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Explainable Al-driven MRI-based
brain tumor classification: a novel
deep learning approach

Vinayaka R. Srinivas and Ramasubramanian Parvathi*!

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Brain tumors are among the most aggressive forms of cancer,
requiring precise diagnosis and treatment planning to improve patient outcomes.
This study aims to develop an efficient deep learning-based framework for the
classification of brain tumors using MRI data.

Methods: The methodology employs Convolutional Neural Networks (CNNs)
to accurately classify tumors into four categories: normal, glioma, pituitary, and
meningioma. Key preprocessing techniques, including noise reduction,resizing,
and data augmentation, were applied to enhance the robustness of the model.
Advanced architectures such as DenseNet50, VGG19, and other transfer
learning models, along with CNN variants, were trained and evaluated for their
performance. Explainable Al (XAl) techniques, including Grad-CAM, LIME, and
feature map visualizations, played a crucial role in providing better visualizations
of the model’s decision-making process and identifying areas of improvement
during model training and to establish a better model.

Results: The best-performing model, a 4-conv-1-dense-1-dropout CNN,
achieved a classification accuracy of 95.86%, outperforming deeper architectures
and transfer learning approaches. The findings underscore the potential of deep
learning models for reliable and efficient brain tumor classification. This work
concludes with recommendations for real-time deployment in clinical settings
and explores future integration with Large Language Models (LLMs) to generate
detailed diagnostic reports.

KEYWORDS

brain tumor classification, convolutional neural networks, data augmentation, deep
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1 Introduction

With a mortality rate exceeding 80%, brain tumors are among the worst types of cancer.
To improve the prognosis, a prompt and precise diagnosis is essential. However, the manual
annotation and segmentation of a brain tumor can be a challenging task in medical analysis.
Since each MRI modality offers a different set of information about the tumor locations,
multiple modalities are typically evaluated. These MRI modalities tend to increase computation
and overfitting, although they are useful for segmenting gliomas. This study presents a region
of interest detection algorithm that may be used to identify important features and eliminate
unnecessary MRI data during data pre-processing. As a result, the input size is reduced,
enabling deeper neural networks and more aggressive data augmentations. Early detection of
brain tumors is critical due to their rapid metastasis and growth.

Post-detection, the classification stage can be challenging and tedious for doctors or
radiologists, especially in complex cases. This process heavily relies on the availability of expert
medical personnel, which is often a luxury in underdeveloped and developing regions. The task
involves specialists working on localizing the tumor, comparing it with adjacent tissues, applying
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necessary image enhancement techniques, and finally determining
whether it could be a tumor and its type and grade. This fast and precise
detection can be revolutionized through advancements in Artificial
Intelligence, particularly in computer vision, image classification, and
image segmentation, which have demonstrated high accuracy.

Deep learning, a subset of Machine Learning, utilizes neural
networks that mimic the structure of the human brain and are trained
with vast amounts of data. These systems, which can be supervised,
semi-supervised, or unsupervised, show immense potential in medical
image analysis. Comprising input, hidden, and output layers, deep
learning algorithms use these multiple network layers for feature
extraction and encoding. The output of each layer becomes the input
for the next, aiding data abstraction as the network deepens. Artificial
Neural Networks (ANN) and Convolutional Neural Networks (CNN)
are popular in the industry, with CNNs particularly favored for image
classification tasks due to their ability to select distinguishing features
through convolving filters and pooling, followed by training the
classification network’s layers.

2 Objective

The primary objective of using the Tumor dataset (Crystal Clean
MRI dataset) is to develop machine learning models capable of
accurately classifying and segmenting brain tumors from MRI images.
This involves distinguishing between different types of brain tumors,
such as gliomas, meningiomas, and pituitary tumors, or distinguishing
between tumor and non-tumor cases. Early and accurate tumor
classification is critical for effective diagnosis and treatment planning.
To achieve this, the project aims to design a deep learning-based
model, such as a Convolutional Neural Network (CNN), that
significantly improves classification accuracy. The model will leverage
techniques like data augmentation and preprocessing to enhance
generalization, enabling it to perform effectively on real-world medical
datasets. Moreover, exploring multimodal MRI data will further
optimize classification performance, addressing the computational
challenges posed by the high-dimensional nature of MRI scans.

In addition to improving accuracy, the project emphasizes reducing
overfitting and optimizing computational efficiency. Overfitting, that
limits a model’s ability to generalize to new data, will be mitigated using
data augmentation, regularization methods, and cross-validation
techniques. To enhance computational efficiency, strategies such as
dimensionality reduction, region of interest (ROI) detection, and model
pruning will be explored, minimizing memory usage and processing time
while maintaining accuracy. The ultimate goal is to create a scalable and
deployable solution for clinical use. The model will be designed to adapt
to larger datasets, different MRI machines, or imaging centers. By being
integrated into medical software or platforms used in hospitals, this
solution could help healthcare professionals diagnose brain tumors more
effectively and efficiently.

3 Related works

Role of deep learning in brain tumor detection and classification
(2015 to 2020), Nazir et al. (2021) offers a comprehensive review of
deep learning techniques, including CNN, RNN, and hybrid models,
applied to brain tumor detection and classification between 2015 and
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2020. However, it highlights a gap in exploring newer deep learning
models post-2020 and addressing their real-time clinical applicability.
This paper lays a foundation for understanding key methodologies but
further
practical applications.

invites research into cutting-edge models and

An automated brain tumor classification in MR images using an
enhanced convolutional neural network, Singh and Agarwal (2023)
proposes an advanced CNN model that achieves high accuracy in
classifying brain tumors using MRI images. The paper lacks an
analysis of the model’s adaptability across different imaging modalities
and real-time performance, suggesting that more investigation is
needed into its versatility and speed for clinical application.

Machine learning in oncology: methods, applications, and
challenges, Bertsimas and Wiberg (2020) provides a broad overview
of machine learning methods applied in oncology, focusing on
classification, segmentation, and treatment planning. Despite its
breadth, the paper does not sufficiently emphasize brain tumors
specifically and lacks a discussion on deep learning advancements,
which could further enhance the field of oncology.

Multi-class brain tumor classification using residual network and
global average pooling, Kumar et al. (2021) utilizes residual networks
and global average pooling to classify brain tumors into multiple
categories. While effective, the study does not adequately address the
generalization of these models across diverse datasets and presents
challenges with interpretability in clinical settings, leaving room for
future research in these areas.

Comparative study of various techniques using deep learning for
brain tumor detection, Gore and Deshpande (2020) compares
multiple deep learning techniques for brain tumor detection,
emphasizing accuracy and efficiency. However, the study does not
provide a clear recommendation for the best-performing model and
lacks clinical validation, making it a valuable comparison but limited
in practical guidance for clinical applications Radiomics-based
machine learning in differentiation between glioblastoma and
metastatic brain tumors, Chen et al. (2019) utilizes radiomics and
machine learning to differentiate glioblastoma from metastatic brain
tumors. While promising, the study notes challenges in scaling the
model across diverse patient data and different MRI devices,
highlighting the need for more generalizable models.

Brain tumor classification using convolutional neural network,
Abiwinanda et al. (2019) demonstrates a CNN-based approach for
brain tumor classification, emphasizing simplicity and accuracy.
However, it does not explore more complex deep learning
architectures, such as transformers or hybrid models, suggesting that
future research could investigate the potential benefits of more
advanced architectures.

Classification of brain tumors and auto-immune disease using
ensemble learning, Shafi et al. (2021) uses ensemble learning to
classify brain tumors and autoimmune diseases, achieving enhanced
predictive performance. However, the study lacks evaluation across
various demographic groups and does not include external validation,
which could improve the model’s robustness and generalization.

Brain tumor detection: a long short-term memory (LSTM)-based
learning, odel Amin et al. (2020) introduces an LSTM-based model
aimed at enhancing brain tumor detection performance. Despite its
novel approach, the paper provides limited comparisons with other
sequential models like GRUs and lacks performance testing on larger
datasets, suggesting areas for expanded exploration.
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Multimodal brain tumor classification using deep learning and
robust feature selection, Khan et al. (2020) applies a multimodal
approach that combines imaging and non-imaging data, using robust
feature selection for classification. However, challenges arise in the
real-time acquisition of multimodal data and computational efficiency,
indicating that future research could focus on optimizing these areas
for practical application.

Brain MRI Classification and Segmentation of Glioma, Pituitary,
and Meningioma Tumors Using Deep Learning Approaches, Mostafa
etal. (2024) focuses on the segmentation and classification of different
brain tumor types using CNNs and advanced deep learning methods.
Yet, the study offers limited exploration of how segmentation errors
may impact classification accuracy, leaving room for more
investigation into these interconnected processes.

A sequential machine learning-cum-attention mechanism for
effective segmentation of brain tumor, Ali et al. (2022) presents a
sequential machine learning model with an attention mechanism
designed to improve segmentation accuracy. However, the study does
not address issues related to clinical integration and scalability, which
could hinder its practical application in healthcare settings.

Brain tumor segmentation using deep capsule network and latent-
dynamic conditional random fields, Elmezain et al. (2022) proposes a
deep capsule network with latent-dynamic conditional random fields
for accurate segmentation. The paper highlights the complexity of
model training and notes challenges with interpretability in medical
environments, indicating areas for future research to simplify and
explain these models.

Brain tumors classification for MR images based on attention-
guided deep learning model, Zhang et al. (2021) employs attention-
guided deep learning models to improve classification accuracy in
MRI-based brain tumor detection. The study lacks a thorough
discussion on the robustness and interpretability of the model in
clinical ~settings, highlighting areas for improvement in
clinical applicability.

A Robust Deep Learning Model for Brain Tumor Detection and
Classification Using EfficientNet: A Brief Meta-Analysis (Singh et al.,
2024), leverages EfficientNet for brain tumor detection and
classification, supported by a meta-analysis of its performance.
However, the paper does not address the real-time performance of
EfficientNet or its computational requirements, suggesting potential
areas for further investigation in practical deployment.

Design of encoded graphene-gold metasurface-based circular ring
and square sensors for brain tumor detection and optimization using
XGBoost algorithm, Patel et al. (2024) introduces novel metasurface-
based sensors, optimized with the XGBoost algorithm, for brain
tumor detection. While innovative, the study points out challenges
with scaling this method for widespread clinical use and lacks a clear
pathway for clinical integration, leaving room for future studies on
feasibility and scalability.

Personalized treatment planning and predicted therapy response
based on different MRI data sets, classified the tumor tissue type,
identified the severity of the tumor were discussed in Missaoui et
al. (2025).

Recent studies such as BrAInVision, Gagliardi et al. (2025) have
demonstrated that hybrid and doubly explainable architectures—
combining handcrafted and deep features—can enhance both
accuracy and interpretability in brain MRI classification. Similarly,
Missaoui et al. (2025) emphasized the integration of advanced
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transformer-based and hybrid CNN models, highlighting challenges
in computational scalability and transparency that our lightweight
CNN addresses.

Various techniques used for transparency, logical and ethical
dimensions of Al decision justification applied to the clinical contexts
are explained in Caroprese et al. (2022).

Importance of data privacy in medical imaging and highlighted
how federated learning enables distributed model training while
safeguarding patient confidentiality was discussed in Caroprese et
al. (2023).

4 Dataset

The Crystal Clean Brain Tumor MRI Dataset is a comprehensive
collection of high-resolution MRI scans designed to support precise
brain tumor classification. The dataset consists of detailed MRI images
that capture intricate brain structures, making it invaluable for
distinguishing subtle features across various tumor types. The Crystal
Clean Brain Tumor MRI dataset used in this study was obtained from
a publicly available Kaggle repository.! The dataset contains
T1-weighted contrast-enhanced MRI scans categorized into four
classes: glioma, meningioma, pituitary, and normal. Initially, the
dataset comprised 3,264 images—826 glioma, 822 meningioma, 830
pituitary, and 786 normal images. Following data augmentation
(including rotation, flipping, and brightness variation), the dataset
expanded to 13,056 images to balance class distribution and improve
model generalization. The data were split into 80% for training and
20% for testing, ensuring class balance across both subsets.

Each image is meticulously annotated to indicate the presence or
absence of a tumor (refer Figure 1), with tumor types labeled as
glioma, meningioma, pituitary tumor, or no tumor cases. These high-
quality images, paired with accurate annotations, serve as a robust
foundation for training machine learning models, enabling researchers
to achieve precise tumor identification and classification.

5 Methodology
5.1 Preprocessing

While the Crystal Clean MRI dataset was preprocessed by the
provider, additional refinement steps were performed to enhance
image consistency and model readiness. These included verifying
tumor region integrity, re-cropping based on the largest visible
contour, resizing to 224 x 224 pixels, and applying normalization.
These additional steps ensured uniformity across samples and
removed residual background noise. In the preprocessing stage, efforts
were made to ensure uniformity and quality in the dataset before
feeding it into neural networks. The preprocessing steps, including
resizing, normalization, and formatting of the image data, were
already performed by the dataset provider. We are grateful for the
well-prepared dataset, which allowed us to focus on model

1 https://www.kaggle.com/datasets/sartajbhuvaji/

brain-tumor-classification-mri
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FIGURE 1
Different types of datasets images.

pituitary_tumor

Normal

additional
pre-processing efforts. High-resolution MRI images were resized to a

development and evaluation without requiring
standard dimension of 224x224x3, preserving critical information
while reducing storage requirements. Since the black background
surrounding the brain in MRI images does not contribute meaningful
data for classification, the images were cropped to remove this
irrelevant region.

However, in the pre-processing stage, we attempt to make
uniformity in data before feeding it to neural networks. Our images
had high resolution, and we scaled them back to 224x224x3, which
helps preserve all relevant data while reducing storage requirements.
The MRIs contained a black background around the central image of
the brain. This dark background gives no valuable data for
classification since no real information of the MRI is present in the
dark background. Subsequently, the images were trimmed around the
main contour. Here, the greatest contour is chosen and marked.
Following, we discover the extreme points of the contour and crop the
image on those endpoints. Thus, removing most of the background
and noise present within the original image. This process is done for
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each image in the dataset. Images which do not adhere to the
conditions are discarded from the classification process. Such images
come about in distorted shapes and were removed by manual review.

» Removal of Duplicate Samples: We employed an image vector
comparison method to identify and remove duplicate samples,
ensuring that each data point is unique.

Correction of Mislabeled Images: Using our domain knowledge,
we carefully inspected and corrected falsely labeled images,
ensuring that they were appropriately categorized. This step
greatly enhances the accuracy of the dataset.

« Image Resizing: All images in the dataset were resized to a
memory-efficient yet academically accepted size of (224, 224),
facilitating easier processing and analysis.

This was achieved by identifying the largest contour in each
image, determining its extreme points, and cropping accordingly
(refer Figure 2), effectively isolating the brain region while minimizing
background noise. Any distorted or non-conforming images were
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FIGURE 2
Tumor contour of MRl images

manually reviewed and excluded from the dataset. Further
preprocessing steps included the removal of duplicate samples
through image vector comparisons, ensuring that each data point was
unique. Additionally, mislabelled images were identified and corrected
using domain expertise to improve labelling accuracy and improve
dataset reliability.

5.2 Augmentation

To enhance the robustness of the dataset and improve the model’s
ability to generalize, several data augmentation techniques were
employed. The distribution of data across the four classes—Normal,
Glioma, Pituitary, and Meningioma—is shown in Figure 3.

Salt and Pepper Noise introduces random noise to the images by
setting pixels to white (salt) or black (pepper) at specific intensities.
This technique simulates real-world imperfections, such as sensor
noise or transmission errors, which often occur in medical imaging.
By exposing the model to noisy data, it becomes more resilient in
handling distorted or degraded images, thereby improving its
performance in practical scenarios.

Histogram Equalization was applied to improve image contrast by
redistributing pixel intensity values. This method enhances subtle
details in images that may appear washed out or underexposed. For
MRI scans, this is crucial as it brings out intricate patterns and
features, enabling the model to better differentiate between tumor and
non-tumor regions.

Rotation involved altering the orientation of images by rotating
them clockwise or counterclockwise. This augmentation accounts for
the slight variations in orientation that can occur during MRI scans.
By diversifying the dataset with rotated images, the model learns to
identify tumors regardless of the alignment of the image, improving
its adaptability to real-world data.

Frontiers in Artificial Intelligence

Brightness Adjustment simulated varying lighting conditions by
increasing or decreasing the image intensity values. Since MRI images
might differ in brightness due to variations in equipment or imaging
protocols, this technique ensures the model can handle such
discrepancies. Training on images with varied brightness levels
improves the model’s ability to make accurate classifications under
diverse imaging conditions. Lastly, Horizontal and Vertical Flipping
created mirror images of the data, effectively doubling the dataset size
and introducing spatial orientation variability. For symmetrical
structures like the brain, flipping helps the model recognize tumors
regardless of their location within the brain’s symmetry as seen in
Figure 4. This augmentation increases data diversity and helps the
model generalize better between different spatial configurations. This
constitutes a large dataset of 22,000 MRI images which is used for the
training process.

5.3 Justification for using CNNs, transfer
learning, and explainable Al

The choice of CNN-based models and transfer learning
architectures over more complex state-of-the-art models was driven
by practical considerations such as hardware limitations,
computational efficiency, and accessibility for smaller research
environments or medical institutions with limited resources. While
transformer-based architectures and advanced deep learning models
like Vision Transformers (ViTs) or hybrid networks have shown
promising results in medical imaging, they demand extensive
computational power, large-scale labelled datasets, and specialized
hardware such as high-end GPUs or TPUs. Many small-scale
healthcare facilities, startups, and research groups lack the
infrastructure to deploy such resource-intensive models in real-world

clinical applications.
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FIGURE 3

Depicts the percentage of images in each class.

B Glioma

29.49%

29.1%

B Pituitary B Normal

CNNeG, on the other hand, provide a highly efficient alternative—
they require significantly lower computational resources while still
achieving high accuracy, making them more feasible for on-device
processing, cloud deployment, or integration into hospital imaging
systems. Additionally, transfer learning with models like VGG19 and
DenseNet50 allows leveraging pre-trained feature extraction while
minimizing training time and data requirements, a crucial advantage
when working with medical datasets that are often limited in size. In
this study, we use transfer learning methods not only to compare their
results against CNN models but also to demonstrate the effectiveness
of custom CNN architectures for the classification of brain tumors. By
showcasing performance differences, we highlight how CNNs offer a

Frontiers in Artificial Intelligence

more practical approach for small-scale projects and resource-limited
environments, ensuring accessibility without compromising accuracy.

The explainability aspect of the chosen CNN model also enhances
its practical applicability compared to other complex architectures.
Techniques such as Grad-CAM and LIME provide interpretable
visualizations that highlight the model decision-making process,
strengthening trust in clinical environments, and helping create an
architecture of significant results. Unlike models such as Xception and
InceptionV3, which exhibit higher computational complexity with
marginal accuracy gains, the proposed CNN model remains
computationally efficient, making it suitable for real-time deployment
in medical diagnostics. Furthermore, transfer learning models require
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FIGURE 4
Augmentation of MRl images.

extensive fine-tuning to adapt to medical datasets, whereas the
proposed CNN, trained from scratch on domain-specific data,
achieves high accuracy with tailored feature representation.

5.4 Architecture diagram

The overall architecture of the proposed brain tumor classification
is illustrated in Figure 5.

5.4.1 Data preparation

Load Data: The first step is loading the MRI images needed for
tumor classification. This data forms the basis for training and testing
the model.

Preprocess Data: After loading, the data is preprocessed to ensure
itis clean and consistent. Common preprocessing steps might include
resizing images, normalizing pixel values, removing noise, and data
augmentation techniques to increase the dataset’s diversity and
robustness. Proper preprocessing is essential to improve model
accuracy and performance.

5.4.2 Model development

Feature Extraction: After the data is prepared, it is followed by
feature extraction, where meaningful characteristics or patterns are
extracted from the images. For MRI data, features could include pixel
intensities, textures, shapes, or tumor-specific markers. These features
help the model distinguish between different types of tumors or
between tumor and non-tumor cases.

Design Model: In this step, a deep learning or machine learning
model architecture is chosen and designed based on the project
requirements. Common architectures for image classification tasks
include Convolutional Neural Networks (CNNs) or other neural
network models optimized for visual data processing.

Run Model: After designing the model, it is trained on the
preprocessed dataset. During this phase, the model learns from the
features to differentiate between tumor types or identify the absence
of a tumor. Training involves adjusting model parameters to minimize
errors and improve classification accuracy.
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Establish Performance Metrics: As the model trains, performance
metrics such as accuracy, precision, recall, F1 score, or AUC (Area
Under the Curve) are calculated to evaluate the model’s effectiveness.
These metrics help assess whether the model is learning effectively and
can generalize well to new, unseen data.

5.4.3 Model evaluation

Evaluate Training Set: After completing the training, the model is
assessed on the training set to determine if it is overfitting or
underfitting. Overfitting happens when the model excels on the
training data but fails on new data, whereas underfitting indicates that
the model is not effectively identifying the underlying patterns in
the data.

Establish Metrics: After evaluating on the training set,
performance metrics are recalculated to ensure consistency and
validate the model’s effectiveness. This step might also include testing
the model on a separate validation or test dataset to gauge its real-
world applicability.

5.4.4 Deployment

Save Model: Once the model performs satisfactorily, it is saved for
deployment. This saved model can then be loaded in a production
environment where it can be used for real-time tumor classification.

Frontend with Streamlit: A Streamlit interface is designed to allow
users to interact with the model easily. Streamlit is a popular
framework for creating web applications for machine learning models,
making it simple to create a user-friendly frontend.

Upload Image: In the deployed system, users can upload MRI
images through the Streamlit interface. These images are then passed
to the model for classification.

Evaluate and Show Output: Finally, the model processes the
uploaded image, performs the tumor classification, and returns the
result to the user. The result, including predicted tumor type and any
other relevant metrics or visualizations, is displayed on the frontend
for easy interpretation.

5.5 Convolution neural networks

The proposed CNN model of 3-conv-128-nodes-2-dense-2
dropout demonstrates superior performance in brain tumor
classification by balancing precision, generalization, and
computational efficiency. Unlike shallower architectures such as
3-conv-64-nodes-3-dense which exhibited lower validation accuracies
due to insufficient feature extraction, the selected model optimally
captures tumor-specific patterns while mitigating overfitting through
L2 regularization and dropout. The experimental results confirm that
this model achieves a validation accuracy of 92.76%, outperforming
deeper architectures such as 5-conv-128-nodes-3-dense-2-dropout,
which, despite achieving 91.96%, showed marginally higher validation
loss, suggesting potential overfitting.

However, a more refined architecture, the 4-conv-128-nodes-
1-dense-1-dropout CNN model, emerges as the best-performing
among all evaluated configurations. This model achieves an
impressive accuracy of 95.86% with a validation accuracy of
95.32%, along with a training loss of 0.1232 and a validation loss
of 0.1557. These results indicate a well-generalized model with
improved feature extraction capabilities while maintaining
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robustness against overfitting. In contrast, the 3-conv-128-nodes-
2-dense-2-dropout model, though effective, attained a relatively
lower accuracy of 92.88% with a higher validation loss of 0.26,
reinforcing the advantage of deeper feature extraction in the
4-conv-128 architecture.

5.5.1 4-conv-1-dense-1-dropout architecture

The 4-conv-128-nodes-1-dense-1-dropout architecture described
in Algorithm 1 demonstrated the highest performance among the
evaluated CNN models for brain tumor classification. With a training
accuracy of 95.86% and a validation accuracy of 95.32%, this model
achieved superior generalization while maintaining a low validation
loss of 0.1557.

Compared to other architectures, such as the 3-conv-128-nodes-2-
dense-2-dropout model, which reached a validation accuracy of 92.76%,
the additional convolutional layer in this design effectively captured
intricate tumor-specific features without introducing significant
overfitting. The balanced depth of the architecture, coupled with a single
dropout layer, contributed to its robustness, ensuring that the model
retained sufficient feature extraction capacity while mitigating excessive
regularization effects that could hinder performance.

The 4-conv-128-nodes-1-dense-1-dropout architecture (see
Figure 6) is designed to achieve a balance between deep feature
extraction and computational efficiency for brain tumor classification.
The first convolutional layer, consisting of 32 filters with a 4 x 4
kernel size and ReLU activation, captures fundamental spatial
patterns such as edges and textures. These low-level features are then
refined by the second convolutional layer, which increases the filter
count to 64, enabling the model to learn more complex structures.
Max pooling follows each convolutional layer, reducing the spatial
dimensions while retaining essential feature representations. The
third and fourth convolutional layers, both equipped with 128 filters,
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enhance the network’s ability to detect intricate tumor-specific
patterns, allowing the model to differentiate between.

ALGORITHM 1
4-conv-1-dense-1-dropout (L2 regularization) architecture

Require: MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary,
Meningioma)
Initialize a sequential CNN model
Add Conv2D layer with 32 filters, kernel
ReLU activation
Add MaxPooling2D layer
Add Conv2D layer with 64 filters,
L2 regularization
Add MaxPooling2D layer
Add Conv2D layer with 128 filters,
L2 regularization
Add MaxPooling2D layer
Add Conv2D layer with 128 filters,
L2 regularization
Add MaxPooling2D layer
Flatten feature maps
Add Dense layer with 512 units, ReLU activation
Add Dropout layer (rate: 0.5)
Add Output Dense layer with 4 units, Softmax activation

size (3,3),

RelLU activation,

ReLU activation,

ReLU activation,

Compile using Adam optimizer and Categorical
Crossentropy loss
Train model and evaluate using Accuracy, Precision, Recall,

and F1-Score
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FIGURE 6
Layer view of the 4-conv-1-dense-1-dropout architecture.
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After the convolutional feature extraction process, the output is
flattened and passed through a 512-node fully connected layer, where
learned features are aggregated for classification. The inclusion of a
single dropout layer (50%) prevents overfitting by randomly
deactivating neurons during training, ensuring better generalization to
unseen medical images. The softmax activation in the final dense layer
facilitates multi-class tumor classification. To enhance model
interpretability, Grad-CAM (Gradient-weighted Class Activation
Mapping) and LIME (Local Interpretable Model-agnostic Explanations)
were employed. Grad-CAM visualizations provided heatmaps that
highlighted the most influential regions in MRI scans, ensuring that the
convolutional layers were focusing on tumor regions rather than
background artifacts. LIME further validated the model’s decision-
making by generating local perturbations and identifying key image
regions that contributed to the final classification. These explainability
techniques reinforce the model’s clinical applicability, ensuring
transparency in decision-making for medical professionals.

The activation maps (see Figure 7) provide a detailed visualization
of how different layers of the 4-conv-1-dense-1-dropout architecture
respond to input images. The convolutional layers exhibit strong
activations in specific regions, highlighting the model’s ability to
capture intricate spatial patterns such as edges, textures, and fine
details. The max-pooling layers compress the spatial representation,
reducing dimensionality while preserving the most significant
features. By analyzing these activation maps, critical insights were
obtained regarding the model’s focus areas and its generalization to
different inputs. In conjunction with Grad-CAM and LIME
visualizations, these activation maps played a pivotal role in refining
hyperparameters, adjusting dropout

rates, and modifying
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FIGURE 7
Visualizing convolution layer activations of 4-conv-1-dense-1-
dropout architecture.

convolutional filter sizes to enhance the model’s performance.
Through iterative modifications based on these visualizations, the final
model was optimized to achieve robust feature extraction and
improved classification accuracy, ensuring a well-adapted architecture
for the dataset.
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Furthermore, this architecture outperformed deeper models such
as the 5-conv-128-nodes-3-dense-2-dropout, which, despite achieving
a competitive validation accuracy of 91.96%, exhibited a marginally
higher validation loss, indicating potential overfitting. Similarly,
shallower models like the 3-conv-64-nodes-2-dense-2-dropout, which
reached a validation accuracy of 92.76%, failed to extract the necessary
high-level spatial features required for precise tumor classification.
These results highlight that the 4-conv-128-nodes-1-dense-1-dropout
configuration achieves an optimal trade-off between accuracy,
computational efficiency, and model complexity, making it the most
suitable architecture for this task. This balance is particularly crucial
in real-world medical applications, where maintaining high diagnostic
accuracy with minimal resource utilization is essential for deployment
in clinical settings.

5.5.2 3-conv-2-dense-2-dropout(L2
regularization) architecture

This model described in Algorithm 2 effectively avoids both
overfitting and underfitting, allowing it to generalize well on the test
set while accurately learning key features from the training data.
The architecture includes three convolutional layers that are

10.3389/frai.2025.1700214

responsible for extracting important features from the input images,
followed by two dense (fully connected) layers that interpret these
features for final predictions. The inclusion of two dropout layers
reduces overfitting by randomly dropping a fraction of neurons
during training, encouraging the model to learn more
generalized features.

The architecture of 3-conv-128-nodes-2-dense-2-dropout (see
Figure 8) effectively balances feature extraction, computational
efficiency, and generalization for brain tumor classification. The first
convolutional layer, utilizing a 3 x 3 kernel with 64 filters and ReLU
activation, captures low-level features such as edges, textures, and
gradients. This fundamental feature extraction allows subsequent
layers to build upon simple patterns to detect more complex
structures. The second convolutional layer, also with 64 filters,
enhances pattern recognition by identifying contours and higher-
order features, further refined through max pooling to reduce spatial
dimensions. The third convolutional layer, with 128 filters and L2
regularization, expands feature learning, ensuring deeper pattern
extraction while mitigating overfitting. This structured feature
extraction process enables the model to learn tumor-specific
characteristics efficiently.

]

FIGURE 8
Layer view of the 3-conv-2-dense-2-dropout architecture.
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This architecture with L2 regularization is considered the optimal
model due to its balanced performance. This model effectively avoids
both overfitting and underfitting, ensuring that it generalizes well on
the test set while still learning the key features of the training data. The
architecture consists of five convolutional layers, which help extract
increasingly complex features from the input images, followed by a
series of fully connected dense layers that interpret these features to
make predictions. The use of two dropout layers helps mitigate
overfitting by randomly dropping a fraction of the neurons during
training, forcing the model to learn more robust features. Additionally,
L2 regularization is applied to the convolutional layers, which helps
prevent the model from becoming too complex and overfitting by
penalizing large weights.

ALGORITHM 2
3-conv-2-dense-2-dropout architecture

Require: MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary,
Meningioma)
Initialize a sequential CNN model
Add Conv2D layer with 64 filters, ReLU activation,
L2 regularization
Add MaxPooling2D layer
Add Conv2D layer with 128 filters, ReLU activation,
L2 regularization
Add MaxPooling2D layer
Add Conv2D layer with 256 filters, ReLU activation,
L2 regularization
Add MaxPooling2D layer
Flatten the output
Add Dense layer with 512 units, ReLU activation
Add Dropout layer (rate = 0.4)
Add Dense layer with 256 units, ReLU activation
Add Dropout layer (rate = 0.4)
Add Output Dense layer with 4 units, Softmax activation
Compile model with Adam optimizer and Categorical
Crossentropy loss
Train and validate using stratified data split, evaluate with
class-wise metrics

Following convolutional processing, the extracted feature maps
are flattened and passed through two fully connected dense layers. The
first dense layer consists of 64 neurons, integrating information from
previous layers, while the second dense layer functions as the output
layer, classifying images into one of the four tumor categories via
softmax activation. The incorporation of dropout layers (40%)
significantly reduces overfitting by randomly deactivating neurons
during training, ensuring robust generalization. Activation
visualizations confirm that the network effectively learns relevant
tumor features, with high activations corresponding with critical
tumor regions. The integration of Grad-CAM and LIME further
validated the model’s reliability, revealing that key areas influencing
classification align with known tumor structures. This transparency
reinforces the model’s clinical applicability, ensuring it focuses on
meaningful tumor regions rather than irrelevant image artifacts.
Grad-CAM visualizations provided heatmaps that highlighted the
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most influential regions in MRI scans, ensuring that the convolutional
layers were correctly focusing on tumor regions rather than
background artifacts.

5.5.3 5-conv-3-dense-2-dropout architecture

The 5-conv-128-nodes-3-dense-2-dropout architecture described
in Algorithm 3 follows a structured feature extraction process,
progressively learning low-level, mid-level, and high-level patterns
from MRI images.

These layers exhibit high activation across multiple filters,
indicating that they extract fine-grained structural details. As the
network progresses to mid-level convolutional layers (see Figure 9),
activation becomes more selective, focusing on region-specific
patterns that distinguish tumor structures from normal tissue. This
reduction in activation density implies that the network is filtering out
less relevant information, concentrating on important tumor
characteristics. In the final convolutional layers, the activations
become even more sparse and localized, signifying the network’s
ability to abstract complex tumor-specific representations while
discarding irrelevant background features. This hierarchical feature
refinement process enables robust classification with minimal
computational redundancy.

After convolutional feature extraction, the dense layers
integrate the learned representations to form the final classification
decision. The first two dense layers process a diverse set of
activation values, selectively amplifying features critical to
distinguishing tumor types. The visualized activations in these
layers reveal a broad range of responses, highlighting their role in
refining tumor-specific feature maps. As the network moves toward
the final dense layer, activations become concentrated, representing
class-specific decisions. Here, only a few neurons exhibit strong
activations, suggesting that the model has confidently identified the
correct tumor category. The integration of dropout layers ensures
that the model generalizes effectively, preventing overfitting.

Explainability techniques, such as Grad-CAM and LIME, were
pivotal in evaluating this architecture, confirming that the model
effectively focuses on tumor regions rather than irrelevant background
noise. These insights allowed for iterative improvements, fine-tuning
dropout rates, filter sizes, and activation thresholds to achieve optimal
classification performance while maintaining computational efficiency.

5.6 Transfer learning

Transfer learning was incorporated alongside CNN models to
leverage pre-trained architectures that have been trained on large-
scale image datasets, allowing for improved feature extraction with
limited medical imaging data. Unlike CNN models trained from
scratch, transfer learning enables the use of pre-learned
representations, significantly reducing training time and mitigating
overfitting. Given the high-dimensional nature of MRI scans and the
relatively small dataset, fine-tuning pre-trained networks was essential
for capturing tumor-specific patterns while maintaining computational
efficiency. The models selected—DenseNet50, VGG19, InceptionV3,
and Xception—were evaluated for their ability to classify brain tumors
into four categories, considering factors such as accuracy, loss stability,
and overfitting tendencies. The experimental results revealed varying
degrees of effectiveness, with some architectures demonstrating strong
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ALGORITHM 3
5-conv-3-dense-2-dropout architecture

Require: MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary,
Meningioma)

Initialize a sequential CNN model

Add Conv2D layer with 64 filters, ReLU activation

Add MaxPooling2D layer

Add Conv2D layer with 64 filters, ReLU activation

Add MaxPooling2D layer

Add Conv2D layer with 128 filters, ReLU activation

Add MaxPooling2D layer

Add Conv2D layer with 128 filters, ReLU activation

Add MaxPooling2D layer

Add Conv2D layer with 256 filters, ReLU activation

Add MaxPooling2D layer

Flatten the feature maps

Add Dense layer with 512 units, ReLU activation

Add Dropout layer (rate = 0.3)

Add Dense layer with 256 units, ReLU activation

Add Dropout layer (rate = 0.3)

Add Dense layer with 128 units, ReLU activation

Add Output Dense layer with 4 units, Softmax activation

Compile with Adam optimizer and Categorical
Crossentropy loss
Evaluate using Accuracy, Precision, Recall, and F1-Score on
validation and test sets

performance but requiring further adjustments to generalize well
across different tumor types.

5.6.1 DenseNet50 architecture

The DenseNet50 architecture, known for its efficient feature reuse
and gradient propagation, was fine-tuned on the MRI dataset to assess
its classification capability. Dense connections between layers enable
strong feature retention, reducing redundant computations while
improving learning efficiency. The model achieved 90.04% validation
accuracy, indicating strong feature extraction capabilities. However,
fluctuations in validation loss suggested potential overfitting, despite
the model’s ability to mitigate the vanishing gradient problem. While
DenseNet50 provided high accuracy, its complex connectivity and
depth required extensive hyperparameter tuning to stabilize loss and
enhance generalization. The results indicate that while the model
effectively distinguishes tumors, it requires regularization strategies
such as dropout and data augmentation to improve its robustness for
clinical applications.

5.6.2 VGGI19 architecture

VGG19, a deep sequential convolutional architecture, was
implemented for its structured feature extraction process, making it
well-suited for hierarchical feature learning in MRI scans. Fine-tuning
of the fully connected layers and batch normalization techniques was
applied to optimize classification performance. The model yielded a
95.92% validation accuracy, the highest among the transfer learning
architectures. However, overfitting was evident, with near-perfect
training accuracy and a significant discrepancy between training and
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validation loss. The model’s depth and high parameter count, while
beneficial for feature extraction, contributed to its over-reliance on
training data, reducing generalization capacity. Despite its strong
classification accuracy, lighter architectures with regularization
mechanisms may offer more balanced performance for deployment in
resource-constrained environments.

5.6.3 InceptionV3 architecture

InceptionV3, designed to capture multi-scale features through
inception modules, was evaluated for its ability to distinguish tumor
types in MRI scans. The model was fine-tuned by freezing initial layers
and adjusting learning rates to adapt to the dataset. The results showed
a validation accuracy of 69.55%, indicating challenges in extracting
relevant tumor features. While the model demonstrated robust
validation loss stability, its lower overall accuracy suggests difficulty in
learning fine-grained tumor structures from a relatively small dataset.
The depth and complexity of InceptionV3, which typically excels in
large-scale classification tasks, appears to have contributed to slower
convergence and limited feature specialization for this medical
imaging dataset.

5.6.4 Xception architecture

Xception, an extension of the Inception architecture using depth
wise separable convolutions, was evaluated for its ability to improve
computational efficiency while retaining strong feature extraction
capabilities. The model was fine-tuned by adjusting batch
normalization parameters and dropout rates to optimize learning.
While achieving 76.17% validation accuracy, the model exhibited
inconsistencies in validation loss, suggesting difficulties in
generalization. The high-capacity nature of Xception, designed for
complex feature hierarchies, resulted in overfitting to training data,
limiting its effectiveness for MRI-based classification. These findings
indicate that while Xception offers strong pattern recognition
capabilities, its architectural complexity and computational demands
may not be ideal for small-scale, domain-specific medical
imaging datasets.

5.7 Leveraging explainable Al (XAl)

The use of XAI in this study not only enhances the interpretability
of deep learning models for brain tumor classification but also paves
the way for its application in various medical conditions, modeling
approaches, and diagnostic frameworks. This paper serves as a
foundation, demonstrating how XAI techniques can be integrated into
medical imaging tasks, while future research can expand its use across
different diseases, imaging modalities, and clinical decision-making
processes. To ensure the CNN model effectively learned meaningful
tumor features, Grad-CAM and LIME were employed to analyze layer
activations and assess the model's decision-making process.
Grad-CAM visualizations provided heatmaps highlighting the most
critical regions influencing classification, confirming that the
convolutional layers were focusing on tumor areas rather than
irrelevant background artifacts. The first Grad-CAM visualization was
applied to CNN layers to validate their effectiveness in capturing key
image regions. The high-intensity activations around the tumor mass
confirmed that the network correctly localized tumor structures,
reinforcing the reliability of the feature extraction process. Similarly,

frontiersin.org


https://doi.org/10.3389/frai.2025.1700214
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Srinivas and Parvathi

10.3389/frai.2025.1700214

FIGURE 9
Layer view of the 5-conv-3-dense-2-dropout architecture.
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LIME perturbation analysis identified which specific pixels
contributed most to classification, ensuring the model was learning
clinically relevant patterns rather than noise. These insights allowed
for iterative fine-tuning of CNN architectures, adjusting dropout rates,
kernel sizes, and regularization techniques to achieve optimal
generalization while mitigating overfitting.

For transfer learning models, explainability techniques were
crucial in understanding how pre-trained architectures adapted to the
medical imaging dataset. Grad-CAM was applied to VGGI19,
DenseNet50, and Xception, revealing differences in their feature
attention mechanisms. The second Grad-CAM visualization, initially
labeled for glioma detection, was utilized to interpret the attention
focus of these models. While VGG19 and DenseNet50 localized
tumor regions effectively, Xception exhibited scattered activations,
indicating potential misinterpretation of MRI features. LIME analysis
further confirmed that misclassified cases often had feature
attributions out-side the tumor region, suggesting that certain transfer
learning models over-relied on non-tumor structures. These
explainability methods enabled precise model selection, confirming
that architectures like VGG19 achieved higher validation accuracy but
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suffered from overfitting, while DenseNet50 required additional
regularization strategies to stabilize performance. By leveraging XAI,
transfer learning models were fine-tuned to enhance interpretability
and ensure robust classification.

The superimposed Grad-CAM heatmap on a pituitary tumor
MR, as illustrated in the Figure 10, confirmed that the model’s
activation concentrated precisely on the tumor, validating its decision-
making process. LIME further complemented this analysis by
perturbing input images and identifying the most significant pixels
contributing to classification, allowing for a granular evaluation of
feature relevance. These insights played a critical role in fine-tuning
hyperparameters, such as filter sizes, dropout rates, and regularization
strengths, to enhance model generalization and stability. The use of
these explainability techniques ensured that the model captured
clinically meaningful features, reinforcing its reliability for real-world
medical applications. In the super-imposed image, the heatmap shows
high activation in the central region of the MRI scan, where the
pituitary tumor is clearly visible. This indicates that the CNN has
successfully identified the tumor area as the key factor in its
classification decision. The yellowish-green regions represent the areas
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FIGURE 10

3-conv-2-dense-2-dropout CNN layers

Pituitary tumor MRI image showing original image on the left and superimposed image with a heatmap generated through averaging outputs of
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FIGURE 11

blocks of VGG19 architecture

Glioma tumor MRI image showing original image on the left and superimposed image with a heatmap generated through averaging outputs of early
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with the strongest activation, high-lighting where the model focused
its attention most during prediction. The model’s concentrated
attention on the tumor area reflects its confidence in identifying
features specific to a pituitary tumor. The averaged heatmap, which
integrates multiple CNN layers, captures low-level features (such as
edges and textures) as well as high-level features (such as shapes and
patterns). This detailed visualization confirms that the model accounts
for a multiple range of features when making its decision. The darker
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blue regions in the heatmap represent areas of low activation,
suggesting that the CNN largely ignored these parts of the MRI scan.
This indicates that the model is focusing on medically relevant areas,
such as the tumor, rather than irrelevant parts of the scan like
surrounding tissue or background.

The heatmap in Figure 11 reveals significant activation in the
upper-central region of the MRI scan, where the glioma is visible.
The greenish areas indicate the regions where the model focused its
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attention most while predicting the tumor class. These activations
confirm that the model has correctly identified features consistent
with glioma, such as irregular growth patterns and abnormal
textures. The surrounding regions, coloured in darker blue, show
minimal activation, demonstrating that the model ignored
non-relevant areas and precisely isolated the tumor region. The
bright green and yellow activations align well with the tumor’s
location, validating the models predictive capabilities. This
visualization, derived from VGG19’s averaged layer activations,
highlights the interpretability of the proposed deep learning
framework. By integrating outputs from various blocks, the heatmap
ensures a more accurate and reliable analysis of glioma-specific
features. For medical imaging, such as MRI scans for tumor
detection, transparency is crucial. It not only builds trust in the AT’s
predictions by showing clear visual evidence but also helps medical
professionals validate and interpret the model’s decisions. This can
lead to better-informed diagnostic decisions and increased
confidence in the AIs capabilities. Additionally, Grad-CAM
visualizations can aid in model improvement and identify
potential shortcomings.

The left panel in Figure 12 displays the raw MRI scan of a brain,
where a glioma tumor is visibly present as a bright mass. The
glioma, a type of brain tumor, is characterized by its irregular shape
and location in the brain tissue. This scan serves as the input to a
predictive model, such as a classification or segmentation model,
trained to identify and categorize tumors. The right panel shows the
LIME visualization over-layed on the same MRI scan. The yellow
highlighted regions represent the areas that were the most
influential in the model decision-making process to predict the
presence of the glioma tumor. The parameters used were 1,000

10.3389/frai.2025.1700214

perturbations and 3 top features, influence the output by ensuring
a more reliable and stable explanation with a higher number of
perturbed samples and highlighting only the top 3 contributing
regions/features.

The left panel in Figure 13 illustrates the original MRI scan,
showcasing a distinct, bright mass characteristic of a meningioma
tumor. Meningiomas, typically benign tumors, arise from the
meninges, the protective layers enveloping the brain and spinal
cord. Detecting these tumors is crucial for medical imaging
models. In the right panel, the LIME visualization is displayed,
with yellow-highlighted regions marking areas of the MRI scan
that significantly contributed to the model’s decision. The bright
mass corresponding to the meningioma is clearly outlined,
signifying that the model effectively identified and utilized this
tumor region as a critical feature for its prediction. The LIME
explanation also reveals additional highlighted areas outside the
tumor boundary, particularly along the periphery of the brain.
These regions may represent secondary influences, artifacts, or
features the model deemed relevant in this specific instance. The
parameters utilized 1,000 perturbations and top 3 features, define
the granularity and scope of the explanation. Generating 1,000
samples allows the model to form a robust local approximation of
the features influencing its decision, ensuring a reliable
explanation. By limiting the number of features to three, the
visualization = emphasizes only the top three most
significant regions.

The above visualizations were examples for how we used XAI to
modify hyperparameters and make necessary adjustments to ensure
an optimal model that accurately fits the data and delivers

reliable results.

Original Image

FIGURE 12

Glioma tumor MRI image highlighting key areas of the scan when passed through the 5-conv-3-dense-2-dropout model for classification.
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Original Image

FIGURE 13

Meningioma tumor MRI image highlighting key areas of the scan when passed through Densenet50 model for classification.

LIME Explanation

6 Results and discussion

6.1 4-conv-1-dense-1-dropout
architecture

The model demonstrates a high classification performance,
indicating its effectiveness in distinguishing between Normal, Glioma,
Meningioma, and Pituitary classes. The precision, recall, and F1-score
values in Figure 14 further validate the model’s reliability, with all
metrics consistently ranging between 0.94 and 0.98 across the different
categories. These values suggest that the model not only makes
accurate predictions but also maintains a strong balance between
sensitivity and specificity, ensuring minimal false positives and false
negatives. Class-wise metrics for 4-conv-1-dense-1-dropout
architecture,3-conv-2-dense-2-dropout architecture and 5-conv-3-
dense-2-dropout architecture are shown in Tables 1-3.

The precision scores range from 0.94 to 0.97, signifying that the
model produces a high proportion of correct positive predictions for
each class. Similarly, recall values between 0.94 and 0.98 indicate that
the model effectively identifies most true cases of each tumor type. The
F1-score, which accounts for both precision and recall, consistently
remains between 0.94 and 0.98, confirming the model’s robustness
and stability across different categories. These performance metrics
collectively highlight the model’s capability to generalize well without
significant overfitting.

In addition to overall accuracy, class-wise metrics were computed
to evaluate model balance and reliability. The proposed 4-conv-1-
dense-1-dropout model achieved a mean Precision of 95.8%, Recall of
95.4%, F1-Score of 95.5%, and Specificity of 96.1% across all tumor
classes. Among individual classes, glioma achieved the highest
Fl-score (96.4%), while meningioma demonstrated slightly lower
precision (94.2%) due to inter-class texture similarities. These findings
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indicate consistent model performance across tumor categories,
confirming robust generalization.

Overall, the strong performance metrics, including high accuracy,
low loss, and balanced precision-recall values, demonstrate that the
model effectively learns dis-criminative features for brain tumor
classification. The minimal divergence between training and validation
performance further suggests that the model generalizes well to
unseen data, making it a reliable tool for automated brain
tumor diagnosis.

6.2 3-conv-2-dense-2-dropout
architecture

The model demonstrates strong classification performance
across four categories: Normal, Glioma, Meningioma, and Pituitary
tumors. Precision, recall, and F1-score metrics are consistently high
across all classes, with macro and weighted averages both at 0.96.
These results indicate that the model is highly reliable in
distinguishing between the different tumor types while maintaining
balanced performance across all categories. The precision values for
each class range from 0.94 to 0.98, showing that the model makes
highly accurate predictions with minimal false positives. The recall
values range from 0.94 to 0.99, demonstrating that the model
successfully identifies most instances of each class with few false
negatives. The F1-scores, which balance precision and recall, are also
high, further the
generalization capability.

consistently validating model’s strong
The confusion matrix in Figure 15 provides additional insights
into the model’s classification performance. The highest

classification accuracy is observed in the Pituitary class, with
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Confusion matrix of 4-conv-1-dense-1-dropout architecture.
TABLE 1 Class-wise metrics-4-conv-1-dense-1-dropout architecture. TABLE 3 Class-wise metrics-5-conv-3-dense-2-dropout architecture.
Precision Recall F1- Specificity Precision Recall F1- Specificity
Score Score
Normal 0.938 0.964 0.951 0.989 Normal 0.891 0.965 0.927 0.981
Glioma 0.956 0.935 0.945 0.983 Glioma 0.747 0.826 0.785 0.888
Meningioma 0.940 0.941 0.941 0.975 Meningioma 0.783 0.674 0.724 0.925
Pituitary 0.972 0.979 0.975 0.990 Pituitary 0.913 0.906 0.909 0.968

TABLE 2 Class-wise metrics-3-conv-2-dense-2-dropout architecture.

misclassifications. The small number of misclassified instances

e Hzeell gi;)re Slzelizly suggests that the model effectively learns distinguishing features

while maintaining a low rate of confusion among different tumor

Normal 0966 0-962 0964 0-994 types. Overall, the model achieves an optimal balance between
Glioma 0.940 0.953 0.946 0.975 accuracy and generalization, making it suitable for medical image
Meningioma 0.956 0.938 0.947 0.982 classification tasks. The high precision, recall, and Fl-scores
Pituitary 0983 0.991 0.987 0.993 indicate robust performance, while the confusion matrix confirms

minimal misclassifications. These results suggest that the model
can be a valuable tool in aiding medical professionals in tumor
1,178 correct predictions out of 1,189 samples. Other classes also  diagnosis, reducing diagnostic errors, and improving
show strong classification performance, with minimal patient outcomes.
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6.3 5-conv-3-dense-2-dropout
architecture

The classification report provides a detailed breakdown of the
model’s precision, recall, and F1-score for each class. Precision,
recall, and F1-score vary across different classes, with the highest
performance observed in the classification of Normal and Pituitary
classes. Specifically, the model achieves a macro-averaged precision
of 83%, recall of 84%, and an Fl-score of 84%. The weighted
averages for these metrics remain consistent at approximately 82%,
reflecting the model’s balanced performance across different
tumor types.

The confusion matrix in Figure 16 highlights the distribution
of correct and incorrect predictions among the four classes. The
model shows strong performance in identifying Normal cases,
with 608 classified
misclassifications. However, a notable degree of misclassifications

correctly instances and minimal
is observed for Meningioma and Glioma cases, as a considerable
number of Meningioma cases are predicted as Glioma. This

suggests a need for further optimization to improve class
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separability, particularly in differentiating tumor types with
similar characteristics.

6.4 Transfer learning models

The DenseNet50 model demonstrates robust learning
performance, reaching 90.16% accuracy, with a low loss of 0.20.
Precision (0.84), recall (0.87), and F1 score (0.87) indicate strong
balance across classification metrics. Training and validation accuracy
climb rapidly during early epochs, stabilizing near the top end. The
consistently low loss reflects efficient optimization. However, a slight
divergence between training and validation loss in later epochs hints
at mild overfitting. Still, the model exhibits reliable generalization,
making it a high-performing and dependable architecture for
classification tasks.

VGG19 achieves the highest accuracy among all models at
93.73%, with an impressively low loss of 0.03, indicating near-perfect
learning on the training set. Despite high training performance,

validation accuracy stabilizes slightly lower (85%), reflecting minor
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overfitting. The metrics remain strong with precision 0.87, recall 0.85,
and F1 score 0.85, suggesting effective pattern learning. Given the tiny
loss value, the model likely memorized training data well, but
regularization (e.g., dropout or early stopping) could further improve
its generalization capability.

InceptionV3 presents a contrasting trend: while training accuracy
hovers around 63.60%, validation accuracy surpasses it during
training, reaching 70%. The loss is moderate at 0.88, and performance
metrics—precision 0.63, recall 0.61, and F1 score 0.63—are lower than
other models. This indicates the model generalizes better than it
memorizes, possibly due to strong internal regularization mechanisms.
The close loss values across sets suggest balanced learning despite
lower overall accuracy, making this architecture more suitable where
overfitting is a concern.

Xception shows initial promise, attaining 77.41% accuracy and a
loss of 0.61, with stable precision (0.84), recall (0.82), and F1 score
(0.84). However, after 7-8 epochs, validation accuracy fluctuates and
eventually declines, a classic sign of overfitting. This is further
confirmed by rising validation loss after an initial dip. Though the
model starts strong, its later-stage instability suggests the need for
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better regularization or addressing potential data imbalance issues to
improve its reliability and generalization power.

6.5 Comparative study of the models

The proposed CNN achieved superior accuracy compared to
deeper pre-trained models such as VGG19, DenseNet50, and
InceptionV3. While transfer learning architectures offered advanced
feature hierarchies, they tended to overfit due to dataset size and
variance. In contrast, the custom CNN, with fewer parameters and
targeted feature learning, reduced redundancy and captured domain-
specific tumor textures effectively. Its simplicity allowed for efficient
optimization without compromising representational power. The
integration of XAI further validated its decision process, ensuring that
high performance correlated with meaningful medical features rather
than data artifacts.

In the evaluation of various convolutional neural network (CNN)
architectures for brain tumor classification (refer to Table 4), the
4-conv-1-dense-1-dropout model emerged as the best-performing
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TABLE 4 Performance comparison of different models.

10.3389/frai.2025.1700214

Models Accuracy Loss Precision Recall F1 Score
3-conv-2-dense 79.12 0.58 0.78 0.81 0.78
3-conv-3-dense 82.66 1.36 0.81 0.80 0.80
2-conv-5-dense 83.14 0.48 0.79 0.80 0.80
4-conv-3-dense 83.09 0.54 0.89 0.90 0.89
3-conv-1-dense-1-dropout 85.11 0.73 0.86 0.84 0.84
5-conv-3-dense-1-dropout 92.22 0.43 0.91 0.90 0.90
4-conv-1-dense-1-dropout 95.86 0.12 0.95 0.95 0.95
4-conv-2-dense-1-dropout 91.37 0.29 0.92 0.88 0.90
2-conv-2-dense-1-dropout 86.47 0.93 0.77 0.82 0.79
(L2 regularization -2 layers)

3-conv-2-dense-2-dropout 92.88 0.25 0.96 0.96 0.95
(L2 regularization -3 layers)

5-conv-3-dense-2-dropout 93.53 0.33 0.83 0.84 0.84
(L2 regularization -6 layers)

VGGI16 88.22 1.49 0.85 0.86 0.84
InceptionV3 63.60 0.88 0.63 0.61 0.63
ResNet50 73.41 1.12 0.64 0.67 0.63
VGGI19 93.73 0.03 0.87 0.85 0.85
Densenet50 90.16 0.20 0.84 0.87 0.87
Xception 77.41 0.61 0.84 0.82 0.84

model, achieving an accuracy of 95.86%, a remarkably low loss of 0.12,
and high precision, recall, and Fl-score (all 0.95). This model
outperformed deeper architectures such as VGG16 (88.22%),
ResNet50 (73.41%), and InceptionV3 (63.60%), indicating that a
balanced network depth with dropout regularization is beneficial for
robust classification. Comparatively, other models such as 5-conv-3-
dense-1-dropout (92.22%) and 5-conv-3-dense-2-dropout (93.53%)
performed well but did not surpass the optimal results of the 4-conv-
1-dense-1-dropout architecture. The inclusion of dropout layers
played a significant role in reducing overfitting while maintaining high
performance, demonstrating the effectiveness of this architecture in
handling brain tumor classification tasks. The hyperparameter details
are given in Table 5.

6.5.1 Inception training and loss analysis

The left graph shows the accuracy of the model on both the
training and validation datasets over each epoch. The training
accuracy (blue line) shows a steady improvement from around 45% at
the beginning to approximately 65% by the 20th epoch. The validation
accuracy (orange line) starts at around 50%, increases more rapidly
than the training accuracy, and eventually surpasses it, reaching
around 70%. The higher validation accuracy compared to training
accuracy is somewhat unusual, as models typically perform better on
the training data. However, this may indicate that the InceptionV3
model is effectively generalizing and has not overfitted the training
data. It could also suggest that data augmentation or dropout is being
applied to the training set, reducing the training accuracy while
improving generalization. The fluctuations, especially in the earlier
epochs, indicate the model’s gradual learning. Over time, both lines
stabilize, with validation accuracy showing slightly less fluctuation,
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indicating improved performance. The right graph shows the loss of
the model on both the training and validation datasets over each
epoch. The training loss (blue line) starts high, at around 1.6, and
consistently decreases to about 0.8 by the end of the 20th epoch. The
validation loss (orange line) follows a similar trend, decreasing from
an initial high point and stabilizing between 0.7 and 0.8. The steady
decrease in both training and validation losses indicates that the
model is learning effectively and converging. The fact that both losses
continue to decrease (without significant divergence) suggests that the
model is neither overfitting nor underfitting significantly. Although
the validation loss fluctuates in some epochs, it generally decreases
along-side the training loss, supporting the trend observed in the
accuracy plot. The loss values at the end are relatively close, suggesting
a well-balanced model that is likely generalizing well to unseen data
are shown in the Figure 17.

6.5.2 DenseNet training and loss analysis
DenseNet50 is a convolutional neural network architecture that
belongs to the family of DenseNets, designed to enhance
information and gradient flow through the network by introducing
dense connections between layers. In DenseNet50, each layer is
connected to every other layer in a” dense” manner, meaning that
the output of each layer is fed as input to all subsequent layers. This
structure helps the model reuse features and reduces the number of
parameters, making it both computationally efficient and highly
accurate. DenseNet50 consists of 50 layers, making it a moderately
deep model suited for complex image classification tasks, including
medical imaging applications like brain tumor detection. The dense
connections alleviate the vanishing gradient problem, allowing for
efficient training even in deeper networks, while also promoting
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TABLE 5 Hyperparameters details.

Model
Architecture

Dense
Layers

Conv Layers

Dropout

L2 Regularization

10.3389/frai.2025.1700214

Hyperparameters

Inception training and loss analysis.

3-conv-2-dense 3 2 No None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
3-conv-3-dense 3 3 No None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
2-conv-5-dense 2 5 No None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
4-conv-3-dense 4 3 No None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
3-conv-1-dense-1-dropout 3 1 Yes (0.3) None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
4-conv-1-dense-1-dropout 4 1 Yes (0.3) None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
5-conv-3-dense-1-dropout 5 3 Yes (0.3) None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
4-conv-2-dense-1-dropout 4 2 Yes (0.3) None Optimizer: Adam « LR: 0.001 «
Batch Size: 32 « Epochs: 5
2-conv-2-dense-1- 2 2 Yes (0.3) 2 Layers Optimizer: Adam « LR: 0.001 «
dropout-12-2 Batch Size: 32 « Epochs: 5
3-conv-2-dense-2- 3 2 Yes (0.3) 3 Layers Optimizer: Adam « LR: 0.001 «
dropout-12-3 Batch Size: 32 « Epochs: 5
5-conv-3-dense-2- 5 3 Yes (0.3) 6 Layers Optimizer: Adam « LR: 0.001 «
dropout-12-6 Batch Size: 32 « Epochs: 5
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Densenet training and loss analysis.
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feature propagation and reuse. While the training loss continues to
decrease steadily, the validation loss shows more fluctuation in later
epochs, which could indicate slight overfitting. However, the overall
low loss values and consistent validation performance suggest that
the overfitting is mild and that the model generalizes well to unseen
data. The divergence between training and validation loss near the
end indicates that while the model is fitting well on the training
data, it may be slightly over-optimized for this data as shown in
Figure 18.

6.5.3 VGG 16 training and loss analysis

In summary, these plots show that the VGG19 model achieves
high accuracy on both the training and validation sets, with the
training accuracy nearing 100% and the validation accuracy close to
95%. However, the discrepancy between the training and validation
performance, particularly in loss, suggests potential overfitting, which
could be mitigated through regularization techniques, data
augmentation, or early stopping. These visualizations are useful for
understanding the model’s learning behavior and making informed
decisions for further model tuning and optimization as shown in the
Figure 19.

The accuracy graph shows how the model’s accuracy improves
over time on both the training and validation datasets. Accuracy
measures the proportion of correct predictions made by the model.
In this graph: Training Accuracy (blue line) starts relatively low but
increases steadily with each epoch. This upward trend indicates that
the model is learning and adapting to the training data. By around
the 12th epoch, the training accuracy approaches a high level, close
to 1.0, suggesting that the model is performing well on the training
set. Validation Accuracy (orange line) starts higher than the training
accuracy, indicating that the model initially generalizes well to
unseen data. The validation accuracy also improves over the epochs,
though it fluctuates slightly, which is expected in validation data. By
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the 12th epoch, it stabilizes around 0.9, closely following the training
accuracy. The parallel behavior of both curves, especially after the
12th epoch, suggests that the model has not overfitted. In overfitting,
the training accuracy would continue to improve, while the
validation accuracy would plateau or decline. Here, both metrics
closely align, which indicates good generalization to the
validation data.

6.5.4 CNN model training and loss analysis

The loss graph shows the model’s categorical cross-entropy loss on
both the training and validation datasets across epochs. Loss measures
the degree of error in the model’s predictions, with lower values
indicating better performance. In this graph: Training Loss (blue line)
starts high, indicating significant errors at the beginning of training.
As training progresses, the loss rapidly decreases, reflecting the
model’s improved ability to learn patterns in the data. By the 10th
epoch, the training loss has dropped significantly, reaching a stable
low level, which suggests that the model has become quite effective in
predicting the training data accurately. Validation Loss (orange line)
also starts high but follows a similar decreasing pattern. Interestingly,
the validation loss is lower than the training loss at several points,
particularly in the early epochs. This could be because the validation
set may contain simpler patterns than the training set or due to
regularization effects. The validation loss stabilizes around the same
time as the training loss, indicating that the model’s error on unseen
data has plateaued, suggesting a balance in learning. The close
alignment between training and validation loss curves supports the
idea that the model has achieved a good fit without significant
overfitting as shown in Figure 20.

When comparing these results with existing research studies, the
4-conv-1-dense-1-dropout model achieves an accuracy higher than
most of the reported results in the literature. For instance, Kumar et
al. (2021) employed a Residual Network with Global Average Pooling
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and achieved 96.3% accuracy, which is slightly lower than the 95.86%
accuracy of our best model. Similarly, Khan et al. (2020) a multimodal
CNN with robust feature selection and obtained 97.8% accuracy,
indicating that while our model is highly competitive, the integration
of multimodal data could further enhance performance.

Other models from literature, such as Singh and Agarwal
(2023), who implemented an enhanced CNN and achieved 98.2%

10.3389/frai.2025.1700214

accuracy, suggest that architectural refinements, additional

pre-processing techniques, or more complex network

configurations could provide marginal

Furthermore, Zhang et al. (2021) utilized an attention-guided

improvements.

deep learning model and achieved 98.0% accuracy, reinforcing the
potential benefits of incorporating attention mechanisms to refine
feature extraction.

CNN training and loss analysis.
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TABLE 6 Statistical validation-paired t-test or Wilcoxon signed-rank test.

Architecture Paired t-test p-value

(t) (t-test)

Wilcoxon (W)

10.3389/frai.2025.1700214

p-value (Wilcoxon)

Significance

3-conv-2-dense 6.6415 1.091e-08 212.0000 2.277e-07 Significant
3-conv-3-dense 6.2872 4.295e-08 241.0000 6.987e-07 Significant
2-conv-5-dense 5.2835 1.924e-06 312.0000 9.036e-06 Significant
4-conv-3-dense 5.1329 3.352e-06 330.0000 1.658e-05 Significant
3-conv-1-dense-1-dropout 5.1942 2.676e-06 317.0000 1.071e-05 Significant
4-conv-1-dense-1-dropout 1.6752 9.919¢-02 671.0000 7.246e-02 Not
Significant
5-conv-3-dense-1-dropout 4.7420 1.381e-05 378.0000 7.712¢-05 Significant
4-conv-1-dense-1-dropout 4.7302 1.441e-05 373.0000 6.608e-05 Significant
4-conv-2-dense-1-dropout 5.5812 6.331e-07 298.0000 5.569e-06 Significant
2-conv-2-dense-1-dropout 3.7877 3.588¢-04 463.0000 8.765e-04 Significant
(L2-2)
3-conv-2-dense-2-dropout 6.6276 1.151e-08 212.0000 2.277e-07 Significant
(L2-3)
5-conv-3-dense-2-dropout 4.8273 1.017e-05 379.0000 7.953e-05 Significant
(L2-6)

On the other hand, some studies, such as Abiwinanda et al. (2019)
with a basic CNN (84.19%) and Amin et al. (2020) with an LSTM-
based model (95.4%), report significantly lower accuracy than our
best-performing model. This suggests that while recurrent
architectures such as LSTMs can be useful, CNN-based models
remain the dominant approach for image-based tumor classification
due to their ability to capture spatial patterns effectively. Additionally,
models that leveraged hybrid approaches, such as Ali et al. (2022),
who combined a sequential machine learning pipeline with an
attention mechanism (96.8%), performed comparably with our best
model. This highlights that while deeper and more complex
architectures can enhance classification, careful tuning of dropout
layers, convolutional depth, and dense connections remains crucial in
achieving optimal accuracy.

Overall, the 4-conv-1-dense-1-dropout architecture demonstrates
state-of-the-art performance compared to most CNN-based
approaches as given in the literature survey, surpassing many
conventional architectures while competing closely with more
advanced models. The results emphasize that an optimized CNN with
appropriate dropout regularization can achieve high accuracy while
maintaining robustness in brain tumor classification tasks. Statistical
validation (e.g., the paired t-test or Wilcoxon signed-rank test) was
experimented to further substantiate the superiority of the proposed
CNN over other architectures, and the results are represented in the
Table 6.

6.6 Comparative study of the XAl methods

In the context of Explainable AI (XAI) for brain tumor
classification, Gradient-weighted Class Activation Mapping (Grad-
CAM) and Local Interpretable Model-agnostic Explanations (LIME)
serve as two widely used techniques for visualizing model decision-
making. Both methods aim to enhance model transparency, enabling
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clinicians to understand how the deep learning model arrives at a
specific classification. A comparative analysis of Grad-CAM and
LIME, based on the results and visual interpretations, reveals distinct
strengths and limitations in their applicability to medical imaging
(Table 7).

Grad-CAM generates class-specific heatmaps by computing the
gradient of the predicted class score concerning the final convolutional
layer, highlighting salient regions in the image that contribute most to
the model’s decision. The generated heatmaps in our study showed
that Grad-CAM effectively highlights tumor regions with high spatial
precision, making it particularly useful for radiologists to verify
whether the model is focusing on the correct anatomical structures.
In cases where the model predicted glioma or meningioma, the
heatmaps consistently activated around the tumor mass, reinforcing
the model’s interpretability.

In Figure 21, the Grad-CAM heatmap visualizes the regions of the
brain MRI that contributes to the prediction of the model. The
highlighted regions in red and yellow represents the regions with
higher model attention, indicating potential tumor regions. By
applying grad-cam in the early stages of the model development. it
ensures that researchers can interpret how the model focuses on
relevant anatomical structures instead of background details. This
interpretability helps in refining the model architecture, adjusting
hyperparameters, and understanding potential biases.

However, there are limitations to these visualizations. As you can
see in Figure 22, the Grad-Camss resolution is might often be coarse,
meaning it may produce vague boundaries and in some cases, missing
fine details. Additionally, Grad-CAM does not provide quantitative
measure of uncertainty, which limits its decisions in cases where
confidence assessment is necessary. Also, Grad-CAM is inherently
limited by its dependency on convolutional layers, which makes it less
effective for fully connected architectures.

On the other hand, LIME operates by perturbing the input
image and analyzing the impact on predictions to approximate a
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TABLE 7 Custom CNN architectures and their XAl-based inference
analysis.

Model name ‘ Inference (XAl/performance)

3-conv-2-dense Fast training and low resource usage;
however, Grad-CAM showed weak tumor
localization. Struggled with irregular tumor
shapes and complex boundaries, suggesting

underfitting.

3-conv-3-dense Improved feature abstraction with an extra
dense layer; Grad-CAM attention slightly
better. Still moderate overfitting, requiring

regularization or pruning in deeper layers.

2 -conv-5-dense Dense-heavy architecture captured more
detail but suffered from high variance and
overfitting. Grad-CAM maps lacked focus,

often attending non-tumor areas.

4-conv-3-dense Balanced learning with deeper feature
stacks; improved attention heatmaps.
However, marginal gains versus training cost

limit suitability for real-time use.

3-conv-1-dense-1-dropout Effective generalization through dropout;
clearer Grad-CAM and LIME focus on
tumor boundaries. Slight drop in precision
but more robust across data splits.
5-conv-3-dense-1-dropout XAI maps were sharper and consistent
across samples; however, added complexity
led to longer training time with diminishing

accuracy improvements.

4-conv-2-dense-1-dropout Efficient configuration with acceptable
training cost; XAI showed tight attention
focus; slightly lower recall than deeper

networks but easier to interpret and deploy.

2-conv-2-dense-1-dropout L2 regularization helped reduce overfitting;
Grad-CAM and LIME maps showed stable
but shallow attention. Suitable for edge
deployment, but limited capacity for
complex patterns.
3-conv-2-dense-2-dropout Combined dropout and L2 significantly
improved generalization. XAl visualizations
showed tumor-focused activation,

supporting model trustworthiness.

4-conv-1-dense-1-dropout Demonstrated strongest overall performance
in terms of accuracy, robustness, and XAI
clarity. Clean heatmaps and reduced
overfitting; selected as best-performing

model.

5-conv-3-dense-2-dropout Strong visual explanations but marginal
gains in accuracy. Model training was
resource-intensive and less interpretable due

to increased depth.

locally interpretable linear model. The LIME results provided
importance for the feature at the pixel level, offering a different
perspective on model decision making. Unlike Grad-CAM, which
highlights broad areas of interest, LIME produces superpixel-based
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explanations, indicating which specific regions, textures, or
patterns influenced the classification. This feature is particularly
beneficial in detecting false positives or understanding
misclassifications, as LIME highlights not only tumor regions but
also possible artifacts or non-relevant areas that affected
the prediction.

In Figure 23 and 24, the LIME visualizations highlight regions of
the brain MRI that significantly contributed to the model’s decision.
The highlighted yellow boundaries mark areas where the model focused
its attention, correctly identifying the tumor. This local explanation
helps validate the model’s accuracy and ensures it is not relying on
irrelevant features. LIME is particularly useful in understanding how
the model differentiates between healthy and abnormal tissue,
providing a layer of interpretability often lacking in deep learning
systems. However, LIME also has limitations. Consider Figures 19 and
20, it perturbs the input data and builds surrogate models to explain
predictions, its explanations can vary based on the sampling process
and parameter choices. Additionally, it may sometimes highlight
non-tumor regions, especially in noisy or complex medical images. The
localized nature of LIME explanations also means it might miss broader
contextual insights that global interpretability methods could provide.

When comparing the two methods, Grad-CAM proves to be more
effective for global interpretability, allowing domain experts to visualize
the primary decision-making areas at a glance. This is crucial in
confirming clinical validity, as a well-trained model should consistently
focus on the tumor region across different images. LIME, in contrast,
is more suitable for local interpretability, as it helps identify specific
features and potential biases influencing the model’s classification. Its
ability to provide fine-grained attributions makes it valuable for
understanding misclassifications and edge cases in medical imaging.

Ultimately, the choice between Grad-CAM and LIME depends on
the specific goals of the study. For validating model accuracy in
medical diagnostics such as brain tumor classification, Grad-CAM
offers a clear advantage. However, by combining both methods, XAI
could offer a more comprehensive evaluation, leveraging Grad-CAM’s
class-specific explanations and LIME’s broader interpretability.

6.7 Limitations

While the proposed approach demonstrates strong classification
performance and interpretability, several limitations remain that
warrant further investigation. First, the model was primarily trained
on the Crystal Clean Brain Tumor MRI dataset sourced from Kaggle,
which, despite its clarity and balanced labeling, may not fully capture
the imaging diversity and clinical variability present in large-scale,
multi-institutional datasets. Although cross-verification against other
benchmark datasets indicated consistent performance, broader
validation using heterogeneous datasets such as BraTS, TCIA, or local
hospital archives is essential to confirm generalizability across
scanners, acquisition protocols, and patient demographics.

Second, the explainability mechanisms employed—Grad-CAM and
LIME—proved valuable in visualizing the models focus regions and
refining architecture design. However, certain visual explanations
occasionally highlighted non-tumor areas, suggesting either subtle biases
in learned feature representations or inherent granularity limitations in
current XAI methods. While the dataset annotations provided reliable
tumor localization, further validation from radiologists and
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FIGURE 21
Grad-CAM heatmap visualization of normal MRl image in CNN layers
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FIGURE 22
Grad-Cam heatmap visualization of glioma MRl image in Inceptionv3 layers
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FIGURE 23
LIME visualization of pituitary MRl image in early stages of Xception model.
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Original Image

FIGURE 24
Lime visualization of glioma MRI image in densenet50 layers.

LIME Explanation

neuro-oncology experts would enhance confidence in these
interpretability outputs and ensure that the visual reasoning aligns with
clinical judgment.

Third, the current study was limited to classification and did not
incorporate segmentation, which is essential for delineating tumor
boundaries and guiding clinical decision-making such as surgical planning
or radiotherapy targeting. Extending the framework to include joint
segmentation—classification pipelines or multimodal MRI integration
could offer a more holistic diagnostic tool. Additionally, computational
scalability and real-time deployment remain challenges—especially for
integration into federated or privacy-preserving frameworks, which could
help address data-sharing constraints in clinical environments.

Overall, while the proposed XAl-integrated CNN framework
offers an interpretable and efficient solution for brain tumor
classification, future work should focus on multi-center validation,
and the
segmentation and federated extensions to strengthen clinical

expert-based explanation assessment, inclusion of
applicability and ethical transparency. Future clinical integration must
also address ethical and privacy considerations. Future clinical
integration must also address ethical and privacy considerations.
Approaches such as Argumentation-based Explainable AI Caroprese
etal. (2023) could support transparent reasoning and traceable decision
pathways. Similarly, federated learning frameworks (Gagliardi et al.,
2025) offer potential for distributed training across medical institutions,
preserving patient confidentiality while enhancing dataset diversity.

7 Conclusion

The brain tumor classification project achieved its goal by
developing and deploying deep learning models to accurately classify
brain tumors from MRI data. Various architectures, such as
Convolutional Neural Networks (CNNs) and Transformer-based
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models, were designed, trained, and evaluated for their effectiveness
in handling medical imaging data. The CNN models excelled in
feature extraction and classification tasks, reaching an accuracy of up
to 98.65%, making them valuable tools for medical practitioners in
detecting and diagnosing brain tumors. While Transformer models
showed potential, they required more computational resources and
fine-tuning to improve their efficiency for real-time deployment.

To ensure accessibility, the project deployed the best-performing
models through web interfaces using frameworks like Streamlit and
Gradio. These interfaces allowed for seamless real-time image uploads
and classification, providing an intuitive experience for users. The
deployment demonstrated the practical application of deep learning in
medical diagnostics, supporting radiologists and healthcare professionals
in identifying brain tumors early. The project highlights the potential of
deep learning in medical image classification and lays the foundation for
future advancements, evolving into a more powerful tool for early tumor
detection and diagnosis. Looking ahead, there are areas for improvement
and expansion in the brain tumor classification project.

Future work will involve refining advanced models with improved
attention mechanisms and feature extraction techniques, enhancing
the ability to detect subtle tumor features. An exciting prospect is the
integration of Large Language Models (LLMs) after the classification
stage, generating detailed diagnostic reports that summarize the
findings and provide insights into tumor characteristics and
recommended actions. This integration would enhance the
interpretability and usefulness of the model’s output, bridging the gap
between predictions and clinical insights.

Additionally, segmentation of brain tumors remains a key area
for future development. Using the BraTS dataset will improve
tumor boundary detection, aiding in assessing tumor growth and
response to treatment. Future research will focus on developing
segmentation models integrated with the classification models for
comprehensive brain tumor analysis. Rigorous fine-tuning of
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classification models and LLMs will enhance accuracy, robustness,
and generalization across various datasets and clinical scenarios.
Exploring multimodal MRI data integration will capture diverse
tumor characteristics, improving accuracy and comprehensiveness,
providing a holistic view for better diagnosis and treatment
planning. In summary, the current project has shown promising
results in brain tumor classification, and future work will enhance
the system’s capabilities, making it more accurate, accessible, and
effective in clinical practice.

Although the proposed system demonstrates promising
performance, several limitations should be acknowledged. First, the
dataset used in this study may not fully capture the diversity of patient
populations or imaging conditions encountered in real-world clinical
settings. This may affect the model’s generalizability across different
institutions and acquisition protocols. Second, the system’s
performance has not yet been validated on external, multi-center
datasets, which is essential to assess cross-site robustness. Finally, while
the current implementation is computationally efficient for research-
scale experiments, further optimization and integration with hospital
information systems would be required for scalable clinical deployment.
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