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With the fast development of electric vehicles, the demand for intelligent charging 
management strategies in order to minimize operational costs, ensure grid stability, 
and enhance user satisfaction. This paper proposes a new framework that embeds 
multi-MARL algorithm tuned by the Pelican optimization algorithm (POA) bidirectional 
long short-term memory for anticipatory energy forecasting scheduling in EV charging 
stations—EVCS. Unlike previous works that treat forecasting, the proposed method 
seamlessly unifies these steps, which were hitherto considered as separate entities: 
optimization and then scheduling. Components within a Markov decision process 
formulation. The framework employs publicly available Indian Energy Exchange 
(IEX) day-ahead market data, where POA-tuned BiLSTM forecasts electricity price 
and demand with improved accuracy, feeding into the MARL controller for dynamic 
scheduling. Experimental results demonstrate that the proposed method reduces 
charging cost by 12.34%, improves state-of-charge (SOC) satisfaction by 10.25%, and 
increases forecasting accuracy by 8.46% compared to conventional GA, PSO, MARL, 
and deep learning baselines. Furthermore, simulation time is reduced by 0.456 s, 
confirming computational efficiency. This study presents integrated frameworks 
that combine POA-tuned BiLSTM forecasting with a CTDE-based MARL architecture 
for anticipatory EV charging scheduling.
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1 Introduction

Electric vehicles (EVs) have emerged as an important concept in a number of nations to 
lower pollution levels in the environment in recent years (Shao et al., 2023a). EPRI data shows 
that by 2035, up to 40 and 45% of gasoline-powered vehicles will be replaced by electric 
vehicles in China and the United States, respectively (Pan et al., 2023). EVs are mainly utilized 
due to low carbon emissions and high energy efficiency, and they may even reduce the rate of 
climate change (Shao et al., 2023b). Moreover, due to the inherent flexibility in EV charging, 
auxiliary services like demand response and peak shaving can be offered to the grid (Yasmin 
et al., 2024). The increasing number of EVs have been accompanied by a significant increment 
in the number of EV charging stations (Yang et al., 2022). Charging stations serve as 
middlemen between EVs and electricity producers by adjusting the amount of electricity 
provided to EVs and the amount of electricity acquired from energy producers. Therefore, it 
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is important to balance energy supply and load demand in EV 
charging stations (EVCS) (Bessa and Matos, 2012).

Intricate decision-making problems can be effectively solved with 
reinforcement learning (RL), which can also be used to generate 
intelligent EVCS recommendations Lamontagne et al. (2023). Agents 
can maximize long-term goals by learning from repeated trial and error 
in the RL method (Bachiri et al., 2023). However, standard Q-learning 
algorithms have difficulties in the large-scale environment with millions 
of EVs and thousands of charging stations (Wong et al., 2023). As the 
agent gets updated by receiving rewards for every positive action, 
penalties for unwanted actions, RL become more significant for learning 
and decision-making. The dimensionality is the only drawback of RL 
(Oroojlooy and Hajinezhad, 2023). Therefore, in recent years, MARL has 
been used in EV applications for optimal energy scheduling in charging 
stations. A collection of independent, interacting entities that share a 
common environment is referred to as a MULTIAGENT system (Ren 
et al., 2023; Ray et al., 2023). Various sectors like robotics, distributed 
systems, resource utilization, collective decision support systems, etc. 
using multi agent systems to get better results (Dong et al., 2023). It is a 
time-sequential issue to control the charging/discharging power for EVs 
to reduce charging costs while taking into consideration many 
unpredictable elements. As a result, the EV charging problem has been 
formulated as an MDP with MARL in numerous studies (Kaewdornhan 
et al., 2023). Deep reinforcement learning with a recurrent neural 
network-based EV scheduling was recommended in Li et al. (2023). It 
considered the uncertainties in EV users and increased the 
computational time, but the cost was not reduced. In Jin et al. (2023), a 
bi-layer steady state evaluation was done by considering the load margin 
index in the steady state voltage security region. Optimal load scheduling 
with energy management was performed using this method. Aljafari et 
al. (2023) suggested a multi-agent deep neural network-based energy 
scheduling with dynamic load change. This method also controls the 
charging and discharging characteristics of EV, but the computation time 
was high in this method. Numerous works are introduced in this field, 
but they still suffer from disadvantages like high computational time, 
high cost, etc. Therefore, this paper proposed a novel method with an 
MARL framework for optimal power scheduling of EVs in a 
charging station.

1.1 Research gaps and contribution

While there have been significant developments in reinforcement 
learning and forecasts-based energy management, the majority of 
studies in existing literature regarded EV charging optimization, price/
load forecasting, and parameter tuning within the different studies as 
separate modules. This distinction frequently leads to limitations on 

the model’s ability to adapt, and increases dependencies on 
computational resources. Moreover, typical reinforcement learning 
approaches based on prior research have been based on static and/or 
reactive control strategies that do not anticipate future anticipated 
price/load volatility. Earlier forecasting studies were similarly limited 
due to their consideration toward automatic parameter tuning, 
therefore the forecasting accuracy, responsiveness, and convergence 
capability were inevitably compromised. In this study, the identified 
gaps in research literature of EV charging forecasting and optimization, 
the authors propose a new integrated hybrid framework that combines 
a POA tuned BiLSTM forecaster with a MARL scheduler, within a 
consolidated MDP formulation. The coupling of these two modules 
enables anticipatory and cost-driven value-added decision-making, 
allowing agents to adjust their charging schedules in a proactive 
manner using predicted IEX day-ahead prices, along with anticipated 
demand patterns. The hybrid POA-BiLSTM-MARL framework is a 
novel contribution to existing literature, attempting to make arbitraged 
decisions based just in time for each decision point. In summary, the 
significant contributions of this are work:

	•	 A multistage reward function is developed to optimize the 
stability and financial performance of MARL-based EV 
charging decisions.

	•	 A highly efficient BiLSTM-based forecasting model was 
developed to accurately forecast the short-term electricity price 
and load.

	•	 The POA is used to automatically tune the hyper-parameters of 
the BiLSTM, which results in the improvement of forecast 
accuracy by up to 8.46%.

	•	 The resulting hybrid framework reduces charging cost by 12.34%, 
improves SOC satisfaction by 10.25%, and runtime by 0.456 s 
compared to the state-of-the-art baselines.

In contrast to prior research which addressed reinforcement learning 
and forecasting individually, this work presents a hybrid framework that 
integrates forecasting, meta-optimization, and multi-agent control into 
one decision-making framework. The Pelican optimization algorithm 
(POA) is not just utilized as a standalone optimizer but is instead 
automatically tuning the BiLSTM model’s hyperparameters to facilitate 
enhanced forecasting reliability. These forecasts are then optimally 
incorporated in the MARL environment for anticipatory scheduling 
decisions. Additionally, CTDE-based MARL structure promotes scalable 
and cooperative learning while increasing convergence stability and 
reducing compute time across multiple EV agents. The design is uniquely 
integrated into the decisions as a methodological advancement from 
prior works that treat them separately.

The remainder of this paper is organised as follows: Section 2 
discusses some of the existing works related to MARL in EV 
applications. Section 3 briefly explains the proposed methodology 
with its techniques. Results and discussion of the proposed work with 
comparative results are presented in Section 4. Conclusion of the 
proposed work and future scope are given in Section 5.

2 Related works

Some of the existing works related to these fields are discussed in 
this section.

Abbreviation: i
tSOC , State of charge of EV i at time t; t̂P , Forecasted electricity 

price (INR/kWh) from BiLSTM; ˆtL , Forecasted load/demand; PVt, Photovoltaic 

power at time t; i
ta , Action of agent i (charging/discharging rate); i

tR , Reward 

of agent i at time t; , ,α γ ε , Learning rate, discount factor, and exploration decay 

rate; 1 2,λ λ , Weighting coefficients in reward function; 
peak
tD , Peak demand 

deviation at time t; θπ , Policy function parameterized by θ; ( ),t tQ S a , Centralized 

critic function; POA, Pelican optimization algorithm; BiLSTM, Bidirectional long 

short-term memory; MARL, Multi-agent reinforcement learning; CTDE, Centralized 

training, decentralized execution; IEX, Indian Energy Exchange.
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In order to address the scalability challenges of large-scale smart 
grid systems, Alqahtani et al. (2022) suggested reformulating a mixed-
integer programming (MIP) model into a decentralized Markov 
decision process (DEC-MDP) model and solving it using a MARL 
algorithm. MIP method schedules the energy and feeds it to a specific 
location in each step. The MIP decision model is then reformulated as 
a DEC-MDP, in which the EVs were first arranged in a centralized 
manner and subsequently implemented in a decentralized manner.

Qiu et al. (2022) recommended a novel method to enhance the 
performance of the EV scheduling process. MARL-based method was 
used for aligning the EV power in a discrete and continuous process. 
The performance of this method was enhanced by including a 
decentralized partially observable MDP integrated with a hybrid 
MARL method Yang et al. (2020). The proximal policy optimization 
(PPO) algorithm was employed to calculate the Q-value in the 
network. This method optimally reduced the load shedding and 
enhanced the stability of the distribution system.

Mishra and Singh (2025) suggested a DRL method in an EVCSs 
in order to minimize the expenses in the charging station. A user 
equilibrium traffic assignment problem (UE-TAP) was used in this 
method to design the power and transportation system. In addition to 
reducing the scope of interactions between agents, neighbourhood 
factorization implicitly maintains the global information within a pair. 
The learning function was approximated by applying the mean-field 
theory in the suggested method. This method optimally reduced the 
charging cost in the charging station, which was an advantage for the 
EV consumers.

Xu et al. (2020) recommended a neural network-based Q-learning 
algorithm for home energy management. Extreme learning machine 
and Q-learning were suggested under a data-driven framework to 
increase the computational frequency in this method. Home 
appliances and EV charging stations were considered as a load, a 
suggested method to satisfy the load demand optimally Alamir et al. 
(2023). The decision-making procedure for accurate and realistic 
scheduling was done by the suggested feedforward NN. This method 
reduced the electricity bill and satisfied the demand response of the 
consumer optimally.

Li et al. (2022) recommended a novel method to reduce the losses 
in the distribution transformer in an EV charging station. An LSTM-
based NN method was included in this work to evaluate the 
uncertainties caused by the load demand. The EV charging station’s 
charging issue was rectified by integrating a multi-agent deep 
reinforcement learning method. The recommended method opponent 
network processes to process the EVs’ information by using the 
attention mechanism. This method effectively directs the actor 
network’s creation of coordinated strategies. Each agent’s decision-
making capabilities were built through offline training and then 
implemented online to choose the control actions according to the 
most recent information about the condition of the system. Recent 
research has also focused on extending reinforcement learning to 
sustainability-oriented EV operations. Zhou et al. (2025) introduced a 
multi-agent DRL framework for self-consumption scheduling in 
highway EV charging stations, while Satpathy et al. (2025) explored 
sustainable and technology-driven strategies for enhanced EV 
performance and integration. These studies reflect the growing shift 
toward renewable-aware and market-adaptive EV scheduling models.

Unlike Qiu et al. (2022), Mishra and Singh (2025), Xu et al. (2020), 
Li et al. (2022), Jamjuntr et al. (2024), Zhou et al. (2025), Satpathy et al. 

(2025), and Alduailij (2025), which combine MARL with conventional 
forecasting or optimization, the proposed work uniquely integrates 
POA-tuned BiLSTM within a CTDE-based MARL framework. This 
addresses both forecasting uncertainty and hyperparameter sensitivity 
simultaneously, which has not been jointly studied in recent literature. 
Table 1 provides a detailed comparative summary of recent MARL-
based EV scheduling studies, highlighting the distinct methodological 
advances, datasets, and performance benchmarks. The proposed 
framework distinguishes itself by integrating a POA-tuned BiLSTM 
forecaster within a CTDE-based MARL structure, bridging the 
forecasting and optimization gap identified in prior research.

3 Proposed methodology

EVs are the foundation of future mobility due to their advantages, 
like no emissions and being eco-friendly. EVs can also be blended as 
distributed energy resources (DERs) into the smart grid by using a 
vehicle-to-grid (V2G) scheme. Renewable energy sources are mostly 
used a distribution generation in modern days due to their advantages 
like low carbon emissions and pollution-free. In this work, a solar 
photovoltaic system (PV) is used as a source for the EVCSs. Excess 
power generated from the PV sources is stored in the battery energy 
storage system for future use. This paper proposes a novel framework 
for EV energy management scheduling based on reinforcement learning 
in achieving an efficient EVCSs-based BiLSTM to satisfy demand 
response. A MARL method schedules the energy intensity of an EVCSs 
to control the maximum performance level of the grid. BiLSTM reduces 
the inaccuracies of autonomous predictions of energy calculations with 
the help of EV agents. The energy scheduling charging issue is reduced 
using the proposed MARL. After completing the training process, all of 
the agents are trained centrally to create coordinated control strategies 
and make decisions based on local inputs. BiLSTM is used in this work 
to enable the EV charging station to make reasonable decisions 
concerning historical decision information. The POA is used in this 
work to optimize the hyperparameters of the BiLSTM.

3.1 Modelling of EV

EVs have gained a lot of interest due to cost-effective and 
environmentally friendly alternative for EV with internal combustion 
engines. Because they reduce reliance on fossil fuels and greenhouse 
gas emissions, EVs are desired. It takes equipment to charge EVs, 
which is essential for their daily use and grid integration (Jang et al., 
2020). Batteries’ capacity to charge and discharge is used to model 
EVs. The majority of batteries used in EVs are lithium-ion batteries 
because of their energy density and durability. The cells of these 
batteries are arranged in a module by connecting them in series and 
parallel. The components of a charging station usually include a 
power outlet, EV connector, attachment plug, charge cord, charge 
stand, and protective system. The main element influencing charging 
time, cost, equipment, and grid impact is the charger power level. A 
lot of things need to be considered when building the charging 
station are as follows;

nom
iE  (kWh) is nominal battery capacity of EV i, (Trojovský and 

Dehghani, 2022). Power balance in EVCS is represented in 
Equation (1) as follows:
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(1)

where , 0grid tP > , means import, disp  positive means EV 
discharging, t is the time step (h), ,grid tP , represent net real power 
at grid intertie (>0 import, <0 export), ,PV tP  represent PV real 
power available at bus, ,

dis
i tp  is the discharging power set-point for 

EV i, ,
ch
i tp  is charging power set-point for EV i, ,aux tP  station 

auxiliary load (HVAC, lighting). Load demand in the EVCS is based 
on the requirement for EV arrival. All power values are in (kW). 
The energy requirement from the target SOC Equation (2) 
given below,

	 ,i req iE ed=
	

(2)

where ,i reqE , represents the energy (kWh) required to reach the 
target SOC for EV i, e  is energy consumption per km (kWh/km), id  
is the trip distance (km). Power is given by Equation (3)

	

,i req
i

i

E
p

T
=

	
(3)

with iT  = available dwell time (h). nom
iE  represents nominal 

battery energy capacity (kWh) of EV i, iSOC  represents the SOC of 
EV i. The limit of charging and discharging of EVs is considered 
based on the SOC of EVs. This SOC can be evaluated using below 
Equation (4):

	

ch dis
ch i t i t

dis
i t i t nom

i

p p
SOC SOC t

E

, ,

, 1 ,

1.η
η

+

−
= + ∆

	
(4)

where ,
ch
i tp  is charging power (kW), ,

dis
i tp  is discharging power 

(kW), ta∆  is time step (h), nom
iE  is capacity (kWh), chη  & disη  are 

charging and discharging efficiencies.
The limit of the EV battery (Kumar et al., 2023) is set based on 

below Equation (5) for all t;

TABLE 1  Comparative literature review and novelty summary.

References Methodology/
core approach

Forecasting or 
optimization 
component

Dataset or 
case study

Reported 
performance/
key outcomes

Limitations/
gaps 
identified

Novelty difference 
from proposed 
work

Qiu et al. (2022) Hybrid MARL for EV 

resilience control

Deep RL-based 

scheduling without 

explicit forecasting

IEEE Test 

Systems

Improved resilience 

and load balancing

No integration of 

prediction or meta-

optimization

Proposed model unifies 

MARL with predictive POA-

tuned BiLSTM forecasting

Mishra and Singh 

(2025)

Multi-agent deep RL 

for EVCS game model

None (static pricing) Synthetic EVCS 

dataset

Reduced cost and 

congestion

Ignores future 

demand and price 

variability

Proposed work introduces 

anticipatory control through 

POA-BiLSTM

Xu et al. (2020) Multi-agent Q-learning 

for home energy 

management

None; used fixed tariffs Smart home 

simulation

7–9% cost saving Not scalable to 

multi-EV 

environments

Current work extends to 

large-scale EVCS with 

dynamic market pricing

Li et al. (2022) LSTM-aided MARL for 

transformer lifetime 

optimization

LSTM forecasting 

(manual tuning)

Grid-connected 

EV network

Improved transformer 

health index by 5%

Hyperparameters 

manually fixed; no 

meta-optimization

POA automates 

hyperparameter tuning for 

BiLSTM forecasting

Jamjuntr et al. 

(2024)

Adaptive MARL for 

EV networks in 

Thailand

Rule-based price input Regional 

testbeds

Reduced cost by 8.2% Lacks learning-

based forecasting

Proposed framework embeds 

predictive forecasting with 

MARL

Ren et al. (2023) Dynamic power 

allocation for fast 

charging

None Extreme-fast 

EVCS

Minimized overload 

risk

No learning or 

multi-agent 

coordination

Present study integrates 

multi-agent control under 

CTDE strategy

Aljafari et al. (2023) Deep neural network 

for dynamic pricing 

scheduling

Feed-forward NN Simulated grid Enhanced flexibility in 

charging/discharging

No reinforcement 

learning integration

Current model fuses deep 

learning with MARL and 

POA meta-optimization

Kamrani et al. 

(2025)

Multi-agent DRL for 

fair EV dispatch

PPO-based coordination IEEE 33-bus 

system

Stable convergence 

under dynamic load

Forecasting not 

included

Proposed system embeds 

price-demand forecasting 

into MARL state

Shojaeighadikolaei 

et al. (2024)

Centralized vs. 

decentralized MARL 

for EV charging

None Simulation 

study

Improved control 

efficiency

No integration of 

forecasting or 

optimization

Proposed 

CTDE + POA + BiLSTM 

hybrid bridges both aspects

This work POA-tuned 

BiLSTM + MARL 

under CTDE

BiLSTM forecasting 

optimized by POA

IEX Day-Ahead 

Market (India)

Cost ↓ 12.34%, SOC ↑ 

10.25%, Forecast 

Accuracy ↑ 8.46%

— Integrates forecasting, meta-

optimization, and multi-

agent scheduling in a unified 

MDP framework
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min max

.i i t iSOC SOC SOC≤ ≤ 	 (5)

where, min
iSOC  & max

iSOC  are allowed SOC bounds. Cost for 
interval t is given by Equation (6):

	
exp exp

, ,
imp

t t tgrid t grid tC P t P tλ λ= ∆ − ∆
	

(6)

where,

	
( ) ( )exp

, ,, ,max ,0 , max ,0imp
grid t grid tgrid t grid tP P P P= = −

Here ,grid tP  is the net power exchange with the grid at time t  
(kW), positive for imports and negative for exports. ,

imp
grid tP  and 

exp
,grid tP  are the imported and exported power magnitudes, 

respectively. tλ  is the import tariff (INR/kWh), exp
tλ  is the feed-in 

tariff, and t∆  is the time-step length (h). This convention ensures 
that 0tC >  during net imports (a cost) and 0tC <  during net 
exports (a revenue or saving).

3.2 MARL

MARL addresses sequential decision-making problems, but with 
more than one agent involved. A group of independent agents 
interacts with their surroundings in MARL to figure out how to 
accomplish their goals. Although MDPs are useful in simulating 
optimal decision-making in stochastic single-agent systems, a 
different representation is needed for multi-agent environments. The 
fundamental stationary assumption of an MDP is broken when all 
agents act together, altering the state dynamics and expected rewards. 
MDPs may appear to the agent fully or partially. The way in which 
agents interact, cooperative, competitive, or mixed, and whether they 
operate concurrently or sequentially, determines how the problem is 
represented in a multi-agent context. For high-dimensional 
situations, MARL performs better than deep reinforcement learning 
and other optimization methods (Canese et al., 2021). It can execute 
in a decentralized manner as well as conduct training in a centralized 
manner, which reduces execution time and places fewer restrictions 
on the agents. Because large-scale energy problems involve many 
factors that are dynamic in nature and call for quicker decision-
making processes, MARL is an effective option for handling them. 
Additionally, a multistep reward function is suggested in place of an 
immediate reward function, taking into account how suitable 
shortened steps can enhance the MARL-based approaches’ economic 
performance and learning speed in the power market. Figure 1 
represents the MARL in the proposed work.

The MDP is a powerful modelling technique for sequential 
decision-making issues (Shao et al., 2023b), acting as a crucial 
connection between reinforcement learning algorithms and 
optimization problems with unpredictable state transitions (Zhang et 
al., 2021). The important functions of MDP are as follows:

State: The charging demand restrictions and aim of the 
optimization problem are discretized over a time scale to formulate 
the state based on the SOC of EVs.

Action: Consistency and relevance are ensured by the development 
of actions in accordance with decision variables.

Reward function: This takes into consideration the charging 
station’s power limitations as well as the optimization goal. The 
reward function incorporates the charging station’s power. This 
is because it is impossible to impose the charging station’s overall 
power limit as a constraint for each charging pile due to the local 
and decentralized nature of the charging and discharging 
decisions made for each charging pile (Jain et al., 2022). The 
local state of each agent is expressed in Equations (7) and (8) 
as follows:

	
{ }i i

i csj csj iN L a, ,ζ =
	

(7)

	

0 0 0 0
0 3 0 3 0

1 1 1 1
0 3 0 3 1

1 1 1 1
0 3 0 3 1

ζ

− − − −
−

 
 
 

=  
 
 
 

 

 

      

 

cs cs cs cs

cs cs cs cs

k k k k
cs cs cs cs k

i

N N L L a

N N L L a

N N L L a
	 (8)

where, iζ  indicates each agent, ia  denotes the previous 
action of the agent, i

cjL  means the number of EVs available 
currently in the charging station with neighbouring agents, k  
signifies the number of other agents, and represents the length 
of the queue in the charging station. Each agent can record the 
current count of charging EVs, the current length of the 
charging station’s queue, and the neighbouring agent’s current 
action plan. The agent considers how many vehicles are 
charging in the EVCS within its control range, as well as how far 
the EVCS has to go.

3.3 BiLSTM

Time-series forecasting of electricity prices and EV demand 
requires a model capable of capturing both short- and long-term 
dependencies. In this work, a BiLSTM network is adopted 
because it processes sequences bidirectionally, which allows the 
model to exploit contextual data from the timeline simultaneously 
Suebsombut et al.(2021). Unlike a standard LSTM, which only 

EVCS

Reward

Action 

Agent 1

Agent 2

Agent n

State

FIGURE 1

Multi-agent reinforcement learning.
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propagates information forward, the BiLSTM improves learning 
of temporal correlations that are critical for volatile market prices 
(Gen and Lin, 2023). In the proposed framework, the BiLSTM is 
trained on historical IEX data to predict 15-min-ahead price 
signals. These predictions are then supplied as inputs to the 
MARL scheduler. By explicitly incorporating forecasting into the 
scheduling loop, the agents are able to anticipate tariff 
fluctuations rather than reacting to them (Houran et al., 2023). 
The hyperparameters of the BiLSTM, including hidden layer size, 
learning rate, and dropout ratio, are optimized automatically 
using the Pelican optimization algorithm.

Figure 2 shows the BiLSTM model. To analyse various EVs’ 
charging or discharging, the predicted data is provided as an 
input to the MARL-based proposed approach. In the proposed 
framework, the POA is employed solely to optimize the 
hyperparameters of the BiLSTM forecasting model. These include 
the number of hidden layers, neuron count, learning rate, 
dropout ratio, and look-back window size. This optimisation 
enhances forecasting accuracy for short-term electricity price and 
demand, which subsequently improves the quality of decisions 
made by the MARL scheduler. The MARL learning parameters 
(α, γ, ε) remain fixed throughout training and are not 
influenced by POA.

3.4 POA

POA is a bio-inspired algorithm technique that imitates the 
hunting behaviour of pelicans. For finding out the best value in the 
global optimal solution, this approach offers the best exploration and 
exploitation (Pande and Khekare, 2024). POA method is initialized 
based on below Equation (9):
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(9)

where, X  represent the population matrix and iX  represents ith 
pelican. A possible value is denoted by rows, and the column shows 
an optimal value. The population initialization takes place, based on 
lower and upper bounds as given in Equation (10)
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(10)

where, ,i jX  represent the jth variable value in ith candidate 
solution, m  is the problem variable, R , N , B , A , represents the 
random population range, the total number of the population, the 
upper bound, and the lower bound in the search range, respectively. 
The fitness function is evaluated using Equations (11) and (12) 
as follows:
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FIGURE 2

BiLSTM model.
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	 ( )minF cost=
	

(12)

where F  is the fitness function. The selection of weight 
parameters to achieve optimal power flow having minimum cost is the 
objective function.

3.4.1 Phase 1 (exploration)
Within the search space, the position of POA is randomly 

generated. POA can accurately explore the problem-solving space 
with Equations (13) and (14):
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where, 1P
iX , jP , pF , 1P

iF , represent the exploration phase 
status, the location of prey in jth dimension, the objective function 
value and the fitness function, respectively, based on phase 2.

3.4.2 Phase 2 (exploitation)
The hunting behaviour of pelicans is used for this section. This 

section is designed as follows: The position update phase takes place 
and updates the parameters for the next iterations with the following 
Equations (15) and (16):
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where, 2
,

P
i jX , t , T , 2P

iF , indicates a new position based on 
phase 2, the iteration counter, a maximum number of 
iterations and an updated objective function, respectively. This 
method will choose the optimized weight parameters with 
minimum cost. Figure 3 shows the flow diagram of the proposed 
POA method. Algorithm 1 represents the steps included in  tuned 
BiLSTM with CTDE-MARL EV scheduling.

ALGORITHM 1POA-tuned BiLSTM → CTDE-MARL 
EV scheduling

1. Preprocess data:
   1.1 Normalize D_market; engineer features (price_lag_k, 

volume_lag_k, time_of_day, weekday, PV_forecast, temperature).
   1.2 Split D_market into train/val/test

2. POA hyperparameter tuning for BiLSTM:
   2.1 Initialize POA population P (each particle encodes BiLSTM 

hyperparams: num_layers, hidden_units, learning_rate, dropout, 
lookback_window).

   2.2 For iter = 1...max_iters_POA:
        For each particle p in P:
             - Build BiLSTM model M_p with hyperparams(p).

             - Train M_p on D_market_train for N_epoch (early 
stopping on val loss).

          - Evaluate val_loss_p
        - Update P according to POA update rules (exploration/

exploitation).
   2.3 Select best particle p* → final hyperparams_h*.

3. Train final BiLSTM forecaster F_forecast with hyperparams_h* 
on combined train+val data.

4.  Apply POA only to tune BiLSTM hyperparameters (network 
depth, learning rate, temporal window size).

   4.1 Train BiLSTM with optimised parameters.
   4.2 Update MARL policies using PPO with fixed α, γ, and 

ε values.
   4.3  Prevent any POA interaction with MARL policy learning.

5. MARL training (CTDE):
   5.1 Initialize centralized critic network Q_c and decentralized 

actor networks {π_i}.
   5.2 For episode = 1...episodes:
         Reset environment E_aug with sampled EV arrival/departure 

traces from D_ev.
         For step = 1...max_steps:
              - For each agent i: observe s_t^i and select a_t^i ~ 

π_i(s_t^i).
              - Execute joint action a_t = {a_t^i}; environment returns 

s_{t+1}, r_t, done.
              - Store transitions (s_t, a_t, r_t, s_{t+1}) in centralized 

replay buffer.
         - After K steps: update Q_c and π_i parameters using CTDE 

update rules
         - Periodically update target networks and evaluate on 

validation traces.

6. Evaluate:
   - Evaluate trained policies on test traces. Report: cost reduction, 

SOC reliability, forecasting RMSE/MAE/MAPE/R², computation time.

End.

3.5 Dataset description

The forecasting component in this study relies on publicly 
available day-ahead market (DAM) price data obtained from the 
Indian Energy Exchange (2025). For longer-term historical 
coverage, a curated Kaggle mirror dataset (Mukund, 2024) is also 
utilized. To ensure transparency and reproducibility, the 
forecasting component in this study relies on publicly available 
day-ahead market (DAM) price data obtained from the Indian 
Energy Exchange (IEX). The IEX publishes 15-min interval price 
data from April 1st, 2022, onwards. In order to achieve longer-
term historical coverage, the paper leverages a curated Kaggle 
mirror dataset ranging from 2019 to 2024. Each record includes 
approximately 35,040 records per year (96 entries per day) for 
variables of interest, such as electricity price in INR/kWh, time 
block, and market-clearing price. Temporal splitting was carried 
out to preserve the chronological integrity of the dataset for 
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experimental evaluation. Thus, the training set consists of data 
from 2019 to 2022, the validation set consists of the full year of 
2023, and the independent test set ranges from January to June 
2024. This ensures that model evaluation is performed on unseen 
future data and follows the requirements of realistic 
forecasting scenarios.

3.6 Markov decision process formulation

For rigorous validation of the proposed method, it is necessary to 
establish a well-defined mathematical framework. This section 
outlines the exact MDP structure, state and action spaces, reward 
design, and data-driven forecasting module. The consolidation of 

these components enhances reproducibility and eliminates 
interpretational uncertainty.

3.6.1 The EV charging scheduling is represented 
as a finite-horizon MDP

Equation (17) represents the EV charging scheduling as a finite-
horizon MDP

	
M S A P R, , , ,γ=

	 (17)

	•	 State space (S): At time ( )t h , the system state is given in 
Equation (18)
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FIGURE 3

Flowchart for POA.
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(18)

where t
iSOC  is the state-of-charge of EV i, t

gridP  is the available 
grid power (kW), t

PVP  is photovoltaic generation, tλ  is the market 
price (INR/kWh), and tQ  denotes, queue, and tL  is 
transformer loading.

	•	 Action space (A): Each agent i selects an action t
i iP aa max0,∈  

  , 
representing the charging/discharging rate in kW, bounded by 
charger capacity and SOC limits.

	•	 Transition probability (P): Defines the stochastic evolution of 
SOC and system load, influenced by EV arrivals, departures, and 
renewable generation uncertainty.

	•	 Reward function (R): To ensure commensurate scaling across 
economic and technical objectives, we use unit-free terms, 
Equation (19) represents Reward function as follows:
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where tC  is the grid energy cost at time t , maxC  is a reference 
maximum cost (e.g., maximum daily cost under naive charging), 

peak
tP  is station power at time t , 

peak

rated
trf

tP
P

 is transformer rated power, 

tL  is transformer loading, limitL  is its allowable limit, ,i tSOC  and 
target
iSOC  are actual and target SOC for EV i , EVN  is the number 

of EVs, , , , 0c p SOCλ λ λ λ ≥


 control the trade-off between cost, peak 
demand, grid safety, and SOC satisfaction. This normalization makes 
each term lie in 0,1    under typical operation and prevents unit-
driven domination.

	•	 Discount factor (γ): Set within [0.9, 0.99] to balance short-term 
savings and long-term stability.

3.6.2 Agent coordination and training protocol
A centralized training, decentralized execution (CTDE) 

strategy is adopted: During training, a global critic has access to 
all states for stable gradient updates. During execution, each EV 
agent makes decisions using only local SOC and queue 
information. Proximal policy optimization (PPO) is employed for 
policy learning with shared parameters across 
homogeneous agents.

3.6.3 Forecasting and data integration
Forecasted tλ  and baseline demand from the POA-tuned 

BiLSTM are injected into the state vector, enabling anticipatory 
scheduling. Training episodes are defined as 24-h horizons, with each 
step representing 15-min intervals.

3.6.4 Mathematical integration of forecasting and 
MARL

The proposed POA-BiLSTM-MARL framework integrates price 
and demand forecasting with multi-agent reinforcement learning 
within a unified Markov decision process. The BiLSTM module 
provides short-term predictions of electricity price and system 
demand, which are embedded directly into the decision-making cycle 
of the MARL agents, enabling proactive and cost-aware 
charging strategies.

	•	 State representation

At each time step t , the state observed by EV agent i  is defined 
as Equation (20):

	
i
t i t t t PV t tS SO L P Q, ,

ˆ ˆC , , , ,λ =   	
(20)

where i
tSOC  denotes the current state of charge of EV i , t̂λ , and 

ˆtL  are the forecasted electricity price and demand from the BiLSTM 
model, ,PV tP  is available photovoltaic power, and tQ  is the queue 
length at the charging station. This formulation allows agents to 
anticipate both market conditions and infrastructure constraints when 
selecting actions.

	•	 Action policy

Each agent determines its charging or discharging decision using 
a parameterized policy network represented in Equation (21):

	
( )i i

t ta Sθπ=
	

(21)

where θπ  is the policy function optimized through PPO under a 
centralized training and decentralized execution (CTDE) scheme.

	•	 Reward structure

	
( ) ,i

ttr R i= ∀ 	 (22)

This unified reward Equation (22) combines normalized grid 
energy cost, peak demand stress, transformer overloading risk, and 
deviation from target SOC. The energy cost term explicitly incorporates 
the forecasted electricity price through the revised cost formulation 
(Equation 6), ensuring that scheduling decisions are economically 
guided by the BiLSTM predictions. The reward feedback is used to 
update the centralized critic and decentralized actor policies. 
Furthermore, the POA dynamically tunes the PPO learning parameters 
α , γ , and ∈  by maximizing cumulative reward over training 
episodes. This creates a closed-loop interaction where improved 
forecast accuracy contributes to better reward optimization, which in 
turn enhances charging performance and grid stability. This integrated 
structure establishes a coherent link between forecasting accuracy and 
real-time scheduling efficiency, ensuring consistency across the MDP 
formulation, reward modelling, and agent learning processes.
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Figure 4 shows a detailed model system of the study, showing the 
interaction among the PV generation, BiLSTM forecaster, POA 
optimiser, MARL scheduler, and EV charging infrastructure. The 
BiLSTM forecaster predicts the short-term variability of electricity 
price and demand profiles based on PV and grid data, while the POA 
optimiser tunes the parameters accordingly. Multiple EV agents, i.e., 
EV1, EV2, EV3, are included in the MARL environment modeled as 
independent learners possessing their individual SOC, battery 
capacity, and arrival/departure characteristics.

3.7 Experimental scenario description

The simulation framework models an EV charging station with 
PV generation, multiple charging piles, and interconnection to the 
grid. For instance, three representative EV agents, EV1, EV2, and 
EV3, are explicitly modeled in the MARL environment. Each EV 
corresponds to one charging pile in the station, and is viewed as an 
independent agent that is characterized by its own battery capacity, 
SOC, and dwell time characteristics. Specifically, EV1, EV2, and 
EV3 are initialized with SOCs of 40, 55, and 70% and nominal 
capacities of 40 kWh, 50 kWh, and 60 kWh, respectively. These 
variations capture the heterogeneity of real users while having 
homogeneous charger specifications: 7.2 kW AC Level-2. This will 
later be extended to 40 EVs for large-scale evaluation.

EVs arrive according to a stochastic Poisson process, with an 
average inter-arrival time of 20 min during peak hours and 45 min 
during off-peak hours. Dwell times are uniformly distributed between 

1.5–4 h. Each EV has a battery capacity in the range of 40–60 kWh, 
charged by 7.2 kW AC Level-2 chargers, V2G capable wherever 
applicable. SOC limits are between 10 and 95%. Pricing follows the 
IEX day-ahead market price with a resolution of 15 min. Network 
constraints include a 500 kW transformer limit and feeder capacity as 
per the local distribution norm. This explicit scenario description will 
ensure physical consistency and reproducibility across all 
reported experiments.

Table 2 summarizes the hyperparameter settings and convergence 
criteria adopted for all comparative algorithms, including GA, PSO, 
MARL, LSTM, BiLSTM, and the proposed POA-BiLSTM-MARL 
framework. Each method was trained and executed under identical 
datasets, runtime budgets, and computational conditions to ensure a 
fair and reproducible comparison.

The GA and PSO algorithms employed typical evolutionary 
parameters with fixed population or swarm sizes and terminated 
when the improvement in the objective value became negligible or 
when the maximum iteration count was reached. For reinforcement 
learning (MARL using PPO), convergence was defined as the point 
where the average episode reward stabilized with a variation of less 
than 1% over 10 evaluation episodes. The deep learning forecasters 
(LSTM and BiLSTM) were trained using the Adam optimizer with 
a learning rate of 0.001 and an early stopping mechanism triggered 
after 15 epochs of no improvement in validation loss. The proposed 
POA-BiLSTM-MARL model utilized the Pelican optimization 
algorithm to adaptively tune the BiLSTM and MARL 
hyperparameters, achieving automatic convergence when 
cumulative reward improvement was below 10−3 for 10 consecutive 

FIGURE 4

Detailed model system of the study.

TABLE 2  Hyperparameter configurations and convergence criteria for benchmark algorithms.

Algorithm Key hyperparameters Convergence/stop criterion

GA Pop. = 50, Crossover = 0.8, Mutation = 0.05 Δ Fitness < 1 × 10−4 or 100 iters

PSO Swarm = 50, w = 0.7, c₁ = c₂ = 1.5 Δ Global best < 1 × 10−4 (5 iters)

MARL (PPO) lr = 0.0003, γ = 0.95, Batch = 256, Clip = 0.2 Δ Reward < 1% or 200 episodes

LSTM 2 layers × 128 units, lr = 0.001, Batch = 64 Early stopping (15 epochs)

BiLSTM Same as LSTM Early stopping (15 epochs)

POA-BiLSTM-MARL POA pop = 30, iter = 50; α, γ, ε adaptive Δ Reward < 1 × 10−3 (10 episodes)
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episodes. These consistent parameter settings and stopping 
conditions guarantee the reliability of performance comparisons 
reported in the results section.

Figure 5 illustrates that historical market and PV data are first 
processed by the POA-tuned BiLSTM forecaster to predict short-term 
electricity price and demand. These forecasted variables form part of 
the MARL agent’s state vector, enabling anticipatory decision-making. 
The agent interacts with the EVCS environment to update SOC and 
compute rewards, while the cumulative reward performance is used 
by the POA optimizer to refine learning parameters ( ), ,α γ ε , 
establishing a closed feedback loop among forecasting, optimization, 
and reinforcement learning.

4 Result and discussion

MATLAB is used to show the performance of the proposed work. 
Also, the proposed method is compared with existing works to 

validate the BiLSTM with POA. In this work, a BiLSTM with the POA 
method provide EV charging scheduling in EVCSs as per power 
requirements. The input power for EVCSs is considered from a PV 
panel based on irradiance and temperature. Initially, three EVs are 
available in the EVCSs for charging. Figure 6 represents the irradiance 
of the PV panel and the output power from the PV.

For comparability, all baselines were executed under identical 
datasets, constraints, and runtime budgets. The genetic algorithm (GA) 
and particle swarm optimization (PSO) each used a population size of 
50 and 100 iterations. The MARL baseline employed proximal policy 
optimization (PPO) with learning rate 0.0003, batch size 256, and 
discount factor 0.95. LSTM and BiLSTM models were trained for 200 
epochs with the Adam optimizer, batch size 64, and early stopping. The 
proposed POA-tuned BiLSTM applied the same training budget, with 
hyperparameters optimized automatically by POA. Standard 
implementations from established literature were followed.

4.1 Computational efficiency results

All experiments were executed on an Intel Core i7-12700F CPU 
@ 2.1 GHz with 32 GB RAM, running Windows 11 Pro and MATLAB 
R2023a. Reported runtimes exclude offline forecasting model training 
and reflect only the online scheduling step over a 24-h horizon. The 
proposed method achieved an average runtime of 1.69 s per episode, 
improving efficiency by 0.456 s compared to the best baseline under 
identical conditions.

Figure 7 indicates the comparison of the average operational cost. 
This figure illustrates that energy prices drop for all models as the 
number of EVs rises. This is because EVs provide users with free 
energy, which lowers energy bills. Furthermore, as the image 
illustrates, the proposed model performs better than any other model 
across all configurations. For this comparison particle swarm 
optimization algorithm (PSO) (Jain et al., 2022), MARL, the genetic 
algorithm (GA) (Gen and Lin, 2023), and the proposed method are 
taken into consideration. Here, the proposed method has obtained less 
operational cost than the other compared methods.

Figure 7 shows that although there is a slight variation in 
computing efficiency between the proposed method and GA 
algorithms, the proposed method can produce substantially higher-
quality solutions. For comparing the operational cost and simulation 
time, 40 EVs are considered in this proposed work. Figure 8 shows the 
comparative analysis of average simulation time. The proposed 
method performs better than all other models in terms of simulation 
time, increasing run time less than the other algorithms as the 
problem scales up. Here, the GA algorithm obtained higher 
computational time when compared to other methods. PSO, MARL, 
and the proposed method have obtained low simulation time with 
slight variations among them. But the proposed method has attained 
less simulation time. Thus, the proposed method has obtained less 
operational cost and simulation time, which validates the performance 
of the proposed method.

4.2 Cost and SOC performance

Figures 9, 10 illustrate the training and cumulative test rewards for 
three representative EV agents (EV1, EV2, and EV3) from the MARL 

FIGURE 5

Overall control structure of the proposed POA-BiLSTM-MARL 
framework for EV charging scheduling.
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(a) (b)
FIGURE 6

Irradiance of the PV panel and the output power from the PV for 24h.

FIGURE 7

Average energy costs across different numbers of EVs.

FIGURE 8

Average simulation time across different numbers of EVs.
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environment described in Section 3. Each EV agent learns a distinct 
optimal charging/discharging policy based on its unique SOC and dwell-
time parameters while sharing the same centralized critic during training. 
Figure 9 represents the cumulative reward of three EVs for a one-month 
test. For this evaluation, MARL with LSTM (Houran et al., 2023) and 
BiLSTM are compared with the proposed method (Pande and Khekare, 
2024). In this analysis, the reward is defined as the negative of operational 
cost, so a higher cumulative reward corresponds to a lower total cost. It is 
observed, the proposed method achieves the highest cumulative reward 
with the fastest and most stable convergence, requiring significantly fewer 

training episodes compared to the other two methods. In contrast, the 
MARL + LSTM baseline fails to achieve optimal performance, showing 
pronounced oscillations and unstable learning dynamics. 
MARL + BiLSTM without POA tuning performs moderately better than 
LSTM, but still underperforms compared to the proposed framework.

Figure 10 indicates the test reward for three EVs. BiLSTM, 
LSTM, and the proposed POA-optimized BiLSTM are taken into 
consideration for this comparison. It shows that the proposed 
method has obtained the highest test rewards across all three EVs, 
ensuring its capability to minimize charging costs more effectively. 

FIGURE 9

Training reward for different EVs (a) EV1 (b) EV2 (c) EV3.
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It can be further observed that the proposed method exhibits the 
fastest learning speed among the three MARL methods for all three 
EVs. Figure 11 represents the charging and discharging of EV1, 
EV2, and EV3 for 24 h. This shows the charging and discharging 
characteristics of each EV in the charging station. For all three 
EVs, initially from 1 to 6 h, they get charged based on their capacity 
and requirement. The charge in the battery gets discharged from 7 
to 16 h, because during this time period the vehicle is under 
working and travelling conditions. EV1 has charged up to 18 kW 
in 1 h, EV2 charged maximum range of 15 kW in 1 h, and EV1 has 
charged till12kW in 1 h. The discharge characteristics of each EV 
vary based on its travelling distance.

Figure 12 indicates the battery SOC for each EV for 24 h. This SOC 
curve is simulated based on the charging and discharging characteristics 
of each EV. For all three EVs, initially the SOC gets increased between 1 

to 6 h, because in this condition the battery is under charging. The SOC 
of EV battery gets decreased to zero between 7 and to15 hours, due to 
the discharging characteristics of each EV. Thus, the SOC of EV 
increased and decreased based on the charging and discharging 
of the EV.

4.3 Impact of forecasting accuracy on 
scheduling outcomes

This study presents a multi-agent reinforcement learning 
(MARL) framework integrated with a POA-tuned BiLSTM model 
for forecasting and optimal energy scheduling in electric vehicle 
charging stations (EVCS). The BiLSTM is responsible for 
predicting short-term electricity price and demand, while the 

FIGURE 10

Cumulative test reward for (a) EV1, (b) EV2, (c) EV3.
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MARL-based Markov decision process determines charging 
actions for multiple EVs. The Pelican optimization algorithm 
(POA) is applied to optimize the BiLSTM hyperparameters, 
leading to improved forecast precision and more effective 
scheduling decisions. The framework was implemented in 
MATLAB and evaluated against GA, PSO, LSTM, manually tuned 
BiLSTM, and conventional MARL approaches. Results indicate 
that the proposed method achieves a reduction in charging cost of 
12.34%, improves SOC satisfaction by 10.25%, and enhances 
forecasting accuracy by 8.46% when compared with baseline 

methods. Additionally, the computational time was reduced by 
0.456 s per scheduling episode.

To examine the influence of forecasting quality on scheduling 
performance, a comparative analysis was conducted using three 
forecasting techniques: persistence model, ARIMA baseline, and 
POA-tuned BiLSTM. The persistence model produced the highest 
errors (RMSE = 1.23, MAE = 0.98), resulting in increased charging cost 
(₹12,100) and reduced SOC satisfaction (84%). ARIMA showed 
moderate improvement (RMSE = 0.95, MAE = 0.75), yielding 
improved operational outcomes. The POA-tuned BiLSTM achieved the 

FIGURE 11

Charging and discharging behaviour of (a) EV1 (b) EV2 (c) EV3.
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lowest forecasting errors (RMSE = 0.68, MAE = 0.53), which 
corresponded to the minimum charging cost (₹9,200) and highest SOC 
satisfaction (95%). These findings demonstrate that improved 
forecasting accuracy contributes directly to enhanced scheduling 
efficiency and economic performance of the MARL-based 
control framework.

For a fair comparison, all these baseline algorithms have been 
trained and evaluated on the identical data, constraints, and runtime 
budgets. The genetic algorithm and particle swarm optimization were 
implemented with a population size of 50, maximum 100 iterations, 
and the crossover/mutation rates were set according to general 
practice. The reinforcement learning baseline, MARL, was conducted 
using proximal policy optimization with a learning rate of 0.0003, 
batch size 256, and discounting factor 0.95. LSTM and BiLSTM 
forecasting models were trained on 200 epochs with the Adam 
optimizer, early stopping, and identical input features. The proposed 
POA-tuned BiLSTM used the same budget but with hyperparameters 

adaptively tuned by POA. All implementations were executed in 
MATLAB R2023a to ensure comparability.

The sensitivity of the scheduling framework to forecasting error 
was tested by adding controlled Gaussian noise to the price and 
demand forecasts generated by the BiLSTM. It can be observed from 
Figure 13 that with closer forecast accuracy, the normalized cost 
remains lower. For example, when the forecast error was at 0% (the 
BiLSTM forecast data), the normalized cost was 1.00, while SOC 
satisfaction was 98%. By the time the forecast error introduced had 
risen from 0 to 50%, the normalized cost increased from 1.00 to 1.40 
and SOC satisfaction fell from 98 to 87%. This evidences that poor 
forecasts yield less desirable and reliable charging schedules. Both 
measures remain quite stable up to about a forecast error of 20%, 
beyond which they take a notable drop. These results suggest that the 
controller is robust to prediction noise but depends on fairly accurate 
predictions to return good results. Finally, the thin confidence 
intervals show that the results across runs are fairly consistent.

FIGURE 12

Battery SOC of (a) EV1 (b) EV2, (c) EV3.
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4.4 Ablation and sensitivity analysis

Ablation studies analyzed the contributions of these subsystems. 
Removing the BiLSTM forecasting and replacing it with historical 
averages increased the overall charging cost by 9.7%. Using a historical 
average forecast without POA tuning caused a 14% increase in RMSE 
from the forecasting, ultimately resulting in a 6.5% higher cost overall. 
Disabling the V2G methodologies led to a 12% increase in penalty 
costs from peak demand. In regards to V2G agents, the system was also 
assessed when varying the number of agents from 10 to 50 EVs. In the 
context of increased volatility in the tariff profiles, it was found that the 
savings estimated from improved forecast accuracy were greater. Based 
on all metrics, this was an entirely new and unique framework, as the 
combination and integration across the three frameworks provided a 
real and tangible improvement. Figure 14a shows showing Ablation 
study, the contribution of each module to the overall cost reduction. 
Results are reported as mean ± standard deviation over 10 independent 
runs. The full pipeline (POA + BiLSTM + MARL) achieves the highest 
cost reduction compared to variants without POA tuning, without 
BiLSTM forecasting, and GA/PSO baselines.

Figure 14b represents the error distribution of forecasting 
models across 10 independent runs. The POA-BiLSTM model 
shows a compact and left-skewed error distribution compared to 
baseline models, indicating higher consistency and lower 
prediction variance.

4.5 Reward-weight tuning and Pareto 
analysis

We tune { }c p, ,λ λ λ


 on a simplex ( 1c pλ λ λ+ + =


) using a 
coarse grid and select configurations that minimize normalized daily 

cost and satisfy grid safety ( limitmax / 1t tL L ≤ ). For visualization, 
sweeping the 0.2,0.7cλ ∈    and distribution of the remainder 
between pλ  and λ



 in 0.1 steps, training each setting for 50 episodes 
and evaluation on held-out days has been performed. The study 
reports the Pareto curve between average daily cost and worst-case 
loading ratio, and marks the chosen weights. Selection rules are set, 
such as from the Pareto set, which chooses the first point that satisfies 

limitmax / 1t tL L ≤  and peak trf
95% rated/ 0.9P P ≤  (95th-percentile peak 

margin), while achieving the lowest cost among safety-feasible points.
The sweep produced a clear cost-safety trade-off. Cost-centric 

weights ( 0.7 , 0.2, 0.1c pλ λ λ= = =


) minimized cost but approached 
transformer limits. Safety-centric weights ( 0.3,0.4,0.3 ) kept loading 
<80% but increased cost. The selected balanced setting 
( ) ( )c p, , 0.5,0.3,0.2λ λ λ =



 achieved 9–11% cost reduction vs. 

baselines while maintaining 
limit

max 1t tL
L

≤  and a transformer headroom 

of ~8–10% under all test days. Figure 15 shows the Pareto trade-off 
between normalized energy cost and transformer loading for different 
reward-weight combinations. The red marker represents the balanced 
configuration ( ) ( )c p l, , 0.5,0.3,0.2λ λ λ =  achieving cost efficiency 
while maintaining grid-safe operation.

4.6 Comparative convergence analysis

Figure 16 indicates the comparison of the convergence plot. 
Here, the proposed algorithm is compared with the existing PSO 
and GA algorithms. The GA algorithm requires a high number of 
iterations to attain a stable value. While the PSO algorithm has 
taken 35 iterations to obtain the optimal value but the proposed 
method obtained the optimal value within 12 iterations. A smaller 

FIGURE 13

Impact of forecasting accuracy on scheduling outcomes.
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number of iterations increases the computational time; thus, the 
proposed method outperforms better than other 
compared methods.

Overall, the results establish that the proposed 
MARL + BiLSTM + POA framework delivers superior performance 
compared to both evolutionary optimizers and statistical/deep 
learning baselines, achieving cost-efficient, reliable, and scalable EV 
charging management. To ensure consistency between reported 
results and statistical evidence, all performance metrics presented in 
Table 3 calculated across 10 independent experimental runs using 
different random seeds. Results are expressed as mean ± 95% 
confidence interval (CI) to reflect variability and reliability 
of performance.

The proposed POA-BiLSTM-MARL model achieved an RMSE of 
0.68 ± 0.03 INR/kWh, compared to 0.74 ± 0.04 INR/kWh for the 
best-performing baseline (manually tuned BiLSTM). This 

Equation (23) represents a relative improvement of 8.46%, 
calculated as:

	
( )Improvement % 100baseline proposed

baseline

RMSE RMSE
RMSE

−
= ×

	
(23)

where the manually tuned BiLSTM model is used as the primary 
baseline. The forecasting horizon considered in this evaluation is a 
15-min ahead short-term price forecasting window using IEX 
day-ahead market data. To verify statistical significance, a paired 
two-tailed t-test was conducted between the proposed model and the 
best baseline. The test yielded a p-value = 0.018 (<0.05), indicating 
that the observed improvement is statistically significant. Furthermore, 
Cohen’s d effect size was calculated as 0.82, suggesting a large practical 
impact. Thus, the reported 8.46% improvement in forecasting 

FIGURE 14

(a) Ablation study showing the contribution of each module. (b) Error distribution of forecasting models across 10 independent runs.
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accuracy is both statistically and practically meaningful, and aligns 
with the numerical evidence shown in Table 3.

Table 3 represents the results that clearly demonstrate that 
improvements in forecasting accuracy directly enhance the efficiency 
of MARL-based scheduling. More accurate forecasts reduce the risk 
of charging during high-price intervals, thereby minimizing 
operational costs and ensuring higher SOC satisfaction across EVs. 
All results are reported as mean ± 95% confidence interval over 10 
independent runs for EV arrivals and demand variability. Figures 
present mean performance, with shaded regions indicating ±1 
standard deviation. Paired t-tests at the 95% confidence level 
confirmed that improvements of the proposed framework over 
baselines are statistically significant (p < 0.05).

4.7 Scalability and computational feasibility 
analysis

The current simulation framework models a single EVCS with a 
500 kW transformer and up to 40 EV agents to evaluate algorithmic 
performance under realistic medium-scale operating conditions. To 
assess the potential scalability of the proposed POA-BiLSTM-MARL 
framework toward larger deployments, additional stress tests were 
conducted by synthetically extending the number of EV agents to 100 
and 200 using identical stochastic arrival and departure distributions. 
The results showed that average runtime increased linearly with the 
number of agents, while cumulative reward and convergence stability 
remained consistent. This confirms that the CTDE (centralized 

FIGURE 15

Pareto trade-off curve.

FIGURE 16

Comparison of the convergence plot for the proposed algorithm.
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training, decentralized execution) structure supports scalable training, 
as each agent updates its policy using only local states while sharing a 
global critic during training.

This translates to an improvement of 0.456 s per episode on 
average for the scheduling time in terms of computational 
efficiency over the best-performing baseline (MARL without 
forecasting). All the experiments were executed on an Intel Core 
i7-12700F CPU (2.1 GHz, 32 GB RAM) using MATLAB R2023a. 
The runtime reported here is from the online decision-making 
phase and does not include the offline BiLSTM forecasting 
training. The efficiency gain of the framework comes from 
adaptive hyperparameter tuning by POA to reduce redundant 
gradient updates during the MARL training. The memory 
utilization was below 60% for all runs.

Although the current work is focused on the single-station 
setting, the architecture can be extended directly to multi-station or 
distributed networks of EVCSs. In such a setting, each station can be 
treated as an independent MARL agent with local observations (local 
load, transformer loading, and PV generation), while a central 
coordinator periodically exchanges summarized states in terms of 
price forecasts or aggregated demand profiles. This structure of 
decentralized information exchange decreases communication 
overheads and is scalable across geographically distributed clusters of 
EVCSs. In the near future, it will be explicitly implemented and 
evaluated to validate the generalizability of this framework under 
different heterogeneous network conditions with realistic 
communication latencies.

5 Conclusion

This paper presented a hybrid MARL framework enhanced by a 
POA-tuned BiLSTM model for optimal EV charging station 
scheduling. By integrating explicitly the forecasting of electricity 
price and demand into a well-defined MDP formulation, the 
proposed approach overcomes the limitations of the existing 
approaches dependent on static or reactive strategies. The use of 
publicly available IEX day-ahead market data ensures transparency 
and reproducibility, while its forecasting module augments the 

adaptability of MARL agents in real-time decision-making. 
Comparative evaluations against the genetic algorithm, PSO, 
conventional MARL, and deep learning baselines confirm that the 
proposed method achieves superior performance including a 12.34% 
reduction in charging cost, a 10.25% improvement in SOC 
satisfaction, and an 8.46% enhancement in forecasting accuracy, 
calculated based on RMSE improvement over the best-performing 
baseline BiLSTM model and validated using 95% confidence intervals 
and statistical significance testing, along with reduced computation 
time. Using 10 independent runs for statistical validation proved that 
the 8.46% improvement in accuracy is statistically significant within 
a 95% confidence interval. The error distribution study demonstrated 
reduced variance and enhanced stability compared to the baseline 
forecasters. Importantly, the results developed a direct relationship 
between forecasting accuracy and scheduling efficiency, underlining 
the role of data-driven forecasting methods in enhancing the 
performances of MARL. The novelty of this work lies in unifying the 
forecasting, meta-optimization, and multi-agent control into a single 
framework, offering a scalable, efficient, and transparent solution for 
the management of EVCSs. In the extension of this framework to 
multi-energy systems, more sophisticated reinforcement learning 
architectures will be incorporated for further improvements 
in performance.
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