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Federated learning for critical
electrical infrastructure—handling
data heterogeneity for predictive
maintenance of substation
equipment

Soham Ghosh®** and Gaurav Mittal®?

Department of Electrical Engineering, Black and Veatch, Overland Park, KS, United States,
’Department of Enterprise Solutions, Black and Veatch, Overland Park, KS, United States

High-voltage substations form the backbone of critical electrical infrastructure,
making predictive maintenance essential for ensuring grid resilience and operational
reliability. Federated learning (FL) presents an innovative strategy for predictive
maintenance, allowing multiple utility providers to improve model performance
jointly while maintaining data confidentiality. Rather than transmitting raw records,
each electrical utility performs local model updates and shares only the refined
parameters, thereby safeguarding sensitive information and capitalizing on the
heterogeneity of equipment conditions across sites. This study develops a set of
privacy-preserving FL frameworks to enhance preventive maintenance of substation
circuit breakers, large power transformers, and emergency generators. It rigorously
tackles the issue of data heterogeneity arising from variations in distribution patterns
across utilities, an inherent challenge that hampers effective collaborative model
development. Four FL strategies—Federated Averaging (FedAvg and FedAvgM),
Federated Proximal (FedProx), and Federated Batch Normalization (FedBN), are
evaluated for robustness against distributional shifts. Model performance in this
study is evaluated using the F-score, which for the non-1ID case ranges from 0.60
to 0.88 depending on the number of clients, the federated learning algorithm used,
and the non-I1ID partitioning strategy employed. Also, a first-of-a kind Federated
Information Criterion (FIC) is proposed in this manuscript as an extension of the
classical information criterion. The results demonstrate that FedBN is best suited
in mitigating cross-utility heterogeneity, yielding highest F-score of 0.88 and a
moderately low FIC score of 4.35. Such tailored FL methods significantly improve
predictive accuracy, enabling scalable and privacy-preserving deployment of FL
in critical power system applications.

KEYWORDS

federated learning, preventive maintenance, substation maintenance, distributed
learning, federated information criterion

1 Introduction

Federated Learning (FL) is gaining traction as a valuable framework for predictive maintenance
(PdM), especially in industrial applications, by allowing decentralized stakeholders to build shared
machine learning models without disclosing proprietary or sensitive data. Though current wide
scale adoption is limited and most of the research literature heavily focuses on performance
benchmarking (du Ogier Terrail and Samy-Safwan, 2022; Ye et al., 2024) on standard datasets such
as CIFAR-10, MNIST, Clinicl0, the federated learning methodology has tremendous potential and
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is especially suitable for industries (Boobalan et al., 2022; Ramirez et al.,
2023) characterized by distributed data sources that face legal and
operational constraints regarding data sharing. The capabilities of FL align
with the needs of predictive maintenance, where timely and effective
analysis of operational data can significantly reduce downtime and
maintenance costs.

A key advantage of using federated learning in predictive maintenance
lies in its decentralized nature, which enables insights to be drawn from
distributed datasets without requiring aggregation at a central repository.
For instance, Bharti and McGibney (2021) emphasized that FL enables
collaborative model development across independent organizations while
ensuring that proprietary information remains local, thus mitigating
common privacy and security risks in industrial environments. This
feature became particularly relevant with the advent of Industry 4.0,
where manufacturing and operational assets generate vast amounts of
data stored across various silos (Bemani and Bjorsell, 2023).

In addition, several novel frameworks have been introduced to tackle
issues related to inconsistent data distributions and limited accessibility
commonly encountered in predictive maintenance. For example, Wahl et
al. (2024), introduces an asynchronous federated learning approach that
is sensitive to data disparity and temporal unavailability of training sets,
which is critical for transportation fleet maintenance. The techniques they
introduced seek to optimize the learning process, improving forecast
precision and supporting proactive maintenance planning. These
developments underscore how federated learning can be tailored to meet
practical demands in equipment monitoring and failure prevention. The
work of Li et al. (2020), further underscores this, discussing various
strategies for federated optimization under heterogeneous data conditions
and highlighting that FUs flexibility can be transformative in environments
where data characteristics significantly differ from one device or
organization to another. From a field deployability standpoint, the
integration of edge computing with FL models facilitates more rapid and
accurate maintenance decisions, aligning with the operational needs for
competency and efficiency in industrial settings (Sun et al., 2021).

Recent empirical studies have supported the feasibility and
effectiveness of these FL applications. For example, Ahn et al. (2023),
reported strong predictive performance in maintenance applications by
integrating decentralized model training with temporal anomaly
identification methods, suggesting significant potential for deployment in
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practical settings. The adaptive application of FL in PAM contexts not only
showcases its potential for enhancing predictive modeling but also its
critical role in supporting organizations in achieving operational
excellence. As such, federated learning is not merely a privacy-preserving
alternative, but a fundamentally more viable and operationally aligned
approach for predictive maintenance in power systems. Table 1
summarizes a clear distinction between traditional centralized learning
and federated learning (FL) in the context of predictive maintenance for
power system apparatus.

While recent experimental research has highlighted both the
practicality and impact of decentralized learning approaches such as
Federated Learning (FL) across various domains, its widespread adoption
still remains somewhat limited. FL has primarily gained traction in
sectors such as healthcare (Chaddad et al., 2024; Rieke et al., 2020) and
finance (Shi et al, 2023), with emerging use cases in predictive
maintenance within the automotive and manufacturing industries (da
Silveira Dib et al, 2021). In the field of electrical engineering, FL
applications have remained confined at a theoretical level or have
witnessed limited small scale residential or community level
implementations in the areas of

(a) non-intrusive load monitoring (Wang et al., 2021; Giuseppi et
al., 2022),

(b) energy theft detection (Wen et al., 2022; Ashraf et al., 2022),

(c) residential level demand forecasting (Zhao et al., 2021; Dasari
etal., 2021; He et al., 2021), and.

(d) voltage control through reactive power injection (Zhao et
al., 2023).

However, large-scale FL implementation, particularly in power
delivery predictive maintenance applications at transmission and
distribution substation level, remain sparse. Electrical substations
form the backbone of the power grid and the gap highlights vast
adoption potential of these FL frameworks in the domain of
substation predictive maintenance. A survey conducted by the
authors revealed that only 2 of the 24 major U.S. electric utilities have
previously piloted a federated learning-based preventive maintenance
program. This limited uptake is partially attributable to the
traditionally siloed operational and maintenance structures of

TABLE 1 Centralized learning vs. federated learning for predictive maintenance.

Aspect Centralized learning

Federated learning

Data aggregation

If deployed, raw sensor data from all clients (utilities) is

transmitted to a central server.

Data remains local; only model updates or gradients are shared.

Data privacy

High risk due to transfer of sensitive operational data across

utility boundaries.

Preserves data privacy; raw measurements never leave the local

utility.

Regulatory and compliance risks

If deployed, may violate utility-specific data governance or

interconnection policies.

Aligns with strict data protection protocols and utility-specific

constraints.

Scalability

The learning process may become capped by data transfer

bandwidth and centralized storage/processing limitations.

Federated learning is naturally scalable; computation is

distributed across participating clients.

Robustness to data heterogeneity

Typically assumes IID data; performance may degrade under

client-specific non-IID conditions.

Federated learning models are designed to handle non-IID
settings; algorithms like FedProx and FedBN explicitly mitigate

heterogeneity.

Model performance adaptability

Single model may underperform on minority or skewed utility-

specific distributions.

FL allows personalized or clustered models better suited to each

utility’s local data distribution.
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electrical utilities, both in the United States and internationally, as
well as the steep technological learning curves associated with
deploying FL frameworks in legacy infrastructure. These challenges
form the motivation for the present study.

(a) Motivation towards application of FL in utility level power
system applications

Federated Learning (FL) presents a transformative opportunity for
power system applications by enabling privacy-preserving, distributed
model training across utilities and substations, an approach that
directly addresses the limitations of traditional predictive maintenance
and asset management strategies. The motivation for adopting FL in
this domain stems from the following key factors:

1 Outdated and labor-intensive maintenance practices: Many
utilities continue to rely on manual inspections, portable
dissolved gas in oil analysis, vibration analysis, infrared
thermography, or static metadata (e.g., equipment nameplate
information) (Cazacu et al., 2018; Mobley, 2002; Nazmul Huda
and Taib, 2013; Moleda et al., 2023) for asset assessment—
methods that are reactive, infrequent, and not scalable for
aging infrastructure.

2 Limitations of centralized AI models: Existing AI-driven tools
have rapidly evolved in the last several years and often use a
blend of algorithms for predictive maintenance functions
(Ghosh and Dutta, 2021; Hung, 2021; Beretta et al., 2021; Swier
etal., 2025). However, these algorithms are typically trained in a
central static environment, offering limited adaptability to
localized asset behavior or environmental variation. They lack
the continuous learning capability that federated frameworks
inherently support.

3 Barriers to data sharing across utilities: Due to siloed
operations, regulatory restrictions, and cybersecurity concerns,
utilities are often unable to share raw data (Lee et al., 2019). FL
supports collective model development across dispersed
stakeholders while keeping sensitive information localized,
offering a viable approach aligned with the inherently
distributed nature of the energy industry.

(b) Manuscript contributions

To the best of our knowledge, no prior studies have extensively
explored the application of federated learning for predictive
maintenance in power systems engineering, and especially in the niche
area of high voltage substations at the individual equipment level, while
simultaneously addressing the practical challenges posed by data
heterogeneity across decentralized sensor networks. This study offers
several novel insights that strengthen the use of decentralized learning
techniques for predictive maintenance within the power infrastructure
domain, specifically addressing key challenges associated with data
heterogeneity, infrastructure monitoring, and decentralized model
training. The key advancements presented in this manuscript are:

1 The analysis is grounded in sensor-level data collected from critical
substation equipment, including high-voltage circuit breakers,
large power transformers, and emergency generators, offering a
realistic and operationally relevant foundation for modeling.
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2 The study explicitly characterizes data heterogeneity through both
label skew (variation in failure class distributions across clients)
and feature skew (differences in sensor measurement spaces),
providing a nuanced understanding of real-world
non-IID conditions.

3 The study evaluates a suite of federated learning algorithms
designed to handle heterogeneity, such as FedProx, FedBN, and
FedAvgM, conducting a comparative performance analysis to
assess their robustness across diverse client conditions.

4 The study offers practical recommendations on mitigating
heterogeneity during the experimental setup phase, including
client clustering and sensor harmonization strategies.

5 The study introduces a novel Federated Information Criterion
(FIC), the first of its kind to the best of our knowledge, which
extends classical model selection frameworks by incorporating not
just model fit and complexity, but also communication cost and

heterogeneity penalties.

Collectively, these contributions establish a rigorous, scalable,
and domain-specific foundation for implementing FL in
electric utility maintenance workflows.

The remainder of this manuscript is organized as follows, with a
visual outline provided in Figure 1. Section II outlines the overall
methodology and system architecture relevant to electrical substations,
detailing the data acquisition process from critical assets such as circuit
breakers, transformers, and emergency generators. It further examines
leading decentralized learning approaches, offering a comparative analysis
of their architectural adaptations to handle data heterogeneity across
clients. Section III goes a little more into the details of the system
architecture and in path for the flow of information between multiple
utility substations and centralized training servers. Section IV describes
the three domain-specific datasets used in this study and presents the
baseline experimental setup using FedAvg and FedAvgM under data
heterogeneity conditions. This section also examines how sophisticated
federated learning techniques, FedBN and FedProx, perform under
varying conditions and data distributions. These algorithms are tailored
for heterogeneous settings, and their model performance are compared
based on F1 scores and empirical observations. Inference-driven
recommendations for improving FL deployment in operational utility
contexts are also provided. Section V introduces the proposed Federated
Information Criterion (FIC), a novel model selection metric that jointly
considers model fit, complexity, communication cost, and data
heterogeneity. Section VI presents a discussion on Dirichlet and
alternative distributions as it applies to federated learning and related data
partitions. Finally, Section VII concludes the paper by summarizing key
findings and outlining directions for future research, including extensions
toward personalized federated learning and integration into broader
utility asset management systems.

2 Methodology
2.1 Outline of a substation system topology

High voltage circuit breakers, large power transformers, and
emergency substation generators are critical components (Krieg, 2019) of
high voltage power delivery systems, ensuring the safe, reliable, and
continuous transmission of electricity across vast networks. Circuit
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FIGURE 1
Manuscript's structural organization.

breakers protect the grid by isolating faults and preventing equipment
damage, while power transformers enable efficient voltage regulation for
long-distance transmission and distribution. Station emergency
generators provide essential backup power to maintain operational
stability during outages and extend the duration of scheduled maintenance
if backup stations service feed is unavailable. Together, these assets form
the backbone of resilient and secure electric power infrastructure. Hence
it is imperative that the electrical utilities collaborate in some fashion to
enhance the predictive maintenance of these critical grid infrastructures
through collaborative federated learning techniques.

At a component level, predictive maintenance of substation circuit
breakers is critical to ensuring the stability of modern power systems. As
a use case, in a distribution substation supporting hyperscale data center
cluster, continuous monitoring and proactive maintenance of 138 kV
line-tie breakers and 34.5 kV feeder breakers are essential. Failure of any
of these breakers to operate correctly during fault conditions may result
in disturbances persisting long enough for the data center to disconnect
from the grid and transition to on-site uninterruptible power supplies
(UPS). The disconnection of large data center loads, typically ranging
from 500 MW to 1.5 GW, can trigger significant over-frequency events
that threaten overall grid stability. Federated learning-based predictive
maintenance frameworks enable diverse utilities to collaboratively
improve predictive models without compromising data privacy, offering
an automated, scalable, and privacy-preserving solution for enhancing
breaker reliability in this critical context.

The second focus of analysis is on high-capacity transformers, which
rank among the most vital and high-cost elements within a substation’s
infrastructure, with replacement costs typically ranging from $10 to $15
million and procurement lead times of 115 to 130 weeks (Nguyen et al.,
2022; Metwally, 2011). Catastrophic failure of a transformer not only
imposes severe financial penalties but also jeopardizes system reliability
over extended durations. Given their strategic role and the high cost of
downtime, predictive maintenance enabled by federated learning provides
a compelling solution. The third item, substation emergency generators,
also falls under the critical asset category, as their timely operation ensures
that station protection, control, and communication systems are preserved
during outages or maintenance operations. Emergency generators in the
context of substation are commonly used in two scenarios, a. when there
is no backup station service source from a local utility feed given the
remoteness of the site and constructing one is prohibitively expensive, and
b. when both the primary and backup stations service feeds are from the
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substation itself, a tertiary power source from an emergency generator
might be needed for redundancy purposes, with Figure 2 showing the
single line network of both these topologies.

Figure 3 shows a test bed 138/34.5KkV substation arrangement
serving a data center facility, with main line tie-in breakers at 138 kV; large
180/220/240 MVA power transformers, and 34.5 kV feeder breakers.
Each of the feeder breakers supply a data center building; with the data
center’s ability to handle electronic faults usually being governed by the
ITIC or CBEMA curves (Honrubia-Escribano et al., 2012; Gomex and
Morcos, 2002; Heydt, 1998). Implementing predictive maintenance can
help ensure that the feeder breakers and main line tie-in breakers trip as
intended and driven by the substation protections scheme within three to
five cycles, thereby enabling the data center to withstand disturbances
during fault events.

2.2 FL implementation framework and
evaluation of partition protocols

Now that the system topography of such electrical substations is
understood, the focus shall be shifted to implementation framework.
Federated learning (FL) has seen rapid advancements in
implementation frameworks, lowering the barrier for deploying
privacy-preserving machine learning systems. TensorFlow Federated
(TFF), developed by Google, offers one of the most seamless
integrations into existing machine learning workflows by extending
the widely used TensorFlow and Keras ecosystems. TFF abstracts the
complexities of distributed optimization, allowing users to define
models using familiar Keras APIs and then apply federated
computations with minimal modification. Its modular design supports
both simulated federated learning (on centralized data partitioned to
mimic clients) and deployment to real-world distributed systems.
Built-in support for non-IID partitioning, custom aggregation
strategies, and differential privacy integration further enhances its
flexibility. Unlike several other frameworks that either require learning
new syntaxes or lack deep backend integration with production ML
tools, TFF maintains native interoperability with TensorFlow Serving,
TFRecords, and Keras model export, making it exceptionally versatile
for both research prototyping and scalable production deployment.

Though this study employs TensorFlow Federated for model
development and experimentation, the authors have conducted an

frontiersin.org
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Station service single line with utility and emergency generator feeds. (top) emergency generator serving as the alternate feed given the unavailability
of a local utility, (bottom) emergency generator serving as a tertiary feed given both the station services are from the same source (substation).

in-depth review of alternative federated learning frameworks and
documented their core features and limitations in Tables 2, 3 for
comparative context.

At the time of writing this manuscript, all the above frameworks
were actively maintained. User should always check the developer-
controlled version for availability and support of these features
and functionality.

3 System architecture

In this study, we apply federated learning to sensor measurement
data collected from high-voltage circuit breakers, large power
transformers and their associated dissolved gas monitors, and
emergency generators. These sensor measurements are initially
collected by a remote terminal unit (RTU) (Madonsela et al., 2018)
located in the substation control house. The RTUs aggregate and
organize the data, which is then transmitted to a channel bank for
further processing. From the channel bank, the date is packaged and
forwarded through a network switch, ultimately reaching the
utility’s centralized control room for operational monitoring; see
Figure 4.

In a federated learning setup, an aggregated model is maintained
by a coordinating node that orchestrates updates from distributed
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participants. The aggregated model evolves through contributions
from individually trained models developed by each participating
utility. These entities perform local training using proprietary sensor
measurements, ensuring that no unprocessed data leaves their
premises. Rather than transmitting raw inputs, they share parameter
updates, thereby maintaining data confidentiality. The global model
learns from the collective knowledge, the “wisdom of the crowd,” and
iteratively refines itself based on diverse asset behaviors and conditions
across the participating utilities. The updated and increasingly
accurate predictive models are then disseminated back to the utilities’
control room, enhancing the predictive maintenance and operational
reliability of critical substation assets.

4 Experiments and discussion

(a) Dataset description
For the purpose of this study, datasets were generated from sensor
data to emulate a cluster of diverse electrical utilities and were tailored

to form three databases, as described in the following paragraphs:

i HV Circuit Breaker Maintenance Data

frontiersin.org
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A 138/34.5 kV distribution substation for a mission critical data center. In red ink, the 138 kV main breakers and 34.5 kV feeder breakers, the 138/34.5 kV
power transformer, and the emergency generator are deemed to be critical station assets.

1 The dataset is derived by combining results from high-voltage
breaker monitoring (115-345 kV, with some 34.5 kV assets),
where sensors capture critical measurements such as SF6
density, breaker status, and ambient cabinet temperature.

2 Engineers at participating anonymized virtual utilities routinely
reviewed breaker records and associated measurements for
assets under their operational oversight and flagged cases
requiring maintenance. These inspection-driven flags are
typically based on factors such as SF6 dew point, SF6 density,
fault operation count, clearing time, and days since last
operation, in accordance with each utility’s established
maintenance standards.

3 The dataset comprises 5,000 samples of breaker readings,
aggregated from five representative utilities. Each breaker is
assigned a unique categorical identifier corresponding to its
source utility, with 28 features representing various sensor-
based measurements and one quality metric (0: no maintenance
required, 1: maintenance required).

4 Tt is important to note that not all 28 features are uniformly
available across all product variants, leading to slight variations
in the feature space between variants.
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To enhance the training of machine learning models, the
dataset has been augmented with an increased proportion of
‘maintenance required’ examples to ensure sufficient
representation of predictive maintenance cases.

Large Power Transformer Maintenance Data

The dataset is similar to the HV Circuit Breaker Maintenance
Data Set and is derived by combining results from large power
transformer monitoring, where sensors capture critical
measurements such as LTC and main tank oil temperature,
dissolved gas values (in ppm).

Engineers at participating utilities routinely reviewed
transformer records and associated measurements for assets
under their operational oversight and flagged cases
requiring maintenance. These inspection-driven flags are
typically based on factors such as high oil temperature, and
excessive amount of certain dissolved gas (usually based on
Duval triangles and pentagons (Akbari et al., 2008; Cheim
et 2020)), established
maintenance standards.

al, following each utility’s

frontiersin.org
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TABLE 2 Evaluation of federated learning frameworks in terms of workflow integration, system scalability, and privacy-preserving capabilities (Ziller et
al., 2021; Saidani, 2023; Riedel et al., 2024).

Framework Language(s) Core strengths Ease of integration Key features Limitations

TensorFlow Federated Python (TensorFlow)  Seamless Keras/ Very high Native Keras support, Requires TensorFlow

(TFF) TensorFlow integration differential privacy, custom | environment; limited direct

aggregators, simulation + mobile deployment support
real-world deployment

FedML (TensorOpera AI) | Python Flexible hardware Moderate Cross-device FL, cross-silo | More complex API surface;
support (edge, cloud), FL, benchmarking tools steeper learning curve
cross-platform

Flower Python, (partial Lightweight, highly High Device heterogeneity Requires manual model

support for Java, Go) customizable handling, client sampling, wrapping, basic ML library
minimal setup abstraction.

PySyft Python (PyTorch Privacy-preserving Moderate Encrypted computation, Heavy emphasis on privacy

primarily) computation (secure data privacy first, multi- may complicate general FL
multi-party computation, backend support tasks. Documentation and
differential privacy) features are not well
maintained.

OpenFL Python Enterprise-grade FL for | Moderate Security-first, Intel Less flexible for non-
healthcare and optimizations, Docker-based | enterprise use cases; steeper
manufacturing deployment setup

Flute C++/Python High scalability, Low Production at hyperscale Limited documentation;
production-grade FL (Azure), asynchronous specialized for Microsoft

updates Azure ecosystems

TABLE 3 Availability of partitioning protocol and non-IID algorithms between different federated learning frameworks. @ available, @ beta or not

fully supported, 0 unknown or sufficient documentation not available.

Attributes
Skewing type

TFF

FedML

Flower

PySyft

OpenFL

Flute

Label skew

Feature skew

Quantity skew

Data heterogeneity solutions

FedAvgM

FedProx

FedBN

SCAFFOLD

FedDyn

00000 000

@0 00 000

000006 06600

00000 ©066060
0000060 00600

0000060 06060

3 The dataset comprises 7,500 samples of breaker readings,
aggregated from five representative utilities. Each transformer
is assigned a unique categorical identifier corresponding to its
source utility, with 18 features representing various sensor-
based measurements and one quality metric (0: no maintenance
required, 1: maintenance required).

iii Emergency Station Generator Maintenance Data
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—

The dataset is derived by combining results from station
emergency generators (~150-300 kVA on propane, natural gas,
or diesel), where sensors capture critical measurements such as
engine temperatures, oil pressure, alternate current and voltages.
Engineers at participating utilities routinely reviewed station
emergency generator records and associated measurements for
assets under their operational oversight and flagged cases
requiring maintenance. These inspection-driven flags are
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typically based on factors such as start attempts, battery state
of charge, lube oil temperature, crankcase pressure, and
emission levels, in accordance with each utility’s established
maintenance standards.

The dataset comprises 1,200 samples of emergency generator
readings, aggregated from four representative utilities. There
are 32 features representing various sensor-based
measurements and one quality metric (0: no maintenance

required, 1: maintenance required).

(b) Baseline experiment and discussion

To understand the rationale for introducing federated learning
in predictive maintenance, we evaluated a centralized logistic
regression model using the HV Circuit Breaker Maintenance Dataset
under IID conditions. We randomly selected 1,000 IID samples for
training and 500 IID samples for testing, ensuring no overlap
between the sets. The centralized IID logistic model achieved an

Frontiers in Artificial Intelligence

accuracy of 0.80 on the IID test set using all covariates from the
data set.

To simulate heterogeneity under non-IID configuration, we
sampled data from five utilities with varying equipment and
operating conditions using the same HV Circuit Breaker
Maintenance Dataset. We first tested the centralized model trained
on IID data on this non-IID dataset. The accuracy of the IID model
dropped to 0.77, highlighting the impact of non-IID assumption
violations of a logistic regression model. To account for utility-level
variance, we trained a logistic regression model with random
effects on utility-level clustering. This approach improved accuracy
slightly to 0.78. While stratified modeling helped marginally, it was
insufficient to fully address the challenges of non-IID data. These
results emphasize the need for more robust approaches like
federated learning.

In an attempt to improve the accuracy in the predictive maintenance
performance, we evaluated the performance of a baseline federated
learning model using Federated averaging (FedAvg) (McMahan et al.,
2017; Lietal., 2019). We applied FedAvg across five (5) clients (with later
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simulations using ten (10) to twenty (20) clients). The dataset was
partitioned into IID and non-IID configurations, with training
conducted over 150 rounds and five local epochs per client. As expected
and illustrated in Figure 5, the IID case exhibited a sharp decrease in loss
and a corresponding improvement in accuracy, while the non-IID case
showed significantly slower decrease in loss and struggled to achieve
comparable performance. The following section provides a theoretical
treatment of the FedAvg algorithm to contextualize these observations.

Federated Averaging (FedAvg) is an algorithm for decentralized
training in federated learning. Let w represent the global model
parameters. At iteration f, a selected group of clients denoted by S;
performs E local stochastic gradient descent (SGD) updates on the
model denoted in equation (1):

wi ! =w, —nVE (w;) (1)

Where 7 is the learning rate and Fi(w) is the local objective
function. The server then aggregates the updated models, as denoted
in equation (2), by averaging, adjusted according to the sample size
contributed by each client:

n:
Wt+1: z i W;&H

i€, s,

2

This process is repeated iteratively to converge to a global model.

(c) Data heterogeneity, technical improvements over baseline FL
methodology, experiment and discussion

Federated learning often encounters variation in data distributions
among clients, commonly referred to as non-IID data, which presents
unique challenges for model convergence and generalization. These
non-IID behaviors inherent in the data can be modeled through
several mechanisms to better reflect real-world scenarios. Two

10.3389/frai.2025.1697175

commonly used approaches are Dirichle—distribution based
partitioning introducing label skewness and feature distribution
skewness (Li et al., 2022; Mang et al., 2023):

1 Dirichlet-based partitioning (label skew)

To replicate practical scenarios involving uneven data
distributions among clients in a federated learning environment, a
commonly adopted strategy involves Dirichlet distribution-based
partitioning, which can be designed to induce label distribution
skew across clients. For illustration, let there be K classes and N
clients. For each class k € {1, ..., K}, a probability vector
(1> mopm. .., Ny ) is drawn from a Dirichlet distribution Dir(a),
wherea > 0 is the concentration parameter controlling the degree of
data heterogeneity. The sampled vector determines the proportion
of samples from class k assigned to each client i € {1, ..., N}. A
smaller value of a results in a more skewed distribution, with
individual clients receiving data predominantly from a limited subset
of classes, thereby mimicking non-IID scenarios. Conversely, a larger
a leads to a more uniform distribution of classes across clients,
approximating an IID setting. This approach enables controlled
experimentation of varying degrees of data heterogeneity with
federated learning simulations.

2 Feature distribution skew

In feature skewness, clients possess data drawn from different
feature distributions, even if the label distributions remain similar. To
illustrate, for a client i, data samples (x;, y;) are drawn from a client-
specific joint distribution ; (x,y), where the marginal feature
distribution ; (x) varies across clients, even if @; ( y|x) (the
conditional label distribution) remains aligned. Feature skewness can
arise due to differences in sensor types, demographic variability, or
context, leading to a domain shift between clients. This type of
heterogeneity challenges models to generalize across variations in
feature spaces.

Training Loss

—— 1ID (FedAvg)

0.8 1 —— Non-lID (FedAvg)

T T T T T

T T T
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FIGURE 5

Accuracy and training plots of the baseline case in an IID and non-IID setup using FedAvg with training conducted for 150 rounds.
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Other common forms of heterogeneity in federated learning
include quantity skew, where clients possess differing amounts of data
(n; varies significantly across clients), and concept drift, where the
conditional distribution g; ( y|x) differs across clients, reflecting
variations in labeling practices or evolving tasks over time. Together
with label and feature skew, these variations model the key challenges
of decentralized learning environments.

In the context of power system sensor data for predictive
maintenance, label skew and feature skew offer more realistic and
appropriate means of emulating non-IIDness than quantity skew.
Label skew reflects the fact that different substations or assets often
experience distinct types of faults or operational states, leading to
naturally imbalanced event labels across monitoring sites. Feature
skew captures variations in sensor readings arising from differences
in equipment models, environmental conditions, operational
loads, and maintenance histories. In contrast, quantity skew, where
clients have differing amounts of data but similar distributions, is
much less probable and inherently fails to represent the critical
heterogeneities that directly impact model generalization and
failure prediction in real-world electrical infrastructure. Therefore,
for data heterogeneity, modeling label and feature skew better
aligns with the operational diversity inherent in power system
maintenance environments.

Now that a theoretical framework has been established in terms
of partitioning the data, based on labels and features, the next
section of the discussion shall focus on federated learning solutions
that are specifically crafted to deal with data heterogeneity. These
solutions are:

1 Adaptive aggregation strategy using FedAvgM (federated
averaging with momentum)

At its core, Federated Averaging with momentum (Sun et al.,
2024) modifies the basic FedAvg algorithm by incorporating a
momentum term into the server-side model aggregation, with the goal
of promoting faster convergence and stabilizing model updates despite
variations in local client distributions and training dynamics.

Following the standard setup as seen with FedAvg, let w, € R4
denote the global aggregated model during communication
iteration t, and let each client i perform local updates to obtain
w£+1, with p; as defined before. The server maintains the
momentum buffer m; € ]Rd, initialized as my =0, and updates it
according to equation (3):

N
My = U+ ) pi (W;+1 _Wt) 3)
i=1

Where u e[O,l) is the momentum coefficient.
Then, the global model is updated using as denoted by
equation (4) :

Wil =Wr + 1My (4)
In this formulation(w,’;ﬂ—wt) represents the local model
change from client i. The server aggregates these changes

weighted by p; and applies the momentum smoothing using the
M parameter.
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Thus, FedAvg with momentum can be interpreted as applying a
form of server-side momentum to the aggregated model updates,
promoting stability and faster convergence, especially in settings with
heterogeneous data distributions.

To understand the advantage gained using FedAvgM over
FedAvg, simulations are conducted on the HV Circuit Breaker
Maintenance Data for a balanced Dirichlet partition (a = 0.5) with
different FedAvgM momentums (¢ = 0.5 and 0.75, 0.1, and 0.9).
From Figure 6 (a and b) one may observe that for a momentum
coefficient of 4 = 0.5 and 0.75, FedAvgM outperforms FedAvg by a
decent margin. The momentum parameter, y, requires careful
adjustment, as too low (u =0.1) of a momentum causes the
FedAvgM algorithm to perform similar to FedAvg; as in Figure 6¢,
while too high of a momentum (u = 0.9) can cause overshooting,
oscillations, or instability, especially when the data heterogeneity
is strong; see Figure 6d.

2 Modification of local training objective using FedProx

Federated Proximal (FedProx) is an extension of the standard
Federated Averaging (FedAvg) algorithm, designed to address
challenges arising from system and statistical heterogeneity among
clients (Zheng et al., 2024). With FedProx, each client i at
communication round ¢ solves a modified local optimization
problem, as denoted through equation (5):

minﬁ(w)+§||w—wt||2 )

Where f; (w) denotes the local objective function for client i,
wy represents the global model parameters at round t, and g > 0 is
a proximal term coefficient controlling the strength of
regularization. The additional proximal term “ [|w—w, |
penalizes deviations from the global model, thereby ‘éncouraging
local updates to remain close to w; and mitigating issues caused by
client drift, especially under non-IID data distributions. After local
updates, the server aggregates the updated models (typically via
weighted averaging) to form the next global model w;,. By tuning
M, FedProx provides a flexible mechanism to balance between
allowing personalized local

updates and maintaining

global consistency.
3 Personalization of normalization layers using FedBN

Federated Batch Normalization (FedBN) is another federated
learning algorithm designed to mitigate client data heterogeneity (Li
et al., 2021) by decoupling the aggregation of batch normalization
parameters. Let the model parameters at client i be denoted as

6= eishared i HiBN eishared all non-batch-

), where comprises
normalization parameters (e.g., convolutional and fully connected
layers) and 62N includes the batch normalization parameters, namely
the learnable scale and shift parameters (Vi» B;) and the running
statistics (mean 4; and variance o7). Each participating client

independently optimizes 6’,-5h ared and oBN using stochastic gradient
updates on its local data. Following this local optimization, only the
shared parameters 6’,-5h ared yre transmitted to the coordinating server

for model integration, as illustrated in equation (6).
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(6)

i=1 Ntotal

Where n; is the quantity of local samples at client i, and
N
Nyotal = Zn,». The batch normalization parameters @B N are retained
i=1
locally, enabling each client to maintain personalized normalization
statistics that reflect its own feature distribution. This selective
aggregation generalization  under  non-IID
client distributions.

Each of the three state-of-the-art approaches for handling

improves

non-IIDness—FedAvgM, FedProx, and FedBN, were implemented
on the three datasets: HV Circuit Breaker Maintenance Dataset, Large
Power Transformer Maintenance Dataset, and Emergency Station
Generator Maintenance Dataset, with Figure 7 providing the
accuracy over the communication round iterations, with Tables 4, 5
docketing the general parameters/hyperparameters and the
F1 scores.
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4.1 Inferences and recommendations
The following inferences can be made from Figure 7 and Table 5.

o FedBN (Federated Batch Normalization) decouples batch
normalization layers during aggregation, allowing each client to
retain local batch statistics (mean and variance). In predictive
maintenance, equipment health signatures differ across utilities
due to unique operating environments and degradation profiles.
FedBN accommodates these local shifts without enforcing global
normalization statistics, which would otherwise degrade
performance under feature skew.

« FedProx introduces a proximal term that penalizes divergence
from the global model, helping stabilize training in the presence
of label skew. This constraint helps prevent local models from
overfitting their skewed class distributions, which is especially
important in maintenance datasets where failure events are rare
and unevenly distributed across utilities.

» FedAvgM in contrast yields only marginal gains over FedAvg, as the
incorporation of momentum partially accelerates convergence but
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Plot of test set accuracy versus communication rounds for baseline FedAvg versus state-of-the-art FL methods for handling non-IID: FedAvg,
FedAvgM, FedProx, and FedBN. (a) accuracy over rounds for HV Circuit Breaker Maintenance Dataset, (b) accuracy over rounds for Large Power
Transformer Maintenance Dataset (c) accuracy over rounds for Emergency Station Generator Maintenance Dataset.

TABLE 4 Selection of parameters and hyperparameters (based on grid
search) for the state-of-the-art FL. methods (FedAvgM, FedProx, and
FedBN) for all three data sets.

Parameters Values/ Range

Neural network geometry Dataset geometry/32/16/1

Learning rate Client optimizer learning rate 0.02

Server optimizer learning rate 0.5-1.0

Activation function relu = relu = sigmoid

Optimizer SGD or Adam (SGD selected)
Epochs (client) and communication 10 and 150

rounds

Batch size 10

FedAvgM (1) 0.5and 0.75

FedProx (1) 0.1

does not fundamentally address client drift or statistical divergence.
In our experiments, FedProx maintained better convergence and
generalization on minority failure classes, reducing overfitting
observed in vanilla Fed Avg under similar conditions.

o The Emergency Station Generator Maintenance Dataset
dataset exhibits lower statistical heterogeneity, such as more
homogeneous feature distributions, class balance compared to
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the HV Circuit Breaker Maintenance Dataset converge more
consistently with the global objective, allowing the model to
achieve its optimal performance within fewer rounds.

The reasoning behind this observation is largely attributed to the
fact that unlike high-voltage circuit breakers, which vary
significantly in make, interrupting medium (SFs, vacuum, etc.),
age, and operational environment, emergency generators are
typically procured as modular backup systems. Substation
emergency generators usually conform to similar capacity classes,
usage patterns (e.g., periodic testing or standby operation), and
maintenance schedules.

With a larger pool of participating clients, a slight reduction in
F-score is observed under non-IID conditions, primarily driven
by heightened data variability and fewer samples available
per client.

o FedBN and FedProx tend to retain higher F-scores even as
client counts grow, due to their mechanisms for reducing
drift (e.g. batch
proximal regularization).

local norm  stats  or
o FedAvg and FedAvgM may experience sharper F-score
degradation under high client counts if data is strongly

non-IID.
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TABLE 5 F-score results with three major equipment sensor datasets with various data distributions, number of clients, and FL algorithms.

Dataset and partition type Number of FedAvg FedAvgM FedProx
clients
HYV Circuit Breaker Maintenance Dataset—iid 10 0.72 0.75 0.80 0.74
20 0.72 0.72 0.79 0.68
HYV Circuit Breaker Maintenance Dataset—non-iid 10 0.70 0.69 0.78 0.75
20 0.69 0.68 0.75 0.72
Large Power Transformer Maintenance Dataset—iid 10 0.68 0.73 0.82 0.88
20 0.68 0.70 0.80 0.86
Large Power Transformer Maintenance Dataset—non-iid 10 0.65 0.68 0.72 0.75
20 0.65 0.66 0.70 0.74
Emergency Station Generator Maintenance Dataset—iid 10 0.65 0.66 0.8 0.85
20 0.65 0.64 0.8 0.82
Emergency Station Generator Maintenance Dataset—non-iid 10 0.60 0.65 0.74 0.82
20 0.60 0.60 0.74 0.80

Based on the inferences made the following recommendations
are documented:

 During the initial setup of predictive maintenance programs
across utilities, it is essential to ensure that sensor data is
collected using standardized units, consistent sampling
frequencies, and that the equipment being modeled exhibits
comparable operational characteristics.

For example, although both are rated at 138 kV, clean air
breakers (Siddiqui et al., 2022) and SFs breakers operate
based on fundamentally different interruption technologies
and produce distinct sensor signatures. As such, these two
breaker types should not be grouped within the same
federated learning model, as doing so could skew the
learning process and degrade model performance. Instead,
they should be trained separately, as illustrated in Figure 8
to preserve the integrity of learned patterns. Moreover, due
to the relatively limited deployment of clean air breakers
across individual utilities, a larger pool of utilities may need
to be federated to assemble a representative training sample
for this equipment class.

In contrast, SFs breakers with similar voltage ratings, such as
138 kV and 230 kV, tend to exhibit comparable sensor profiles
and may be clustered together. Overall, federated learning
should be implemented by grouping equipment into
homogeneous operational classes, thereby reducing data
heterogeneity ~ and model

enhancing accuracy

and generalizability.

« For large power transformers, dissolved gas data are obtained
from cooling liquid samples taken from the main tank. The
concentration profiles of individual dissolved gases vary
depending on the type of cooling liquid used, typically
mineral oil or synthetic esters. It is important to recognize
that data heterogeneity can arise when comparing dissolved
gas measurements from mineral oil-based transformers with
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those containing synthetic esters, due to their distinct
Such data
heterogeneity should be identified at the onset of the

chemical decomposition characteristics.
experimental design, and thought should be given to
balancing the different oil transformer types within each

client set.

A similar argument can be made about the fact that emergency
generator sensor data can vary based on the fuel type, propane
versus natural gas or diesel. Data heterogeneity between
emergency generators with different fuel types could be
addressed by balancing the component samples on a per
client basis.

Adaptive client sampling should be considered; by preferentially
selecting clients whose updates align well with the
global objective.

At an implementation level, certain layers or statistics (e.g.,
BatchNorm in FedBN) should be allowed to remain client-
specific while sharing the global backbone, thereby reducing
negative transfer from misaligned data.

5 Federated learning-based
information criterion (FIC)

In federated learning, data heterogeneity, where data
distributions vary significantly across clients, is a central challenge
that degrades model performance and convergence. To address this,
numerous advanced state-of-the-art algorithms have been
developed, each introducing distinct strategies to mitigate the
effects of non-IID data. Examples include FedProx, which adds a
proximal term to the local objective to stabilize updates; FedDANE,
which incorporates second-order local updates using gradient
corrections; FedBN, which avoids sharing batch normalization
layers to accommodate feature shift; SCAFFOLD, which uses
control variates to correct client drift; and FedNova, which
normalizes updates to account for client variability in computation.
Additional methods such as MOON, Ditto, and FedCurv also target
various aspects of personalization and regularization under
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Separation of FL training models for clean air and SF6 breakers to prevent d
maintain model separation.

ata heterogeneity by design. Participating utilities and central servers

heterogeneity. Given this diverse algorithmic landscape, selecting a
federated learning strategy solely based on predictive accuracy can
be short-sighted (Li et al., 2020). Accuracy often overlooks crucial
trade-offs such as communication cost, model complexity, and the
ability to generalize across client populations. To support more
balanced and principled model selection, a Federated Information
Criterion (FIC) is proposed, which incorporates both traditional
model selection principles and federated-specific penalties.

The Federated Information Criterion (FIC) being proposed in this
manuscript is an extension of the classical model selection metrics
such as AIC and BIC (Chakrabarti and Ghosh, 2011) to the federated
learning setting. Traditional criteria like AIC and BIC do not account
for distributed training burdens, which are core to FL scenarios.
Federated learning introduces additional challenges including
communication overhead, data heterogeneity, and decentralized
training. To account for these, the proposed FIC integrates penalties
that reflect both conventional and federated-specific costs. Model fit
is quantified by the sum of local negative log-likelihoods across clients,

while model complexity is penalized based on the total number of
trainable parameters. Two additional components are included:

(a) One representing the overall communication overhead across
clients and training rounds, and.

(b) Another penalizing discrepancy between client-specific
updates and the aggregated model, arising from uneven
data distributions.

The formal expression for the Federated Information Criterion
(FIC) is given as in equation (7):

K
FIC= ZLk(Hk)+ A-C
k:lW communication cost
+ H-H + Y-p

—— ——
heterogeneity penalty ~complexity penalty

(7)
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In this Equation 7, Lk (Hk) denotes the negative log-likelihood
for client k serving as a proxy for model fit, C is the communication
cost (e.g., number of rounds x bandwidth x model size), H
measures model divergence between local parameters ék and the
global aggregate ég, and p is the number of model parameters. The
constants 4;, 4y, and ¥ govern the trade-offs among statistical fit,
communication efficiency, and model simplicity. The weighting
strategy of these constants can be based on a target deployment
profile, e.g., prioritizing complexity penalty, followed by
heterogeneity penalty, and communication cost in the ratio of
2:1:0.5, representative of a constrained or edge-centric federated
learning deployment, or conversely emphasizing communication
cost the most, followed by heterogeneity, and only lightly
penalizing model complexity for Federated Learning over
intermittent or low-bandwidth networks. Additionally, because
each component has a different scale and unit (e.g., loss is
unbounded, model size is integer-valued, communication cost is
in bytes), we apply min-max normalization, see Equation 8, across
candidate models to ensure that each term contributes comparably
to the final FIC:

Where x; is the raw value of a component for model i, and v is a
small constant to prevent division-by-zero. If certain penalties (e.g.,
communication cost) dominate by orders of magnitude, log-scaling
may optionally be used before normalization.

The FIC proposed here thereby facilitates informed selection
among federated algorithms by accounting for statistical,
computational, and infrastructural considerations in a unified metric.
It should be noted that non-IIDness is often an inherent property of
the data in federated learning; for example, patients from different
hospitals, sensors from different substations, or users on different
devices naturally generate diverse data. The key point, however, is
that how well a federated learning algorithm accommodates or adapts
to that heterogeneity should influence model selection, which is
precisely what the heterogeneity penalty in the Federated Information
Criterion (FIC) aims to capture.

Under theoretical setup, the FIC value can range from large
negative to large positive numbers, depending on the balance

10.3389/frai.2025.1697175

between predictive loss, model complexity, and federated system
costs. Models achieving strong predictive performance with
minimal complexity and communication overhead tend to have
lower (more negative) FIC scores, while overparameterized or
resource-intensive models exhibit higher FIC values. Provides a
conceptual comparison of the Federated Information Criterion
(FIC) across four commonly used federated learning algorithms,
illustrating how each balances model fit, communication cost,
heterogeneity handling, and complexity. The comparison in Table 6
highlights why relying solely on accuracy can be misleading in
heterogeneous settings.

Assuming a classification task across five clients with moderate
non-IID data (Dirichlet @ = 0.3), simulations were performed, and the
FIC values were calculated using: average local log-loss per client, 100
communication rounds, model size of 1.2 MB, and Euclidean
divergence between local and global weights. Using normalized
penalty weights 4; = 0.5, 4, = 1.0, and a = 2, the FIC values obtained
for the different cases are:

1 FedAvg: Fit=1.20, Comm = 0.60, Heterogeneity = 1.10,
Complexity = 2.0 => FIC = 4.90

2 FedAvgM: Fit=1.10, Comm = 0.65, Heterogeneity = 0.85,
Complexity = 2.0 => FIC ~ 4.60

3 FedProx: Fit=1.05, Comm = 0.65, Heterogeneity = 0.55,
Complexity = 2.0 => FIC ~ 4.25

4 FedBN: Fit=1.00, Comm =0.65, Heterogeneity = 0.30,
Complexity = 2.4 => FIC x 4.35

Despite FedBN’s and FedProx’s slightly higher model
complexity (due to personalized BN layers or due to the need of
modification of local training objective), its ability to significantly
reduce inter-client divergence results in the lowest overall
heterogeneity penalty, allowing it to outperform others on FIC in
this setup, with FedProx gaining the most favorable FIC score in
this experimental setup.

In summary, the Federated Information Criterion (FIC) is
particularly useful when multiple candidate models exhibit similar
accuracy but differ significantly in communication overhead or
on-device computation, common in edge-deployed FL scenarios.
FIC helps systematically reject over-engineered models that offer
diminishing returns relative to their operational cost, providing a
principled model selection mechanism for FL under resource
constraints. Unlike AIC/BIC, FIC explicitly incorporates FL-specific

TABLE 6 Comparative assessment of Federated Information Criterion (FIC) components across common federated learning algorithms.

Algorithm Lk(ék)a A-C i H vop FIC vz_:llue
—_— communication cost heterogeneity penelty complexity penalty (relative rank)
model fit

FedAvg Moderate to poor (under | Low High (no personalization or Low High

non-11D) correction)

FedAvgM Moderate to good (faster Moderate Moderate Low Medium

convergence)

FedProx Good (handles drift) Moderate Low (proximal term Moderate Moderate to Low

stabilizes)

FedBN Good (handles feature Moderate Very Low (no BN sharing Moderate (more Low
skew) improves personalization) parameters)

Frontiers in Artificial Intelligence 15 frontiersin.org


https://doi.org/10.3389/frai.2025.1697175
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal

10.3389/frai.2025.1697175

TABLE 7 Contrasting AIC, BIC, and the proposed Federated Information Criterion (FIC).

Criterion Centralized data  Penalizes Penalizes Penalizes Suitable for
parameters computation communication FL

AIC Yes v X X

BIC Yes V (stricter) X X

FIC X (FL setting) v v v

costs, making it more appropriate for real-world deployments
involving battery-constrained, bandwidth-limited, or heterogeneous
devices; see Table 7 for comparison. Moreover, it offers tunable
flexibility: in scenarios where communication is cheap, but compute
is expensive (or vice versa), the penalty weights can be
adjusted accordingly.

6 The role of dirichlet and alternative
distributions in data partition

The role of Dirichlet and alternative distributions - Several commonly
used platforms for implementing federated learning, including Flower,
FedML, and TFF (TensorFlow Federated) provide built-in utilities to
partition datasets using the Dirichlet distribution due to its ease of
implementation and tunability. However, these implementations are often
heuristic in nature and lack analytical treatment or comparative
justification of the Dirichlet distribution’s (Lin 2016) advantages over
other distribution-based partitioning strategies, such as Zipf or Beta (Zhu
et al, 2018 McDonald and Xu, 1995), in capturing real-world
heterogeneity. The authors hope that the subsequent sections cover the
analytical gap that exists in current literature.

In federated learning, introducing controlled data heterogeneity
across clients is crucial for realistically simulating non-IID settings,
particularly under label skew. Among various probabilistic
approaches, the Dirichlet distribution, Zipf distribution, and Beta
distribution are commonly employed to partition data in a statistically
meaningful manner. For a classification task with K classes, the
Dirichlet label  distribution
pi =(pi1> - pik) ~ Dir (& . 1x), where a > 0 is a tunable concentration

distribution models a client’s
parameter. This allows each client to possess a distinct yet
probabilistically valid label mix, with the degree of skew inversely
related to a.

In contrast, the Zipf distribution generates label frequencies,

1/k*
P(k; s) = /—
K s
anll/n
index classes dominate, useful in mimicking real-world data
imbalances but offering less control over client-specific label

capturing power-law behavior where lower-

proportions. Zipf generates a global class distribution, P(k; s) oc 1 s

not per-client label distributions. That is, it determines which labels
are common overall, but not how each client’s dataset should be
composed. The Beta distribution, beta («, ) on the other hand
requires two parameters a and f3, to model the proportion of a binary
label, with different parameter combinations yield different shapes—
uniform, skewed, or peaked across clients. The beta distribution
approach is limited to binary classification and needs more parameter
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tuning per client group, making it less scalable for multiclass tasks.
While both Zipf and Beta can induce skew, they lack the flexible
multi-class partitioning and fine-grained control that the Dirichlet
framework offers.

The primary advantage of the Dirichlet distribution lies in its
mathematical structure: it defines a distribution over the
K-dimensional probability simplex, ensuring that all generated label
distributions are valid (non-negative and summing to one) and
tunable through a single scalar. This makes Dirichlet-based
partitioning both practical and theoretically robust for federated
learning experiments involving multiclass tasks and heterogeneous
client populations.

Visualizations in Figure 9 demonstrate the mechanics of how the
Dirichlet distribution provides a simple yet powerful mechanism to
control label skew across clients in federated learning through a single
tunable parameter, while illustrating the complexity of tuning Zipf and
Beta distributions for inducing label skew, in contrast to the simplicity
of the Dirichlet distribution.

7 Summary, challenges, and future
work

7.1 Manuscript summary

This study presents a novel contribution to the field of predictive
maintenance for power systems by demonstrating the applicability of
federated learning (FL) frameworks on real-world datasets drawn
from high-voltage substation assets. By capturing the nuanced
challenges of data heterogeneity, stemming from differences in
equipment types, sensor modalities, and data collection protocols
across utilities, the work highlights the critical need for algorithmic
adaptability in FL deployments.

Among the evaluated methods, Federated Batch Normalization
(FedBN) largely outperforms alternatives like Fed AvgM and FedProx
in handling distributional shifts. However, the observed performance
gains are contingent on the nature and granularity of equipment-level
data collected at each client node. To support more principled
algorithm selection, this study also proposes a Federated Information
Criterion (FIC) that balances predictive accuracy with model fit,
communication overhead, heterogeneity penalties, and model
complexity. These findings emphasize that while tailored FL
algorithms offer promise, achieving robust and scalable predictive
maintenance solutions requires a deep understanding of the
heterogeneity introduced by underlying asset and sensor
configurations. This work therefore offers both conceptual
foundations and applied direction for implementing federated
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FIGURE 9
Visual comparison of distribution-based label skew generation methods in federated learning. (Top) Dirichlet distributions with varying concentration
parameter , showing smooth control over label heterogeneity across clients. Lower values yield highly skewed distributions, while higher values approach
IID. (Middle) Zipf distributions with varying exponent, demonstrating increasing skew toward lower-index classes as increases. Unlike Dirichlet, Zipf does
not generate client-specific label mixtures. (Bottom) Beta distributions for binary label proportions across clients with different a,  parameterizations.
Beta distribution based partitioning approach enables binary skew modeling but requires two parameters and lacks support for multi-class tasks.
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learning in operational power systems, enabling secure and
cooperative asset management at scale.

7.2 Implementation challenges

Despite its promise, the practical deployment of federated learning
in power system predictive maintenance faces two key implementation
challenges. First, inter-utility collaboration is constrained by limited
awareness and institutional inertia, with many utilities yet to recognize
the full potential of privacy-preserving machine learning for improving
asset reliability. Promoting cross-utility partnerships will require
sustained engagement, trust-building, and regulatory alignment.
Second, sensor calibration inconsistencies across different devices and
utilities introduce variability in measurement scales and noise profiles,
which can hinder model convergence and reliability. Establishing
standardized data preprocessing protocols or sensor harmonization
frameworks will be essential to ensure meaningful aggregation across
heterogeneous sources.

7.3 Future scope of work

This study focused on label skew due to its relevance in modeling class
imbalance across clients. Although feature skew was discussed conceptually,
it was not experimentally evaluated. This decision was made to maintain
model comparability and avoid confounding effects arising from
inconsistent feature distributions. Future research may implement
controlled feature-skew scenarios, such as covariate shift and conditional
divergence, to better evaluate algorithm robustness under realistic
federated heterogeneity.

Looking ahead, future work may also be directed towards the
exploration of dynamic client clustering based on asset similarity,
real-time model adaptation to evolving equipment behavior, and
integration of domain-specific priors to further enhance model
robustness. Extensions to multi-modal sensor data, secure
aggregation techniques, and edge-device optimization will also be
critical to operationalizing FL frameworks at scale across diverse
utility environments. From a security standpoint, safeguarding
FL-based smart grid systems against diverse attack vectors is
critical. Byzantine attacks are particularly concerning, where
malicious clients inject falsified model updates that can degrade
or destabilize the global model. These attacks are notoriously
difficult to detect, as they are often indistinguishable from
legitimate updates. While robust aggregation techniques have
been introduced to counter such threats, further advancements
are necessary to ensure resilience under adversarial conditions.
Another key vulnerability is the backdoor attack, wherein
adversaries embed covert malicious behaviors into the global
model while maintaining high accuracy on standard tasks.
Mitigating this threat requires strengthening defense strategies
such as differential privacy enforcement and anomaly-based
detection mechanisms. Although federated learning inherently
limits data exposure by keeping raw data local, these indirect
leakages remain a concern. Enhancing the use of privacy-
preserving techniques, including homomorphic encryption and
secure multi-party computation, is essential to bolstering
protection against such inference-based threats.
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