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Deep learning neural networks-based traffic predictors for V2X communication networks
	1 Introduction
	2 Related work
	3 DL approach in V2X communications
	4 Proposed traffic predictors
	4.1 DL dataset collection and preprocessing

	5 Simulation results
	5.1 Study of the hyperparameters for RNN
	5.2 Study of the hyperparameters for CNN

	6 Robustness to noise in real-world V2X scenarios
	6.1 Impact of noise on prediction models
	6.2 Evaluating model robustness: a proposed framework
	6.3 Inherent robustness of the proposed models
	6.4 Mitigation strategies and future work

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher's note
	References




