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Explainable AI-driven MRI-based 
brain tumor classification: a novel 
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Vinayaka R. Srinivas  and Ramasubramanian Parvathi *†

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Brain tumors are among the most aggressive forms of cancer, 
requiring precise diagnosis and treatment planning to improve patient outcomes. 
This study aims to develop an efficient deep learning-based framework for the 
classification of brain tumors using MRI data.
Methods: The methodology employs Convolutional Neural Networks (CNNs) 
to accurately classify tumors into four categories: normal, glioma, pituitary, and 
meningioma. Key preprocessing techniques, including noise reduction,resizing, 
and data augmentation, were applied to enhance the robustness of the model. 
Advanced architectures such as DenseNet50, VGG19, and other transfer 
learning models, along with CNN variants, were trained and evaluated for their 
performance. Explainable AI (XAI) techniques, including Grad-CAM, LIME, and 
feature map visualizations, played a crucial role in providing better visualizations 
of the model’s decision-making process and identifying areas of improvement 
during model training and to establish a better model.
Results: The best-performing model, a 4-conv-1-dense-1-dropout CNN, 
achieved a classification accuracy of 95.86%, outperforming deeper architectures 
and transfer learning approaches. The findings underscore the potential of deep 
learning models for reliable and efficient brain tumor classification. This work 
concludes with recommendations for real-time deployment in clinical settings 
and explores future integration with Large Language Models (LLMs) to generate 
detailed diagnostic reports.
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1 Introduction

With a mortality rate exceeding 80%, brain tumors are among the worst types of cancer. 
To improve the prognosis, a prompt and precise diagnosis is essential. However, the manual 
annotation and segmentation of a brain tumor can be a challenging task in medical analysis. 
Since each MRI modality offers a different set of information about the tumor locations, 
multiple modalities are typically evaluated. These MRI modalities tend to increase computation 
and overfitting, although they are useful for segmenting gliomas. This study presents a region 
of interest detection algorithm that may be used to identify important features and eliminate 
unnecessary MRI data during data pre-processing. As a result, the input size is reduced, 
enabling deeper neural networks and more aggressive data augmentations. Early detection of 
brain tumors is critical due to their rapid metastasis and growth.

Post-detection, the classification stage can be challenging and tedious for doctors or 
radiologists, especially in complex cases. This process heavily relies on the availability of expert 
medical personnel, which is often a luxury in underdeveloped and developing regions. The task 
involves specialists working on localizing the tumor, comparing it with adjacent tissues, applying 
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necessary image enhancement techniques, and finally determining 
whether it could be a tumor and its type and grade. This fast and precise 
detection can be revolutionized through advancements in Artificial 
Intelligence, particularly in computer vision, image classification, and 
image segmentation, which have demonstrated high accuracy.

Deep learning, a subset of Machine Learning, utilizes neural 
networks that mimic the structure of the human brain and are trained 
with vast amounts of data. These systems, which can be supervised, 
semi-supervised, or unsupervised, show immense potential in medical 
image analysis. Comprising input, hidden, and output layers, deep 
learning algorithms use these multiple network layers for feature 
extraction and encoding. The output of each layer becomes the input 
for the next, aiding data abstraction as the network deepens. Artificial 
Neural Networks (ANN) and Convolutional Neural Networks (CNN) 
are popular in the industry, with CNNs particularly favored for image 
classification tasks due to their ability to select distinguishing features 
through convolving filters and pooling, followed by training the 
classification network’s layers.

2 Objective

The primary objective of using the Tumor dataset (Crystal Clean 
MRI dataset) is to develop machine learning models capable of 
accurately classifying and segmenting brain tumors from MRI images. 
This involves distinguishing between different types of brain tumors, 
such as gliomas, meningiomas, and pituitary tumors, or distinguishing 
between tumor and non-tumor cases. Early and accurate tumor 
classification is critical for effective diagnosis and treatment planning. 
To achieve this, the project aims to design a deep learning-based 
model, such as a Convolutional Neural Network (CNN), that 
significantly improves classification accuracy. The model will leverage 
techniques like data augmentation and preprocessing to enhance 
generalization, enabling it to perform effectively on real-world medical 
datasets. Moreover, exploring multimodal MRI data will further 
optimize classification performance, addressing the computational 
challenges posed by the high-dimensional nature of MRI scans.

In addition to improving accuracy, the project emphasizes reducing 
overfitting and optimizing computational efficiency. Overfitting, that 
limits a model’s ability to generalize to new data, will be mitigated using 
data augmentation, regularization methods, and cross-validation 
techniques. To enhance computational efficiency, strategies such as 
dimensionality reduction, region of interest (ROI) detection, and model 
pruning will be explored, minimizing memory usage and processing time 
while maintaining accuracy. The ultimate goal is to create a scalable and 
deployable solution for clinical use. The model will be designed to adapt 
to larger datasets, different MRI machines, or imaging centers. By being 
integrated into medical software or platforms used in hospitals, this 
solution could help healthcare professionals diagnose brain tumors more 
effectively and efficiently.

3 Related works

Role of deep learning in brain tumor detection and classification 
(2015 to 2020), Nazir et al. (2021) offers a comprehensive review of 
deep learning techniques, including CNN, RNN, and hybrid models, 
applied to brain tumor detection and classification between 2015 and 

2020. However, it highlights a gap in exploring newer deep learning 
models post-2020 and addressing their real-time clinical applicability. 
This paper lays a foundation for understanding key methodologies but 
invites further research into cutting-edge models and 
practical applications.

An automated brain tumor classification in MR images using an 
enhanced convolutional neural network, Singh and Agarwal (2023) 
proposes an advanced CNN model that achieves high accuracy in 
classifying brain tumors using MRI images. The paper lacks an 
analysis of the model’s adaptability across different imaging modalities 
and real-time performance, suggesting that more investigation is 
needed into its versatility and speed for clinical application.

Machine learning in oncology: methods, applications, and 
challenges, Bertsimas and Wiberg (2020) provides a broad overview 
of machine learning methods applied in oncology, focusing on 
classification, segmentation, and treatment planning. Despite its 
breadth, the paper does not sufficiently emphasize brain tumors 
specifically and lacks a discussion on deep learning advancements, 
which could further enhance the field of oncology.

Multi-class brain tumor classification using residual network and 
global average pooling, Kumar et al. (2021) utilizes residual networks 
and global average pooling to classify brain tumors into multiple 
categories. While effective, the study does not adequately address the 
generalization of these models across diverse datasets and presents 
challenges with interpretability in clinical settings, leaving room for 
future research in these areas.

Comparative study of various techniques using deep learning for 
brain tumor detection, Gore and Deshpande (2020) compares 
multiple deep learning techniques for brain tumor detection, 
emphasizing accuracy and efficiency. However, the study does not 
provide a clear recommendation for the best-performing model and 
lacks clinical validation, making it a valuable comparison but limited 
in practical guidance for clinical applications Radiomics-based 
machine learning in differentiation between glioblastoma and 
metastatic brain tumors, Chen et al. (2019) utilizes radiomics and 
machine learning to differentiate glioblastoma from metastatic brain 
tumors. While promising, the study notes challenges in scaling the 
model across diverse patient data and different MRI devices, 
highlighting the need for more generalizable models.

Brain tumor classification using convolutional neural network, 
Abiwinanda et al. (2019) demonstrates a CNN-based approach for 
brain tumor classification, emphasizing simplicity and accuracy. 
However, it does not explore more complex deep learning 
architectures, such as transformers or hybrid models, suggesting that 
future research could investigate the potential benefits of more 
advanced architectures.

Classification of brain tumors and auto-immune disease using 
ensemble learning, Shafi et al. (2021) uses ensemble learning to 
classify brain tumors and autoimmune diseases, achieving enhanced 
predictive performance. However, the study lacks evaluation across 
various demographic groups and does not include external validation, 
which could improve the model’s robustness and generalization.

Brain tumor detection: a long short-term memory (LSTM)-based 
learning, odel Amin et al. (2020) introduces an LSTM-based model 
aimed at enhancing brain tumor detection performance. Despite its 
novel approach, the paper provides limited comparisons with other 
sequential models like GRUs and lacks performance testing on larger 
datasets, suggesting areas for expanded exploration.
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Multimodal brain tumor classification using deep learning and 
robust feature selection, Khan et al. (2020) applies a multimodal 
approach that combines imaging and non-imaging data, using robust 
feature selection for classification. However, challenges arise in the 
real-time acquisition of multimodal data and computational efficiency, 
indicating that future research could focus on optimizing these areas 
for practical application.

Brain MRI Classification and Segmentation of Glioma, Pituitary, 
and Meningioma Tumors Using Deep Learning Approaches, Mostafa 
et al. (2024) focuses on the segmentation and classification of different 
brain tumor types using CNNs and advanced deep learning methods. 
Yet, the study offers limited exploration of how segmentation errors 
may impact classification accuracy, leaving room for more 
investigation into these interconnected processes.

A sequential machine learning-cum-attention mechanism for 
effective segmentation of brain tumor, Ali et al. (2022) presents a 
sequential machine learning model with an attention mechanism 
designed to improve segmentation accuracy. However, the study does 
not address issues related to clinical integration and scalability, which 
could hinder its practical application in healthcare settings.

Brain tumor segmentation using deep capsule network and latent-
dynamic conditional random fields, Elmezain et al. (2022) proposes a 
deep capsule network with latent-dynamic conditional random fields 
for accurate segmentation. The paper highlights the complexity of 
model training and notes challenges with interpretability in medical 
environments, indicating areas for future research to simplify and 
explain these models.

Brain tumors classification for MR images based on attention-
guided deep learning model, Zhang et al. (2021) employs attention-
guided deep learning models to improve classification accuracy in 
MRI-based brain tumor detection. The study lacks a thorough 
discussion on the robustness and interpretability of the model in 
clinical settings, highlighting areas for improvement in 
clinical applicability.

A Robust Deep Learning Model for Brain Tumor Detection and 
Classification Using EfficientNet: A Brief Meta-Analysis (Singh et al., 
2024), leverages EfficientNet for brain tumor detection and 
classification, supported by a meta-analysis of its performance. 
However, the paper does not address the real-time performance of 
EfficientNet or its computational requirements, suggesting potential 
areas for further investigation in practical deployment.

Design of encoded graphene-gold metasurface-based circular ring 
and square sensors for brain tumor detection and optimization using 
XGBoost algorithm, Patel et al. (2024) introduces novel metasurface-
based sensors, optimized with the XGBoost algorithm, for brain 
tumor detection. While innovative, the study points out challenges 
with scaling this method for widespread clinical use and lacks a clear 
pathway for clinical integration, leaving room for future studies on 
feasibility and scalability.

Personalized treatment planning and predicted therapy response 
based on different MRI data sets, classified the tumor tissue type, 
identified the severity of the tumor were discussed in Missaoui et 
al. (2025).

Recent studies such as BrAInVision, Gagliardi et al. (2025) have 
demonstrated that hybrid and doubly explainable architectures—
combining handcrafted and deep features—can enhance both 
accuracy and interpretability in brain MRI classification. Similarly, 
Missaoui et al. (2025) emphasized the integration of advanced 

transformer-based and hybrid CNN models, highlighting challenges 
in computational scalability and transparency that our lightweight 
CNN addresses.

Various techniques used for transparency, logical and ethical 
dimensions of AI decision justification applied to the clinical contexts 
are explained in Caroprese et al. (2022).

Importance of data privacy in medical imaging and highlighted 
how federated learning enables distributed model training while 
safeguarding patient confidentiality was discussed in Caroprese et 
al. (2023).

4 Dataset

The Crystal Clean Brain Tumor MRI Dataset is a comprehensive 
collection of high-resolution MRI scans designed to support precise 
brain tumor classification. The dataset consists of detailed MRI images 
that capture intricate brain structures, making it invaluable for 
distinguishing subtle features across various tumor types. The Crystal 
Clean Brain Tumor MRI dataset used in this study was obtained from 
a publicly available Kaggle repository.1 The dataset contains 
T1-weighted contrast-enhanced MRI scans categorized into four 
classes: glioma, meningioma, pituitary, and normal. Initially, the 
dataset comprised 3,264 images—826 glioma, 822 meningioma, 830 
pituitary, and 786 normal images. Following data augmentation 
(including rotation, flipping, and brightness variation), the dataset 
expanded to 13,056 images to balance class distribution and improve 
model generalization. The data were split into 80% for training and 
20% for testing, ensuring class balance across both subsets.

Each image is meticulously annotated to indicate the presence or 
absence of a tumor (refer Figure 1), with tumor types labeled as 
glioma, meningioma, pituitary tumor, or no tumor cases. These high-
quality images, paired with accurate annotations, serve as a robust 
foundation for training machine learning models, enabling researchers 
to achieve precise tumor identification and classification.

5 Methodology

5.1 Preprocessing

While the Crystal Clean MRI dataset was preprocessed by the 
provider, additional refinement steps were performed to enhance 
image consistency and model readiness. These included verifying 
tumor region integrity, re-cropping based on the largest visible 
contour, resizing to 224 × 224 pixels, and applying normalization. 
These additional steps ensured uniformity across samples and 
removed residual background noise. In the preprocessing stage, efforts 
were made to ensure uniformity and quality in the dataset before 
feeding it into neural networks. The preprocessing steps, including 
resizing, normalization, and formatting of the image data, were 
already performed by the dataset provider. We are grateful for the 
well-prepared dataset, which allowed us to focus on model 

1  https://www.kaggle.com/datasets/sartajbhuvaji/

brain-tumor-classification-mri
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development and evaluation without requiring additional 
pre-processing efforts. High-resolution MRI images were resized to a 
standard dimension of 224x224x3, preserving critical information 
while reducing storage requirements. Since the black background 
surrounding the brain in MRI images does not contribute meaningful 
data for classification, the images were cropped to remove this 
irrelevant region.

However, in the pre-processing stage, we attempt to make 
uniformity in data before feeding it to neural networks. Our images 
had high resolution, and we scaled them back to 224x224x3, which 
helps preserve all relevant data while reducing storage requirements. 
The MRIs contained a black background around the central image of 
the brain. This dark background gives no valuable data for 
classification since no real information of the MRI is present in the 
dark background. Subsequently, the images were trimmed around the 
main contour. Here, the greatest contour is chosen and marked. 
Following, we discover the extreme points of the contour and crop the 
image on those endpoints. Thus, removing most of the background 
and noise present within the original image. This process is done for 

each image in the dataset. Images which do not adhere to the 
conditions are discarded from the classification process. Such images 
come about in distorted shapes and were removed by manual review.

	•	 Removal of Duplicate Samples: We employed an image vector 
comparison method to identify and remove duplicate samples, 
ensuring that each data point is unique.

	•	 Correction of Mislabeled Images: Using our domain knowledge, 
we carefully inspected and corrected falsely labeled images, 
ensuring that they were appropriately categorized. This step 
greatly enhances the accuracy of the dataset.

	•	 Image Resizing: All images in the dataset were resized to a 
memory-efficient yet academically accepted size of (224, 224), 
facilitating easier processing and analysis.

This was achieved by identifying the largest contour in each 
image, determining its extreme points, and cropping accordingly 
(refer Figure 2), effectively isolating the brain region while minimizing 
background noise. Any distorted or non-conforming images were 

FIGURE 1

Different types of datasets images.
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manually reviewed and excluded from the dataset. Further 
preprocessing steps included the removal of duplicate samples 
through image vector comparisons, ensuring that each data point was 
unique. Additionally, mislabelled images were identified and corrected 
using domain expertise to improve labelling accuracy and improve 
dataset reliability.

5.2 Augmentation

To enhance the robustness of the dataset and improve the model’s 
ability to generalize, several data augmentation techniques were 
employed. The distribution of data across the four classes—Normal, 
Glioma, Pituitary, and Meningioma—is shown in Figure 3.

Salt and Pepper Noise introduces random noise to the images by 
setting pixels to white (salt) or black (pepper) at specific intensities. 
This technique simulates real-world imperfections, such as sensor 
noise or transmission errors, which often occur in medical imaging. 
By exposing the model to noisy data, it becomes more resilient in 
handling distorted or degraded images, thereby improving its 
performance in practical scenarios.

Histogram Equalization was applied to improve image contrast by 
redistributing pixel intensity values. This method enhances subtle 
details in images that may appear washed out or underexposed. For 
MRI scans, this is crucial as it brings out intricate patterns and 
features, enabling the model to better differentiate between tumor and 
non-tumor regions.

Rotation involved altering the orientation of images by rotating 
them clockwise or counterclockwise. This augmentation accounts for 
the slight variations in orientation that can occur during MRI scans. 
By diversifying the dataset with rotated images, the model learns to 
identify tumors regardless of the alignment of the image, improving 
its adaptability to real-world data.

Brightness Adjustment simulated varying lighting conditions by 
increasing or decreasing the image intensity values. Since MRI images 
might differ in brightness due to variations in equipment or imaging 
protocols, this technique ensures the model can handle such 
discrepancies. Training on images with varied brightness levels 
improves the model’s ability to make accurate classifications under 
diverse imaging conditions. Lastly, Horizontal and Vertical Flipping 
created mirror images of the data, effectively doubling the dataset size 
and introducing spatial orientation variability. For symmetrical 
structures like the brain, flipping helps the model recognize tumors 
regardless of their location within the brain’s symmetry as seen in 
Figure 4. This augmentation increases data diversity and helps the 
model generalize better between different spatial configurations. This 
constitutes a large dataset of 22,000 MRI images which is used for the 
training process.

5.3 Justification for using CNNs, transfer 
learning, and explainable AI

The choice of CNN-based models and transfer learning 
architectures over more complex state-of-the-art models was driven 
by practical considerations such as hardware limitations, 
computational efficiency, and accessibility for smaller research 
environments or medical institutions with limited resources. While 
transformer-based architectures and advanced deep learning models 
like Vision Transformers (ViTs) or hybrid networks have shown 
promising results in medical imaging, they demand extensive 
computational power, large-scale labelled datasets, and specialized 
hardware such as high-end GPUs or TPUs. Many small-scale 
healthcare facilities, startups, and research groups lack the 
infrastructure to deploy such resource-intensive models in real-world 
clinical applications.

FIGURE 2

Tumor contour of MRI images.
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CNNs, on the other hand, provide a highly efficient alternative—
they require significantly lower computational resources while still 
achieving high accuracy, making them more feasible for on-device 
processing, cloud deployment, or integration into hospital imaging 
systems. Additionally, transfer learning with models like VGG19 and 
DenseNet50 allows leveraging pre-trained feature extraction while 
minimizing training time and data requirements, a crucial advantage 
when working with medical datasets that are often limited in size. In 
this study, we use transfer learning methods not only to compare their 
results against CNN models but also to demonstrate the effectiveness 
of custom CNN architectures for the classification of brain tumors. By 
showcasing performance differences, we highlight how CNNs offer a 

more practical approach for small-scale projects and resource-limited 
environments, ensuring accessibility without compromising accuracy.

The explainability aspect of the chosen CNN model also enhances 
its practical applicability compared to other complex architectures. 
Techniques such as Grad-CAM and LIME provide interpretable 
visualizations that highlight the model decision-making process, 
strengthening trust in clinical environments, and helping create an 
architecture of significant results. Unlike models such as Xception and 
InceptionV3, which exhibit higher computational complexity with 
marginal accuracy gains, the proposed CNN model remains 
computationally efficient, making it suitable for real-time deployment 
in medical diagnostics. Furthermore, transfer learning models require 

FIGURE 3

Depicts the percentage of images in each class.
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extensive fine-tuning to adapt to medical datasets, whereas the 
proposed CNN, trained from scratch on domain-specific data, 
achieves high accuracy with tailored feature representation.

5.4 Architecture diagram

The overall architecture of the proposed brain tumor classification 
is illustrated in Figure 5.

5.4.1 Data preparation
Load Data: The first step is loading the MRI images needed for 

tumor classification. This data forms the basis for training and testing 
the model.

Preprocess Data: After loading, the data is preprocessed to ensure 
it is clean and consistent. Common preprocessing steps might include 
resizing images, normalizing pixel values, removing noise, and data 
augmentation techniques to increase the dataset’s diversity and 
robustness. Proper preprocessing is essential to improve model 
accuracy and performance.

5.4.2 Model development
Feature Extraction: After the data is prepared, it is followed by 

feature extraction, where meaningful characteristics or patterns are 
extracted from the images. For MRI data, features could include pixel 
intensities, textures, shapes, or tumor-specific markers. These features 
help the model distinguish between different types of tumors or 
between tumor and non-tumor cases.

Design Model: In this step, a deep learning or machine learning 
model architecture is chosen and designed based on the project 
requirements. Common architectures for image classification tasks 
include Convolutional Neural Networks (CNNs) or other neural 
network models optimized for visual data processing.

Run Model: After designing the model, it is trained on the 
preprocessed dataset. During this phase, the model learns from the 
features to differentiate between tumor types or identify the absence 
of a tumor. Training involves adjusting model parameters to minimize 
errors and improve classification accuracy.

Establish Performance Metrics: As the model trains, performance 
metrics such as accuracy, precision, recall, F1 score, or AUC (Area 
Under the Curve) are calculated to evaluate the model’s effectiveness. 
These metrics help assess whether the model is learning effectively and 
can generalize well to new, unseen data.

5.4.3 Model evaluation
Evaluate Training Set: After completing the training, the model is 

assessed on the training set to determine if it is overfitting or 
underfitting. Overfitting happens when the model excels on the 
training data but fails on new data, whereas underfitting indicates that 
the model is not effectively identifying the underlying patterns in 
the data.

Establish Metrics: After evaluating on the training set, 
performance metrics are recalculated to ensure consistency and 
validate the model’s effectiveness. This step might also include testing 
the model on a separate validation or test dataset to gauge its real-
world applicability.

5.4.4 Deployment
Save Model: Once the model performs satisfactorily, it is saved for 

deployment. This saved model can then be loaded in a production 
environment where it can be used for real-time tumor classification.

Frontend with Streamlit: A Streamlit interface is designed to allow 
users to interact with the model easily. Streamlit is a popular 
framework for creating web applications for machine learning models, 
making it simple to create a user-friendly frontend.

Upload Image: In the deployed system, users can upload MRI 
images through the Streamlit interface. These images are then passed 
to the model for classification.

Evaluate and Show Output: Finally, the model processes the 
uploaded image, performs the tumor classification, and returns the 
result to the user. The result, including predicted tumor type and any 
other relevant metrics or visualizations, is displayed on the frontend 
for easy interpretation.

5.5 Convolution neural networks

The proposed CNN model of 3-conv-128-nodes-2-dense-2 
dropout demonstrates superior performance in brain tumor 
classification by balancing precision, generalization, and 
computational efficiency. Unlike shallower architectures such as 
3-conv-64-nodes-3-dense which exhibited lower validation accuracies 
due to insufficient feature extraction, the selected model optimally 
captures tumor-specific patterns while mitigating overfitting through 
L2 regularization and dropout. The experimental results confirm that 
this model achieves a validation accuracy of 92.76%, outperforming 
deeper architectures such as 5-conv-128-nodes-3-dense-2-dropout, 
which, despite achieving 91.96%, showed marginally higher validation 
loss, suggesting potential overfitting.

However, a more refined architecture, the 4-conv-128-nodes-
1-dense-1-dropout CNN model, emerges as the best-performing 
among all evaluated configurations. This model achieves an 
impressive accuracy of 95.86% with a validation accuracy of 
95.32%, along with a training loss of 0.1232 and a validation loss 
of 0.1557. These results indicate a well-generalized model with 
improved feature extraction capabilities while maintaining 

FIGURE 4

Augmentation of MRI images.
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robustness against overfitting. In contrast, the 3-conv-128-nodes-
2-dense-2-dropout model, though effective, attained a relatively 
lower accuracy of 92.88% with a higher validation loss of 0.26, 
reinforcing the advantage of deeper feature extraction in the 
4-conv-128 architecture.

5.5.1 4-conv-1-dense-1-dropout architecture
The 4-conv-128-nodes-1-dense-1-dropout architecture described 

in Algorithm 1 demonstrated the highest performance among the 
evaluated CNN models for brain tumor classification. With a training 
accuracy of 95.86% and a validation accuracy of 95.32%, this model 
achieved superior generalization while maintaining a low validation 
loss of 0.1557.

Compared to other architectures, such as the 3-conv-128-nodes-2-
dense-2-dropout model, which reached a validation accuracy of 92.76%, 
the additional convolutional layer in this design effectively captured 
intricate tumor-specific features without introducing significant 
overfitting. The balanced depth of the architecture, coupled with a single 
dropout layer, contributed to its robustness, ensuring that the model 
retained sufficient feature extraction capacity while mitigating excessive 
regularization effects that could hinder performance.

The 4-conv-128-nodes-1-dense-1-dropout architecture (see 
Figure 6) is designed to achieve a balance between deep feature 
extraction and computational efficiency for brain tumor classification. 
The first convolutional layer, consisting of 32 filters with a 4 × 4 
kernel size and ReLU activation, captures fundamental spatial 
patterns such as edges and textures. These low-level features are then 
refined by the second convolutional layer, which increases the filter 
count to 64, enabling the model to learn more complex structures. 
Max pooling follows each convolutional layer, reducing the spatial 
dimensions while retaining essential feature representations. The 
third and fourth convolutional layers, both equipped with 128 filters, 

enhance the network’s ability to detect intricate tumor-specific 
patterns, allowing the model to differentiate between.

FIGURE 5

Overall architecture for brain tumor classification.

ALGORITHM 1

4-conv-1-dense-1-dropout (L2 regularization) architecture

Require:  MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary, 
Meningioma)
  Initialize a sequential CNN model
 � Add Conv2D layer with 32 filters, kernel size (3,3), 

ReLU activation
  Add MaxPooling2D layer
 � Add Conv2D layer with 64 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
 � Add Conv2D layer with 128 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
 � Add Conv2D layer with 128 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
  Flatten feature maps
  Add Dense layer with 512 units, ReLU activation
  Add Dropout layer (rate: 0.5)
  Add Output Dense layer with 4 units, Softmax activation
 � Compile using Adam optimizer and Categorical 

Crossentropy loss
 � Train model and evaluate using Accuracy, Precision, Recall, 

and F1-Score
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After the convolutional feature extraction process, the output is 
flattened and passed through a 512-node fully connected layer, where 
learned features are aggregated for classification. The inclusion of a 
single dropout layer (50%) prevents overfitting by randomly 
deactivating neurons during training, ensuring better generalization to 
unseen medical images. The softmax activation in the final dense layer 
facilitates multi-class tumor classification. To enhance model 
interpretability, Grad-CAM (Gradient-weighted Class Activation 
Mapping) and LIME (Local Interpretable Model-agnostic Explanations) 
were employed. Grad-CAM visualizations provided heatmaps that 
highlighted the most influential regions in MRI scans, ensuring that the 
convolutional layers were focusing on tumor regions rather than 
background artifacts. LIME further validated the model’s decision-
making by generating local perturbations and identifying key image 
regions that contributed to the final classification. These explainability 
techniques reinforce the model’s clinical applicability, ensuring 
transparency in decision-making for medical professionals.

The activation maps (see Figure 7) provide a detailed visualization 
of how different layers of the 4-conv-1-dense-1-dropout architecture 
respond to input images. The convolutional layers exhibit strong 
activations in specific regions, highlighting the model’s ability to 
capture intricate spatial patterns such as edges, textures, and fine 
details. The max-pooling layers compress the spatial representation, 
reducing dimensionality while preserving the most significant 
features. By analyzing these activation maps, critical insights were 
obtained regarding the model’s focus areas and its generalization to 
different inputs. In conjunction with Grad-CAM and LIME 
visualizations, these activation maps played a pivotal role in refining 
hyperparameters, adjusting dropout rates, and modifying 

convolutional filter sizes to enhance the model’s performance. 
Through iterative modifications based on these visualizations, the final 
model was optimized to achieve robust feature extraction and 
improved classification accuracy, ensuring a well-adapted architecture 
for the dataset.

FIGURE 6

Layer view of the 4-conv-1-dense-1-dropout architecture.

FIGURE 7

Visualizing convolution layer activations of 4-conv-1-dense-1-
dropout architecture.
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Furthermore, this architecture outperformed deeper models such 
as the 5-conv-128-nodes-3-dense-2-dropout, which, despite achieving 
a competitive validation accuracy of 91.96%, exhibited a marginally 
higher validation loss, indicating potential overfitting. Similarly, 
shallower models like the 3-conv-64-nodes-2-dense-2-dropout, which 
reached a validation accuracy of 92.76%, failed to extract the necessary 
high-level spatial features required for precise tumor classification. 
These results highlight that the 4-conv-128-nodes-1-dense-1-dropout 
configuration achieves an optimal trade-off between accuracy, 
computational efficiency, and model complexity, making it the most 
suitable architecture for this task. This balance is particularly crucial 
in real-world medical applications, where maintaining high diagnostic 
accuracy with minimal resource utilization is essential for deployment 
in clinical settings.

5.5.2 3-conv-2-dense-2-dropout(L2 
regularization) architecture

This model described in Algorithm 2 effectively avoids both 
overfitting and underfitting, allowing it to generalize well on the test 
set while accurately learning key features from the training data. 
The architecture includes three convolutional layers that are 

responsible for extracting important features from the input images, 
followed by two dense (fully connected) layers that interpret these 
features for final predictions. The inclusion of two dropout layers 
reduces overfitting by randomly dropping a fraction of neurons 
during training, encouraging the model to learn more 
generalized features.

The architecture of 3-conv-128-nodes-2-dense-2-dropout (see 
Figure 8) effectively balances feature extraction, computational 
efficiency, and generalization for brain tumor classification. The first 
convolutional layer, utilizing a 3 × 3 kernel with 64 filters and ReLU 
activation, captures low-level features such as edges, textures, and 
gradients. This fundamental feature extraction allows subsequent 
layers to build upon simple patterns to detect more complex 
structures. The second convolutional layer, also with 64 filters, 
enhances pattern recognition by identifying contours and higher-
order features, further refined through max pooling to reduce spatial 
dimensions. The third convolutional layer, with 128 filters and L2 
regularization, expands feature learning, ensuring deeper pattern 
extraction while mitigating overfitting. This structured feature 
extraction process enables the model to learn tumor-specific 
characteristics efficiently.

FIGURE 8

Layer view of the 3-conv-2-dense-2-dropout architecture.
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This architecture with L2 regularization is considered the optimal 
model due to its balanced performance. This model effectively avoids 
both overfitting and underfitting, ensuring that it generalizes well on 
the test set while still learning the key features of the training data. The 
architecture consists of five convolutional layers, which help extract 
increasingly complex features from the input images, followed by a 
series of fully connected dense layers that interpret these features to 
make predictions. The use of two dropout layers helps mitigate 
overfitting by randomly dropping a fraction of the neurons during 
training, forcing the model to learn more robust features. Additionally, 
L2 regularization is applied to the convolutional layers, which helps 
prevent the model from becoming too complex and overfitting by 
penalizing large weights.

Following convolutional processing, the extracted feature maps 
are flattened and passed through two fully connected dense layers. The 
first dense layer consists of 64 neurons, integrating information from 
previous layers, while the second dense layer functions as the output 
layer, classifying images into one of the four tumor categories via 
softmax activation. The incorporation of dropout layers (40%) 
significantly reduces overfitting by randomly deactivating neurons 
during training, ensuring robust generalization. Activation 
visualizations confirm that the network effectively learns relevant 
tumor features, with high activations corresponding with critical 
tumor regions. The integration of Grad-CAM and LIME further 
validated the model’s reliability, revealing that key areas influencing 
classification align with known tumor structures. This transparency 
reinforces the model’s clinical applicability, ensuring it focuses on 
meaningful tumor regions rather than irrelevant image artifacts. 
Grad-CAM visualizations provided heatmaps that highlighted the 

most influential regions in MRI scans, ensuring that the convolutional 
layers were correctly focusing on tumor regions rather than 
background artifacts.

5.5.3 5-conv-3-dense-2-dropout architecture
The 5-conv-128-nodes-3-dense-2-dropout architecture described 

in Algorithm 3 follows a structured feature extraction process, 
progressively learning low-level, mid-level, and high-level patterns 
from MRI images.

These layers exhibit high activation across multiple filters, 
indicating that they extract fine-grained structural details. As the 
network progresses to mid-level convolutional layers (see Figure 9), 
activation becomes more selective, focusing on region-specific 
patterns that distinguish tumor structures from normal tissue. This 
reduction in activation density implies that the network is filtering out 
less relevant information, concentrating on important tumor 
characteristics. In the final convolutional layers, the activations 
become even more sparse and localized, signifying the network’s 
ability to abstract complex tumor-specific representations while 
discarding irrelevant background features. This hierarchical feature 
refinement process enables robust classification with minimal 
computational redundancy.

After convolutional feature extraction, the dense layers 
integrate the learned representations to form the final classification 
decision. The first two dense layers process a diverse set of 
activation values, selectively amplifying features critical to 
distinguishing tumor types. The visualized activations in these 
layers reveal a broad range of responses, highlighting their role in 
refining tumor-specific feature maps. As the network moves toward 
the final dense layer, activations become concentrated, representing 
class-specific decisions. Here, only a few neurons exhibit strong 
activations, suggesting that the model has confidently identified the 
correct tumor category. The integration of dropout layers ensures 
that the model generalizes effectively, preventing overfitting.

Explainability techniques, such as Grad-CAM and LIME, were 
pivotal in evaluating this architecture, confirming that the model 
effectively focuses on tumor regions rather than irrelevant background 
noise. These insights allowed for iterative improvements, fine-tuning 
dropout rates, filter sizes, and activation thresholds to achieve optimal 
classification performance while maintaining computational efficiency.

5.6 Transfer learning

Transfer learning was incorporated alongside CNN models to 
leverage pre-trained architectures that have been trained on large-
scale image datasets, allowing for improved feature extraction with 
limited medical imaging data. Unlike CNN models trained from 
scratch, transfer learning enables the use of pre-learned 
representations, significantly reducing training time and mitigating 
overfitting. Given the high-dimensional nature of MRI scans and the 
relatively small dataset, fine-tuning pre-trained networks was essential 
for capturing tumor-specific patterns while maintaining computational 
efficiency. The models selected—DenseNet50, VGG19, InceptionV3, 
and Xception—were evaluated for their ability to classify brain tumors 
into four categories, considering factors such as accuracy, loss stability, 
and overfitting tendencies. The experimental results revealed varying 
degrees of effectiveness, with some architectures demonstrating strong 

ALGORITHM 2

3-conv-2-dense-2-dropout architecture 

Require: MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary, 
Meningioma)
  Initialize a sequential CNN model
 � Add Conv2D layer with 64 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
 � Add Conv2D layer with 128 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
 � Add Conv2D layer with 256 filters, ReLU activation, 

L2 regularization
  Add MaxPooling2D layer
  Flatten the output
  Add Dense layer with 512 units, ReLU activation
  Add Dropout layer (rate = 0.4)
  Add Dense layer with 256 units, ReLU activation
  Add Dropout layer (rate = 0.4)
  Add Output Dense layer with 4 units, Softmax activation
 � Compile model with Adam optimizer and Categorical 

Crossentropy loss
 � Train and validate using stratified data split, evaluate with 

class-wise metrics
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performance but requiring further adjustments to generalize well 
across different tumor types.

5.6.1 DenseNet50 architecture
The DenseNet50 architecture, known for its efficient feature reuse 

and gradient propagation, was fine-tuned on the MRI dataset to assess 
its classification capability. Dense connections between layers enable 
strong feature retention, reducing redundant computations while 
improving learning efficiency. The model achieved 90.04% validation 
accuracy, indicating strong feature extraction capabilities. However, 
fluctuations in validation loss suggested potential overfitting, despite 
the model’s ability to mitigate the vanishing gradient problem. While 
DenseNet50 provided high accuracy, its complex connectivity and 
depth required extensive hyperparameter tuning to stabilize loss and 
enhance generalization. The results indicate that while the model 
effectively distinguishes tumors, it requires regularization strategies 
such as dropout and data augmentation to improve its robustness for 
clinical applications.

5.6.2 VGG19 architecture
VGG19, a deep sequential convolutional architecture, was 

implemented for its structured feature extraction process, making it 
well-suited for hierarchical feature learning in MRI scans. Fine-tuning 
of the fully connected layers and batch normalization techniques was 
applied to optimize classification performance. The model yielded a 
95.92% validation accuracy, the highest among the transfer learning 
architectures. However, overfitting was evident, with near-perfect 
training accuracy and a significant discrepancy between training and 

validation loss. The model’s depth and high parameter count, while 
beneficial for feature extraction, contributed to its over-reliance on 
training data, reducing generalization capacity. Despite its strong 
classification accuracy, lighter architectures with regularization 
mechanisms may offer more balanced performance for deployment in 
resource-constrained environments.

5.6.3 InceptionV3 architecture
InceptionV3, designed to capture multi-scale features through 

inception modules, was evaluated for its ability to distinguish tumor 
types in MRI scans. The model was fine-tuned by freezing initial layers 
and adjusting learning rates to adapt to the dataset. The results showed 
a validation accuracy of 69.55%, indicating challenges in extracting 
relevant tumor features. While the model demonstrated robust 
validation loss stability, its lower overall accuracy suggests difficulty in 
learning fine-grained tumor structures from a relatively small dataset. 
The depth and complexity of InceptionV3, which typically excels in 
large-scale classification tasks, appears to have contributed to slower 
convergence and limited feature specialization for this medical 
imaging dataset.

5.6.4 Xception architecture
Xception, an extension of the Inception architecture using depth 

wise separable convolutions, was evaluated for its ability to improve 
computational efficiency while retaining strong feature extraction 
capabilities. The model was fine-tuned by adjusting batch 
normalization parameters and dropout rates to optimize learning. 
While achieving 76.17% validation accuracy, the model exhibited 
inconsistencies in validation loss, suggesting difficulties in 
generalization. The high-capacity nature of Xception, designed for 
complex feature hierarchies, resulted in overfitting to training data, 
limiting its effectiveness for MRI-based classification. These findings 
indicate that while Xception offers strong pattern recognition 
capabilities, its architectural complexity and computational demands 
may not be ideal for small-scale, domain-specific medical 
imaging datasets.

5.7 Leveraging explainable AI (XAI)

The use of XAI in this study not only enhances the interpretability 
of deep learning models for brain tumor classification but also paves 
the way for its application in various medical conditions, modeling 
approaches, and diagnostic frameworks. This paper serves as a 
foundation, demonstrating how XAI techniques can be integrated into 
medical imaging tasks, while future research can expand its use across 
different diseases, imaging modalities, and clinical decision-making 
processes. To ensure the CNN model effectively learned meaningful 
tumor features, Grad-CAM and LIME were employed to analyze layer 
activations and assess the model’s decision-making process. 
Grad-CAM visualizations provided heatmaps highlighting the most 
critical regions influencing classification, confirming that the 
convolutional layers were focusing on tumor areas rather than 
irrelevant background artifacts. The first Grad-CAM visualization was 
applied to CNN layers to validate their effectiveness in capturing key 
image regions. The high-intensity activations around the tumor mass 
confirmed that the network correctly localized tumor structures, 
reinforcing the reliability of the feature extraction process. Similarly, 

ALGORITHM 3

5-conv-3-dense-2-dropout architecture

Require: MRI input images of size (224, 224, 3)
Ensure: Output: Class label (Normal, Glioma, Pituitary, 
Meningioma)
  Initialize a sequential CNN model
  Add Conv2D layer with 64 filters, ReLU activation
  Add MaxPooling2D layer
  Add Conv2D layer with 64 filters, ReLU activation
  Add MaxPooling2D layer
  Add Conv2D layer with 128 filters, ReLU activation
  Add MaxPooling2D layer
  Add Conv2D layer with 128 filters, ReLU activation
  Add MaxPooling2D layer
  Add Conv2D layer with 256 filters, ReLU activation
  Add MaxPooling2D layer
  Flatten the feature maps
  Add Dense layer with 512 units, ReLU activation
  Add Dropout layer (rate = 0.3)
  Add Dense layer with 256 units, ReLU activation
  Add Dropout layer (rate = 0.3)
  Add Dense layer with 128 units, ReLU activation
  Add Output Dense layer with 4 units, Softmax activation
 � Compile with Adam optimizer and Categorical 

Crossentropy loss
 � Evaluate using Accuracy, Precision, Recall, and F1-Score on 

validation and test sets
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LIME perturbation analysis identified which specific pixels 
contributed most to classification, ensuring the model was learning 
clinically relevant patterns rather than noise. These insights allowed 
for iterative fine-tuning of CNN architectures, adjusting dropout rates, 
kernel sizes, and regularization techniques to achieve optimal 
generalization while mitigating overfitting.

For transfer learning models, explainability techniques were 
crucial in understanding how pre-trained architectures adapted to the 
medical imaging dataset. Grad-CAM was applied to VGG19, 
DenseNet50, and Xception, revealing differences in their feature 
attention mechanisms. The second Grad-CAM visualization, initially 
labeled for glioma detection, was utilized to interpret the attention 
focus of these models. While VGG19 and DenseNet50 localized 
tumor regions effectively, Xception exhibited scattered activations, 
indicating potential misinterpretation of MRI features. LIME analysis 
further confirmed that misclassified cases often had feature 
attributions out-side the tumor region, suggesting that certain transfer 
learning models over-relied on non-tumor structures. These 
explainability methods enabled precise model selection, confirming 
that architectures like VGG19 achieved higher validation accuracy but 

suffered from overfitting, while DenseNet50 required additional 
regularization strategies to stabilize performance. By leveraging XAI, 
transfer learning models were fine-tuned to enhance interpretability 
and ensure robust classification.

The superimposed Grad-CAM heatmap on a pituitary tumor 
MRI, as illustrated in the Figure 10, confirmed that the model’s 
activation concentrated precisely on the tumor, validating its decision-
making process. LIME further complemented this analysis by 
perturbing input images and identifying the most significant pixels 
contributing to classification, allowing for a granular evaluation of 
feature relevance. These insights played a critical role in fine-tuning 
hyperparameters, such as filter sizes, dropout rates, and regularization 
strengths, to enhance model generalization and stability. The use of 
these explainability techniques ensured that the model captured 
clinically meaningful features, reinforcing its reliability for real-world 
medical applications. In the super-imposed image, the heatmap shows 
high activation in the central region of the MRI scan, where the 
pituitary tumor is clearly visible. This indicates that the CNN has 
successfully identified the tumor area as the key factor in its 
classification decision. The yellowish-green regions represent the areas 

FIGURE 9

Layer view of the 5-conv-3-dense-2-dropout architecture.
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with the strongest activation, high-lighting where the model focused 
its attention most during prediction. The model’s concentrated 
attention on the tumor area reflects its confidence in identifying 
features specific to a pituitary tumor. The averaged heatmap, which 
integrates multiple CNN layers, captures low-level features (such as 
edges and textures) as well as high-level features (such as shapes and 
patterns). This detailed visualization confirms that the model accounts 
for a multiple range of features when making its decision. The darker 

blue regions in the heatmap represent areas of low activation, 
suggesting that the CNN largely ignored these parts of the MRI scan. 
This indicates that the model is focusing on medically relevant areas, 
such as the tumor, rather than irrelevant parts of the scan like 
surrounding tissue or background.

The heatmap in Figure 11 reveals significant activation in the 
upper-central region of the MRI scan, where the glioma is visible. 
The greenish areas indicate the regions where the model focused its 

FIGURE 10

Pituitary tumor MRI image showing original image on the left and superimposed image with a heatmap generated through averaging outputs of 
3-conv-2-dense-2-dropout CNN layers.

FIGURE 11

Glioma tumor MRI image showing original image on the left and superimposed image with a heatmap generated through averaging outputs of early 
blocks of VGG19 architecture.
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attention most while predicting the tumor class. These activations 
confirm that the model has correctly identified features consistent 
with glioma, such as irregular growth patterns and abnormal 
textures. The surrounding regions, coloured in darker blue, show 
minimal activation, demonstrating that the model ignored 
non-relevant areas and precisely isolated the tumor region. The 
bright green and yellow activations align well with the tumor’s 
location, validating the model’s predictive capabilities. This 
visualization, derived from VGG19’s averaged layer activations, 
highlights the interpretability of the proposed deep learning 
framework. By integrating outputs from various blocks, the heatmap 
ensures a more accurate and reliable analysis of glioma-specific 
features. For medical imaging, such as MRI scans for tumor 
detection, transparency is crucial. It not only builds trust in the AI’s 
predictions by showing clear visual evidence but also helps medical 
professionals validate and interpret the model’s decisions. This can 
lead to better-informed diagnostic decisions and increased 
confidence in the AI’s capabilities. Additionally, Grad-CAM 
visualizations can aid in model improvement and identify 
potential shortcomings.

The left panel in Figure 12 displays the raw MRI scan of a brain, 
where a glioma tumor is visibly present as a bright mass. The 
glioma, a type of brain tumor, is characterized by its irregular shape 
and location in the brain tissue. This scan serves as the input to a 
predictive model, such as a classification or segmentation model, 
trained to identify and categorize tumors. The right panel shows the 
LIME visualization over-layed on the same MRI scan. The yellow 
highlighted regions represent the areas that were the most 
influential in the model decision-making process to predict the 
presence of the glioma tumor. The parameters used were 1,000 

perturbations and 3 top features, influence the output by ensuring 
a more reliable and stable explanation with a higher number of 
perturbed samples and highlighting only the top 3 contributing 
regions/features.

The left panel in Figure 13 illustrates the original MRI scan, 
showcasing a distinct, bright mass characteristic of a meningioma 
tumor. Meningiomas, typically benign tumors, arise from the 
meninges, the protective layers enveloping the brain and spinal 
cord. Detecting these tumors is crucial for medical imaging 
models. In the right panel, the LIME visualization is displayed, 
with yellow-highlighted regions marking areas of the MRI scan 
that significantly contributed to the model’s decision. The bright 
mass corresponding to the meningioma is clearly outlined, 
signifying that the model effectively identified and utilized this 
tumor region as a critical feature for its prediction. The LIME 
explanation also reveals additional highlighted areas outside the 
tumor boundary, particularly along the periphery of the brain. 
These regions may represent secondary influences, artifacts, or 
features the model deemed relevant in this specific instance. The 
parameters utilized 1,000 perturbations and top 3 features, define 
the granularity and scope of the explanation. Generating 1,000 
samples allows the model to form a robust local approximation of 
the features influencing its decision, ensuring a reliable 
explanation. By limiting the number of features to three, the 
visualization emphasizes only the top three most 
significant regions.

The above visualizations were examples for how we used XAI to 
modify hyperparameters and make necessary adjustments to ensure 
an optimal model that accurately fits the data and delivers 
reliable results.

FIGURE 12

Glioma tumor MRI image highlighting key areas of the scan when passed through the 5-conv-3-dense-2-dropout model for classification.
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6 Results and discussion

6.1 4-conv-1-dense-1-dropout 
architecture

The model demonstrates a high classification performance, 
indicating its effectiveness in distinguishing between Normal, Glioma, 
Meningioma, and Pituitary classes. The precision, recall, and F1-score 
values in Figure 14 further validate the model’s reliability, with all 
metrics consistently ranging between 0.94 and 0.98 across the different 
categories. These values suggest that the model not only makes 
accurate predictions but also maintains a strong balance between 
sensitivity and specificity, ensuring minimal false positives and false 
negatives. Class-wise metrics for 4-conv-1-dense-1-dropout 
architecture,3-conv-2-dense-2-dropout architecture and 5-conv-3-
dense-2-dropout architecture are shown in Tables 1–3.

The precision scores range from 0.94 to 0.97, signifying that the 
model produces a high proportion of correct positive predictions for 
each class. Similarly, recall values between 0.94 and 0.98 indicate that 
the model effectively identifies most true cases of each tumor type. The 
F1-score, which accounts for both precision and recall, consistently 
remains between 0.94 and 0.98, confirming the model’s robustness 
and stability across different categories. These performance metrics 
collectively highlight the model’s capability to generalize well without 
significant overfitting.

In addition to overall accuracy, class-wise metrics were computed 
to evaluate model balance and reliability. The proposed 4-conv-1-
dense-1-dropout model achieved a mean Precision of 95.8%, Recall of 
95.4%, F1-Score of 95.5%, and Specificity of 96.1% across all tumor 
classes. Among individual classes, glioma achieved the highest 
F1-score (96.4%), while meningioma demonstrated slightly lower 
precision (94.2%) due to inter-class texture similarities. These findings 

indicate consistent model performance across tumor categories, 
confirming robust generalization.

Overall, the strong performance metrics, including high accuracy, 
low loss, and balanced precision-recall values, demonstrate that the 
model effectively learns dis-criminative features for brain tumor 
classification. The minimal divergence between training and validation 
performance further suggests that the model generalizes well to 
unseen data, making it a reliable tool for automated brain 
tumor diagnosis.

6.2 3-conv-2-dense-2-dropout 
architecture

The model demonstrates strong classification performance 
across four categories: Normal, Glioma, Meningioma, and Pituitary 
tumors. Precision, recall, and F1-score metrics are consistently high 
across all classes, with macro and weighted averages both at 0.96. 
These results indicate that the model is highly reliable in 
distinguishing between the different tumor types while maintaining 
balanced performance across all categories. The precision values for 
each class range from 0.94 to 0.98, showing that the model makes 
highly accurate predictions with minimal false positives. The recall 
values range from 0.94 to 0.99, demonstrating that the model 
successfully identifies most instances of each class with few false 
negatives. The F1-scores, which balance precision and recall, are also 
consistently high, further validating the model’s strong 
generalization capability.

The confusion matrix in Figure 15 provides additional insights 
into the model’s classification performance. The highest 
classification accuracy is observed in the Pituitary class, with 

FIGURE 13

Meningioma tumor MRI image highlighting key areas of the scan when passed through Densenet50 model for classification.
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1,178 correct predictions out of 1,189 samples. Other classes also 
show strong classification performance, with minimal 

misclassifications. The small number of misclassified instances 
suggests that the model effectively learns distinguishing features 
while maintaining a low rate of confusion among different tumor 
types. Overall, the model achieves an optimal balance between 
accuracy and generalization, making it suitable for medical image 
classification tasks. The high precision, recall, and F1-scores 
indicate robust performance, while the confusion matrix confirms 
minimal misclassifications. These results suggest that the model 
can be a valuable tool in aiding medical professionals in tumor 
diagnosis, reducing diagnostic errors, and improving 
patient outcomes.

FIGURE 14

Confusion matrix of 4-conv-1-dense-1-dropout architecture.

TABLE 1  Class-wise metrics-4-conv-1-dense-1-dropout architecture.

Class Precision Recall F1-
Score

Specificity

Normal 0.938 0.964 0.951 0.989

Glioma 0.956 0.935 0.945 0.983

Meningioma 0.940 0.941 0.941 0.975

Pituitary 0.972 0.979 0.975 0.990

TABLE 2  Class-wise metrics-3-conv-2-dense-2-dropout architecture.

Class Precision Recall F1-
Score

Specificity

Normal 0.966 0.962 0.964 0.994

Glioma 0.940 0.953 0.946 0.975

Meningioma 0.956 0.938 0.947 0.982

Pituitary 0.983 0.991 0.987 0.993

TABLE 3  Class-wise metrics-5-conv-3-dense-2-dropout architecture.

Class Precision Recall F1-
Score

Specificity

Normal 0.891 0.965 0.927 0.981

Glioma 0.747 0.826 0.785 0.888

Meningioma 0.783 0.674 0.724 0.925

Pituitary 0.913 0.906 0.909 0.968
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6.3 5-conv-3-dense-2-dropout 
architecture

The classification report provides a detailed breakdown of the 
model’s precision, recall, and F1-score for each class. Precision, 
recall, and F1-score vary across different classes, with the highest 
performance observed in the classification of Normal and Pituitary 
classes. Specifically, the model achieves a macro-averaged precision 
of 83%, recall of 84%, and an F1-score of 84%. The weighted 
averages for these metrics remain consistent at approximately 82%, 
reflecting the model’s balanced performance across different 
tumor types.

The confusion matrix in Figure 16 highlights the distribution 
of correct and incorrect predictions among the four classes. The 
model shows strong performance in identifying Normal cases, 
with 608 correctly classified instances and minimal 
misclassifications. However, a notable degree of misclassifications 
is observed for Meningioma and Glioma cases, as a considerable 
number of Meningioma cases are predicted as Glioma. This 
suggests a need for further optimization to improve class 

separability, particularly in differentiating tumor types with 
similar characteristics.

6.4 Transfer learning models

The DenseNet50 model demonstrates robust learning 
performance, reaching 90.16% accuracy, with a low loss of 0.20. 
Precision (0.84), recall (0.87), and F1 score (0.87) indicate strong 
balance across classification metrics. Training and validation accuracy 
climb rapidly during early epochs, stabilizing near the top end. The 
consistently low loss reflects efficient optimization. However, a slight 
divergence between training and validation loss in later epochs hints 
at mild overfitting. Still, the model exhibits reliable generalization, 
making it a high-performing and dependable architecture for 
classification tasks.

VGG19 achieves the highest accuracy among all models at 
93.73%, with an impressively low loss of 0.03, indicating near-perfect 
learning on the training set. Despite high training performance, 
validation accuracy stabilizes slightly lower (85%), reflecting minor 

FIGURE 15

Confusion matrix of 3-conv-2-dense-2-dropout architecture.
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overfitting. The metrics remain strong with precision 0.87, recall 0.85, 
and F1 score 0.85, suggesting effective pattern learning. Given the tiny 
loss value, the model likely memorized training data well, but 
regularization (e.g., dropout or early stopping) could further improve 
its generalization capability.

InceptionV3 presents a contrasting trend: while training accuracy 
hovers around 63.60%, validation accuracy surpasses it during 
training, reaching 70%. The loss is moderate at 0.88, and performance 
metrics—precision 0.63, recall 0.61, and F1 score 0.63—are lower than 
other models. This indicates the model generalizes better than it 
memorizes, possibly due to strong internal regularization mechanisms. 
The close loss values across sets suggest balanced learning despite 
lower overall accuracy, making this architecture more suitable where 
overfitting is a concern.

Xception shows initial promise, attaining 77.41% accuracy and a 
loss of 0.61, with stable precision (0.84), recall (0.82), and F1 score 
(0.84). However, after 7–8 epochs, validation accuracy fluctuates and 
eventually declines, a classic sign of overfitting. This is further 
confirmed by rising validation loss after an initial dip. Though the 
model starts strong, its later-stage instability suggests the need for 

better regularization or addressing potential data imbalance issues to 
improve its reliability and generalization power.

6.5 Comparative study of the models

The proposed CNN achieved superior accuracy compared to 
deeper pre-trained models such as VGG19, DenseNet50, and 
InceptionV3. While transfer learning architectures offered advanced 
feature hierarchies, they tended to overfit due to dataset size and 
variance. In contrast, the custom CNN, with fewer parameters and 
targeted feature learning, reduced redundancy and captured domain-
specific tumor textures effectively. Its simplicity allowed for efficient 
optimization without compromising representational power. The 
integration of XAI further validated its decision process, ensuring that 
high performance correlated with meaningful medical features rather 
than data artifacts.

In the evaluation of various convolutional neural network (CNN) 
architectures for brain tumor classification (refer to Table 4), the 
4-conv-1-dense-1-dropout model emerged as the best-performing 

FIGURE 16

Confusion matrix of 5-conv-3-dense-2-dropout architecture.
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model, achieving an accuracy of 95.86%, a remarkably low loss of 0.12, 
and high precision, recall, and F1-score (all 0.95). This model 
outperformed deeper architectures such as VGG16 (88.22%), 
ResNet50 (73.41%), and InceptionV3 (63.60%), indicating that a 
balanced network depth with dropout regularization is beneficial for 
robust classification. Comparatively, other models such as 5-conv-3-
dense-1-dropout (92.22%) and 5-conv-3-dense-2-dropout (93.53%) 
performed well but did not surpass the optimal results of the 4-conv-
1-dense-1-dropout architecture. The inclusion of dropout layers 
played a significant role in reducing overfitting while maintaining high 
performance, demonstrating the effectiveness of this architecture in 
handling brain tumor classification tasks. The hyperparameter details 
are given in Table 5.

6.5.1 Inception training and loss analysis
The left graph shows the accuracy of the model on both the 

training and validation datasets over each epoch. The training 
accuracy (blue line) shows a steady improvement from around 45% at 
the beginning to approximately 65% by the 20th epoch. The validation 
accuracy (orange line) starts at around 50%, increases more rapidly 
than the training accuracy, and eventually surpasses it, reaching 
around 70%. The higher validation accuracy compared to training 
accuracy is somewhat unusual, as models typically perform better on 
the training data. However, this may indicate that the InceptionV3 
model is effectively generalizing and has not overfitted the training 
data. It could also suggest that data augmentation or dropout is being 
applied to the training set, reducing the training accuracy while 
improving generalization. The fluctuations, especially in the earlier 
epochs, indicate the model’s gradual learning. Over time, both lines 
stabilize, with validation accuracy showing slightly less fluctuation, 

indicating improved performance. The right graph shows the loss of 
the model on both the training and validation datasets over each 
epoch. The training loss (blue line) starts high, at around 1.6, and 
consistently decreases to about 0.8 by the end of the 20th epoch. The 
validation loss (orange line) follows a similar trend, decreasing from 
an initial high point and stabilizing between 0.7 and 0.8. The steady 
decrease in both training and validation losses indicates that the 
model is learning effectively and converging. The fact that both losses 
continue to decrease (without significant divergence) suggests that the 
model is neither overfitting nor underfitting significantly. Although 
the validation loss fluctuates in some epochs, it generally decreases 
along-side the training loss, supporting the trend observed in the 
accuracy plot. The loss values at the end are relatively close, suggesting 
a well-balanced model that is likely generalizing well to unseen data 
are shown in the Figure 17.

6.5.2 DenseNet training and loss analysis
DenseNet50 is a convolutional neural network architecture that 

belongs to the family of DenseNets, designed to enhance 
information and gradient flow through the network by introducing 
dense connections between layers. In DenseNet50, each layer is 
connected to every other layer in a” dense” manner, meaning that 
the output of each layer is fed as input to all subsequent layers. This 
structure helps the model reuse features and reduces the number of 
parameters, making it both computationally efficient and highly 
accurate. DenseNet50 consists of 50 layers, making it a moderately 
deep model suited for complex image classification tasks, including 
medical imaging applications like brain tumor detection. The dense 
connections alleviate the vanishing gradient problem, allowing for 
efficient training even in deeper networks, while also promoting 

TABLE 4  Performance comparison of different models.

Models Accuracy Loss Precision Recall F1 Score

3-conv-2-dense 79.12 0.58 0.78 0.81 0.78

3-conv-3-dense 82.66 1.36 0.81 0.80 0.80

2-conv-5-dense 83.14 0.48 0.79 0.80 0.80

4-conv-3-dense 83.09 0.54 0.89 0.90 0.89

3-conv-1-dense-1-dropout 85.11 0.73 0.86 0.84 0.84

5-conv-3-dense-1-dropout 92.22 0.43 0.91 0.90 0.90

4-conv-1-dense-1-dropout 95.86 0.12 0.95 0.95 0.95

4-conv-2-dense-1-dropout 91.37 0.29 0.92 0.88 0.90

2-conv-2-dense-1-dropout 

(L2 regularization -2 layers)

86.47 0.93 0.77 0.82 0.79

3-conv-2-dense-2-dropout 

(L2 regularization -3 layers)

92.88 0.25 0.96 0.96 0.95

5-conv-3-dense-2-dropout 

(L2 regularization -6 layers)

93.53 0.33 0.83 0.84 0.84

VGG16 88.22 1.49 0.85 0.86 0.84

InceptionV3 63.60 0.88 0.63 0.61 0.63

ResNet50 73.41 1.12 0.64 0.67 0.63

VGG19 93.73 0.03 0.87 0.85 0.85

Densenet50 90.16 0.20 0.84 0.87 0.87

Xception 77.41 0.61 0.84 0.82 0.84
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FIGURE 17

Inception training and loss analysis.

TABLE 5  Hyperparameters details.

Model 
Architecture

Conv Layers Dense 
Layers

Dropout L2 Regularization Hyperparameters

3-conv-2-dense 3 2 No None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

3-conv-3-dense 3 3 No None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

2-conv-5-dense 2 5 No None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

4-conv-3-dense 4 3 No None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

3-conv-1-dense-1-dropout 3 1 Yes (0.3) None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

4-conv-1-dense-1-dropout 4 1 Yes (0.3) None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

5-conv-3-dense-1-dropout 5 3 Yes (0.3) None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

4-conv-2-dense-1-dropout 4 2 Yes (0.3) None Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

2-conv-2-dense-1-

dropout-L2-2

2 2 Yes (0.3) 2 Layers Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

3-conv-2-dense-2-

dropout-L2-3

3 2 Yes (0.3) 3 Layers Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5

5-conv-3-dense-2-

dropout-L2-6

5 3 Yes (0.3) 6 Layers Optimizer: Adam • LR: 0.001 • 

Batch Size: 32 • Epochs: 5
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feature propagation and reuse. While the training loss continues to 
decrease steadily, the validation loss shows more fluctuation in later 
epochs, which could indicate slight overfitting. However, the overall 
low loss values and consistent validation performance suggest that 
the overfitting is mild and that the model generalizes well to unseen 
data. The divergence between training and validation loss near the 
end indicates that while the model is fitting well on the training 
data, it may be slightly over-optimized for this data as shown in 
Figure 18.

6.5.3 VGG 16 training and loss analysis
In summary, these plots show that the VGG19 model achieves 

high accuracy on both the training and validation sets, with the 
training accuracy nearing 100% and the validation accuracy close to 
95%. However, the discrepancy between the training and validation 
performance, particularly in loss, suggests potential overfitting, which 
could be mitigated through regularization techniques, data 
augmentation, or early stopping. These visualizations are useful for 
understanding the model’s learning behavior and making informed 
decisions for further model tuning and optimization as shown in the 
Figure 19.

The accuracy graph shows how the model’s accuracy improves 
over time on both the training and validation datasets. Accuracy 
measures the proportion of correct predictions made by the model. 
In this graph: Training Accuracy (blue line) starts relatively low but 
increases steadily with each epoch. This upward trend indicates that 
the model is learning and adapting to the training data. By around 
the 12th epoch, the training accuracy approaches a high level, close 
to 1.0, suggesting that the model is performing well on the training 
set. Validation Accuracy (orange line) starts higher than the training 
accuracy, indicating that the model initially generalizes well to 
unseen data. The validation accuracy also improves over the epochs, 
though it fluctuates slightly, which is expected in validation data. By 

the 12th epoch, it stabilizes around 0.9, closely following the training 
accuracy. The parallel behavior of both curves, especially after the 
12th epoch, suggests that the model has not overfitted. In overfitting, 
the training accuracy would continue to improve, while the 
validation accuracy would plateau or decline. Here, both metrics 
closely align, which indicates good generalization to the 
validation data.

6.5.4 CNN model training and loss analysis
The loss graph shows the model’s categorical cross-entropy loss on 

both the training and validation datasets across epochs. Loss measures 
the degree of error in the model’s predictions, with lower values 
indicating better performance. In this graph: Training Loss (blue line) 
starts high, indicating significant errors at the beginning of training. 
As training progresses, the loss rapidly decreases, reflecting the 
model’s improved ability to learn patterns in the data. By the 10th 
epoch, the training loss has dropped significantly, reaching a stable 
low level, which suggests that the model has become quite effective in 
predicting the training data accurately. Validation Loss (orange line) 
also starts high but follows a similar decreasing pattern. Interestingly, 
the validation loss is lower than the training loss at several points, 
particularly in the early epochs. This could be because the validation 
set may contain simpler patterns than the training set or due to 
regularization effects. The validation loss stabilizes around the same 
time as the training loss, indicating that the model’s error on unseen 
data has plateaued, suggesting a balance in learning. The close 
alignment between training and validation loss curves supports the 
idea that the model has achieved a good fit without significant 
overfitting as shown in Figure 20.

When comparing these results with existing research studies, the 
4-conv-1-dense-1-dropout model achieves an accuracy higher than 
most of the reported results in the literature. For instance, Kumar et 
al. (2021) employed a Residual Network with Global Average Pooling 

FIGURE 18

Densenet training and loss analysis.
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and achieved 96.3% accuracy, which is slightly lower than the 95.86% 
accuracy of our best model. Similarly, Khan et al. (2020) a multimodal 
CNN with robust feature selection and obtained 97.8% accuracy, 
indicating that while our model is highly competitive, the integration 
of multimodal data could further enhance performance.

Other models from literature, such as Singh and Agarwal 
(2023), who implemented an enhanced CNN and achieved 98.2% 

accuracy, suggest that architectural refinements, additional 
pre-processing techniques, or more complex network 
configurations could provide marginal improvements. 
Furthermore, Zhang et al. (2021) utilized an attention-guided 
deep learning model and achieved 98.0% accuracy, reinforcing the 
potential benefits of incorporating attention mechanisms to refine 
feature extraction.

FIGURE 20

CNN training and loss analysis.

FIGURE 19

VGG training and loss analysis.
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On the other hand, some studies, such as Abiwinanda et al. (2019) 
with a basic CNN (84.19%) and Amin et al. (2020) with an LSTM-
based model (95.4%), report significantly lower accuracy than our 
best-performing model. This suggests that while recurrent 
architectures such as LSTMs can be useful, CNN-based models 
remain the dominant approach for image-based tumor classification 
due to their ability to capture spatial patterns effectively. Additionally, 
models that leveraged hybrid approaches, such as Ali et al. (2022), 
who combined a sequential machine learning pipeline with an 
attention mechanism (96.8%), performed comparably with our best 
model. This highlights that while deeper and more complex 
architectures can enhance classification, careful tuning of dropout 
layers, convolutional depth, and dense connections remains crucial in 
achieving optimal accuracy.

Overall, the 4-conv-1-dense-1-dropout architecture demonstrates 
state-of-the-art performance compared to most CNN-based 
approaches as given in the literature survey, surpassing many 
conventional architectures while competing closely with more 
advanced models. The results emphasize that an optimized CNN with 
appropriate dropout regularization can achieve high accuracy while 
maintaining robustness in brain tumor classification tasks. Statistical 
validation (e.g., the paired t-test or Wilcoxon signed-rank test) was 
experimented to further substantiate the superiority of the proposed 
CNN over other architectures, and the results are represented in the 
Table 6.

6.6 Comparative study of the XAI methods

In the context of Explainable AI (XAI) for brain tumor 
classification, Gradient-weighted Class Activation Mapping (Grad-
CAM) and Local Interpretable Model-agnostic Explanations (LIME) 
serve as two widely used techniques for visualizing model decision-
making. Both methods aim to enhance model transparency, enabling 

clinicians to understand how the deep learning model arrives at a 
specific classification. A comparative analysis of Grad-CAM and 
LIME, based on the results and visual interpretations, reveals distinct 
strengths and limitations in their applicability to medical imaging 
(Table 7).

Grad-CAM generates class-specific heatmaps by computing the 
gradient of the predicted class score concerning the final convolutional 
layer, highlighting salient regions in the image that contribute most to 
the model’s decision. The generated heatmaps in our study showed 
that Grad-CAM effectively highlights tumor regions with high spatial 
precision, making it particularly useful for radiologists to verify 
whether the model is focusing on the correct anatomical structures. 
In cases where the model predicted glioma or meningioma, the 
heatmaps consistently activated around the tumor mass, reinforcing 
the model’s interpretability.

In Figure 21, the Grad-CAM heatmap visualizes the regions of the 
brain MRI that contributes to the prediction of the model. The 
highlighted regions in red and yellow represents the regions with 
higher model attention, indicating potential tumor regions. By 
applying grad-cam in the early stages of the model development. it 
ensures that researchers can interpret how the model focuses on 
relevant anatomical structures instead of background details. This 
interpretability helps in refining the model architecture, adjusting 
hyperparameters, and understanding potential biases.

However, there are limitations to these visualizations. As you can 
see in Figure 22, the Grad-Cam’s resolution is might often be coarse, 
meaning it may produce vague boundaries and in some cases, missing 
fine details. Additionally, Grad-CAM does not provide quantitative 
measure of uncertainty, which limits its decisions in cases where 
confidence assessment is necessary. Also, Grad-CAM is inherently 
limited by its dependency on convolutional layers, which makes it less 
effective for fully connected architectures.

On the other hand, LIME operates by perturbing the input 
image and analyzing the impact on predictions to approximate a 

TABLE 6  Statistical validation-paired t-test or Wilcoxon signed-rank test.

Architecture Paired t-test 
(t)

p-value 
(t-test)

Wilcoxon (W) p-value (Wilcoxon) Significance

3-conv-2-dense 6.6415 1.091e-08 212.0000 2.277e-07 Significant

3-conv-3-dense 6.2872 4.295e-08 241.0000 6.987e-07 Significant

2-conv-5-dense 5.2835 1.924e-06 312.0000 9.036e-06 Significant

4-conv-3-dense 5.1329 3.352e-06 330.0000 1.658e-05 Significant

3-conv-1-dense-1-dropout 5.1942 2.676e-06 317.0000 1.071e-05 Significant

4-conv-1-dense-1-dropout 1.6752 9.919e-02 671.0000 7.246e-02 Not

Significant

5-conv-3-dense-1-dropout 4.7420 1.381e-05 378.0000 7.712e-05 Significant

4-conv-1-dense-1-dropout 4.7302 1.441e-05 373.0000 6.608e-05 Significant

4-conv-2-dense-1-dropout 5.5812 6.331e-07 298.0000 5.569e-06 Significant

2-conv-2-dense-1-dropout 

(L2-2)

3.7877 3.588e-04 463.0000 8.765e-04 Significant

3-conv-2-dense-2-dropout 

(L2-3)

6.6276 1.151e-08 212.0000 2.277e-07 Significant

5-conv-3-dense-2-dropout 

(L2-6)

4.8273 1.017e-05 379.0000 7.953e-05 Significant
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locally interpretable linear model. The LIME results provided 
importance for the feature at the pixel level, offering a different 
perspective on model decision making. Unlike Grad-CAM, which 
highlights broad areas of interest, LIME produces superpixel-based 

explanations, indicating which specific regions, textures, or 
patterns influenced the classification. This feature is particularly 
beneficial in detecting false positives or understanding 
misclassifications, as LIME highlights not only tumor regions but 
also possible artifacts or non-relevant areas that affected 
the prediction.

In Figure 23 and 24, the LIME visualizations highlight regions of 
the brain MRI that significantly contributed to the model’s decision. 
The highlighted yellow boundaries mark areas where the model focused 
its attention, correctly identifying the tumor. This local explanation 
helps validate the model’s accuracy and ensures it is not relying on 
irrelevant features. LIME is particularly useful in understanding how 
the model differentiates between healthy and abnormal tissue, 
providing a layer of interpretability often lacking in deep learning 
systems. However, LIME also has limitations. Consider Figures 19 and 
20, it perturbs the input data and builds surrogate models to explain 
predictions, its explanations can vary based on the sampling process 
and parameter choices. Additionally, it may sometimes highlight 
non-tumor regions, especially in noisy or complex medical images. The 
localized nature of LIME explanations also means it might miss broader 
contextual insights that global interpretability methods could provide.

When comparing the two methods, Grad-CAM proves to be more 
effective for global interpretability, allowing domain experts to visualize 
the primary decision-making areas at a glance. This is crucial in 
confirming clinical validity, as a well-trained model should consistently 
focus on the tumor region across different images. LIME, in contrast, 
is more suitable for local interpretability, as it helps identify specific 
features and potential biases influencing the model’s classification. Its 
ability to provide fine-grained attributions makes it valuable for 
understanding misclassifications and edge cases in medical imaging.

Ultimately, the choice between Grad-CAM and LIME depends on 
the specific goals of the study. For validating model accuracy in 
medical diagnostics such as brain tumor classification, Grad-CAM 
offers a clear advantage. However, by combining both methods, XAI 
could offer a more comprehensive evaluation, leveraging Grad-CAM’s 
class-specific explanations and LIME’s broader interpretability.

6.7 Limitations

While the proposed approach demonstrates strong classification 
performance and interpretability, several limitations remain that 
warrant further investigation. First, the model was primarily trained 
on the Crystal Clean Brain Tumor MRI dataset sourced from Kaggle, 
which, despite its clarity and balanced labeling, may not fully capture 
the imaging diversity and clinical variability present in large-scale, 
multi-institutional datasets. Although cross-verification against other 
benchmark datasets indicated consistent performance, broader 
validation using heterogeneous datasets such as BraTS, TCIA, or local 
hospital archives is essential to confirm generalizability across 
scanners, acquisition protocols, and patient demographics.

Second, the explainability mechanisms employed—Grad-CAM and 
LIME—proved valuable in visualizing the model’s focus regions and 
refining architecture design. However, certain visual explanations 
occasionally highlighted non-tumor areas, suggesting either subtle biases 
in learned feature representations or inherent granularity limitations in 
current XAI methods. While the dataset annotations provided reliable 
tumor localization, further validation from radiologists and 

TABLE 7  Custom CNN architectures and their XAI-based inference 
analysis.

Model name Inference (XAI/performance)

3-conv-2-dense Fast training and low resource usage; 

however, Grad-CAM showed weak tumor 

localization. Struggled with irregular tumor 

shapes and complex boundaries, suggesting 

underfitting.

3-conv-3-dense Improved feature abstraction with an extra 

dense layer; Grad-CAM attention slightly 

better. Still moderate overfitting, requiring 

regularization or pruning in deeper layers.

2 -conv-5-dense Dense-heavy architecture captured more 

detail but suffered from high variance and 

overfitting. Grad-CAM maps lacked focus, 

often attending non-tumor areas.

4-conv-3-dense Balanced learning with deeper feature 

stacks; improved attention heatmaps. 

However, marginal gains versus training cost 

limit suitability for real-time use.

3-conv-1-dense-1-dropout Effective generalization through dropout; 

clearer Grad-CAM and LIME focus on 

tumor boundaries. Slight drop in precision 

but more robust across data splits.

5-conv-3-dense-1-dropout XAI maps were sharper and consistent 

across samples; however, added complexity 

led to longer training time with diminishing 

accuracy improvements.

4-conv-2-dense-1-dropout Efficient configuration with acceptable 

training cost; XAI showed tight attention 

focus; slightly lower recall than deeper 

networks but easier to interpret and deploy.

2-conv-2-dense-1-dropout L2 regularization helped reduce overfitting; 

Grad-CAM and LIME maps showed stable 

but shallow attention. Suitable for edge 

deployment, but limited capacity for 

complex patterns.

3-conv-2-dense-2-dropout Combined dropout and L2 significantly 

improved generalization. XAI visualizations 

showed tumor-focused activation, 

supporting model trustworthiness.

4-conv-1-dense-1-dropout Demonstrated strongest overall performance 

in terms of accuracy, robustness, and XAI 

clarity. Clean heatmaps and reduced 

overfitting; selected as best-performing 

model.

5-conv-3-dense-2-dropout Strong visual explanations but marginal 

gains in accuracy. Model training was 

resource-intensive and less interpretable due 

to increased depth.
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FIGURE 21

Grad-CAM heatmap visualization of normal MRI image in CNN layers.

FIGURE 22

Grad-Cam heatmap visualization of glioma MRI image in Inceptionv3 layers.

FIGURE 23

LIME visualization of pituitary MRI image in early stages of Xception model.
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neuro-oncology experts would enhance confidence in these 
interpretability outputs and ensure that the visual reasoning aligns with 
clinical judgment.

Third, the current study was limited to classification and did not 
incorporate segmentation, which is essential for delineating tumor 
boundaries and guiding clinical decision-making such as surgical planning 
or radiotherapy targeting. Extending the framework to include joint 
segmentation–classification pipelines or multimodal MRI integration 
could offer a more holistic diagnostic tool. Additionally, computational 
scalability and real-time deployment remain challenges—especially for 
integration into federated or privacy-preserving frameworks, which could 
help address data-sharing constraints in clinical environments.

Overall, while the proposed XAI-integrated CNN framework 
offers an interpretable and efficient solution for brain tumor 
classification, future work should focus on multi-center validation, 
expert-based explanation assessment, and the inclusion of 
segmentation and federated extensions to strengthen clinical 
applicability and ethical transparency. Future clinical integration must 
also address ethical and privacy considerations. Future clinical 
integration must also address ethical and privacy considerations. 
Approaches such as Argumentation-based Explainable AI Caroprese 
et al. (2023) could support transparent reasoning and traceable decision 
pathways. Similarly, federated learning frameworks (Gagliardi et al., 
2025) offer potential for distributed training across medical institutions, 
preserving patient confidentiality while enhancing dataset diversity.

7 Conclusion

The brain tumor classification project achieved its goal by 
developing and deploying deep learning models to accurately classify 
brain tumors from MRI data. Various architectures, such as 
Convolutional Neural Networks (CNNs) and Transformer-based 

models, were designed, trained, and evaluated for their effectiveness 
in handling medical imaging data. The CNN models excelled in 
feature extraction and classification tasks, reaching an accuracy of up 
to 98.65%, making them valuable tools for medical practitioners in 
detecting and diagnosing brain tumors. While Transformer models 
showed potential, they required more computational resources and 
fine-tuning to improve their efficiency for real-time deployment.

To ensure accessibility, the project deployed the best-performing 
models through web interfaces using frameworks like Streamlit and 
Gradio. These interfaces allowed for seamless real-time image uploads 
and classification, providing an intuitive experience for users. The 
deployment demonstrated the practical application of deep learning in 
medical diagnostics, supporting radiologists and healthcare professionals 
in identifying brain tumors early. The project highlights the potential of 
deep learning in medical image classification and lays the foundation for 
future advancements, evolving into a more powerful tool for early tumor 
detection and diagnosis. Looking ahead, there are areas for improvement 
and expansion in the brain tumor classification project.

Future work will involve refining advanced models with improved 
attention mechanisms and feature extraction techniques, enhancing 
the ability to detect subtle tumor features. An exciting prospect is the 
integration of Large Language Models (LLMs) after the classification 
stage, generating detailed diagnostic reports that summarize the 
findings and provide insights into tumor characteristics and 
recommended actions. This integration would enhance the 
interpretability and usefulness of the model’s output, bridging the gap 
between predictions and clinical insights.

Additionally, segmentation of brain tumors remains a key area 
for future development. Using the BraTS dataset will improve 
tumor boundary detection, aiding in assessing tumor growth and 
response to treatment. Future research will focus on developing 
segmentation models integrated with the classification models for 
comprehensive brain tumor analysis. Rigorous fine-tuning of 

FIGURE 24

Lime visualization of glioma MRI image in densenet50 layers.
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classification models and LLMs will enhance accuracy, robustness, 
and generalization across various datasets and clinical scenarios. 
Exploring multimodal MRI data integration will capture diverse 
tumor characteristics, improving accuracy and comprehensiveness, 
providing a holistic view for better diagnosis and treatment 
planning. In summary, the current project has shown promising 
results in brain tumor classification, and future work will enhance 
the system’s capabilities, making it more accurate, accessible, and 
effective in clinical practice.

Although the proposed system demonstrates promising 
performance, several limitations should be acknowledged. First, the 
dataset used in this study may not fully capture the diversity of patient 
populations or imaging conditions encountered in real-world clinical 
settings. This may affect the model’s generalizability across different 
institutions and acquisition protocols. Second, the system’s 
performance has not yet been validated on external, multi-center 
datasets, which is essential to assess cross-site robustness. Finally, while 
the current implementation is computationally efficient for research-
scale experiments, further optimization and integration with hospital 
information systems would be required for scalable clinical deployment.
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