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With the fast development of electric vehicles, the demand for intelligent charging
management strategies in order to minimize operational costs, ensure grid stability,
and enhance user satisfaction. This paper proposes a new framework that embeds
multi-MARL algorithm tuned by the Pelican optimization algorithm (POA) bidirectional
long short-term memory for anticipatory energy forecasting scheduling in EV charging
stations—EVCS. Unlike previous works that treat forecasting, the proposed method
seamlessly unifies these steps, which were hitherto considered as separate entities:
optimization and then scheduling. Components within a Markov decision process
formulation. The framework employs publicly available Indian Energy Exchange
(IEX) day-ahead market data, where POA-tuned BiLSTM forecasts electricity price
and demand with improved accuracy, feeding into the MARL controller for dynamic
scheduling. Experimental results demonstrate that the proposed method reduces
charging cost by 12.34%, improves state-of-charge (SOC) satisfaction by 10.25%, and
increases forecasting accuracy by 8.46% compared to conventional GA, PSO, MARL,
and deep learning baselines. Furthermore, simulation time is reduced by 0456 s,
confirming computational efficiency. This study presents integrated frameworks
that combine POA-tuned BiLSTM forecasting with a CTDE-based MARL architecture
for anticipatory EV charging scheduling.

KEYWORDS

MARL, EVCS, Pelican optimization algorithm, BiLSTM, decision making, charging and
discharging

1 Introduction

Electric vehicles (EVs) have emerged as an important concept in a number of nations to
lower pollution levels in the environment in recent years (Shao et al., 2023a). EPRI data shows
that by 2035, up to 40 and 45% of gasoline-powered vehicles will be replaced by electric
vehicles in China and the United States, respectively (Pan et al., 2023). EVs are mainly utilized
due to low carbon emissions and high energy efficiency, and they may even reduce the rate of
climate change (Shao et al., 2023b). Moreover, due to the inherent flexibility in EV charging,
auxiliary services like demand response and peak shaving can be offered to the grid (Yasmin
etal., 2024). The increasing number of EV's have been accompanied by a significant increment
in the number of EV charging stations (Yang et al., 2022). Charging stations serve as
middlemen between EVs and electricity producers by adjusting the amount of electricity
provided to EVs and the amount of electricity acquired from energy producers. Therefore, it
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is important to balance energy supply and load demand in EV
charging stations (EVCS) (Bessa and Matos, 2012).

Intricate decision-making problems can be effectively solved with
reinforcement learning (RL), which can also be used to generate
intelligent EVCS recommendations Lamontagne et al. (2023). Agents
can maximize long-term goals by learning from repeated trial and error
in the RL method (Bachiri et al., 2023). However, standard Q-learning
algorithms have difficulties in the large-scale environment with millions
of EVs and thousands of charging stations (Wong et al., 2023). As the
agent gets updated by receiving rewards for every positive action,
penalties for unwanted actions, RL become more significant for learning
and decision-making. The dimensionality is the only drawback of RL
(Oroojlooy and Hajinezhad, 2023). Therefore, in recent years, MARL has
been used in EV applications for optimal energy scheduling in charging
stations. A collection of independent, interacting entities that share a
common environment is referred to as a MULTIAGENT system (Ren
etal, 2023; Ray et al., 2023). Various sectors like robotics, distributed
systems, resource utilization, collective decision support systems, etc.
using multi agent systems to get better results (Dong et al., 2023). Itis a
time-sequential issue to control the charging/discharging power for EVs
to reduce charging costs while taking into consideration many
unpredictable elements. As a result, the EV charging problem has been
formulated as an MDP with MARL in numerous studies (Kaewdornhan
et al,, 2023). Deep reinforcement learning with a recurrent neural
network-based EV scheduling was recommended in Li et al. (2023). It
considered the uncertainties in EV users and increased the
computational time, but the cost was not reduced. In Jin et al. (2023), a
bi-layer steady state evaluation was done by considering the load margin
index in the steady state voltage security region. Optimal load scheduling
with energy management was performed using this method. Aljafari et
al. (2023) suggested a multi-agent deep neural network-based energy
scheduling with dynamic load change. This method also controls the
charging and discharging characteristics of EV, but the computation time
was high in this method. Numerous works are introduced in this field,
but they still suffer from disadvantages like high computational time,
high cost, etc. Therefore, this paper proposed a novel method with an
MARL framework for optimal power scheduling of EVs in a
charging station.

1.1 Research gaps and contribution

While there have been significant developments in reinforcement
learning and forecasts-based energy management, the majority of
studies in existing literature regarded EV charging optimization, price/
load forecasting, and parameter tuning within the different studies as
separate modules. This distinction frequently leads to limitations on

Abbreviation: SOC; , State of charge of EV i at time t; Pt , Forecasted electricity
price (INR/kWh) from BiLSTM; I:t, Forecasted load/demand; PVt, Photovoltaic
power at time t; ai , Action of agent i (charging/discharging rate); Rf; , Reward
ofagentiattimet; «,y,& , Learning rate, discount factor, and exploration decay

;Dmk , Peak demand

rate; Aj,4 , Weighting coefficients in reward function; D.
deviation attime t; zg, Policy function parameterized by 6; Q(St N ) Centralized
critic function; POA, Pelican optimization algorithm; BiLSTM, Bidirectional long
short-term memory; MARL, Multi-agent reinforcement learning; CTDE, Centralized

training, decentralized execution; IEX, Indian Energy Exchange.
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the model’s ability to adapt, and increases dependencies on
computational resources. Moreover, typical reinforcement learning
approaches based on prior research have been based on static and/or
reactive control strategies that do not anticipate future anticipated
price/load volatility. Earlier forecasting studies were similarly limited
due to their consideration toward automatic parameter tuning,
therefore the forecasting accuracy, responsiveness, and convergence
capability were inevitably compromised. In this study, the identified
gaps in research literature of EV charging forecasting and optimization,
the authors propose a new integrated hybrid framework that combines
a POA tuned BiLSTM forecaster with a MARL scheduler, within a
consolidated MDP formulation. The coupling of these two modules
enables anticipatory and cost-driven value-added decision-making,
allowing agents to adjust their charging schedules in a proactive
manner using predicted IEX day-ahead prices, along with anticipated
demand patterns. The hybrid POA-BiLSTM-MARL framework is a
novel contribution to existing literature, attempting to make arbitraged
decisions based just in time for each decision point. In summary, the
significant contributions of this are work:

o A multistage reward function is developed to optimize the
stability and financial performance of MARL-based EV
charging decisions.

A highly efficient BiLSTM-based forecasting model was
developed to accurately forecast the short-term electricity price
and load.

» The POA is used to automatically tune the hyper-parameters of

the BiLSTM, which results in the improvement of forecast
accuracy by up to 8.46%.

The resulting hybrid framework reduces charging cost by 12.34%,
improves SOC satisfaction by 10.25%, and runtime by 0.456 s
compared to the state-of-the-art baselines.

In contrast to prior research which addressed reinforcement learning
and forecasting individually, this work presents a hybrid framework that
integrates forecasting, meta-optimization, and multi-agent control into
one decision-making framework. The Pelican optimization algorithm
(POA) is not just utilized as a standalone optimizer but is instead
automatically tuning the BILSTM model’s hyperparameters to facilitate
enhanced forecasting reliability. These forecasts are then optimally
incorporated in the MARL environment for anticipatory scheduling
decisions. Additionally, CTDE-based MARL structure promotes scalable
and cooperative learning while increasing convergence stability and
reducing compute time across multiple EV agents. The design is uniquely
integrated into the decisions as a methodological advancement from
prior works that treat them separately.

The remainder of this paper is organised as follows: Section 2
discusses some of the existing works related to MARL in EV
applications. Section 3 briefly explains the proposed methodology
with its techniques. Results and discussion of the proposed work with
comparative results are presented in Section 4. Conclusion of the
proposed work and future scope are given in Section 5.

2 Related works

Some of the existing works related to these fields are discussed in
this section.
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In order to address the scalability challenges of large-scale smart
grid systems, Alqahtani et al. (2022) suggested reformulating a mixed-
integer programming (MIP) model into a decentralized Markov
decision process (DEC-MDP) model and solving it using a MARL
algorithm. MIP method schedules the energy and feeds it to a specific
location in each step. The MIP decision model is then reformulated as
a DEC-MDP, in which the EV's were first arranged in a centralized
manner and subsequently implemented in a decentralized manner.

Qiu et al. (2022) recommended a novel method to enhance the
performance of the EV scheduling process. MARL-based method was
used for aligning the EV power in a discrete and continuous process.
The performance of this method was enhanced by including a
decentralized partially observable MDP integrated with a hybrid
MARL method Yang et al. (2020). The proximal policy optimization
(PPO) algorithm was employed to calculate the Q-value in the
network. This method optimally reduced the load shedding and
enhanced the stability of the distribution system.

Mishra and Singh (2025) suggested a DRL method in an EVCSs
in order to minimize the expenses in the charging station. A user
equilibrium traffic assignment problem (UE-TAP) was used in this
method to design the power and transportation system. In addition to
reducing the scope of interactions between agents, neighbourhood
factorization implicitly maintains the global information within a pair.
The learning function was approximated by applying the mean-field
theory in the suggested method. This method optimally reduced the
charging cost in the charging station, which was an advantage for the
EV consumers.

Xuetal. (2020) recommended a neural network-based Q-learning
algorithm for home energy management. Extreme learning machine
and Q-learning were suggested under a data-driven framework to
increase the computational frequency in this method. Home
appliances and EV charging stations were considered as a load, a
suggested method to satisfy the load demand optimally Alamir et al.
(2023). The decision-making procedure for accurate and realistic
scheduling was done by the suggested feedforward NN. This method
reduced the electricity bill and satisfied the demand response of the
consumer optimally.

Lietal. (2022) recommended a novel method to reduce the losses
in the distribution transformer in an EV charging station. An LSTM-
based NN method was included in this work to evaluate the
uncertainties caused by the load demand. The EV charging station’s
charging issue was rectified by integrating a multi-agent deep
reinforcement learning method. The recommended method opponent
network processes to process the EVs information by using the
attention mechanism. This method effectively directs the actor
network’s creation of coordinated strategies. Each agent’s decision-
making capabilities were built through offline training and then
implemented online to choose the control actions according to the
most recent information about the condition of the system. Recent
research has also focused on extending reinforcement learning to
sustainability-oriented EV operations. Zhou et al. (2025) introduced a
multi-agent DRL framework for self-consumption scheduling in
highway EV charging stations, while Satpathy et al. (2025) explored
sustainable and technology-driven strategies for enhanced EV
performance and integration. These studies reflect the growing shift
toward renewable-aware and market-adaptive EV scheduling models.

Unlike Qiu et al. (2022), Mishra and Singh (2025), Xu et al. (2020),
Lietal. (2022), Jamjuntr et al. (2024), Zhou et al. (2025), Satpathy et al.
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(2025), and Alduailij (2025), which combine MARL with conventional
forecasting or optimization, the proposed work uniquely integrates
POA-tuned BiLSTM within a CTDE-based MARL framework. This
addresses both forecasting uncertainty and hyperparameter sensitivity
simultaneously, which has not been jointly studied in recent literature.
Table 1 provides a detailed comparative summary of recent MARL-
based EV scheduling studies, highlighting the distinct methodological
advances, datasets, and performance benchmarks. The proposed
framework distinguishes itself by integrating a POA-tuned BiLSTM
forecaster within a CTDE-based MARL structure, bridging the
forecasting and optimization gap identified in prior research.

3 Proposed methodology

EVs are the foundation of future mobility due to their advantages,
like no emissions and being eco-friendly. EVs can also be blended as
distributed energy resources (DERs) into the smart grid by using a
vehicle-to-grid (V2G) scheme. Renewable energy sources are mostly
used a distribution generation in modern days due to their advantages
like low carbon emissions and pollution-free. In this work, a solar
photovoltaic system (PV) is used as a source for the EVCSs. Excess
power generated from the PV sources is stored in the battery energy
storage system for future use. This paper proposes a novel framework
for EV energy management scheduling based on reinforcement learning
in achieving an efficient EVCSs-based BiLSTM to satisfy demand
response. A MARL method schedules the energy intensity of an EVCSs
to control the maximum performance level of the grid. BiLSTM reduces
the inaccuracies of autonomous predictions of energy calculations with
the help of EV agents. The energy scheduling charging issue is reduced
using the proposed MARL. After completing the training process, all of
the agents are trained centrally to create coordinated control strategies
and make decisions based on local inputs. BILSTM is used in this work
to enable the EV charging station to make reasonable decisions
concerning historical decision information. The POA is used in this
work to optimize the hyperparameters of the BILSTM.

3.1 Modelling of EV

EVs have gained a lot of interest due to cost-effective and
environmentally friendly alternative for EV with internal combustion
engines. Because they reduce reliance on fossil fuels and greenhouse
gas emissions, EVs are desired. It takes equipment to charge EVs,
which is essential for their daily use and grid integration (Jang et al.,
2020). Batteries’ capacity to charge and discharge is used to model
EVs. The majority of batteries used in EVs are lithium-ion batteries
because of their energy density and durability. The cells of these
batteries are arranged in a module by connecting them in series and
parallel. The components of a charging station usually include a
power outlet, EV connector, attachment plug, charge cord, charge
stand, and protective system. The main element influencing charging
time, cost, equipment, and grid impact is the charger power level. A
lot of things need to be considered when building the charging
station are as follows;

E"™ (kWh) is nominal battery capacity of EV i, (Trojovsky and
Dehghani, 2022). Power balance in EVCS is represented in
Equation (1) as follows:
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TABLE 1 Comparative literature review and novelty summary.

References Methodology/ @ Forecasting or
optimization

component

core approach

Dataset or
case study

Reported
performance/
key outcomes

Limitations/

gaps
identified

10.3389/frai.2025.1700664

Novelty difference
from proposed
work

Qiu et al. (2022) Hybrid MARL for EV. | Deep RL-based IEEE Test Improved resilience No integration of Proposed model unifies
resilience control scheduling without Systems and load balancing prediction or meta- =~ MARL with predictive POA-
explicit forecasting optimization tuned BiLSTM forecasting
Mishra and Singh Multi-agent deep RL None (static pricing) Synthetic EVCS | Reduced cost and Ignores future Proposed work introduces
(2025) for EVCS game model dataset congestion demand and price anticipatory control through
variability POA-BIiLSTM
Xu et al. (2020) Multi-agent Q-learning | None; used fixed tariffs Smart home 7-9% cost saving Not scalable to Current work extends to
for home energy simulation multi-EV large-scale EVCS with
management environments dynamic market pricing
Lietal. (2022) LSTM-aided MARL for | LSTM forecasting Grid-connected | Improved transformer | Hyperparameters POA automates

transformer lifetime (manual tuning) EV network health index by 5% manually fixed; no hyperparameter tuning for
optimization meta-optimization | BiLSTM forecasting
Jamjuntr et al. Adaptive MARL for Rule-based price input Regional Reduced cost by 8.2% | Lacks learning- Proposed framework embeds
(2024) EV networks in testbeds based forecasting predictive forecasting with
Thailand MARL

Ren et al. (2023) Dynamic power None

Extreme-fast

Minimized overload

No learning or

Present study integrates

allocation for fast EVCS risk multi-agent multi-agent control under
charging coordination CTDE strategy
Aljafari et al. (2023) | Deep neural network Feed-forward NN Simulated grid = Enhanced flexibility in | No reinforcement Current model fuses deep
for dynamic pricing charging/discharging  learning integration = learning with MARL and
scheduling POA meta-optimization
Kamrani et al. Multi-agent DRL for PPO-based coordination | IEEE 33-bus Stable convergence Forecasting not Proposed system embeds
(2025) fair EV dispatch system under dynamic load included price-demand forecasting
into MARL state
Shojaeighadikolaei | Centralized vs. None Simulation Improved control No integration of Proposed
etal. (2024) decentralized MARL study efficiency forecasting or CTDE + POA + BiLSTM
for EV charging optimization hybrid bridges both aspects
This work POA-tuned BIiLSTM forecasting IEX Day-Ahead = Cost | 12.34%, SOCt | — Integrates forecasting, meta-
BiLSTM + MARL optimized by POA Market (India) 10.25%, Forecast optimization, and multi-
under CTDE Accuracy 1 8.46% agent scheduling in a unified
MDP framework
dis ch .
Pgrid,t +Ppy s+ § Pit =Payxs + E pit 1 5= E!Jeq (3)
i i T

where Perigy >0, means import, pdis positive means EV
discharging, t is the time step (h), Pgrid,t , represent net real power
at grid intertie (>0 import, <0 export), Ppy; represent PV real
power available at bus, p{if is the discharging power set-point for
EV i, pf}t' is charging power set-point for EV i, P,,,, station
auxiliary load (HVAC, lighting). Load demand in the EVCS is based
on the requirement for EV arrival. All power values are in (kW).
The energy requirement from the target SOC Equation (2)
given below,

Ei,req = ed,- (2)

where Ej ., , represents the energy (kWh) required to reach the
target SOC for EV i, e is energy consumption per km (kWh/km), d;
is the trip distance (km). Power is given by Equation (3)

Frontiers in Artificial Intelligence

with T; = available dwell time (h). E/'®™ represents nominal

battery energy capacity (kWh) of EV i, SOC; represents the SOC of
EV i. The limit of charging and discharging of EVs is considered
based on the SOC of EVs. This SOC can be evaluated using below
Equation (4):

n_ 1 g
77ch~pic,t T i,lst
SOC; 141 =SOC;; +———Mis ___py (4)
Einom

where pf}t’ is charging power (kW), p,d,ist is discharging power
(kW), Ata istime step (h), E/"°" is capacity (kWh), 774, & 1745 are
charging and discharging efficiencies.

The limit of the EV battery (Kumar et al., 2023) is set based on
below Equation (5) for all £

frontiersin.org
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soCMin <50C; , < SOCmax (5)

where, SOC{nin & SOCM™* are allowed SOC bounds. Cost for
interval ¢ is given by Equation (6):

_ imp __ 1 €xXp pexp
Cr=4 Pgrid,t At =24 Pgrid,t At (6)
where,
Pé;"g ¢ =max (Pgrid,t ,0) , P;:is’ , =max ( —Pyridy ,0)

Here Py, is the net power exchange with the grid at time ¢
imp

(kW), positive for imports and negative for exports. P, . and

P;:(igl,t are the imported and exported power m'fénitudes,
respectively. /; is the import tariff (INR/kWh), 4F is the feed-in
tariff, and At is the time-step length (h). This convention ensures
that C; >0 during net imports (a cost) and C; <0 during net

exports (a revenue or saving).

3.2 MARL

MARL addresses sequential decision-making problems, but with
more than one agent involved. A group of independent agents
interacts with their surroundings in MARL to figure out how to
accomplish their goals. Although MDPs are useful in simulating
optimal decision-making in stochastic single-agent systems, a
different representation is needed for multi-agent environments. The
fundamental stationary assumption of an MDP is broken when all
agents act together, altering the state dynamics and expected rewards.
MDPs may appear to the agent fully or partially. The way in which
agents interact, cooperative, competitive, or mixed, and whether they
operate concurrently or sequentially, determines how the problem is
represented in a multi-agent context. For high-dimensional
situations, MARL performs better than deep reinforcement learning
and other optimization methods (Canese et al., 2021). It can execute
in a decentralized manner as well as conduct training in a centralized
manner, which reduces execution time and places fewer restrictions
on the agents. Because large-scale energy problems involve many
factors that are dynamic in nature and call for quicker decision-
making processes, MARL is an effective option for handling them.
Additionally, a multistep reward function is suggested in place of an
immediate reward function, taking into account how suitable
shortened steps can enhance the MARL-based approaches’ economic
performance and learning speed in the power market. Figure 1
represents the MARL in the proposed work.

The MDP is a powerful modelling technique for sequential
decision-making issues (Shao et al., 2023b), acting as a crucial
connection between reinforcement learning algorithms and
optimization problems with unpredictable state transitions (Zhang et
al,, 2021). The important functions of MDP are as follows:

State: The charging demand restrictions and aim of the
optimization problem are discretized over a time scale to formulate
the state based on the SOC of EVs.
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# Reward

State

FIGURE 1
Multi-agent reinforcement learning.

Action: Consistency and relevance are ensured by the development
of actions in accordance with decision variables.

Reward function: This takes into consideration the charging
station’s power limitations as well as the optimization goal. The
reward function incorporates the charging station’s power. This
is because it is impossible to impose the charging station’s overall
power limit as a constraint for each charging pile due to the local
and decentralized nature of the charging and discharging
decisions made for each charging pile (Jain et al., 2022). The
local state of each agent is expressed in Equations (7) and (8)

as follows:
i i
Gi ={Ncsj>Lcsj>ai} )
0 0 0 0
N, cs0 N, cs3 LCSO Lcs3 )
1 1 1 1
(= Neso =+ Nes Lo Legs a
1 . . . . . . .
k-1 k-1 k-1 k-1
NCSO o cs3 LcsO Lcs3 a1 (8)

where, ¢; indicates each agent, a; denotes the previous
action of the agent, L’;j means the number of EVs available
currently in the charging station with neighbouring agents, k
signifies the number of other agents, and represents the length
of the queue in the charging station. Each agent can record the
current count of charging EVs, the current length of the
charging station’s queue, and the neighbouring agent’s current
action plan. The agent considers how many vehicles are
charging in the EVCS within its control range, as well as how far
the EVCS has to go.

3.3 BiLSTM

Time-series forecasting of electricity prices and EV demand
requires a model capable of capturing both short- and long-term
dependencies. In this work, a BiLSTM network is adopted
because it processes sequences bidirectionally, which allows the
model to exploit contextual data from the timeline simultaneously
Suebsombut et al.(2021). Unlike a standard LSTM, which only
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propagates information forward, the BiLSTM improves learning
of temporal correlations that are critical for volatile market prices
(Gen and Lin, 2023). In the proposed framework, the BiLSTM is
trained on historical IEX data to predict 15-min-ahead price
signals. These predictions are then supplied as inputs to the
MARL scheduler. By explicitly incorporating forecasting into the
scheduling loop, the agents are able to anticipate tariff
fluctuations rather than reacting to them (Houran et al., 2023).
The hyperparameters of the BiLSTM, including hidden layer size,
learning rate, and dropout ratio, are optimized automatically
using the Pelican optimization algorithm.

Figure 2 shows the BiLSTM model. To analyse various EVs’
charging or discharging, the predicted data is provided as an
input to the MARL-based proposed approach. In the proposed
framework, the POA is employed solely to optimize the
hyperparameters of the BILSTM forecasting model. These include
the number of hidden layers, neuron count, learning rate,
dropout ratio, and look-back window size. This optimisation
enhances forecasting accuracy for short-term electricity price and
demand, which subsequently improves the quality of decisions
made by the MARL scheduler. The MARL learning parameters
(a, y, €) remain fixed throughout training and are not
influenced by POA.

10.3389/frai.2025.1700664

X Xy, X1, X1,m
X=| X; =| Xi1 Xi1 Xim 9)
XN Insm N, XN, j XN | ym

where, X represent the population matrix and X; represents i*
pelican. A possible value is denoted by rows, and the column shows
an optimal value. The population initialization takes place, based on
lower and upper bounds as given in Equation (10)

Xij=Aj+R(B;~A))

(10)

where, X;; represent the j* variable value in i* candidate
solution, m is the problem variable, R, N, B, A, represents the
random population range, the total number of the population, the
upper bound, and the lower bound in the search range, respectively.
The fitness function is evaluated using Equations (11) and (12)

as follows:
3.4 POA
i F(X;)

POA is a bio-inspired algorithm technique that imitates the : :
hunting behaviour of pelicans. For finding out the best value in the F=| E _ F( Xi) (11
global optimal solution, this approach offers the best exploration and . .
exploitation (Pande and Khekare, 2024). POA method is initialized E F X
based on below Equation (9): N Nxa ( N) Nx1

Y1 Yt Y1 Output layer
A A A
Backward layer
«—— LSTM LSTM « LSTM
A
Forward layer
LSTM > LSTM > LSTM —
A A A
L Input layer
Xt-1 Xt Xit+1 P y
FIGURE 2
BiLSTM model.

Frontiers in Artificial Intelligence

06

frontiersin.org


https://doi.org/10.3389/frai.2025.1700664
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Khekare and Vedaraj IS

F=min(cost) (12)

where F is the fitness function. The selection of weight
parameters to achieve optimal power flow having minimum cost is the
objective function.

3.4.1 Phase 1 (exploration)

Within the search space, the position of POA is randomly
generated. POA can accurately explore the problem-solving space
with Equations (13) and (14):

X; j+R{(P;=Ri:X; ), F,<F

xPt= (13)
Xi,j+R'(Xi,j_Pj)’ else
P1 Pl
X;, E
X=X A (14)
X; else.

where, X,!P 1 , P, Fp ) F,-P 1 , represent the exploration phase
status, the location of prey in j* dimension, the objective function
value and the fitness function, respectively, based on phase 2.

3.4.2 Phase 2 (exploitation)

The hunting behaviour of pelicans is used for this section. This
section is designed as follows: The position update phase takes place
and updates the parameters for the next iterations with the following
Equations (15) and (16):

P2 t
X; 7 :X,»,j+R(1—Tj-X,-’j-(2R—1) (15)
P2 P2
x =%k (16)
X; else.

where, szj, t, T, F,-P2 , indicates a new position based on
phase 2, the iteration counter, a maximum number of
iterations and an updated objective function, respectively. This
method will choose the optimized weight parameters with
minimum cost. Figure 3 shows the flow diagram of the proposed
POA method. Algorithm I represents the steps included in tuned

BiLSTM with CTDE-MARL EV scheduling.

ALGORITHM
EV scheduling
1. Preprocess data:

1POA-tuned BiLSTM — CTDE-MARL

1.1 Normalize D_market; engineer features (price_lag k,
volume_lag k, time_of_day, weekday, PV_forecast, temperature).
1.2 Split D_market into train/val/test

2. POA hyperparameter tuning for BILSTM:

2.1 Initialize POA population P (each particle encodes BILSTM
hyperparams: num_layers, hidden_units, learning_rate, dropout,
lookback_window).

2.2 For iter = 1...max_iters_ POA:

For each particle p in P:
- Build BiLSTM model M_p with hyperparams(p).
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- Train M_p on D_market_train for N_epoch (early
stopping on val loss).
- Evaluate val_loss_p
- Update P according to POA update rules (exploration/
exploitation).
2.3 Select best particle p* — final hyperparams_h*.

3. Train final BiLSTM forecaster F_forecast with hyperparams_h*
on combined train+val data.

4. Apply POA only to tune BiLSTM hyperparameters (network
depth, learning rate, temporal window size).
4.1 Train BiLSTM with optimised parameters.
4.2 Update MARL policies using PPO with fixed «, v, and
e values.
4.3 Prevent any POA interaction with MARL policy learning.

5. MARL training (CTDE):
5.1 Initialize centralized critic network Q_c and decentralized
actor networks {n_i}.
5.2 For episode = 1...episodes:
Reset environment E_aug with sampled EV arrival/departure
traces from D_ev.
For step = 1...max_steps:
- For each agent i: observe s_tAi and select a_tAi ~
m_i(s_tAi).
- Execute joint actiona_t = {a_tAi}; environment returns
s_{t+1}, r_t, done.
- Store transitions (s_t, a_t, r_t, s_{t+1}) in centralized
replay buffer.
- After K steps: update Q_c and ©_i parameters using CTDE
update rules
- Periodically update target networks and evaluate on
validation traces.

6. Evaluate:
- Evaluate trained policies on test traces. Report: cost reduction,
SOC reliability, forecasting RMSE/MAE/MAPE/R?, computation time.

End.

3.5 Dataset description

The forecasting component in this study relies on publicly
available day-ahead market (DAM) price data obtained from the
Indian Energy Exchange (2025). For longer-term historical
coverage, a curated Kaggle mirror dataset (Mukund, 2024) is also
utilized. To ensure transparency and reproducibility, the
forecasting component in this study relies on publicly available
day-ahead market (DAM) price data obtained from the Indian
Energy Exchange (IEX). The IEX publishes 15-min interval price
data from April 1st, 2022, onwards. In order to achieve longer-
term historical coverage, the paper leverages a curated Kaggle
mirror dataset ranging from 2019 to 2024. Each record includes
approximately 35,040 records per year (96 entries per day) for
variables of interest, such as electricity price in INR/kWh, time
block, and market-clearing price. Temporal splitting was carried
out to preserve the chronological integrity of the dataset for
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FIGURE 3
Flowchart for POA.

experimental evaluation. Thus, the training set consists of data
from 2019 to 2022, the validation set consists of the full year of
2023, and the independent test set ranges from January to June
2024. This ensures that model evaluation is performed on unseen
and follows the
forecasting scenarios.

future data requirements of realistic

3.6 Markov decision process formulation

For rigorous validation of the proposed method, it is necessary to
establish a well-defined mathematical framework. This section
outlines the exact MDP structure, state and action spaces, reward
design, and data-driven forecasting module. The consolidation of
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these components enhances reproducibility and eliminates
interpretational uncertainty.

3.6.1 The EV charging scheduling is represented
as a finite-horizon MDP

Equation (17) represents the EV charging scheduling as a finite-
horizon MDP

M=S,A,P,R,y 17)

« State space (S): At time t(h) , the system state is given in
Equation (18)
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5 :{SOCf,Périd,Pf)V,ﬂt,QtL[} (18)

where SOC}f is the state-of-charge of EV i, P‘;i YIRS the available
grid power (kW), Ppy is photovoltaic generation, 4, is the market
(INR/kWh), and Q;

transformer loading.

price denotes, queue, and L; is

o Action space (A): Each agent i selects an action ai €| 0,P™ | g,
representing the charging/discharging rate in kW, bounded by
charger capacity and SOC limits.

Transition probability (P): Defines the stochastic evolution of
SOC and system load, influenced by EV arrivals, departures, and
renewable generation uncertainty.

» Reward function (R): To ensure commensurate scaling across
economic and technical objectives, we use unit-free terms,
Equation (19) represents Reward function as follows:

Ppeak L
Ry =—24, G - t td—/'tgmax 0,—t——1
Crnax Ptr:; ¢ limit
1 Na
~Asoc—— 3 |SOC; ; —SOC; " (19)
Nev i3

where C; is the grid energy cost at time ¢, Cy,x is a reference
maximum cost (e.g., maximum daily cost under naive charging),

peak
t

ated
trf

Ptpeak is station power at time ¢,

is transformer rated power,

Ly is transformer loading, Ly, is its allowable limit, SOC; ; and
SOCimrget are actual and target SOC for EV i, Ngy is the number
of EVs, A, ,lp Ao, Asoc 20 control the trade-off between cost, peak
demand, grid safety, and SOC satisfaction. This normalization makes
each term lie in [0,1] under typical operation and prevents unit-
driven domination.

« Discount factor (y): Set within [0.9, 0.99] to balance short-term
savings and long-term stability.

3.6.2 Agent coordination and training protocol

A centralized training, decentralized execution (CTDE)
strategy is adopted: During training, a global critic has access to
all states for stable gradient updates. During execution, each EV
agent makes decisions using only local SOC and queue
information. Proximal policy optimization (PPO) is employed for
policy with  shared
homogeneous agents.

learning parameters  across

3.6.3 Forecasting and data integration

Forecasted 4 and baseline demand from the POA-tuned
BiLSTM are injected into the state vector, enabling anticipatory
scheduling. Training episodes are defined as 24-h horizons, with each
step representing 15-min intervals.
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3.6.4 Mathematical integration of forecasting and
MARL

The proposed POA-BiLSTM-MARL framework integrates price
and demand forecasting with multi-agent reinforcement learning
within a unified Markov decision process. The BiLSTM module
provides short-term predictions of electricity price and system
demand, which are embedded directly into the decision-making cycle
of the MARL agents,
charging strategies.

enabling proactive and cost-aware

« State representation

At each time step ¢, the state observed by EV agent i is defined
as Equation (20):

Slz, :|:SOCi,[>j't:ift)PPV, t’Qtj| (20)

where SOC; denotes the current state of charge of EV 1, /L[ ,and
L, are the forecasted electricity price and demand from the BiLSTM
model, Ppy ; is available photovoltaic power, and Q; is the queue
length at the charging station. This formulation allows agents to
anticipate both market conditions and infrastructure constraints when
selecting actions.

« Action policy

Each agent determines its charging or discharging decision using
a parameterized policy network represented in Equation (21):

aj =g (s}) 1)

where 7y is the policy function optimized through PPO under a
centralized training and decentralized execution (CTDE) scheme.

o Reward structure

A R, vi (22)

This unified reward Equation (22) combines normalized grid
energy cost, peak demand stress, transformer overloading risk, and
deviation from target SOC. The energy cost term explicitly incorporates
the forecasted electricity price through the revised cost formulation
(Equation 6), ensuring that scheduling decisions are economically
guided by the BiLSTM predictions. The reward feedback is used to
update the centralized critic and decentralized actor policies.
Furthermore, the POA dynamically tunes the PPO learning parameters
a, y,and € by maximizing cumulative reward over training
episodes. This creates a closed-loop interaction where improved
forecast accuracy contributes to better reward optimization, which in
turn enhances charging performance and grid stability. This integrated
structure establishes a coherent link between forecasting accuracy and
real-time scheduling efficiency, ensuring consistency across the MDP
formulation, reward modelling, and agent learning processes.
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FIGURE 4
Detailed model system of the study.
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TABLE 2 Hyperparameter configurations and convergence criteria for benchmark algorithms.

Algorithm Key hyperparameters Convergence/stop criterion
GA Pop. = 50, Crossover = 0.8, Mutation = 0.05 A Fitness < 1 x 107 or 100 iters

PSO Swarm =50, w=0.7,¢,=c, = 1.5 A Global best < 1 x 107 (5 iters)

MARL (PPO) Ir = 0.0003, y = 0.95, Batch = 256, Clip = 0.2 A Reward < 1% or 200 episodes

LSTM 2 layers x 128 units, Ir = 0.001, Batch = 64 Early stopping (15 epochs)

BiLSTM Same as LSTM Early stopping (15 epochs)
POA-BiLSTM-MARL POA pop = 30, iter = 50; a, 7, € adaptive A Reward < 1 x 107 (10 episodes)

Figure 4 shows a detailed model system of the study, showing the
interaction among the PV generation, BiLSTM forecaster, POA
optimiser, MARL scheduler, and EV charging infrastructure. The
BiLSTM forecaster predicts the short-term variability of electricity
price and demand profiles based on PV and grid data, while the POA
optimiser tunes the parameters accordingly. Multiple EV agents, i.e.,
EV1, EV2, EV3, are included in the MARL environment modeled as
independent learners possessing their individual SOC, battery
capacity, and arrival/departure characteristics.

3.7 Experimental scenario description

The simulation framework models an EV charging station with
PV generation, multiple charging piles, and interconnection to the
grid. For instance, three representative EV agents, EV1, EV2, and
EV3, are explicitly modeled in the MARL environment. Each EV
corresponds to one charging pile in the station, and is viewed as an
independent agent that is characterized by its own battery capacity,
SOC, and dwell time characteristics. Specifically, EV1, EV2, and
EV3 are initialized with SOCs of 40, 55, and 70% and nominal
capacities of 40 kWh, 50 kWh, and 60 kWh, respectively. These
variations capture the heterogeneity of real users while having
homogeneous charger specifications: 7.2 kW AC Level-2. This will
later be extended to 40 EVs for large-scale evaluation.

EVs arrive according to a stochastic Poisson process, with an
average inter-arrival time of 20 min during peak hours and 45 min
during off-peak hours. Dwell times are uniformly distributed between
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1.5-4 h. Each EV has a battery capacity in the range of 40-60 kWh,
charged by 7.2 kW AC Level-2 chargers, V2G capable wherever
applicable. SOC limits are between 10 and 95%. Pricing follows the
IEX day-ahead market price with a resolution of 15 min. Network
constraints include a 500 kW transformer limit and feeder capacity as
per the local distribution norm. This explicit scenario description will
ensure physical consistency and reproducibility across all
reported experiments.

Table 2 summarizes the hyperparameter settings and convergence
criteria adopted for all comparative algorithms, including GA, PSO,
MARL, LSTM, BiLSTM, and the proposed POA-BiLSTM-MARL
framework. Each method was trained and executed under identical
datasets, runtime budgets, and computational conditions to ensure a
fair and reproducible comparison.

The GA and PSO algorithms employed typical evolutionary
parameters with fixed population or swarm sizes and terminated
when the improvement in the objective value became negligible or
when the maximum iteration count was reached. For reinforcement
learning (MARL using PPO), convergence was defined as the point
where the average episode reward stabilized with a variation of less
than 1% over 10 evaluation episodes. The deep learning forecasters
(LSTM and BiLSTM) were trained using the Adam optimizer with
a learning rate of 0.001 and an early stopping mechanism triggered
after 15 epochs of no improvement in validation loss. The proposed
POA-BiLSTM-MARL model utilized the Pelican optimization
the BiLSTM and MARL
automatic when

algorithm to adaptively tune

hyperparameters, achieving convergence

cumulative reward improvement was below 10~ for 10 consecutive
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FIGURE 5
Overall control structure of the proposed POA-BiLSTM-MARL
framework for EV charging scheduling.

episodes. These consistent parameter settings and stopping
conditions guarantee the reliability of performance comparisons
reported in the results section.

Figure 5 illustrates that historical market and PV data are first
processed by the POA-tuned BiLSTM forecaster to predict short-term
electricity price and demand. These forecasted variables form part of
the MARL agent’s state vector, enabling anticipatory decision-making.
The agent interacts with the EVCS environment to update SOC and
compute rewards, while the cumulative reward performance is used
by the POA optimizer to refine learning parameters (a, }/,5) ,
establishing a closed feedback loop among forecasting, optimization,
and reinforcement learning.

4 Result and discussion

MATLAB is used to show the performance of the proposed work.
Also, the proposed method is compared with existing works to
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validate the BiLSTM with POA. In this work, a BiLSTM with the POA
method provide EV charging scheduling in EVCSs as per power
requirements. The input power for EVCSs is considered from a PV
panel based on irradiance and temperature. Initially, three EVs are
available in the EVCSs for charging. Figure 6 represents the irradiance
of the PV panel and the output power from the PV.

For comparability, all baselines were executed under identical
datasets, constraints, and runtime budgets. The genetic algorithm (GA)
and particle swarm optimization (PSO) each used a population size of
50 and 100 iterations. The MARL baseline employed proximal policy
optimization (PPO) with learning rate 0.0003, batch size 256, and
discount factor 0.95. LSTM and BiLSTM models were trained for 200
epochs with the Adam optimizer, batch size 64, and early stopping. The
proposed POA-tuned BiLSTM applied the same training budget, with
hyperparameters optimized automatically by POA. Standard
implementations from established literature were followed.

4.1 Computational efficiency results

All experiments were executed on an Intel Core i7-12700F CPU
@ 2.1 GHz with 32 GB RAM, running Windows 11 Pro and MATLAB
R2023a. Reported runtimes exclude offline forecasting model training
and reflect only the online scheduling step over a 24-h horizon. The
proposed method achieved an average runtime of 1.69 s per episode,
improving efficiency by 0.456 s compared to the best baseline under
identical conditions.

Figure 7 indicates the comparison of the average operational cost.
This figure illustrates that energy prices drop for all models as the
number of EVs rises. This is because EVs provide users with free
energy, which lowers energy bills. Furthermore, as the image
illustrates, the proposed model performs better than any other model
across all configurations. For this comparison particle swarm
optimization algorithm (PSO) (Jain et al., 2022), MARL, the genetic
algorithm (GA) (Gen and Lin, 2023), and the proposed method are
taken into consideration. Here, the proposed method has obtained less
operational cost than the other compared methods.

Figure 7 shows that although there is a slight variation in
computing efficiency between the proposed method and GA
algorithms, the proposed method can produce substantially higher-
quality solutions. For comparing the operational cost and simulation
time, 40 EV's are considered in this proposed work. Figure 8 shows the
comparative analysis of average simulation time. The proposed
method performs better than all other models in terms of simulation
time, increasing run time less than the other algorithms as the
problem scales up. Here, the GA algorithm obtained higher
computational time when compared to other methods. PSO, MARL,
and the proposed method have obtained low simulation time with
slight variations among them. But the proposed method has attained
less simulation time. Thus, the proposed method has obtained less
operational cost and simulation time, which validates the performance
of the proposed method.

4.2 Cost and SOC performance

Figures 9, 10 illustrate the training and cumulative test rewards for
three representative EV agents (EV1, EV2, and EV3) from the MARL
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Irradiance of the PV panel and the output power from the PV for 24h.
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environment described in Section 3. Each EV agent learns a distinct
optimal charging/discharging policy based on its unique SOC and dwell-
time parameters while sharing the same centralized critic during training.
Figure 9 represents the cumulative reward of three EV's for a one-month
test. For this evaluation, MARL with LSTM (Houran et al., 2023) and
BiLSTM are compared with the proposed method (Pande and Khekare,
2024). In this analysis, the reward is defined as the negative of operational
cost, so a higher cumulative reward corresponds to a lower total cost. It is
observed, the proposed method achieves the highest cumulative reward
with the fastest and most stable convergence, requiring significantly fewer
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training episodes compared to the other two methods. In contrast, the
MARL + LSTM baseline fails to achieve optimal performance, showing
pronounced and unstable learning dynamics.
MARL + BiLSTM without POA tuning performs moderately better than
LSTM, but still underperforms compared to the proposed framework.
Figure 10 indicates the test reward for three EVs. BiLSTM,
LSTM, and the proposed POA-optimized BiLSTM are taken into
consideration for this comparison. It shows that the proposed
method has obtained the highest test rewards across all three EVs,
ensuring its capability to minimize charging costs more effectively.

oscillations
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FIGURE 10
Cumulative test reward for (a) EV1, (b) EV2, (c) EV3.

It can be further observed that the proposed method exhibits the
fastest learning speed among the three MARL methods for all three
EVs. Figure 11 represents the charging and discharging of EV1,
EV2, and EV3 for 24 h. This shows the charging and discharging
characteristics of each EV in the charging station. For all three
EVs, initially from 1 to 6 h, they get charged based on their capacity
and requirement. The charge in the battery gets discharged from 7
to 16 h, because during this time period the vehicle is under
working and travelling conditions. EV1 has charged up to 18 kW
in 1 h, EV2 charged maximum range of 15 kW in 1 h, and EV1 has
charged till12kW in 1 h. The discharge characteristics of each EV
vary based on its travelling distance.

Figure 12 indicates the battery SOC for each EV for 24 h. This SOC
curve is simulated based on the charging and discharging characteristics
of each EV. For all three EVs, initially the SOC gets increased between 1
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to 6 h, because in this condition the battery is under charging. The SOC
of EV battery gets decreased to zero between 7 and tol5 hours, due to
the discharging characteristics of each EV. Thus, the SOC of EV
increased and decreased based on the charging and discharging
of the EV.

4.3 Impact of forecasting accuracy on
scheduling outcomes

This study presents a multi-agent reinforcement learning
(MARL) framework integrated with a POA-tuned BiLSTM model
for forecasting and optimal energy scheduling in electric vehicle
charging stations (EVCS). The BiLSTM is responsible for
predicting short-term electricity price and demand, while the

14 frontiersin.org
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FIGURE 11
Charging and discharging behaviour of (a) EV1 (b) EV2 (c) EV3.

MARL-based Markov decision process determines charging
actions for multiple EVs. The Pelican optimization algorithm
(POA) is applied to optimize the BiLSTM hyperparameters,
leading to improved forecast precision and more effective
scheduling decisions. The framework was implemented in
MATLAB and evaluated against GA, PSO, LSTM, manually tuned
BiLSTM, and conventional MARL approaches. Results indicate
that the proposed method achieves a reduction in charging cost of
12.34%, improves SOC satisfaction by 10.25%, and enhances
forecasting accuracy by 8.46% when compared with baseline
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methods. Additionally, the computational time was reduced by
0.456 s per scheduling episode.

To examine the influence of forecasting quality on scheduling
performance, a comparative analysis was conducted using three
forecasting techniques: persistence model, ARIMA baseline, and
POA-tuned BiLSTM. The persistence model produced the highest
errors (RMSE = 1.23, MAE = 0.98), resulting in increased charging cost
(X12,100) and reduced SOC satisfaction (84%). ARIMA showed
moderate improvement (RMSE=0.95, MAE=0.75), yielding
improved operational outcomes. The POA-tuned BiLSTM achieved the
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FIGURE 12
Battery SOC of (a) EV1 (b) EV2, (c) EV3.

lowest forecasting errors (RMSE =0.68, MAE =0.53), which
corresponded to the minimum charging cost (39,200) and highest SOC
satisfaction (95%). These findings demonstrate that improved
forecasting accuracy contributes directly to enhanced scheduling
efficiency and economic performance of the MARL-based
control framework.

For a fair comparison, all these baseline algorithms have been
trained and evaluated on the identical data, constraints, and runtime
budgets. The genetic algorithm and particle swarm optimization were
implemented with a population size of 50, maximum 100 iterations,
and the crossover/mutation rates were set according to general
practice. The reinforcement learning baseline, MARL, was conducted
using proximal policy optimization with a learning rate of 0.0003,
batch size 256, and discounting factor 0.95. LSTM and BiLSTM
forecasting models were trained on 200 epochs with the Adam
optimizer, early stopping, and identical input features. The proposed
POA-tuned BiLSTM used the same budget but with hyperparameters
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adaptively tuned by POA. All implementations were executed in
MATLAB R2023a to ensure comparability.

The sensitivity of the scheduling framework to forecasting error
was tested by adding controlled Gaussian noise to the price and
demand forecasts generated by the BILSTM. It can be observed from
Figure 13 that with closer forecast accuracy, the normalized cost
remains lower. For example, when the forecast error was at 0% (the
BiLSTM forecast data), the normalized cost was 1.00, while SOC
satisfaction was 98%. By the time the forecast error introduced had
risen from 0 to 50%, the normalized cost increased from 1.00 to 1.40
and SOC satisfaction fell from 98 to 87%. This evidences that poor
forecasts yield less desirable and reliable charging schedules. Both
measures remain quite stable up to about a forecast error of 20%,
beyond which they take a notable drop. These results suggest that the
controller is robust to prediction noise but depends on fairly accurate
predictions to return good results. Finally, the thin confidence
intervals show that the results across runs are fairly consistent.
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Impact of forecasting accuracy on scheduling outcomes.

4.4 Ablation and sensitivity analysis

Ablation studies analyzed the contributions of these subsystems.
Removing the BiLSTM forecasting and replacing it with historical
averages increased the overall charging cost by 9.7%. Using a historical
average forecast without POA tuning caused a 14% increase in RMSE
from the forecasting, ultimately resulting in a 6.5% higher cost overall.
Disabling the V2G methodologies led to a 12% increase in penalty
costs from peak demand. In regards to V2G agents, the system was also
assessed when varying the number of agents from 10 to 50 EVs. In the
context of increased volatility in the tariff profiles, it was found that the
savings estimated from improved forecast accuracy were greater. Based
on all metrics, this was an entirely new and unique framework, as the
combination and integration across the three frameworks provided a
real and tangible improvement. Figure 14a shows showing Ablation
study, the contribution of each module to the overall cost reduction.
Results are reported as mean + standard deviation over 10 independent
runs. The full pipeline (POA + BiLSTM + MARL) achieves the highest
cost reduction compared to variants without POA tuning, without
BiLSTM forecasting, and GA/PSO baselines.

Figure 14b represents the error distribution of forecasting
models across 10 independent runs. The POA-BiLSTM model
shows a compact and left-skewed error distribution compared to
baseline models, indicating higher consistency and lower
prediction variance.

4.5 Reward-weight tuning and Pareto
analysis

We tune {lc,/lp,/lg} on a simplex (4 +4,+4,=1) using a
coarse grid and select configurations that minimize normalized daily
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cost and satisfy grid safety (max; L; / Ljjm;; <1 ). For visualization,
sweeping the A € [0.2,0.7] and distribution of the remainder
between 4, and A, in 0.1 steps, training each setting for 50 episodes
and evaluation on held-out days has been performed. The study
reports the Pareto curve between average daily cost and worst-case
loading ratio, and marks the chosen weights. Selection rules are set,
such as from the Pareto set, which chooses the first point that satisfies
maxy Ly / Lijmie <1 and Pg%izk / Prt:f od $0.9 (95th-percentile peak
margin), while achieving the lowest cost among safety-feasible points.

The sweep produced a clear cost-safety trade-off. Cost-centric
weights (4. =0.7,4, =0.2,4, =0.1 ) minimized cost but approached
transformer limits. Safety-centric weights (0.3,0.4,0.3 ) kept loading
<80% but increased cost. The selected balanced setting
(ﬂc,ﬂp,ﬂg ) = (0.5,0.3,0.2) achieved 9-11% cost reduction vs.

baselines while maintaining max; Ly <1 and a transformer headroom
limit

of ~8-10% under all test days. Figure 15 shows the Pareto trade-off

between normalized energy cost and transformer loading for different

reward-weight combinations. The red marker represents the balanced

configuration (ﬂc,ﬂp,ﬂl) = (0.5,0.3,0.2) achieving cost efficiency

while maintaining grid-safe operation.

4.6 Comparative convergence analysis

Figure 16 indicates the comparison of the convergence plot.
Here, the proposed algorithm is compared with the existing PSO
and GA algorithms. The GA algorithm requires a high number of
iterations to attain a stable value. While the PSO algorithm has
taken 35 iterations to obtain the optimal value but the proposed
method obtained the optimal value within 12 iterations. A smaller
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(a) Ablation study showing the contribution of each module. (b) Error distribution of forecasting models across 10 independent runs.

number of iterations increases the computational time; thus, the

proposed  method outperforms better than  other
compared methods.
Overall, the results establish that the proposed

MARL + BiLSTM + POA framework delivers superior performance
compared to both evolutionary optimizers and statistical/deep
learning baselines, achieving cost-efficient, reliable, and scalable EV
charging management. To ensure consistency between reported
results and statistical evidence, all performance metrics presented in
Table 3 calculated across 10 independent experimental runs using
different random seeds. Results are expressed as mean +95%
confidence interval (CI) to reflect variability and reliability
of performance.

The proposed POA-BiLSTM-MARL model achieved an RMSE of
0.68 £ 0.03 INR/kWh, compared to 0.74 + 0.04 INR/kWh for the

best-performing baseline (manually tuned BiLSTM). This
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Equation (23) represents a relative improvement of 8.46%,
calculated as:

RMSEpseline — RMSE proposed %

100 (23)
RMSEpgseiine

Improvement (%) =

where the manually tuned BiLSTM model is used as the primary
baseline. The forecasting horizon considered in this evaluation is a
15-min ahead short-term price forecasting window using IEX
day-ahead market data. To verify statistical significance, a paired
two-tailed t-test was conducted between the proposed model and the
best baseline. The test yielded a p-value = 0.018 (<0.05), indicating
that the observed improvement is statistically significant. Furthermore,
Cohen’s d effect size was calculated as 0.82, suggesting a large practical
impact. Thus, the reported 8.46% improvement in forecasting
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accuracy is both statistically and practically meaningful, and aligns
with the numerical evidence shown in Table 3.

Table 3 represents the results that clearly demonstrate that
improvements in forecasting accuracy directly enhance the efficiency
of MARL-based scheduling. More accurate forecasts reduce the risk
of charging during high-price intervals, thereby minimizing
operational costs and ensuring higher SOC satisfaction across EVs.
All results are reported as mean + 95% confidence interval over 10
independent runs for EV arrivals and demand variability. Figures
present mean performance, with shaded regions indicating +1
standard deviation. Paired t-tests at the 95% confidence level
confirmed that improvements of the proposed framework over
baselines are statistically significant (p < 0.05).
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4.7 Scalability and computational feasibility
analysis

The current simulation framework models a single EVCS with a
500 kW transformer and up to 40 EV agents to evaluate algorithmic
performance under realistic medium-scale operating conditions. To
assess the potential scalability of the proposed POA-BiLSTM-MARL
framework toward larger deployments, additional stress tests were
conducted by synthetically extending the number of EV agents to 100
and 200 using identical stochastic arrival and departure distributions.
The results showed that average runtime increased linearly with the
number of agents, while cumulative reward and convergence stability
remained consistent. This confirms that the CTDE (centralized
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TABLE 3 Impact of forecasting models on scheduling performance.

10.3389/frai.2025.1700664

Method RMSE (X/kWh) MAE (X/kWh)  Charging cost () SOC satisfaction Simulation time (s)
(%)

GA (genetic algorithm) — — 11,850 86% 324

PSO (particle swarm — — 11,600 87% 2.89

optimization)

MARL (without — — 10,950 89% 2.15

forecasting)

LSTM (forecast-based) 0.88 0.71 10,500 90% 2.04

BiLSTM (manual tuning) 0.79 0.62 9,950 92% 1.87

Persistence (naive) 1.23 0.98 12,100 84% 1.75

ARIMA baseline 0.95 0.75 10,800 88% 1.92

Proposed BiLSTM + POA 0.68 +0.03 0.53 £0.02 9,200 95% 1.69

(MARL)

The bold values are final improved values by using proposed Algorithm.

training, decentralized execution) structure supports scalable training,
as each agent updates its policy using only local states while sharing a
global critic during training.

This translates to an improvement of 0.456 s per episode on
average for the scheduling time in terms of computational
efficiency over the best-performing baseline (MARL without
forecasting). All the experiments were executed on an Intel Core
i7-12700F CPU (2.1 GHz, 32 GB RAM) using MATLAB R2023a.
The runtime reported here is from the online decision-making
phase and does not include the offline BiLSTM forecasting
training. The efficiency gain of the framework comes from
adaptive hyperparameter tuning by POA to reduce redundant
gradient updates during the MARL training. The memory
utilization was below 60% for all runs.

Although the current work is focused on the single-station
setting, the architecture can be extended directly to multi-station or
distributed networks of EVCSs. In such a setting, each station can be
treated as an independent MARL agent with local observations (local
load, transformer loading, and PV generation), while a central
coordinator periodically exchanges summarized states in terms of
price forecasts or aggregated demand profiles. This structure of
decentralized information exchange decreases communication
overheads and is scalable across geographically distributed clusters of
EVCSs. In the near future, it will be explicitly implemented and
evaluated to validate the generalizability of this framework under
with  realistic

different heterogeneous network conditions

communication latencies.

5 Conclusion

This paper presented a hybrid MARL framework enhanced by a
POA-tuned BiLSTM model for optimal EV charging station
scheduling. By integrating explicitly the forecasting of electricity
price and demand into a well-defined MDP formulation, the
proposed approach overcomes the limitations of the existing
approaches dependent on static or reactive strategies. The use of
publicly available IEX day-ahead market data ensures transparency
and reproducibility, while its forecasting module augments the
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adaptability of MARL agents in real-time decision-making.
Comparative evaluations against the genetic algorithm, PSO,
conventional MARL, and deep learning baselines confirm that the
proposed method achieves superior performance including a 12.34%
reduction in charging cost, a 10.25% improvement in SOC
satisfaction, and an 8.46% enhancement in forecasting accuracy,
calculated based on RMSE improvement over the best-performing
baseline BiLSTM model and validated using 95% confidence intervals
and statistical significance testing, along with reduced computation
time. Using 10 independent runs for statistical validation proved that
the 8.46% improvement in accuracy is statistically significant within
a 95% confidence interval. The error distribution study demonstrated
reduced variance and enhanced stability compared to the baseline
forecasters. Importantly, the results developed a direct relationship
between forecasting accuracy and scheduling efficiency, underlining
the role of data-driven forecasting methods in enhancing the
performances of MARL. The novelty of this work lies in unifying the
forecasting, meta-optimization, and multi-agent control into a single
framework, offering a scalable, efficient, and transparent solution for
the management of EVCSs. In the extension of this framework to
multi-energy systems, more sophisticated reinforcement learning
architectures will be incorporated for further improvements
in performance.
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