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The integration of artificial intelligence (AI) with frontier technologies such as large 
language models and quantum computing has significantly enhanced enterprises’ 
potential for breakthrough innovation, becoming a critical driver of innovation 
performance. However, the internal mechanisms and boundary conditions through 
which AI influences innovation performance via breakthrough innovation remain 
unclear, requiring further exploration to deepen our understanding of AI’s crucial 
role in organizational innovation. Drawing on the resource-based view (RBV), this 
study systematically investigates the impact of AI use on innovation performance, 
emphasizing the mediating role of breakthrough innovation and the moderating 
effect of Not-Invented-Here Syndrome (NIHS). Data were collected from 355 global 
high-tech enterprises via the Prolific platform and analyzed using partial least 
squares structural equation modeling (PLS-SEM). The findings demonstrate that 
AI use positively impacts innovation performance, with breakthrough innovation 
serving as a significant mediator. NIHS exhibits an inverted U-shaped moderating 
effect on the relationship between AI use and innovation performance, while 
displaying a U-shaped moderating effect between breakthrough innovation and 
innovation performance. This study provides initial empirical evidence that AI 
promotes breakthrough innovation in high-tech enterprises, thus enhancing 
innovation performance, unveiling the ‘black box’ of how AI influences innovation 
performance through breakthrough innovation. Moreover, it explores the nonlinear 
moderating role of NIHS, reinforcing the applicability of RBV in the digital era. 
This research also offers practical guidance for high-tech enterprises to optimize 
resource allocation and implement breakthrough innovation strategies in AI-
driven innovation environments to achieve superior innovation performance and 
competitive advantage.
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1 Introduction

Rapid advances in artificial intelligence (AI) are reconfiguring 
enterprises’ innovation logics and sources of competitive advantage 
(Haenlein and Kaplan, 2019; Krakowski et al., 2023). Enterprises are 
allocating growing resources to AI to streamline operations, enhance 
decision quality, and develop novel products and services. Industry 
evidence suggests broad diffusion across manufacturing, healthcare, 
financial services, and retail, positioning AI as a distinctive resource 
for improving innovation performance and competitive positioning. 
The rise of generative AI—underpinned by foundation models, 
machine learning, natural language processing, and, prospectively, 
quantum computing—has further expanded the frontier for 
breakthrough innovation (Balasubramanian et al., 2022; Mariani and 
Dwivedi, 2024). Yet these opportunities are tempered by significant 
implementation challenges: sizable capital outlays for infrastructure, 
constrained access to high-quality data, shortages of talent that 
integrate technical and domain expertise, organizational resistance to 
change, and persistent concerns over privacy and algorithmic bias 
(Grewal et al., 2021). Returns are also heterogeneous across industries 
and use cases; while some enterprises realize material gains, others fall 
short of expectations, and in some instances, initiatives are 
discontinued due to insufficient value creation (Felten et al., 2021). 
These patterns underscore the need to understand how enterprises can 
leverage AI effectively to enhance innovation performance.

Within the resource-based view (RBV), AI is increasingly 
conceptualized as a strategic resource that can enable sustained 
advantage and superior innovation outcomes (Krakowski et al., 2023; 
Mariani et al., 2023b). Beyond a technical artifact, AI operates through 
data, algorithms, and complementary organizational assets to support 
information processing, resource generation, and decision making, 
thereby facilitating dynamic resource orchestration (Raisch and 
Krakowski, 2021). Prior research indicates that AI can strengthen the 
identification, acquisition, and allocation of innovation-relevant 
resources, reshape search and selection processes, and ultimately 
elevate innovation outcomes (Mariani et al., 2023a; Roberts and 
Candi, 2024). At the same time, AI adoption introduces novel 
innovation paradigms that may disrupt established routines and 
resource deployment strategies. Factors such as top management’s 
change orientation, technological opacity and bias, organizational 
restructuring, and the magnitude of financial and technical 
commitments complicate the performance implications (Arias-P’Erez 
and V’Elez-Jaramillo, 2022; Han et al., 2025). Consequently, rigorous 
examination of AI’s real-world effectiveness has become a research 
priority (Du and Xie, 2021; Grewal et al., 2021). Clarifying the specific 
pathways, mechanisms, and boundary conditions through which AI 
contributes to innovation performance is therefore an essential agenda 
for further inquiry.

AI, as a frontier technology transcending human cognitive 
limitations, serves as crucial support for breakthrough innovation 
due to its robust data processing, pattern generation, and resource 
emergence (Balasubramanian et al., 2022; Cooper et al., 2023). 
Breakthrough innovation refers to creating novel technologies, 
products, or services previously absent from the market, triggering 
substantial market changes and reshaping industry standards and 
development patterns (Capponi et al., 2022; Datta and Srivastava, 
2023). Conventional perspectives suggest that AI can only 
recombine existing knowledge and resources; however, recent 

technological advances enable AI to autonomously generate and 
emergently produce new knowledge and capture complex system 
dynamics. This capacity allows firms to break free from innovation 
path dependence based on existing resources and knowledge 
(Mariani and Dwivedi, 2024; Roberts and Candi, 2024), facilitating 
entirely new technological combinations and application scenarios, 
thus driving breakthrough innovation and ultimately enhancing 
innovation performance (Silva et al., 2017). Yet, the mediating 
mechanism of breakthrough innovation in AI’s impact on 
innovation performance remains unclear and requires 
deeper investigation.

In translating AI-driven breakthrough innovation into superior 
innovation performance, the cognitive and decision-making attributes 
of top management teams are pivotal (Wilms et al., 2019; Han et al., 
2025), particularly through their openness to external knowledge and 
resources. Not-Invented-Here Syndrome (NIHS)—an orientation of 
reservation or resistance toward external innovation inputs (Hannen 
et al., 2019; Amann et al., 2021)—conditions how AI use influences 
performance outcomes. Extant findings on NIHS and enterprise 
innovation are mixed. Some studies argue that NIHS can strengthen 
internal resource integration and architectural coherence, thereby 
enhancing innovation performance (Felin and Zenger, 2014; Manzini 
et al., 2017). Others show that excessive NIHS induces cognitive 
rigidity, suppresses the variety of novel inputs, and ultimately impedes 
breakthrough innovation (Ismail et al., 2023). These inconsistencies 
point to nonlinear effects. Psychologically, a moderate level of NIHS 
may balance identity protection with learning openness, whereas 
extreme levels on either side disrupt this equilibrium (Antons and 
Piller, 2015; Witthöft et al., 2025). Organizationally, NIHS creates 
tension between external knowledge absorption and capability 
protection, plausibly yielding curvilinear (e.g., inverted U-shaped) 
relationships with innovation performance (Hannen et al., 2019). 
Building on this logic, we conceptualize NIHS as a multilevel construct 
and theorize a nonlinear moderating role of NIHS in the relationship 
between AI-driven breakthrough innovation and enterprise 
innovation performance, thereby motivating systematic inquiry into 
the underlying mechanisms and boundary conditions.

Based on the above analysis, this study addresses the following 
research questions: (1) Can AI enhance firms’ innovation performance 
by promoting breakthrough innovation? (2) What role does NIHS 
play in the relationships among AI use, breakthrough innovation, and 
innovation performance? To answer these questions, we conducted a 
two-stage online survey through the Prolific platform, collecting data 
from 355 high-tech enterprises globally. High-tech firms, characterized 
by technology-intensive innovation orientation, robust data assets, 
advanced R&D, and agile organizational structures, provide an ideal 
context for studying AI-enabled breakthrough innovation. Data 
analysis was conducted using PLS-SEM to test the research hypotheses.

This research contributes significantly to the literature on AI and 
innovation management. First, it systematically elucidates the 
mediating mechanism of breakthrough innovation in the 
relationship between AI use and innovation performance, deepening 
the understanding of the complex processes through which AI 
influences innovation performance (Du and Xie, 2021; Rammer et 
al., 2022). Second, it examines the nonlinear moderating role and 
mechanisms of NIHS as a boundary condition, challenging the 
conventional view of NIHS’s linear effects (Ismail et al., 2023). Third, 
it enriches and extends the RBV framework in the digital era, 
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emphasizing AI’s strategic importance for organizational 
competitive advantage and innovation performance (Helfat et 
al., 2023).

The remainder of this paper is structured as follows. Section 2 
reviews theoretical backgrounds and formulates hypotheses. Section 
3 outlines the methodology, including sampling, data collection, and 
analytical techniques. Section 4 presents results from empirical 
analysis. Section 5 discusses findings, implications, limitations, and 
future research directions. Section 6 concludes the paper.

2 Theoretical background and 
hypotheses development

2.1 Resource-based view

The resource-based view (RBV) offers a coherent theoretical lens 
for this study, guiding a systematic analysis of how enterprises deploy 
strategic resources to secure competitive advantage and elevate 
innovation performance (Barney, 2001). Under RBV, resources that 
are valuable, rare, inimitable, and non-substitutable constitute the 
foundations of sustained competitiveness and serve as engines of 
innovation (Terziovski, 2010; Barney et al., 2021). Such resources span 
tangible assets—advanced equipment, financial capital, and physical 
infrastructure—and intangible assets—brand reputation, intellectual 
property, and employee competencies (Jancenelle, 2021). Through 
effective integration and orchestration of these heterogeneous 
resources, enterprises develop pioneering technologies, products, and 
services, thereby strengthening innovative outputs and overall 
innovation performance.

Against the backdrop of rapid digitization, artificial intelligence 
(AI) has emerged as a pivotal strategic resource within the RBV 
paradigm. Recent scholarship extends RBV to encompass AI-enabled 
resources, enriching its theoretical scope and contemporary relevance 
(Helfat et al., 2023). As a novel class of strategic resource, AI 
transcends traditional asset constraints by introducing digital and 
data-intensive capabilities that reconfigure enterprises’ innovation 
processes (Sullivan and Wamba, 2024). Its technological affordances 
reshape how resources are accessed, combined, and deployed, enabling 
more efficient acquisition and orchestration of industry-specific assets 
to support innovation (Raisch and Krakowski, 2021; Krakowski et al., 
2023). In this sense, AI functions as a critical enabler of competitive 
advantage and innovation performance in the digital era.

Building on this logic, advances in deep learning, generative 
algorithms, and data analytics empower enterprises to create novel 
technologies and products, facilitating breakthrough innovation that 
not only propels industry evolution but also shapes consumer demand 
(Mariani and Dwivedi, 2024; Roberts and Candi, 2024). However, the 
performance impact of AI is contingent on organizational and 
cognitive conditions. Not-Invented-Here Syndrome (NIHS)—a bias 
favoring internally developed solutions over external resources and 
knowledge (Hannen et al., 2019)—constitutes a salient boundary 
condition. NIHS can impede an enterprise’s ability to absorb and 
leverage external inputs, including AI technologies, data assets, and 
ecosystem partnerships, thereby constraining the potential of 
AI-driven innovation (Han et al., 2025). Accordingly, the 
transformative effects of AI are likely moderated by the degree to 
which NIHS is present within the organization.

Guided by RBV and incorporating recent developments in AI 
research (Krakowski et al., 2023), this study advances an integrated 
model in which AI use enhances innovation performance via the 
mediating role of breakthrough innovation, with NIHS exerting a 
nonlinear moderating influence on this relationship. This theorization 
enables a nuanced account of the mechanisms and boundary 
conditions underlying AI-driven innovation, offering actionable 
implications for sustaining innovation performance in highly 
competitive environments.

2.2 Artificial intelligence usage and 
innovation performance

The use of artificial intelligence (AI) refers to the deployment 
of technologies such as machine learning, natural language 
processing, and computer vision by firms across domains of daily 
management, production, and marketing to build systems capable 
of simulating human intelligence (Krakowski et al., 2023). AI 
utilization enables firms to acquire novel resources and support 
innovation processes through large models, thereby enhancing 
innovation performance.

First, AI—by virtue of its powerful machine learning and big data 
analytics—can efficiently extract highly valuable innovation ideas, 
problem-solving strategies, industry trends, and cutting-edge 
technologies from vast volumes of information. It then transforms 
these insights into firm-specific assets, enriching the enterprise’s 
resource base for innovation (Ciarli et al., 2021). When such novel 
resources exhibit high potential value, AI further enhances firm-level 
innovation by integrating internal and external knowledge through its 
resource orchestration, thereby promoting superior 
innovation outcomes.

Second, AI facilitates the rapid commercialization of innovation 
outputs and continuously optimizes innovation strategies through 
real-time feedback mechanisms. By constructing interactive feedback 
channels among firms, markets, and end-users (Panico and Cennamo, 
2022), AI enables organizations to dynamically capture user 
experiences and market reactions to new technologies and products 
through advanced data modeling. This allows firms to flexibly refine 
their innovation trajectories, accelerate iterative cycles of 
technological and product development, and ultimately secure first-
mover advantages and innovation returns (Wamba-Taguimdje et 
al., 2020).

Third, AI empowers firms to build collaborative innovation 
platforms by dismantling resource and information silos, thereby 
facilitating cross-functional and inter-organizational resource 
recombination and renewal. Through intelligent matching and real-
time coordination functionalities, AI enables efficient connections 
across intra- and inter-firm knowledge domains, forming dynamic 
innovation networks that enhance the circulation and sharing of 
knowledge and resources (Haefner et al., 2021). These networks not 
only accelerate innovation processes but also augment firms’ dynamic 
advantages to continuously sense and respond to market changes, 
thereby improving innovation performance. Based on the above 
theoretical rationale, we propose the following hypothesis:

Hypothesis 1 (H1): AI usage has a positive effect on 
innovation performance.
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2.3 The mediating role of breakthrough 
innovation

Breakthrough innovation refers to the development of 
technologies, products, or services that are unprecedented in the 
market and that catalyze significant structural shifts in existing 
industries (Capponi et al., 2022). It enables firms to pioneer radically 
new offerings, attain first-mover advantages, and reshape 
competitive landscapes—thereby fostering superior innovation 
performance and sustainable competitive advantage. The 
mechanisms through which AI facilitates breakthrough innovation 
can be delineated as follows:

First, AI—leveraging advanced algorithmic architectures and 
machine learning techniques—enables firms to mine core internal 
data across operational, managerial, and R&D domains, while 
simultaneously capturing critical external insights regarding market 
dynamics, user preferences, and frontier technologies (Raisch and 
Krakowski, 2021; Krakowski et al., 2023). Through predictive analytics 
and generative modeling, AI transforms these multi-sourced datasets 
into forward-looking insights, accelerating the emergence of 
disruptive technologies and breakthrough innovations (Mariani and 
Dwivedi, 2024; Roberts and Candi, 2024).

Second, AI transcends the cognitive constraints of human 
reasoning by exploring novel solution spaces and unconventional 
innovation trajectories. In virtual environments, AI enables rapid 
experimentation and validation of innovative ideas, facilitating the 
transition from concept to prototype with reduced cost and risk. This 
capacity substantially enhances firms’ ability to engage in technological 
exploration and to deviate from dominant design logics, which are 
essential for generating breakthrough innovation (Haefner et al., 2021; 
Datta and Srivastava, 2023).

Third, AI fosters cross-boundary integration of diverse resources 
and knowledge domains, thus driving interdisciplinary convergence 
and the emergence of new business models and technological 
applications. AI-powered intelligent platforms dismantle traditional 
industry boundaries by enabling the combinatorial synthesis of 
heterogeneous knowledge and technologies from disparate sectors, 
generating novel innovation pathways and unconventional solutions 
(Felten et al., 2021). This form of convergence not only expands the 
scope of innovation but also serves as a robust engine for breakthrough 
innovation. Accordingly, we propose the following hypothesis:

Hypothesis 2 (H2): AI usage has a positive effect on firms’ 
breakthrough innovation.

Breakthrough innovation plays a pivotal role in enabling firms to 
achieve heterogeneous leaps in highly uncertain environments and 
can influence innovation performance through several 
critical mechanisms.

First, breakthrough innovation often entails fundamental shifts in 
technological paradigms and product architectures, requiring firms to 
transcend path dependence and establish highly heterogeneous 
resource and knowledge configurations (Srivastava and Gnyawali, 
2011). This process involves the recombination of external 
technologies, knowledge, and ecosystem partnerships (Dong et al., 
2017), facilitating unique complementarities and synergies among 
resources, thereby enhancing the distinctiveness and inimitability of 
innovation outputs—and in turn, boosting innovation performance.

Second, as a core driver of upgrading, breakthrough innovation 
activates internal exploratory momentum and reinforces firms’ 
strategic flexibility and core competitiveness. By stimulating the 
development of new technological resources, it strengthens firms’ 
absorptive, transformative, and exploitative capacities toward novel 
knowledge. This dynamic enhances resource conversion efficiency 
from R&D to commercialization and establishes robust imitation 
barriers, supporting sustainable competitive advantage rooted in 
technological leadership and organizational responsiveness (Silva et 
al., 2017).

Third, breakthrough innovation opens up new avenues for 
sustained growth by enabling firms to transcend existing industry 
boundaries and redefine value creation logics and competitive rules 
(Markides, 2006). Through the launch of highly differentiated and 
disruptive offerings, firms can rapidly enter emerging markets, secure 
first-mover dominance, and establish new industry standards or 
consumer paradigms (Bennett and Hauser, 2013). These strategic 
gains contribute to stronger entry barriers and customer lock-in 
mechanisms, thereby reinforcing long-term improvements in 
innovation performance. Based on the above reasoning, we propose 
the following hypothesis:

Hypothesis 3 (H3): Breakthrough innovation has a positive effect 
on innovation performance.

Artificial intelligence (AI), as a general-purpose enabling 
technology, is profoundly reshaping the logic of innovation and the 
boundaries of organizational resources (Mariani and Dwivedi, 2024). 
Existing research suggests that the extensive deployment of AI not 
only enhances firms’ operational efficiency and information 
processing capacity but also energizes breakthrough innovation by 
augmenting organizational cognition, reconfiguring innovation 
trajectories, and fostering cross-domain integration (Datta and 
Srivastava, 2023; Krakowski et al., 2023). Simultaneously, 
breakthrough innovation itself—as a form of strategic innovation—
substantially strengthens firms’ heterogeneous competitive advantage 
and contributes to sustained innovation performance (Capponi et al., 
2022). Building on these insights, this study posits that breakthrough 
innovation mediates the relationship between AI usage and innovation 
performance, for the following reasons:

First, by leveraging natural language processing, image 
recognition, and deep learning algorithms, AI empowers firms to 
efficiently capture signals related to technological evolution, latent 
customer needs, and untapped market domains (Roberts and Candi, 
2024). This cognitive augmentation expands their technological 
imagination, while simultaneously enhancing their sensitivity to 
market opportunities (Haefner et al., 2021). As a result, firms can 
enact fundamental shifts in technological paradigms and product 
concepts, generating breakthrough innovations characterized by first-
mover potential and disruptive impact. Given their high degree of 
differentiation and technological inimitability, such innovations often 
yield rapid returns in both output and market performance, thereby 
improving overall innovation performance (Srivastava and 
Gnyawali, 2011).

Second, AI-enabled virtual simulation, intelligent optimization, 
and generative modeling technologies offer firms agile and cost-
efficient platforms for experimentation (Datta and Srivastava, 2023). 
This allows firms to validate the feasibility and market response of new 
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products or technological pathways at early conceptual stages, 
significantly reducing the trial-and-error costs and path dependencies 
typically associated with breakthrough innovation (Silva et al., 2017). 
More importantly, the iterative optimization mechanisms embedded 
in AI systems facilitate the seamless transformation of breakthrough 
innovation outputs from conceptual prototypes to market-ready 
applications, thereby contributing to enhanced innovation performance.

Third, AI-driven intelligent platforms enable the fluid circulation 
and recombination of data, resources, and knowledge across 
industrial, organizational, and geographic boundaries (Felten et al., 
2021). By dismantling traditional structural barriers, AI allows firms 
to access and recombine heterogeneous knowledge domains and 
resources, thereby unlocking the potential for cross-disciplinary 
innovation. In this context, breakthrough innovation transcends the 
evolution of individual product lines or core technologies, instead 
taking the form of systemic transformation across technologies and 
industries (Markides, 2006). This mechanism opens new market 
spaces and facilitates the redefinition of industry rules, providing 
firms with scalable pathways for value creation and long-term 
innovation returns. Based on the above reasoning, we propose the 
following hypothesis:

Hypothesis 4 (H4): Breakthrough innovation mediates the 
relationship between AI usage and innovation performance.

2.4 The moderating role of NIHS

Not-Invented-Here Syndrome (NIHS) denotes an enterprise- and 
manager-level propensity to privilege internally developed solutions 
while discounting or resisting external technologies and products, 
thereby exhibiting reluctance to adopt or leverage them (Ismail et al., 
2023). NIHS signals limited openness to collaboration and an 
overreliance on in-house R&D, which can impede interorganizational 
resource and technology exchange and, in turn, constrain innovation 
capacity. Extant research examines NIHS through psychological and 
organizational learning lenses. Psychologically, NIHS reflects a 
preference for internal knowledge and technology that can strengthen 
resource integration and support independent innovation—especially 
in technology-intensive, patent-protected settings where knowledge 
appropriation and secrecy are paramount (Antons and Piller, 2015; 
Han et al., 2025). Conversely, NIHS can also foster cognitive rigidity 
and a closed interpretive frame, prompting systematic rejection or 
neglect of external knowledge and emerging technologies. Such 
closure undermines the acquisition, absorption, and application of 
diverse information in dynamic environments (Hannen et al., 2019; 
Ismail et al., 2023), narrows open innovation channels, and 
diminishes the likelihood of breakthrough outcomes, thereby 
depressing overall innovation performance. Accordingly, the effects 
of NIHS are unlikely to be linear. Rather, they are contingent and 
potentially nonlinear—shaped by underlying psychological 
mechanisms and organizational learning processes, and varying with 
technological complexity, appropriability conditions, and 
environmental dynamism. This perspective motivates theorizing 
NIHS as a multidimensional, context-dependent construct with 
curvilinear implications for enterprise innovation.

Building on this analysis, we argue that the effect of AI usage on 
innovation performance is likely moderated by NIHS in a nonlinear 

manner. Specifically, at low levels of NIHS, firms are highly open to 
external technologies and resources, actively acquiring external 
knowledge to support innovation (Dong and Netten, 2017; Amann et 
al., 2021). However, such openness may lead to information overload 
and resource redundancy. In this scenario, AI becomes overburdened 
by excessive data processing and fails to effectively integrate and 
optimize key resources, weakening its ability to enhance innovation 
through precise decision support, product innovation, and faster 
market responsiveness. Therefore, low levels of NIHS may attenuate 
the positive impact of AI on innovation performance due to resource 
fragmentation and overload.

At moderate levels of NIHS, firms achieve an optimal balance 
between openness and closure. They establish selective barriers, 
effectively absorbing high-quality external resources while avoiding 
redundancy and overload (Wu et al., 2022). In this “golden zone” of 
resource allocation, AI can efficiently process user needs, market 
trends, and technological developments, improving resource 
orchestration and empowering firms to swiftly adjust strategies and 
identify latent innovation opportunities, thereby boosting innovation 
performance (Krakowski et al., 2023).

At high levels of NIHS, firms’ rejection of external resources 
intensifies. They mainly rely on internal resources and innovation 
pathways, with limited absorption of external technologies or market 
insights (Hannen et al., 2019; Han et al., 2025). This inward focus 
reduces firms’ sensitivity to market trends and emerging technologies, 
constraining the role of AI in the innovation process. AI is then 
limited to optimizing internal resources, failing to exploit novel 
external knowledge, which ultimately undermines innovation 
performance (Shan et al., 2020; Broekhuizen et al., 2023). Based on 
this reasoning, we propose the following hypothesis:

Hypothesis 5 (H5): NIHS has a nonlinear moderating effect on the 
relationship between AI usage and innovation performance, with 
this relationship being strongest at moderate levels of NIHS and 
weaker at low or high levels.

Regarding the relationship between AI usage and breakthrough 
innovation, low NIHS encourages firms to acquire a large volume of 
external technologies and resources (Hannen et al., 2019). However, 
this can also introduce resource redundancy and quality heterogeneity, 
leading to information overload and disorganization. Such resource 
fragmentation weakens the ability of AI to intelligently analyze market 
gaps, foster innovation, and overcome bottlenecks, thereby limiting 
the potential for breakthrough innovation (Srivastava and 
Gnyawali, 2011).

At moderate levels of NIHS, firms can flexibly select, search, and 
integrate valuable external resources while avoiding the inefficiencies 
associated with excessive openness (Thornton et al., 2019; Ganco et 
al., 2020). This balance enables firms to fully leverage AI’s potential to 
intelligently identify market needs, innovation opportunities, and 
frontier technologies, rapidly validate new products in the 
marketplace, and gain timely feedback (Sullivan and Wamba, 2024). 
As a result, firms can retain breakthrough innovation outputs with 
greater market viability. Thus, a moderate level of NIHS creates the 
most favorable environment for AI to support 
breakthrough innovation.

When NIHS is excessively high, firms adopt innovation 
strategies that almost entirely reject external resources (Antons et 
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al., 2017), severely limiting their potential to exploit external 
knowledge. In this situation, AI’s ability to predict market trends, 
overcome technological bottlenecks, and explore technological 
frontiers is significantly weakened. Firms may fail to capture 
emerging market opportunities or disruptive technological shifts, 
thereby missing crucial breakthrough innovation initiatives (Antons 
and Piller, 2015; Mariani and Dwivedi, 2024). Consequently, high 
NIHS severely undermines the potential of AI to support 
breakthrough innovation. Based on this reasoning, we propose the 
following hypothesis:

Hypothesis 6 (H6): NIHS has a nonlinear moderating effect on the 
relationship between AI usage and breakthrough innovation, with 
this relationship being strongest at moderate levels of NIHS and 
weaker at low or high levels.

With respect to the relationship between breakthrough innovation 
and innovation performance, we argue that at low levels of NIHS, 
firms can access industry development trends, emerging opportunities, 
and competitor dynamics, thereby enriching their resource base 
(Hannen et al., 2019). While low-quality resources and increased 
managerial complexity may exist, breakthrough innovation can 
effectively mitigate risks and uncertainties in the innovation process, 
leveraging available industry resources to support the 
commercialization of breakthrough products and technologies, thus 
generating high innovation returns (Dong et al., 2017). Therefore, 
although low NIHS may lead to resource redundancy and managerial 
challenges, breakthrough innovation remains sufficient to drive 
superior innovation performance.

As NIHS increases, firms’ openness to external resources declines 
(Antons et al., 2017), resulting in strategic dilemmas about whether to 
rely on external resources for technology commercialization, focus 
solely on internal R&D, or attempt a hybrid approach (Felin and 
Zenger, 2014). In such cases, even when breakthrough innovation 
exists, the simultaneous need to integrate internal and external 
resources can consume considerable time and energy, dispersing 
strategic focus and delaying product commercialization, which 
diminishes the positive effect of breakthrough innovation on 
innovation performance (Manzini et al., 2017).

At very high levels of NIHS, firms compensate by intensifying 
R&D investments, promoting internal learning, and strengthening 
employee training to boost internal innovation, thus reducing 
dependency on external resources (Zhang and Tang, 2017). This 
strategy not only reduces the costs of searching and absorbing external 
knowledge but also activates internal innovation potential (Scuotto et 
al., 2017). Under these conditions, breakthrough innovation generates 
substantial competitive advantages and bargaining power, establishes 
imitation barriers, and significantly improves innovation performance. 
Accordingly, we propose the following hypothesis:

Hypothesis 7 (H7): NIHS has a nonlinear moderating effect on the 
relationship between breakthrough innovation and innovation 
performance, with this relationship being strongest at low and 
high levels of NIHS and weaker at moderate levels.

Based on these arguments, we construct the research model as 
shown in Figure 1.

3 Methodology

3.1 Sample and data collection

This study examines whether enterprises’ use of artificial 
intelligence (AI) enhances innovation performance by enabling 
breakthrough innovation, with a particular focus on the nonlinear 
moderating role of Not-Invented-Here Syndrome (NIHS). We 
concentrate on high-tech enterprises to ensure representativeness 
and external validity. These enterprises possess strong technological 
foundations and sustained innovation incentives and are among the 
earliest and most intensive adopters of AI in R&D and managerial 
processes (Raisch and Krakowski, 2021). High-tech enterprises also 
frequently pursue breakthrough innovation—developing disruptive 
technologies and probing emerging markets—making them an apt 
context to observe AI-enabled resource recombination, knowledge 
discovery, and shifts in innovation trajectories. Following, we define 
high-tech enterprises as organizations led by technical professionals, 
grounded in the commercialization of scientific and technological 

FIGURE 1

Theoretical model.
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outputs, and engaged in sustained technological innovation that 
contributes to economic performance. Typical attributes include 
high R&D intensity, knowledge concentration, rapid technological 
renewal, and substantial innovation investment, with broad coverage 
across biopharmaceuticals, AI, information technology, new 
materials, and renewable energy (Han et al., 2024). This context 
supports the collection of extensive, high-quality data for the present 
research. For methodological transparency, we designed a structured 
questionnaire with four sections. The first communicates the study 
purpose, confidentiality assurances, and informed-consent 
procedures, ensuring fully informed participation. The second 
measures the focal constructs—AI usage, breakthrough innovation, 
innovation performance, and perceived NIHS—using 7-point Likert 
scales. All items are adapted from established instruments and 
calibrated to the high-tech enterprise context to maximize validity 
and relevance. The third section captures respondent demographics 
(e.g., gender, age, education, managerial role, functional area) and 
enterprise-level attributes (e.g., founding year, size, business scope, 
core technology domain), both to verify the high-tech profile and to 
serve as controls in subsequent analyses. The fourth comprises 
open-ended questions eliciting qualitative insights on AI 
implementation pathways, innovation strategies, future 
technological trajectories, and mechanisms for integrating external 
resources (e.g., research institutes, open platforms, strategic 
partners). This section also functions as a validity check by assessing 
respondents’ professional understanding, thereby supporting the 
authenticity and reliability of responses—an especially critical 
consideration when probing the cognitive depth of technology-
intensive enterprises.

To obtain sectorally broad and geographically diverse evidence 
while retaining high-tech characteristics, we administered a two-wave 
longitudinal global online survey via Prolific, a widely used platform 
for high-quality management research (Jeesha and Purani, 2021; 
Kossyva et al., 2023; Han et al., 2025). Prolific’s verified respondent 
profiles, quality-control protocols, and support for rigorous sampling 
criteria make it well-suited to studies of complex managerial 
constructs. For longitudinal linkage, the platform assigns each 
participant a unique, system-generated, anonymous identifier upon 
initial entry, enabling precise matching of responses across waves 
without collecting or storing personally identifiable information (e.g., 
names, emails, IP addresses) at any stage. This mechanism preserves 
confidentiality and data security while ensuring reliable panel 
matching, thereby providing a robust basis for our two-stage data 
collection and analysis.

Prior to the formal survey, we conducted a two-week pilot 
study with 100 senior managers from high-tech firms engaged in 
AI application and breakthrough innovation practices. The aim 
was to iteratively refine questionnaire logic, language fit, and 
construct operationalization. During the pilot phase, we 
implemented several screening and validation mechanisms: (1) 
Enterprise qualification verification: Respondents were required to 
provide their company’s registered name or official website to 
verify that the firm is innovation-driven and technology-intensive, 
with strict confidentiality guaranteed; (2) Background verification: 
we cross-berified firm details using IP addresses, country/region 
codes, and public web information to confirm the existence and 
technological focus of the firms; (3) Cognitive competency 
screening: Open-ended responses were reviewed to assess whether 

respondents demonstrated practical understanding of AI and 
innovation management, ensuring the exclusion of low-validity 
responses; and (4) Response consistency analysis: Correlations 
between key variable items and open-ended responses were 
analyzed to identify logical inconsistencies and filter out 
unreliable data.

To capture the temporal dynamics of innovation and strengthen 
causal inference, we employed a two-wave longitudinal survey with a 
12-month interval. This design serves several methodological 
objectives. First, temporally separating predictors (Time 1) from 
outcomes (Time 2) establishes causal precedence and mitigates 
common method bias (Podsakoff et al., 2003). Second, the one-year 
lag aligns with prior research and industry practice in technology-
intensive settings, allowing sufficient time for AI initiatives to yield 
observable effects on innovation performance (Han et al., 2024). In 
implementation, we fielded the first wave in April 2024, distributing 
600 questionnaires to middle- and senior-level managers in 
technology-intensive enterprises and obtaining 585 valid responses 
(97.5% response rate). One year later, we administered the second 
wave via Prolific to the same cohort, yielding 355 valid responses 
(60.7% retention). To ensure panel integrity and confidentiality, we 
used Prolific’s anonymous identifiers to match respondents across 
waves without collecting personally identifiable information. This 
sampling and linkage protocol enhances the methodological rigor and 
credibility of our study.

The resulting panel constitutes a valid sample for empirical 
analysis. Table 1 reports descriptive statistics at both the individual 
and enterprise levels. Individually, 59.72% of respondents were male 
and 40.28% female. The plurality were aged 26–35 (42.82%), followed 
by 36–45 (26.76%), under 25 (16.90%), and 46 or above (13.52%). 
Regarding education, 56.90% held a bachelor’s degree, 20.85% had a 
junior-college degree or below, 20.28% held a master’s degree, and 
1.97% possessed a doctoral or postdoctoral degree. In terms of 
managerial position, 46.48% were in middle management, 20.56% in 
senior management, 16.06% served as chairpersons or general 
managers, and 16.90% held other managerial roles. Functionally, most 
were responsible for product (31.55%), technology (20.56%), or 
marketing (19.44%); smaller shares worked in R&D (8.17%) or human 
resources (3.94%). At the enterprise level, 40.00% had operated for 
more than 10 years, 21.97% for 5–10 years, 19.72% for 3–5 years, and 
16.90% for fewer than 3 years. Sectorally, the sample was concentrated 
in high-end manufacturing and intelligent hardware (21.69%), with 
additional representation from new materials, biopharmaceuticals, 
artificial intelligence and big data, information technology, and other 
technology-intensive fields. With respect to size, 67.32% employed 
fewer than 100 people, 13.80% had 101–300, 4.23% had 501–1,000, 
and 7.32% had 301–500 employees; a further 7.32% reported 1,001 or 
more employees. While the sample is diverse, it is somewhat 
unbalanced across several dimensions.

3.2 Variable measurement

All variables in this study were measured using adapted scales 
based on prior validated research. A detailed list of measurement 
items is provided in the Appendix. Each construct was assessed using 
a five-point Likert scale ranging from 1 (“strongly disagree”) to 5 
(“strongly agree”).
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Innovation performance was measured using a five-item scale 
developed by existing research (Zeng et al., 2010), which evaluates the 
effectiveness of innovation outcomes in terms of market influence, 
operational efficiency, and competitive advantage.

To assess the extent of AI usage, we adopted a three-item scale that 
focuses on the degree to which AI technologies are integrated into 
organizational processes and operations (Han et al., 2025).

Breakthrough innovation refers to the firm’s ability to achieve 
radical advances in technologies, products, services, or business 
models that significantly disrupt market structures or industry 
dynamics (Capponi et al., 2022; Datta and Srivastava, 2023). Drawing 

from existing literature, we designed a four-item scale to measure a 
firm’s breakthrough innovation.

Not-Invented-Here Syndrome (NIHS) captures the extent to 
which firm leaders exhibit resistance to external knowledge or 
technology inputs (Amann et al., 2021). Following previously 
validated instruments, we employed a three-item scale adapted from 
existing studies (Burcharth et al., 2014; Arias-P’Erez and V’Elez-
Jaramillo, 2022). For example, one item reads: “I believe external 
knowledge is as valuable as internally developed knowledge.”

Control Variables: To enhance the robustness of our findings, we 
included several control variables at both the individual and firm 

TABLE 1  Descriptive statistics of the sample.

Characteristics Types Number Percentage

Gender Male 212 59.72%

Female 143 40.28%

Age ≤25 years old 60 16.90%

26–35 years old 152 42.82%

36–45 years old 95 26.76%

>46 years old 48 13.52%

Education Junior college and below 74 20.85%

Undergraduate 202 56.90%

Master degree 72 20.28%

Doctoral and Postdoctoral 7 1.97%

Position Chairman or general manager 57 16.06%

Senior management 73 20.56%

Middle management 165 46.48%

Other 60 16.90%

Responsible field Research and Development (R&D) 29 8.17%

Technology 73 20.56%

Product 112 31.55%

Marketing 69 19.44%

Human Resources (HR); Finance; Public Relation 14 3.94%

Others 58 16.34%

Established years <3 years 60 16.90%

3–5 years 70 19.72%

5–10 years 78 21.97%

>10 years 142 40.00%

Industry High-end Manufacturing and Intelligent Hardware 77 21.69%

New Materials 67 18.87%

Biopharmaceuticals 60 16.90%

Artificial Intelligence and Big Data 58 16.34%

Information Technology (including ICT, Software, and Platform Services) 45 12.68%

Other Technology-intensive Sectors 48 13.52%

Number of employees ≤100 239 67.32%

101–300 49 13.80%

301–500 26 7.32%

501–1,000 15 4.23%

≥1,001 26 7.32%
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levels. At the individual level, we controlled for gender, age, 
educational background, and managerial position to mitigate potential 
biases arising from personal perceptions or decision-making behavior. 
At the firm level, we controlled for business scope, firm age, employee 
size, and primary industry sector.

3.3 Data analysis

Partial Least Squares Structural Equation Modeling (PLS-SEM) 
is widely used in strategy and innovation research (Hair et al., 2012; 
Han et al., 2022), making it an appropriate and defensible 
methodological choice for this study. We adopt PLS-SEM for three 
principal reasons. First, our objective is prediction-oriented—to 
identify key drivers and explain variance in the focal outcomes across 
multiple interrelated constructs. PLS-SEM prioritizes maximization 
of explained variance, aligning closely with these aims. Second, the 
model comprises several composite constructs—AI usage, 
breakthrough innovation, NIHS, and innovation performance—and 
entails testing both mediation and moderation. PLS-SEM is well 
suited to such complexity, offering a robust framework for estimating 
indirect and interaction effects in multifaceted structural models 
(Hair et al., 2012; Hashi and Stojčić, 2013; Cepeda-Carrion et al., 
2019). Third, PLS-SEM performs reliably with small to large samples 
and under non-normal data conditions, thereby enhancing result 
stability and supporting rigorous hypothesis testing (Willaby et al., 
2015; Hair et al., 2017). Accordingly, PLS-SEM best fits our research 
objectives and data characteristics and is employed for the 
empirical analyses.

In implementing this methodology, we employed SmartPLS 4 
software to conduct path modeling and hypothesis testing. To ensure 
the reliability and statistical validity of our results, we employed a 
nonparametric bootstrapping procedure with 5,000 subsamples for 
estimating indirect (mediated) effects. The data analysis proceeded in 
two stages. First, we assessed the measurement model to evaluate 
construct reliability and validity, including tests of internal consistency, 
convergent validity, and discriminant validity. Second, we evaluated 
the structural model to test the hypothesized relationships between 
constructs (Henseler et al., 2016). This methodological approach 
allows for a comprehensive and systematic examination of complex 
inter-variable relationships, thereby ensuring the scientific rigor and 
credibility of the study’s conclusions.

4 Results and analysis

4.1 Common method bias

To enhance data reliability and mitigate common method bias 
(CMB), we implemented both procedural and statistical remedies. 

Procedurally, the survey was administered anonymously, and item 
order was randomized to attenuate priming and order effects 
(Palacios-Manzano et al., 2021). To assess multicollinearity, we 
computed variance inflation factors (VIFs)—which index the inflation 
of coefficient variance due to collinearity among predictors—and 
followed the conventional guideline that VIF > 3 indicates potential 
concern (Hair et al., 2019). All constructs exhibited VIFs well below 
this threshold, suggesting that multicollinearity is not problematic.

We further evaluated CMB using multiple approaches centered on 
confirmatory factor analysis (CFA). A four-factor model—
constraining each item to load on its theorized latent construct—
served as the baseline reflecting expected discriminant validity. A 
competing single-factor model—loading all items from the four focal 
constructs onto one common factor—assessed whether a general 
method factor could account for the shared variance. The four-factor 
specification fit the data well (χ2/df = 2.438, CFI = 0.938, TLI = 0.931, 
RMSEA = 0.048) and significantly outperformed the single-factor 
model (Δχ2 = 2330.589, Δdf = 6, p < 0.001), indicating that any 
common method factor is negligible (Podsakoff et al., 2003). As an 
additional check, we estimated an unmeasured latent common 
method factor (ULCMF) model and compared it with the original 
measurement model. Differences in fit were marginal (Δχ2/df = 0.303, 
ΔCFI = 0.013, ΔTLI = 0.008, ΔRMSEA = 0.004) and did not exceed 
established cutoffs. Convergence of evidence across these diagnostics 
provides strong assurance that CMB is unlikely to substantially bias 
our findings.

The detailed results of the common method bias tests are 
presented in Table 2.

4.2 Measurement model evaluation

To ensure data quality and bolster the robustness of our findings, 
we conducted a comprehensive evaluation of the measurement 
model’s reliability and validity. First, we assessed internal 
consistency—the extent to which items within a scale coherently 
reflect the same latent construct—using Cronbach’s alpha and 
Dillon–Goldstein’s rho (composite reliability in the PLS literature). 
As reported in Table 3, both coefficients exceeded the recommended 
0.70 threshold for all constructs, indicating satisfactory internal 
consistency and reliability.

Second, we examined convergent validity—the degree to which 
indicators that theoretically belong to the same construct converge 
empirically—based on established criteria. Specifically, we required 
(1) indicator loadings greater than 0.50 to evidence meaningful item–
construct linkage, (2) average variance extracted (AVE) above 0.50 to 
indicate that the construct captures more variance than measurement 
error, and (3) composite reliability (CR) above 0.70 to confirm 
adequate reliability (Henseler et al., 2016; Johani et al., 2021). The 
results show that all loadings exceed 0.60, all AVEs are above 0.50, and 

TABLE 2  Common method bias analysis.

Model χ2 df χ2/df CFI TLI RMSEA

Single-factor model 2986.411 275 10.86 0.743 0.720 0.137

Four-factor model 655.822 269 2.438 0.938 0.931 0.048

ULCMF 520.943 244 2.135 0.951 0.939 0.044

https://doi.org/10.3389/frai.2025.1699860
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Guan et al.� 10.3389/frai.2025.1699860

Frontiers in Artificial Intelligence 10 frontiersin.org

all CRs surpass 0.70, collectively supporting strong convergent validity 
of the constructs employed in this study.

Third, to assess discriminant validity—the extent to which each 
construct is empirically distinct from the others—we applied the 
Fornell–Larcker criterion, a widely used approach in structural 
equation modeling. Specifically, we compared the square root of each 
construct’s average variance extracted (AVE) with its correlations with 
all other constructs. Discriminant validity is supported when the square 
root of a construct’s AVE (reported on the diagonal of the correlation 
matrix) exceeds its highest inter-construct correlation. All constructs 
satisfied this requirement (Table 4), indicating that discriminant 
validity is adequately established in the measurement model.

Finally, we employed the heterotrait–monotrait (HTMT) ratio 
as an additional robustness check. HTMT evaluates construct 
distinctiveness by comparing the average correlations between 
indicators of different constructs (heterotrait–heteromethod) to 
those within the same construct (monotrait–heteromethod) 
(Voorhees et al., 2016). For reflective constructs, values below 0.90 
are generally considered acceptable evidence of discriminant 
validity. As shown in Table 5, all HTMT values fall well below this 
threshold, further confirming the discriminant validity of the 
constructs in this study.

4.3 Structural model evaluation

To evaluate in-sample explanatory power, we inspected the R2 
coefficients for the endogenous constructs (Rigdon, 2012) The R2 statistic 
(coefficient of determination) captures the proportion of variance in an 
endogenous variable accounted for by its predictors; benchmarks of 0.75, 
0.50, and 0.25 are conventionally interpreted as substantial, moderate, 

and weak, respectively (Henseler et al., 2016). In our model, the R2 for 
innovation performance (IP) is 0.59 and for breakthrough innovation 
(BI) is 0.582—both above the 0.50 threshold—indicating relatively 
strong explanatory power (Shmueli and Koppius, 2011).

We also assessed out-of-sample predictive relevance using the 
cross-validated redundancy Q2 statistic obtained via the blindfolding 
procedure. Q2 values greater than zero indicate that the model 
exhibits predictive capability, thereby supporting the model’s external 
validity (Hair et al., 2019). Using a 7-point omission distance in the 
blindfolding procedure, the Q2 values for innovation performance 
(Q2_IP = 0.527) and breakthrough innovation (Q2_BI = 0.56) were 
both substantially greater than zero, indicating that the model 
possesses high predictive accuracy (Cepeda-Carrion et al., 2019).

TABLE 3  Reliability and validity of constructs.

Variables Item OL T-Value Cr. Alpha rho_C AVE

Artificial intelligence usage 

(AIU)

AIU1 0.834 40.099 0.9 0.924 0.67

AIU2 0.792 30.543

AIU3 0.872 60.733

AIU4 0.842 46.135

AIU5 0.852 48.484

AIU6 0.709 23.264

Breakthrough innovation 

(BI)

BI1 0.777 25.394 0.744 0.839 0.568

BI2 0.833 47.299

BI3 0.752 24.761

BI4 0.638 13.997

Not-Invented-Here 

Syndrome (NIHS)

NIHS1 0.656 9.153 0.661 0.752 0.531

NIHS2 0.764 8.949

NIHS3 0.671 8.417

Innovation performance(IP) IP1 0.77 27.816 0.838 0.885 0.608

IP2 0.812 37.878

IP3 0.814 38.03

IP4 0.787 30.947

IP5 0.711 19.163

TABLE 4  Discriminant validity—Fornell-Larcker criterion.

Variables AIU BI NIHS IP

AIU 0.818

BI 0.755 0.753

NIHS −0.305 −0.318 0.656

IP 0.733 0.678 −0.305 0.78

TABLE 5  Discriminant validity—Heterotrait-Monotrait ratio (HTMT).

Variables AIU BI NIHS IP

AIU

BI 0.886

NIHS 0.43 0.502

IP 0.842 0.846 0.443
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4.4 Hypothesis testing

The structural model offers a comprehensive assessment of the 
hypothesized relationships; direct, mediating, and moderating effects 
are summarized in Table 6. Each hypothesis was explicitly tested, and 
the results are detailed below with indications of support.

First, AI usage enhances enterprises’ capacity to integrate internal 
and external resources, foster interorganizational collaboration, and 
adapt to competitive dynamics. The path from AI usage to innovation 
performance is positive and significant (β = 0.502, t = 8.789, 
p < 0.001), supporting H1.

Second, AI functions as a powerful enabler of innovation by 
facilitating new resource discovery, identifying emergent market and 
technological trends, and accelerating the conversion of ideas into 
market-ready outcomes. Empirically, AI usage significantly promotes 
breakthrough innovation (β = 0.715, t = 23.425, p < 0.001), 
supporting H2.

Third, breakthrough innovation strengthens market leadership, 
expands market share, enhances core competitiveness, and raises 
imitation barriers, thereby improving innovation performance. The 
path from breakthrough innovation to innovation performance is 
positive and significant (β = 0.265, t = 4.009, p < 0.001), supporting H3.

To test mediation, we conducted a bootstrapping procedure with 
5,000 subsamples. The indirect effect of AI usage on innovation 
performance via breakthrough innovation is significant (β = 0.189, 
t = 3.987, p < 0.001), supporting H4.

Regarding moderation, we examined the hypothesized inverted 
U-shaped moderating role of NIHS in the AI usage → innovation 
performance relationship. Results show a significant linear interaction 
(β = 0.621, t = 1.754, p < 0.05) and a significant quadratic interaction 
(β = −0.674, t = 1.881, p < 0.05), confirming the inverted U-shaped 
moderation: the positive effect of AI usage on innovation performance 
is strongest at moderate levels of NIHS and weaker when NIHS is low 
or high, supporting H5.

H6 posits an inverted U-shaped moderating effect of NIHS on the 
AI usage → breakthrough innovation relationship. The linear 

interaction is positive but not significant (β = 0.261, t = 1.173, 
p > 0.05), and the quadratic term is also not significant (β = −0.299, 
t = 1.328, p > 0.05). Thus, neither linear nor nonlinear moderation is 
supported, and H6 is not supported.

Finally, we find evidence of a U-shaped moderating effect of NIHS 
on the breakthrough innovation → innovation performance link: the 
positive association is weakest at moderate NIHS and stronger when 
NIHS is low or high. The linear interaction is negative and significant 
(β = −0.840, t = 2.117, p < 0.05), while the quadratic interaction is 
positive and significant (β = 0.955, t = 2.070, p < 0.05), supporting H7.

5 Discussion

This study investigates the mediating mechanisms and boundary 
conditions through which artificial intelligence (AI) usage influences 
innovation performance. The findings reveal several key insights. First, AI 
usage significantly enhances innovation performance, and this 
relationship is partially mediated by breakthrough innovation. 
Furthermore, the nonlinear moderating effects of the Not-Invented-Here 
Syndrome (NIHS) are explored. Specifically, NIHS exerts an inverted 
U-shaped moderation between AI usage and innovation performance, 
whereas a U-shaped moderation is observed in the relationship between 
breakthrough innovation and innovation performance.

With regard to the influence of AI usage on innovation 
performance, the central mechanism lies in maximizing the strategic 
value of AI within innovation processes. A moderate level of NIHS 
facilitates the flexible absorption of external resources while enabling 
firms to effectively integrate and optimize internal resources. This 
configuration enhances AI’s capacity to orchestrate internal–external 
resource recombination and thereby maximizes its innovation-
enabling potential (Hannen et al., 2019; Ismail et al., 2023). In contrast, 
either excessively low or high levels of NIHS may result in overly open 
or overly closed resource strategies, impairing the effective deployment 
of AI, increasing innovation-related costs, and diminishing innovation 
outcomes (Felin and Zenger, 2014).

TABLE 6  Hypothesis testing results.

Effects Original sample T statistics P f2 95%CI Hp Supported

Direct effects VIF

AIU → IP 0.502 8.789 0.000 0.247 [0.39, 0.613] 2.488 H1 YES

AIU → BI 0.715 23.425 0.000 1.026 [0.652, 0.772] 1.181 H2 YES

BI → IP 0.265 4.009 0.000 0.065 [0.131, 0.389] 2.573 H3 YES

Indirect effects VAF

AIU → BI→IP 0.189 3.987 0.000 [0.094,0.279] 0.332 H4 YES

Moderating effects VIF

NIHS*AIU → IP 0.621 1.754 0.040 0.014 [−0.124, 1.259] 2.437 H5 YES

NIHS2*AIU → IP −0.674 1.881 0.032 0.015 [−1.314, 0.074]

NIHS*AIU → BI 0.261 1.173 0.241 0.006 [−0.201, 0.686] 1.101 H6 NO

NIHS2*AIU → BI −0.299 1.328 0.184 0.007 [−0.719, 0.179]

NIHS*BI → IP −0.84 2.117 0.034 0.022 [−1.546, −0.001] 2.490 H7 YES

NIHS2*BI → IP 0.855 2.07 0.038 0.019 [−0.027, 1.567]

N = 355; *p < 0.05, **p < 0.01, ***p < 0.001.
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In terms of how breakthrough innovation enhances innovation 
performance, the critical issue concerns the firm’s ability to effectively 
translate disruptive ideas into strategic advantage. A moderate level of 
NIHS may hinder this process by forcing firms into a dilemma 
between exploring external resources and coordinating internal assets, 
thereby impeding their capacity to rapidly execute breakthrough 
innovations and capture market share. Conversely, low or high NIHS 
levels often compel firms to adopt either more open or more closed 
innovation strategies (Almirall and Casadesus-Masanell, 2010; Felin 
and Zenger, 2014), which, in turn, facilitate the commercialization of 
breakthrough technologies and accelerate innovation 
performance gains.

The hypothesized inverted U-shaped moderating effect of NIHS 
on the AI usage → breakthrough innovation relationship was not 
supported. Several considerations help explain this null result. 
Theoretically, the compelling, disruptive character of AI-enabled 
breakthrough innovation may overwhelm the constraining influence 
of NIHS. Whereas incremental innovation is often more sensitive to 
internal resistance toward external knowledge, breakthrough 
innovation catalyzed by advanced AI appears to be driven primarily 
by the technology’s transformative value—consistent with the strong 
direct effect of AI usage on breakthrough innovation observed in our 
model (Arias-P’Erez and V’Elez-Jaramillo, 2022; Li and Zhang, 2025; 
Sun et al., 2025). Methodologically, features of our high-tech 
enterprise sample may also contribute. Such enterprises tend to be 
relatively skilled at orchestrating internal and external resources and 
knowledge (Sullivan et al., 2021), which could compress the variance 
of NIHS and attenuate statistical power to detect interaction effects. 
More broadly, our findings position NIHS as a boundary condition 
whose moderating salience may diminish in contexts dominated by 
highly disruptive technologies like AI. Practically, this suggests that 
prioritizing technological advancement and capability building may 
be more consequential for achieving breakthrough innovation than 
efforts focused solely on mitigating internal resistance.

5.1 Theoretical contributions

This study develops a cohesive account of how AI usage enhances 
innovation performance via breakthrough innovation and how NIHS 
conditions these effects, yielding the following theoretical contributions:

First, this study advances understanding of how AI enhances 
innovation performance by catalyzing breakthrough innovation, 
thereby enriching research on AI’s role in innovation management. 
Prior work has emphasized AI’s dual potential—expanding access to 
innovation-relevant resources (Rammer et al., 2022; Roberts and 
Candi, 2024) and reshaping organizational cognition and decision 
processes (Du and Xie, 2021; Grewal et al., 2021)—yet whether AI 
use translates into sustained gains in innovation performance 
remains underexamined. Research explicitly theorizing and testing 
the mediating role of breakthrough innovation in the AI–
performance nexus is particularly sparse. Given AI’s generative and 
emergent properties—and its synergy with advanced technologies 
such as large language models and quantum computing (Mariani and 
Dwivedi, 2024; Roberts and Candi, 2024)—systematic inquiry is 
warranted. By confirming AI’s positive effect on innovation 
performance and, critically, validating the mediating role of 
breakthrough innovation, this study fills a key gap and offers a more 

granular account of the mechanisms through which AI shapes 
innovation outcomes (Wamba-Taguimdje et al., 2020; Haefner et al., 
2021; Bahoo et al., 2023).

Second, the study deepens the theorization of Not-Invented-Here 
Syndrome (NIHS) by elucidating its nonlinear moderating effects in 
digitally mediated innovation. Integrating psychological and 
organizational learning perspectives (Antons and Piller, 2015; Hannen 
et al., 2019), we move beyond treating NIHS solely as a constraint on 
external knowledge absorption (Arias-P’Erez and V’Elez-Jaramillo, 
2022). Our evidence reveals dual boundary-spanning roles: an 
inverted U-shaped moderation of the AI usage–innovation 
performance link and a U-shaped moderation of the breakthrough 
innovation–performance link. These results challenge the prevailing 
view of NIHS as uniformly detrimental and extend its relevance to 
digital transformation contexts (Antons and Piller, 2015; Ismail et al., 
2023). By highlighting NIHS’s curvilinear and context-contingent 
nature, we identify it as a critical cognitive boundary condition in 
AI-enabled innovation pathways, offering a novel lens on how 
cognitive biases and organizational learning dynamics jointly shape 
digital innovation performance (Mariani and Dwivedi, 2024; Sullivan 
and Wamba, 2024).

Third, the study contributes to the resource-based view (RBV) by 
extending its applicability to the digital era through the 
conceptualization of AI as a core strategic resource. While RBV posits 
that sustained advantage stems from resources that are valuable, rare, 
inimitable, and non-substitutable (Barney, 1991, 2001), we show that 
AI—as a digital, dynamic resource class—meets these criteria in 
distinctive ways. As digital technologies proliferate, AI reconfigures 
how enterprises assemble and deploy innovation assets (Krakowski 
et al., 2023; Mariani et al., 2023b). Our empirical results demonstrate 
that AI not only enables breakthrough innovation and elevates 
innovation performance but also operates within boundary 
conditions shaped by NIHS. By integrating AI into the RBV 
framework and validating its effects, we enhance RBV’s explanatory 
power in digital contexts and provide a renewed theoretical 
foundation for examining innovation strategies centered on the 
mobilization of digital resources (Barney et al., 2021; Helfat et 
al., 2023).

5.2 Practical implications

Building on our theoretical and empirical results, we distill the 
following practice-oriented managerial implications for technology-
intensive enterprises:

First, institutionalize AI as a core strategic resource tailored to 
high-tech contexts. Medium- to large-sized technology-intensive 
enterprises—in high-end manufacturing, intelligent hardware, new 
materials, biopharmaceuticals, artificial intelligence, big data, and 
information technology—should embed AI as a foundational driver 
of innovation performance. C-suite leaders (e.g., CEO, CTO, Chief 
Innovation Officer) ought to spearhead enterprise-wide AI roadmaps 
aligned with innovation objectives, supported by cross-functional AI 
task forces spanning R&D, IT, product, and business units to ensure 
tight integration with the innovation agenda. Firms should implement 
phased investments in data infrastructure (e.g., cloud data platforms, 
scalable computing) while rolling out AI literacy programs for senior 
and middle managers to enable organization-wide, data-driven 
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decision making. Clear KPI systems should track AI’s contribution to 
innovation (e.g., reduced time-to-market, improved R&D efficiency).

Second, deploy AI as an engine for breakthrough innovation with 
role clarity across R&D, product, and business development. R&D and 
Technology leaders should leverage AI-enabled discovery platforms 
that fuse internal R&D data with external publications and patent 
databases to surface transformative opportunities. Product and 
Engineering managers can establish “AI sandboxes” to experiment 
with radical concepts under controlled risk, and use AI-driven 
incubators to identify promising technology combinations and 
adjacent markets. Strategic Planning and Business Development 
should build partnership frameworks with research institutions and 
use AI to continuously scan and evaluate emergent technologies, 
maintaining access to frontier knowledge and capabilities.

Third, manage NIHS dynamically in line with the innovation 
strategy, with explicit accountabilities for HR, knowledge 
management, and innovation teams. Organizations should routinely 
assess Not-Invented-Here Syndrome (NIHS) via employee surveys 
and collaboration-pattern analytics coordinated by HR and knowledge 
management. For incremental innovation strategies, sustaining 
moderate NIHS—balancing external collaboration with internal 
capability building—is advisable. For breakthrough strategies, leaders 
should choose between cultivating low-NIHS environments through 
open-innovation platforms or intentionally maintaining high-NIHS 
“skunkworks” units to protect proprietary development. Knowledge 
systems should classify and appraise external technologies by 
integration complexity and strategic fit to optimize portfolio-level 
innovation impact.

5.3 Limitations and future research

Despite offering valuable insights into the mechanisms linking AI 
usage to innovation performance, this study has several limitations 
that warrant future exploration. First, different industries are subject 
to varying market dynamics and technological contexts, and firm size 
or development stage may influence how AI deployment affects 
innovation outcomes. Future research could conduct comparative 
analyses across industries, firm sizes, and life cycle stages to uncover 
the contextual contingencies and boundary conditions shaping the 
AI–innovation relationship. Such studies would provide more tailored 
and practical guidance for different types of enterprises.

Second, the current study primarily adopts a firm-level perspective 
and does not account for individual-level factors such as managerial 
traits or team dynamics. Future research may delve deeper into micro-
foundations by examining how characteristics like decision-making 
style, leadership orientation, and technological adaptability of 
managers influence AI utilization and innovation performance. This 
direction would enrich theoretical frameworks on AI-enabled 
innovation and offer more actionable insights for 
organizational implementation.

6 Conclusion

With the rapid advancement of digital technologies such as 
large language models and quantum computing, AI has emerged as 
a pivotal strategic resource for enhancing innovation performance 

and firm competitiveness. However, scholarly consensus on how AI 
contributes to innovation remains limited, particularly concerning 
the mediating mechanisms and boundary conditions involved. 
Grounded in the resource-based view, this study develops a 
theoretical framework to examine the effect of AI usage on 
innovation performance, emphasizing the mediating role of 
breakthrough innovation and the moderating role of the 
Not-Invented-Here Syndrome (NIHS). Empirical analysis using 
structural equation modeling confirms that AI usage positively 
affects innovation performance and that breakthrough innovation 
serves as a significant mediator in this relationship. Furthermore, 
NIHS demonstrates an inverted U-shaped moderating effect 
between AI usage and innovation performance, and a U-shaped 
moderating effect between breakthrough innovation and 
innovation performance. These findings reinforce the role of AI as 
a strategic enabler of innovation and highlight the critical 
intermediary function of breakthrough innovation. Moreover, this 
study underscores the importance of achieving an optimal 
cognitive balance between openness and defensiveness—captured 
by NIHS—in the AI-driven innovation process. By doing so, it 
extends the applicability of the resource-based view in digital 
contexts and offers actionable implications for firms seeking to 
harness AI for sustained innovation performance and 
competitive advantage.
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Appendix

Innovation performance (IP)

IP1: Compared with competitors in the industry, our company has a higher number of product or service innovations.
IP2: Compared with competitors in the industry, our company achieves higher profitability from our new products or services.
IP3: Compared with competitors in the industry, our company generates higher sales from our new products or services.
IP4: Compared with competitors in the industry, our company has implemented a higher number of business process innovations.
IP5: Compared with competitors in the industry, our company has gained greater flexibility owing to improved operational processes.

Artificial intelligence usage (AIU)

AIU1: Our company used artificial intelligence to carry out most of our job functions.
AIU2: Our company spent most of the time working with artificial intelligence.
AIU3: Our company worked with artificial intelligence in making major work decisions.
AIU4: Our company employs the most advanced AI technology.
AIU5: Our company is always the first to adopt new AI technologies in the industry.
AIU6: Our company is regarded as a leader in the latest AI technologies for film in the industry.

Breakthrough innovation (BI)

BI1: Our company excels at developing entirely new film products that redefine the market.
BI2: Our company is at the forefront of developing groundbreaking technologies for the film industry.
BI3: Our company successfully achieves mass production of new technologies in film products.
BI4: Our company proactively adopts entirely new equipment and tools to revolutionize film project processes.

Not-Invented-Here Syndrome (NIHS)

NIHS1: Our company is skeptical about integrating external technology for film production.
NIHS2: Our company embraces the adoption of external technologies, particularly those that align closely with our existing capabilities.
NIHS3: Our company frequently experiments with cutting-edge technologies beyond our core expertise in film production.
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