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High-voltage substations form the backbone of critical electrical infrastructure, 
making predictive maintenance essential for ensuring grid resilience and operational 
reliability. Federated learning (FL) presents an innovative strategy for predictive 
maintenance, allowing multiple utility providers to improve model performance 
jointly while maintaining data confidentiality. Rather than transmitting raw records, 
each electrical utility performs local model updates and shares only the refined 
parameters, thereby safeguarding sensitive information and capitalizing on the 
heterogeneity of equipment conditions across sites. This study develops a set of 
privacy-preserving FL frameworks to enhance preventive maintenance of substation 
circuit breakers, large power transformers, and emergency generators. It rigorously 
tackles the issue of data heterogeneity arising from variations in distribution patterns 
across utilities, an inherent challenge that hampers effective collaborative model 
development. Four FL strategies—Federated Averaging (FedAvg and FedAvgM), 
Federated Proximal (FedProx), and Federated Batch Normalization (FedBN), are 
evaluated for robustness against distributional shifts. Model performance in this 
study is evaluated using the F-score, which for the non-IID case ranges from 0.60 
to 0.88 depending on the number of clients, the federated learning algorithm used, 
and the non-IID partitioning strategy employed. Also, a first-of-a kind Federated 
Information Criterion (FIC) is proposed in this manuscript as an extension of the 
classical information criterion. The results demonstrate that FedBN is best suited 
in mitigating cross-utility heterogeneity, yielding highest F-score of 0.88 and a 
moderately low FIC score of 4.35. Such tailored FL methods significantly improve 
predictive accuracy, enabling scalable and privacy-preserving deployment of FL 
in critical power system applications.
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1 Introduction

Federated Learning (FL) is gaining traction as a valuable framework for predictive maintenance 
(PdM), especially in industrial applications, by allowing decentralized stakeholders to build shared 
machine learning models without disclosing proprietary or sensitive data. Though current wide 
scale adoption is limited and most of the research literature heavily focuses on performance 
benchmarking (du Ogier Terrail and Samy-Safwan, 2022; Ye et al., 2024) on standard datasets such 
as CIFAR-10, MNIST, Clinic10, the federated learning methodology has tremendous potential and 
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is especially suitable for industries (Boobalan et al., 2022; Ramírez et al., 
2023) characterized by distributed data sources that face legal and 
operational constraints regarding data sharing. The capabilities of FL align 
with the needs of predictive maintenance, where timely and effective 
analysis of operational data can significantly reduce downtime and 
maintenance costs.

A key advantage of using federated learning in predictive maintenance 
lies in its decentralized nature, which enables insights to be drawn from 
distributed datasets without requiring aggregation at a central repository. 
For instance, Bharti and McGibney (2021) emphasized that FL enables 
collaborative model development across independent organizations while 
ensuring that proprietary information remains local, thus mitigating 
common privacy and security risks in industrial environments. This 
feature became particularly relevant with the advent of Industry 4.0, 
where manufacturing and operational assets generate vast amounts of 
data stored across various silos (Bemani and Björsell, 2023).

In addition, several novel frameworks have been introduced to tackle 
issues related to inconsistent data distributions and limited accessibility 
commonly encountered in predictive maintenance. For example, Wahl et 
al. (2024), introduces an asynchronous federated learning approach that 
is sensitive to data disparity and temporal unavailability of training sets, 
which is critical for transportation fleet maintenance. The techniques they 
introduced seek to optimize the learning process, improving forecast 
precision and supporting proactive maintenance planning. These 
developments underscore how federated learning can be tailored to meet 
practical demands in equipment monitoring and failure prevention. The 
work of Li et al. (2020), further underscores this, discussing various 
strategies for federated optimization under heterogeneous data conditions 
and highlighting that FL’s flexibility can be transformative in environments 
where data characteristics significantly differ from one device or 
organization to another. From a field deployability standpoint, the 
integration of edge computing with FL models facilitates more rapid and 
accurate maintenance decisions, aligning with the operational needs for 
competency and efficiency in industrial settings (Sun et al., 2021).

Recent empirical studies have supported the feasibility and 
effectiveness of these FL applications. For example, Ahn et al. (2023), 
reported strong predictive performance in maintenance applications by 
integrating decentralized model training with temporal anomaly 
identification methods, suggesting significant potential for deployment in 

practical settings. The adaptive application of FL in PdM contexts not only 
showcases its potential for enhancing predictive modeling but also its 
critical role in supporting organizations in achieving operational 
excellence. As such, federated learning is not merely a privacy-preserving 
alternative, but a fundamentally more viable and operationally aligned 
approach for predictive maintenance in power systems. Table 1 
summarizes a clear distinction between traditional centralized learning 
and federated learning (FL) in the context of predictive maintenance for 
power system apparatus.

While recent experimental research has highlighted both the 
practicality and impact of decentralized learning approaches such as 
Federated Learning (FL) across various domains, its widespread adoption 
still remains somewhat limited. FL has primarily gained traction in 
sectors such as healthcare (Chaddad et al., 2024; Rieke et al., 2020) and 
finance (Shi et al., 2023), with emerging use cases in predictive 
maintenance within the automotive and manufacturing industries (da 
Silveira Dib et al., 2021). In the field of electrical engineering, FL 
applications have remained confined at a theoretical level or have 
witnessed limited small scale residential or community level 
implementations in the areas of

	(a)	 non-intrusive load monitoring (Wang et al., 2021; Giuseppi et 
al., 2022),

	(b)	 energy theft detection (Wen et al., 2022; Ashraf et al., 2022),
	(c)	 residential level demand forecasting (Zhao et al., 2021; Dasari 

et al., 2021; He et al., 2021), and.
	(d)	 voltage control through reactive power injection (Zhao et 

al., 2023).

However, large-scale FL implementation, particularly in power 
delivery predictive maintenance applications at transmission and 
distribution substation level, remain sparse. Electrical substations 
form the backbone of the power grid and the gap highlights vast 
adoption potential of these FL frameworks in the domain of 
substation predictive maintenance. A survey conducted by the 
authors revealed that only 2 of the 24 major U.S. electric utilities have 
previously piloted a federated learning–based preventive maintenance 
program. This limited uptake is partially attributable to the 
traditionally siloed operational and maintenance structures of 

TABLE 1  Centralized learning vs. federated learning for predictive maintenance.

Aspect Centralized learning Federated learning

Data aggregation If deployed, raw sensor data from all clients (utilities) is 

transmitted to a central server.

Data remains local; only model updates or gradients are shared.

Data privacy High risk due to transfer of sensitive operational data across 

utility boundaries.

Preserves data privacy; raw measurements never leave the local 

utility.

Regulatory and compliance risks If deployed, may violate utility-specific data governance or 

interconnection policies.

Aligns with strict data protection protocols and utility-specific 

constraints.

Scalability The learning process may become capped by data transfer 

bandwidth and centralized storage/processing limitations.

Federated learning is naturally scalable; computation is 

distributed across participating clients.

Robustness to data heterogeneity Typically assumes IID data; performance may degrade under 

client-specific non-IID conditions.

Federated learning models are designed to handle non-IID 

settings; algorithms like FedProx and FedBN explicitly mitigate 

heterogeneity.

Model performance adaptability Single model may underperform on minority or skewed utility-

specific distributions.

FL allows personalized or clustered models better suited to each 

utility’s local data distribution.
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electrical utilities, both in the United States and internationally, as 
well as the steep technological learning curves associated with 
deploying FL frameworks in legacy infrastructure. These challenges 
form the motivation for the present study.

	(a)	 Motivation towards application of FL in utility level power 
system applications

Federated Learning (FL) presents a transformative opportunity for 
power system applications by enabling privacy-preserving, distributed 
model training across utilities and substations, an approach that 
directly addresses the limitations of traditional predictive maintenance 
and asset management strategies. The motivation for adopting FL in 
this domain stems from the following key factors:

	 1	 Outdated and labor-intensive maintenance practices: Many 
utilities continue to rely on manual inspections, portable 
dissolved gas in oil analysis, vibration analysis, infrared 
thermography, or static metadata (e.g., equipment nameplate 
information) (Cazacu et al., 2018; Mobley, 2002; Nazmul Huda 
and Taib, 2013; Molęda et al., 2023) for asset assessment—
methods that are reactive, infrequent, and not scalable for 
aging infrastructure.

	 2	 Limitations of centralized AI models: Existing AI-driven tools 
have rapidly evolved in the last several years and often use a 
blend of algorithms for predictive maintenance functions 
(Ghosh and Dutta, 2021; Hung, 2021; Beretta et al., 2021; Swier 
et al., 2025). However, these algorithms are typically trained in a 
central static environment, offering limited adaptability to 
localized asset behavior or environmental variation. They lack 
the continuous learning capability that federated frameworks 
inherently support.

	 3	 Barriers to data sharing across utilities: Due to siloed 
operations, regulatory restrictions, and cybersecurity concerns, 
utilities are often unable to share raw data (Lee et al., 2019). FL 
supports collective model development across dispersed 
stakeholders while keeping sensitive information localized, 
offering a viable approach aligned with the inherently 
distributed nature of the energy industry.

	(b)	Manuscript contributions

To the best of our knowledge, no prior studies have extensively 
explored the application of federated learning for predictive 
maintenance in power systems engineering, and especially in the niche 
area of high voltage substations at the individual equipment level, while 
simultaneously addressing the practical challenges posed by data 
heterogeneity across decentralized sensor networks. This study offers 
several novel insights that strengthen the use of decentralized learning 
techniques for predictive maintenance within the power infrastructure 
domain, specifically addressing key challenges associated with data 
heterogeneity, infrastructure monitoring, and decentralized model 
training. The key advancements presented in this manuscript are:

	 1	 The analysis is grounded in sensor-level data collected from critical 
substation equipment, including high-voltage circuit breakers, 
large power transformers, and emergency generators, offering a 
realistic and operationally relevant foundation for modeling.

	 2	 The study explicitly characterizes data heterogeneity through both 
label skew (variation in failure class distributions across clients) 
and feature skew (differences in sensor measurement spaces), 
providing a nuanced understanding of real-world 
non-IID conditions.

	 3	 The study evaluates a suite of federated learning algorithms 
designed to handle heterogeneity, such as FedProx, FedBN, and 
FedAvgM, conducting a comparative performance analysis to 
assess their robustness across diverse client conditions.

	 4	 The study offers practical recommendations on mitigating 
heterogeneity during the experimental setup phase, including 
client clustering and sensor harmonization strategies.

	 5	 The study introduces a novel Federated Information Criterion 
(FIC), the first of its kind to the best of our knowledge, which 
extends classical model selection frameworks by incorporating not 
just model fit and complexity, but also communication cost and 
heterogeneity penalties.

Collectively, these contributions establish a rigorous, scalable, 
and domain-specific foundation for implementing FL in 
electric utility maintenance workflows.

The remainder of this manuscript is organized as follows, with a 
visual outline provided in Figure 1. Section II outlines the overall 
methodology and system architecture relevant to electrical substations, 
detailing the data acquisition process from critical assets such as circuit 
breakers, transformers, and emergency generators. It further examines 
leading decentralized learning approaches, offering a comparative analysis 
of their architectural adaptations to handle data heterogeneity across 
clients. Section III goes a little more into the details of the system 
architecture and in path for the flow of information between multiple 
utility substations and centralized training servers. Section IV describes 
the three domain-specific datasets used in this study and presents the 
baseline experimental setup using FedAvg and FedAvgM under data 
heterogeneity conditions. This section also examines how sophisticated 
federated learning techniques, FedBN and FedProx, perform under 
varying conditions and data distributions. These algorithms are tailored 
for heterogeneous settings, and their model performance are compared 
based on F1 scores and empirical observations. Inference-driven 
recommendations for improving FL deployment in operational utility 
contexts are also provided. Section V introduces the proposed Federated 
Information Criterion (FIC), a novel model selection metric that jointly 
considers model fit, complexity, communication cost, and data 
heterogeneity. Section VI presents a discussion on Dirichlet and 
alternative distributions as it applies to federated learning and related data 
partitions. Finally, Section VII concludes the paper by summarizing key 
findings and outlining directions for future research, including extensions 
toward personalized federated learning and integration into broader 
utility asset management systems.

2 Methodology

2.1 Outline of a substation system topology

High voltage circuit breakers, large power transformers, and 
emergency substation generators are critical components (Krieg, 2019) of 
high voltage power delivery systems, ensuring the safe, reliable, and 
continuous transmission of electricity across vast networks. Circuit 
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breakers protect the grid by isolating faults and preventing equipment 
damage, while power transformers enable efficient voltage regulation for 
long-distance transmission and distribution. Station emergency 
generators provide essential backup power to maintain operational 
stability during outages and extend the duration of scheduled maintenance 
if backup stations service feed is unavailable. Together, these assets form 
the backbone of resilient and secure electric power infrastructure. Hence 
it is imperative that the electrical utilities collaborate in some fashion to 
enhance the predictive maintenance of these critical grid infrastructures 
through collaborative federated learning techniques.

At a component level, predictive maintenance of substation circuit 
breakers is critical to ensuring the stability of modern power systems. As 
a use case, in a distribution substation supporting hyperscale data center 
cluster, continuous monitoring and proactive maintenance of 138 kV 
line-tie breakers and 34.5 kV feeder breakers are essential. Failure of any 
of these breakers to operate correctly during fault conditions may result 
in disturbances persisting long enough for the data center to disconnect 
from the grid and transition to on-site uninterruptible power supplies 
(UPS). The disconnection of large data center loads, typically ranging 
from 500 MW to 1.5 GW, can trigger significant over-frequency events 
that threaten overall grid stability. Federated learning-based predictive 
maintenance frameworks enable diverse utilities to collaboratively 
improve predictive models without compromising data privacy, offering 
an automated, scalable, and privacy-preserving solution for enhancing 
breaker reliability in this critical context.

The second focus of analysis is on high-capacity transformers, which 
rank among the most vital and high-cost elements within a substation’s 
infrastructure, with replacement costs typically ranging from $10 to $15 
million and procurement lead times of 115 to 130 weeks (Nguyen et al., 
2022; Metwally, 2011). Catastrophic failure of a transformer not only 
imposes severe financial penalties but also jeopardizes system reliability 
over extended durations. Given their strategic role and the high cost of 
downtime, predictive maintenance enabled by federated learning provides 
a compelling solution. The third item, substation emergency generators, 
also falls under the critical asset category, as their timely operation ensures 
that station protection, control, and communication systems are preserved 
during outages or maintenance operations. Emergency generators in the 
context of substation are commonly used in two scenarios, a. when there 
is no backup station service source from a local utility feed given the 
remoteness of the site and constructing one is prohibitively expensive, and 
b. when both the primary and backup stations service feeds are from the 

substation itself, a tertiary power source from an emergency generator 
might be needed for redundancy purposes, with Figure 2 showing the 
single line network of both these topologies.

Figure 3 shows a test bed 138/34.5 kV substation arrangement 
serving a data center facility, with main line tie-in breakers at 138 kV, large 
180/220/240 MVA power transformers, and 34.5 kV feeder breakers. 
Each of the feeder breakers supply a data center building; with the data 
center’s ability to handle electronic faults usually being governed by the 
ITIC or CBEMA curves (Honrubia-Escribano et al., 2012; Gomex and 
Morcos, 2002; Heydt, 1998). Implementing predictive maintenance can 
help ensure that the feeder breakers and main line tie-in breakers trip as 
intended and driven by the substation protections scheme within three to 
five cycles, thereby enabling the data center to withstand disturbances 
during fault events.

2.2 FL implementation framework and 
evaluation of partition protocols

Now that the system topography of such electrical substations is 
understood, the focus shall be shifted to implementation framework. 
Federated learning (FL) has seen rapid advancements in 
implementation frameworks, lowering the barrier for deploying 
privacy-preserving machine learning systems. TensorFlow Federated 
(TFF), developed by Google, offers one of the most seamless 
integrations into existing machine learning workflows by extending 
the widely used TensorFlow and Keras ecosystems. TFF abstracts the 
complexities of distributed optimization, allowing users to define 
models using familiar Keras APIs and then apply federated 
computations with minimal modification. Its modular design supports 
both simulated federated learning (on centralized data partitioned to 
mimic clients) and deployment to real-world distributed systems. 
Built-in support for non-IID partitioning, custom aggregation 
strategies, and differential privacy integration further enhances its 
flexibility. Unlike several other frameworks that either require learning 
new syntaxes or lack deep backend integration with production ML 
tools, TFF maintains native interoperability with TensorFlow Serving, 
TFRecords, and Keras model export, making it exceptionally versatile 
for both research prototyping and scalable production deployment.

Though this study employs TensorFlow Federated for model 
development and experimentation, the authors have conducted an 

FIGURE 1

Manuscript’s structural organization.
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in-depth review of alternative federated learning frameworks and 
documented their core features and limitations in Tables 2, 3 for 
comparative context.

At the time of writing this manuscript, all the above frameworks 
were actively maintained. User should always check the developer-
controlled version for availability and support of these features 
and functionality.

3 System architecture

In this study, we apply federated learning to sensor measurement 
data collected from high-voltage circuit breakers, large power 
transformers and their associated dissolved gas monitors, and 
emergency generators. These sensor measurements are initially 
collected by a remote terminal unit (RTU) (Madonsela et al., 2018) 
located in the substation control house. The RTUs aggregate and 
organize the data, which is then transmitted to a channel bank for 
further processing. From the channel bank, the date is packaged and 
forwarded through a network switch, ultimately reaching the 
utility’s centralized control room for operational monitoring; see 
Figure 4.

In a federated learning setup, an aggregated model is maintained 
by a coordinating node that orchestrates updates from distributed 

participants. The aggregated model evolves through contributions 
from individually trained models developed by each participating 
utility. These entities perform local training using proprietary sensor 
measurements, ensuring that no unprocessed data leaves their 
premises. Rather than transmitting raw inputs, they share parameter 
updates, thereby maintaining data confidentiality. The global model 
learns from the collective knowledge, the “wisdom of the crowd,” and 
iteratively refines itself based on diverse asset behaviors and conditions 
across the participating utilities. The updated and increasingly 
accurate predictive models are then disseminated back to the utilities’ 
control room, enhancing the predictive maintenance and operational 
reliability of critical substation assets.

4 Experiments and discussion

	(a)	 Dataset description

For the purpose of this study, datasets were generated from sensor 
data to emulate a cluster of diverse electrical utilities and were tailored 
to form three databases, as described in the following paragraphs:

	 i	 HV Circuit Breaker Maintenance Data

FIGURE 2

Station service single line with utility and emergency generator feeds. (top) emergency generator serving as the alternate feed given the unavailability 
of a local utility, (bottom) emergency generator serving as a tertiary feed given both the station services are from the same source (substation).
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	 1	 The dataset is derived by combining results from high-voltage 
breaker monitoring (115–345 kV, with some 34.5 kV assets), 
where sensors capture critical measurements such as SF6 
density, breaker status, and ambient cabinet temperature.

	 2	 Engineers at participating anonymized virtual utilities routinely 
reviewed breaker records and associated measurements for 
assets under their operational oversight and flagged cases 
requiring maintenance. These inspection-driven flags are 
typically based on factors such as SF6 dew point, SF6 density, 
fault operation count, clearing time, and days since last 
operation, in accordance with each utility’s established 
maintenance standards.

	 3	 The dataset comprises 5,000 samples of breaker readings, 
aggregated from five representative utilities. Each breaker is 
assigned a unique categorical identifier corresponding to its 
source utility, with 28 features representing various sensor-
based measurements and one quality metric (0: no maintenance 
required, 1: maintenance required).

	 4	 It is important to note that not all 28 features are uniformly 
available across all product variants, leading to slight variations 
in the feature space between variants.

	 5	 To enhance the training of machine learning models, the 
dataset has been augmented with an increased proportion of 
‘maintenance required’ examples to ensure sufficient 
representation of predictive maintenance cases.

	 ii	 Large Power Transformer Maintenance Data

	 1	 The dataset is similar to the HV Circuit Breaker Maintenance 
Data Set and is derived by combining results from large power 
transformer monitoring, where sensors capture critical 
measurements such as LTC and main tank oil temperature, 
dissolved gas values (in ppm).

	 2	 Engineers at participating utilities routinely reviewed 
transformer records and associated measurements for assets 
under their operational oversight and flagged cases 
requiring maintenance. These inspection-driven flags are 
typically based on factors such as high oil temperature, and 
excessive amount of certain dissolved gas (usually based on 
Duval triangles and pentagons (Akbari et al., 2008; Cheim 
et al., 2020)), following each utility’s established 
maintenance standards.

FIGURE 3

A 138/34.5 kV distribution substation for a mission critical data center. In red ink, the 138 kV main breakers and 34.5 kV feeder breakers, the 138/34.5 kV 
power transformer, and the emergency generator are deemed to be critical station assets.
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	 3	 The dataset comprises 7,500 samples of breaker readings, 
aggregated from five representative utilities. Each transformer 
is assigned a unique categorical identifier corresponding to its 
source utility, with 18 features representing various sensor-
based measurements and one quality metric (0: no maintenance 
required, 1: maintenance required).

	 iii	 Emergency Station Generator Maintenance Data

	 1	 The dataset is derived by combining results from station 
emergency generators (~150–300 kVA on propane, natural gas, 
or diesel), where sensors capture critical measurements such as 
engine temperatures, oil pressure, alternate current and voltages.

	 2	 Engineers at participating utilities routinely reviewed station 
emergency generator records and associated measurements for 
assets under their operational oversight and flagged cases 
requiring maintenance. These inspection-driven flags are 

TABLE 2  Evaluation of federated learning frameworks in terms of workflow integration, system scalability, and privacy-preserving capabilities (Ziller et 
al., 2021; Saidani, 2023; Riedel et al., 2024).

Framework Language(s) Core strengths Ease of integration Key features Limitations

TensorFlow Federated 

(TFF)

Python (TensorFlow) Seamless Keras/

TensorFlow integration

Very high Native Keras support, 

differential privacy, custom 

aggregators, simulation + 

real-world deployment

Requires TensorFlow 

environment; limited direct 

mobile deployment support

FedML (TensorOpera AI) Python Flexible hardware 

support (edge, cloud), 

cross-platform

Moderate Cross-device FL, cross-silo 

FL, benchmarking tools

More complex API surface; 

steeper learning curve

Flower Python, (partial 

support for Java, Go)

Lightweight, highly 

customizable

High Device heterogeneity 

handling, client sampling, 

minimal setup

Requires manual model 

wrapping, basic ML library 

abstraction.

PySyft Python (PyTorch 

primarily)

Privacy-preserving 

computation (secure 

multi-party computation, 

differential privacy)

Moderate Encrypted computation, 

data privacy first, multi-

backend support

Heavy emphasis on privacy 

may complicate general FL 

tasks. Documentation and 

features are not well 

maintained.

OpenFL Python Enterprise-grade FL for 

healthcare and 

manufacturing

Moderate Security-first, Intel 

optimizations, Docker-based 

deployment

Less flexible for non-

enterprise use cases; steeper 

setup

Flute C++/Python High scalability, 

production-grade FL

Low Production at hyperscale 

(Azure), asynchronous 

updates

Limited documentation; 

specialized for Microsoft 

Azure ecosystems

TABLE 3  Availability of partitioning protocol and non-IID algorithms between different federated learning frameworks.  available,  beta or not 
fully supported,  unknown or sufficient documentation not available.

Attributes TFF FedML Flower PySyft OpenFL Flute

Skewing type

Label skew

Feature skew

Quantity skew

Data heterogeneity solutions

FedAvgM

FedProx

FedBN

SCAFFOLD

FedDyn
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typically based on factors such as start attempts, battery state 
of charge, lube oil temperature, crankcase pressure, and 
emission levels, in accordance with each utility’s established 
maintenance standards.

	 3	 The dataset comprises 1,200 samples of emergency generator 
readings, aggregated from four representative utilities. There 
are 32 features representing various sensor-based 
measurements and one quality metric (0: no maintenance 
required, 1: maintenance required).

	(b)	 Baseline experiment and discussion

To understand the rationale for introducing federated learning 
in predictive maintenance, we evaluated a centralized logistic 
regression model using the HV Circuit Breaker Maintenance Dataset 
under IID conditions. We randomly selected 1,000 IID samples for 
training and 500 IID samples for testing, ensuring no overlap 
between the sets. The centralized IID logistic model achieved an 

accuracy of 0.80 on the IID test set using all covariates from the 
data set.

To simulate heterogeneity under non-IID configuration, we 
sampled data from five utilities with varying equipment and 
operating conditions using the same HV Circuit Breaker 
Maintenance Dataset. We first tested the centralized model trained 
on IID data on this non-IID dataset. The accuracy of the IID model 
dropped to 0.77, highlighting the impact of non-IID assumption 
violations of a logistic regression model. To account for utility-level 
variance, we trained a logistic regression model with random 
effects on utility-level clustering. This approach improved accuracy 
slightly to 0.78. While stratified modeling helped marginally, it was 
insufficient to fully address the challenges of non-IID data. These 
results emphasize the need for more robust approaches like 
federated learning.

In an attempt to improve the accuracy in the predictive maintenance 
performance, we evaluated the performance of a baseline federated 
learning model using Federated averaging (FedAvg) (McMahan et al., 
2017; Li et al., 2019). We applied FedAvg across five (5) clients (with later 

FIGURE 4

Telecommunications path (configuration may vary on use case) from substation equipment to utility control room via remote terminal unit and master 
HMI. Participating utilities collaborate with centralized training server over virtual LAN network.
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simulations using ten (10) to twenty (20) clients). The dataset was 
partitioned into IID and non-IID configurations, with training 
conducted over 150 rounds and five local epochs per client. As expected 
and illustrated in Figure 5, the IID case exhibited a sharp decrease in loss 
and a corresponding improvement in accuracy, while the non-IID case 
showed significantly slower decrease in loss and struggled to achieve 
comparable performance. The following section provides a theoretical 
treatment of the FedAvg algorithm to contextualize these observations.

Federated Averaging (FedAvg) is an algorithm for decentralized 
training in federated learning. Let w represent the global model 
parameters. At iteration t, a selected group of clients denoted by tS  
performs E local stochastic gradient descent (SGD) updates on the 
model denoted in equation (1):

	 ( )η+ = − ∇1t
i t i tw w F w 	 (1)

Where η  is the learning rate and ( )iF w  is the local objective 
function. The server then aggregates the updated models, as denoted 
in equation (2), by averaging, adjusted according to the sample size 
contributed by each client:

	

+ +

∈
= ∑1 1

tt

t ti
i

Si S

nw w
n

	
(2)

This process is repeated iteratively to converge to a global model.

	(c)	 Data heterogeneity, technical improvements over baseline FL 
methodology, experiment and discussion

Federated learning often encounters variation in data distributions 
among clients, commonly referred to as non-IID data, which presents 
unique challenges for model convergence and generalization. These 
non-IID behaviors inherent in the data can be modeled through 
several mechanisms to better reflect real-world scenarios. Two 

commonly used approaches are Dirichle—distribution based 
partitioning introducing label skewness and feature distribution 
skewness (Li et al., 2022; Mang et al., 2023):

	 1	 Dirichlet-based partitioning (label skew)

To replicate practical scenarios involving uneven data 
distributions among clients in a federated learning environment, a 
commonly adopted strategy involves Dirichlet distribution-based 
partitioning, which can be designed to induce label distribution 
skew across clients. For illustration, let there be K classes and N 
clients. For each class k ∊ {1, …, K}, a probability vector 
(π π π…1 2, ,k k Nkm ) is drawn from a Dirichlet distribution Dir(α), 
whereα > 0 is the concentration parameter controlling the degree of 
data heterogeneity. The sampled vector determines the proportion 
of samples from class k assigned to each client i ∊ {1, …, N}. A 
smaller value of α results in a more skewed distribution, with 
individual clients receiving data predominantly from a limited subset 
of classes, thereby mimicking non-IID scenarios. Conversely, a larger 
α leads to a more uniform distribution of classes across clients, 
approximating an IID setting. This approach enables controlled 
experimentation of varying degrees of data heterogeneity with 
federated learning simulations.

	 2	 Feature distribution skew

In feature skewness, clients possess data drawn from different 
feature distributions, even if the label distributions remain similar. To 
illustrate, for a client i, data samples ( ,i ix y ) are drawn from a client-
specific joint distribution ( )℘ ,i x y , where the marginal feature 
distribution ( )℘i x  varies across clients, even if ( )℘ |i y x  (the 
conditional label distribution) remains aligned. Feature skewness can 
arise due to differences in sensor types, demographic variability, or 
context, leading to a domain shift between clients. This type of 
heterogeneity challenges models to generalize across variations in 
feature spaces.

FIGURE 5

Accuracy and training plots of the baseline case in an IID and non-IID setup using FedAvg with training conducted for 150 rounds.
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Other common forms of heterogeneity in federated learning 
include quantity skew, where clients possess differing amounts of data 
( in  varies significantly across clients), and concept drift, where the 
conditional distribution ( )℘ |i y x  differs across clients, reflecting 
variations in labeling practices or evolving tasks over time. Together 
with label and feature skew, these variations model the key challenges 
of decentralized learning environments.

In the context of power system sensor data for predictive 
maintenance, label skew and feature skew offer more realistic and 
appropriate means of emulating non-IIDness than quantity skew. 
Label skew reflects the fact that different substations or assets often 
experience distinct types of faults or operational states, leading to 
naturally imbalanced event labels across monitoring sites. Feature 
skew captures variations in sensor readings arising from differences 
in equipment models, environmental conditions, operational 
loads, and maintenance histories. In contrast, quantity skew, where 
clients have differing amounts of data but similar distributions, is 
much less probable and inherently fails to represent the critical 
heterogeneities that directly impact model generalization and 
failure prediction in real-world electrical infrastructure. Therefore, 
for data heterogeneity, modeling label and feature skew better 
aligns with the operational diversity inherent in power system 
maintenance environments.

Now that a theoretical framework has been established in terms 
of partitioning the data, based on labels and features, the next 
section of the discussion shall focus on federated learning solutions 
that are specifically crafted to deal with data heterogeneity. These 
solutions are:

	 1	 Adaptive aggregation strategy using FedAvgM (federated 
averaging with momentum)

At its core, Federated Averaging with momentum (Sun et al., 
2024) modifies the basic FedAvg algorithm by incorporating a 
momentum term into the server-side model aggregation, with the goal 
of promoting faster convergence and stabilizing model updates despite 
variations in local client distributions and training dynamics.

Following the standard setup as seen with FedAvg, let ∈ d
tw   

denote the global aggregated model during communication 
iteration t, and let each client i perform local updates to obtain 

+1
i
tw , with ip  as defined before. The server maintains the 

momentum buffer ∈ d
tm  , initialized as =0 0m , and updates it 

according to equation (3):

	
( )µ+ +

=
= + −∑1 1

1

N
i

t t i t t
i

m m p w w
	

(3)

Where )µ∈0,1  is the momentum coefficient.
Then, the global model is updated using as denoted by 

equation (4) :

	 + += +1 1t t tw w m 	 (4)

In this formulation( )+ −1
i
t tw w  represents the local model 

change from client i. The server aggregates these changes 
weighted by ip  and applies the momentum smoothing using the 
µ  parameter.

Thus, FedAvg with momentum can be interpreted as applying a 
form of server-side momentum to the aggregated model updates, 
promoting stability and faster convergence, especially in settings with 
heterogeneous data distributions.

To understand the advantage gained using FedAvgM over 
FedAvg, simulations are conducted on the HV Circuit Breaker 
Maintenance Data for a balanced Dirichlet partition (α = 0.5) with 
different FedAvgM momentums (μ = 0.5 and 0.75, 0.1, and 0.9). 
From Figure 6 (a and b) one may observe that for a momentum 
coefficient of μ = 0.5 and 0.75, FedAvgM outperforms FedAvg by a 
decent margin. The momentum parameter, μ, requires careful 
adjustment, as too low (μ = 0.1) of a momentum causes the 
FedAvgM algorithm to perform similar to FedAvg; as in Figure 6c, 
while too high of a momentum (μ = 0.9) can cause overshooting, 
oscillations, or instability, especially when the data heterogeneity 
is strong; see Figure 6d.

	 2	 Modification of local training objective using FedProx

Federated Proximal (FedProx) is an extension of the standard 
Federated Averaging (FedAvg) algorithm, designed to address 
challenges arising from system and statistical heterogeneity among 
clients (Zheng et al., 2024). With FedProx, each client i at 
communication round t solves a modified local optimization 
problem, as denoted through equation (5):

	
( )i tf w w w 2min || ||

2
µ

+ −
	

(5)

Where ( )if w  denotes the local objective function for client i, 
tw  represents the global model parameters at round t, and µ  > 0 is 

a proximal term coefficient controlling the strength of 
regularization. The additional proximal term tw w 2|| ||

2
µ

−  
penalizes deviations from the global model, thereby encouraging 
local updates to remain close to tw  and mitigating issues caused by 
client drift, especially under non-IID data distributions. After local 
updates, the server aggregates the updated models (typically via 
weighted averaging) to form the next global model +1tw . By tuning 
µ , FedProx provides a flexible mechanism to balance between 
allowing personalized local updates and maintaining 
global consistency.

	 3	 Personalization of normalization layers using FedBN

Federated Batch Normalization (FedBN) is another federated 
learning algorithm designed to mitigate client data heterogeneity (Li 
et al., 2021) by decoupling the aggregation of batch normalization 
parameters. Let the model parameters at client i be denoted as 

( )θ θ θ= ,shared BN
i i i , where θ shared

i  comprises all non-batch-
normalization parameters (e.g., convolutional and fully connected 
layers) and θ BN

i includes the batch normalization parameters, namely 
the learnable scale and shift parameters ( i i,βγ ) and the running 
statistics (mean µi and variance σ 2).i  Each participating client 
independently optimizesθ θandshared BN

i i  using stochastic gradient 
updates on its local data. Following this local optimization, only the 
shared parameters θ shared

i  are transmitted to the coordinating server 
for model integration, as illustrated in equation (6).
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Where in  is the quantity of local samples at client i, and 

=
=∑

1

N

total i
i

n n . The batch normalization parameters θ BN
i  are retained 

locally, enabling each client to maintain personalized normalization 
statistics that reflect its own feature distribution. This selective 
aggregation improves generalization under non-IID 
client distributions.

Each of the three state-of-the-art approaches for handling 
non-IIDness—FedAvgM, FedProx, and FedBN, were implemented 
on the three datasets: HV Circuit Breaker Maintenance Dataset, Large 
Power Transformer Maintenance Dataset, and Emergency Station 
Generator Maintenance Dataset, with Figure 7 providing the 
accuracy over the communication round iterations, with Tables 4, 5 
docketing the general parameters/hyperparameters and the 
F1 scores.

4.1 Inferences and recommendations

The following inferences can be made from Figure 7 and Table 5.

	•	 FedBN (Federated Batch Normalization) decouples batch 
normalization layers during aggregation, allowing each client to 
retain local batch statistics (mean and variance). In predictive 
maintenance, equipment health signatures differ across utilities 
due to unique operating environments and degradation profiles. 
FedBN accommodates these local shifts without enforcing global 
normalization statistics, which would otherwise degrade 
performance under feature skew.

	•	 FedProx introduces a proximal term that penalizes divergence 
from the global model, helping stabilize training in the presence 
of label skew. This constraint helps prevent local models from 
overfitting their skewed class distributions, which is especially 
important in maintenance datasets where failure events are rare 
and unevenly distributed across utilities.

	•	 FedAvgM in contrast yields only marginal gains over FedAvg, as the 
incorporation of momentum partially accelerates convergence but 

FIGURE 6

Dirichlet Non-IID performance comparison for FedAvg versus FedAvgM. (a,b) FedAvgM with μ = 0.5, 0.75, (c) FedAvgM with μ = 0.1, (d) FedAvgM with 
μ = 0.9.
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does not fundamentally address client drift or statistical divergence. 
In our experiments, FedProx maintained better convergence and 
generalization on minority failure classes, reducing overfitting 
observed in vanilla FedAvg under similar conditions.

	•	 The Emergency Station Generator Maintenance Dataset 
dataset exhibits lower statistical heterogeneity, such as more 
homogeneous feature distributions, class balance compared to 

the HV Circuit Breaker Maintenance Dataset converge more 
consistently with the global objective, allowing the model to 
achieve its optimal performance within fewer rounds.

The reasoning behind this observation is largely attributed to the 
fact that unlike high-voltage circuit breakers, which vary 
significantly in make, interrupting medium (SF₆, vacuum, etc.), 
age, and operational environment, emergency generators are 
typically procured as modular backup systems. Substation 
emergency generators usually conform to similar capacity classes, 
usage patterns (e.g., periodic testing or standby operation), and 
maintenance schedules.

	•	 With a larger pool of participating clients, a slight reduction in 
F-score is observed under non-IID conditions, primarily driven 
by heightened data variability and fewer samples available 
per client.

	o	 FedBN and FedProx tend to retain higher F-scores even as 
client counts grow, due to their mechanisms for reducing 
drift (e.g., local batch norm stats or 
proximal regularization).

	o	 FedAvg and FedAvgM may experience sharper F-score 
degradation under high client counts if data is strongly 
non-IID.

FIGURE 7

Plot of test set accuracy versus communication rounds for baseline FedAvg versus state-of-the-art FL methods for handling non-IID: FedAvg, 
FedAvgM, FedProx, and FedBN. (a) accuracy over rounds for HV Circuit Breaker Maintenance Dataset, (b) accuracy over rounds for Large Power 
Transformer Maintenance Dataset (c) accuracy over rounds for Emergency Station Generator Maintenance Dataset.

TABLE 4  Selection of parameters and hyperparameters (based on grid 
search) for the state-of-the-art FL methods (FedAvgM, FedProx, and 
FedBN) for all three data sets.

Parameters Values/ Range

Neural network geometry Dataset geometry/32/16/1

Learning rate Client optimizer learning rate 0.02

Server optimizer learning rate 0.5–1.0

Activation function relu ➔ relu ➔ sigmoid

Optimizer SGD or Adam (SGD selected)

Epochs (client) and communication 

rounds

10 and 150

Batch size 10

FedAvgM (µ ) 0.5 and 0.75

FedProx (µ ) 0.1
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Based on the inferences made the following recommendations 
are documented:

	•	 During the initial setup of predictive maintenance programs 
across utilities, it is essential to ensure that sensor data is 
collected using standardized units, consistent sampling 
frequencies, and that the equipment being modeled exhibits 
comparable operational characteristics.

For example, although both are rated at 138 kV, clean air 
breakers (Siddiqui et al., 2022) and SF₆ breakers operate 
based on fundamentally different interruption technologies 
and produce distinct sensor signatures. As such, these two 
breaker types should not be grouped within the same 
federated learning model, as doing so could skew the 
learning process and degrade model performance. Instead, 
they should be trained separately, as illustrated in Figure 8 
to preserve the integrity of learned patterns. Moreover, due 
to the relatively limited deployment of clean air breakers 
across individual utilities, a larger pool of utilities may need 
to be federated to assemble a representative training sample 
for this equipment class.

In contrast, SF₆ breakers with similar voltage ratings, such as 
138 kV and 230 kV, tend to exhibit comparable sensor profiles 
and may be clustered together. Overall, federated learning 
should be implemented by grouping equipment into 
homogeneous operational classes, thereby reducing data 
heterogeneity and enhancing model accuracy 
and generalizability.

	•	 For large power transformers, dissolved gas data are obtained 
from cooling liquid samples taken from the main tank. The 
concentration profiles of individual dissolved gases vary 
depending on the type of cooling liquid used, typically 
mineral oil or synthetic esters. It is important to recognize 
that data heterogeneity can arise when comparing dissolved 
gas measurements from mineral oil-based transformers with 

those containing synthetic esters, due to their distinct 
chemical decomposition characteristics. Such data 
heterogeneity should be identified at the onset of the 
experimental design, and thought should be given to 
balancing the different oil transformer types within each 
client set.

	•	 A similar argument can be made about the fact that emergency 
generator sensor data can vary based on the fuel type, propane 
versus natural gas or diesel. Data heterogeneity between 
emergency generators with different fuel types could be 
addressed by balancing the component samples on a per 
client basis.

	•	 Adaptive client sampling should be considered; by preferentially 
selecting clients whose updates align well with the 
global objective.

	•	 At an implementation level, certain layers or statistics (e.g., 
BatchNorm in FedBN) should be allowed to remain client-
specific while sharing the global backbone, thereby reducing 
negative transfer from misaligned data.

5 Federated learning-based 
information criterion (FIC)

In federated learning, data heterogeneity, where data 
distributions vary significantly across clients, is a central challenge 
that degrades model performance and convergence. To address this, 
numerous advanced state-of-the-art algorithms have been 
developed, each introducing distinct strategies to mitigate the 
effects of non-IID data. Examples include FedProx, which adds a 
proximal term to the local objective to stabilize updates; FedDANE, 
which incorporates second-order local updates using gradient 
corrections; FedBN, which avoids sharing batch normalization 
layers to accommodate feature shift; SCAFFOLD, which uses 
control variates to correct client drift; and FedNova, which 
normalizes updates to account for client variability in computation. 
Additional methods such as MOON, Ditto, and FedCurv also target 
various aspects of personalization and regularization under 

TABLE 5  F-score results with three major equipment sensor datasets with various data distributions, number of clients, and FL algorithms.

Dataset and partition type Number of 
clients

FedAvg FedAvgM FedProx FedBN

HV Circuit Breaker Maintenance Dataset—iid 10 0.72 0.75 0.80 0.74

20 0.72 0.72 0.79 0.68

HV Circuit Breaker Maintenance Dataset—non-iid 10 0.70 0.69 0.78 0.75

20 0.69 0.68 0.75 0.72

Large Power Transformer Maintenance Dataset—iid 10 0.68 0.73 0.82 0.88

20 0.68 0.70 0.80 0.86

Large Power Transformer Maintenance Dataset—non-iid 10 0.65 0.68 0.72 0.75

20 0.65 0.66 0.70 0.74

Emergency Station Generator Maintenance Dataset—iid 10 0.65 0.66 0.8 0.85

20 0.65 0.64 0.8 0.82

Emergency Station Generator Maintenance Dataset—non-iid 10 0.60 0.65 0.74 0.82

20 0.60 0.60 0.74 0.80
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heterogeneity. Given this diverse algorithmic landscape, selecting a 
federated learning strategy solely based on predictive accuracy can 
be short-sighted (Li et al., 2020). Accuracy often overlooks crucial 
trade-offs such as communication cost, model complexity, and the 
ability to generalize across client populations. To support more 
balanced and principled model selection, a Federated Information 
Criterion (FIC) is proposed, which incorporates both traditional 
model selection principles and federated-specific penalties.

The Federated Information Criterion (FIC) being proposed in this 
manuscript is an extension of the classical model selection metrics 
such as AIC and BIC (Chakrabarti and Ghosh, 2011) to the federated 
learning setting. Traditional criteria like AIC and BIC do not account 
for distributed training burdens, which are core to FL scenarios. 
Federated learning introduces additional challenges including 
communication overhead, data heterogeneity, and decentralized 
training. To account for these, the proposed FIC integrates penalties 
that reflect both conventional and federated-specific costs. Model fit 
is quantified by the sum of local negative log-likelihoods across clients, 

while model complexity is penalized based on the total number of 
trainable parameters. Two additional components are included:

	(a)	 One representing the overall communication overhead across 
clients and training rounds, and.

	(b)	 Another penalizing discrepancy between client-specific 
updates and the aggregated model, arising from uneven 
data distributions.

The formal expression for the Federated Information Criterion 
(FIC) is given as in equation (7):
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FIGURE 8

Separation of FL training models for clean air and SF6 breakers to prevent data heterogeneity by design. Participating utilities and central servers 
maintain model separation.
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In this Equation 7, ( )θ̂k kL  denotes the negative log-likelihood 
for client k serving as a proxy for model fit, C is the communication 
cost (e.g., number of rounds × bandwidth × model size), H 
measures model divergence between local parameters θ̂k  and the 
global aggregate θ̂g, and p is the number of model parameters. The 
constants λ λ1 2, , and γ  govern the trade-offs among statistical fit, 
communication efficiency, and model simplicity. The weighting 
strategy of these constants can be based on a target deployment 
profile, e.g., prioritizing complexity penalty, followed by 
heterogeneity penalty, and communication cost in the ratio of 
2:1:0.5, representative of a constrained or edge-centric federated 
learning deployment, or conversely emphasizing communication 
cost the most, followed by heterogeneity, and only lightly 
penalizing model complexity for Federated Learning over 
intermittent or low-bandwidth networks. Additionally, because 
each component has a different scale and unit (e.g., loss is 
unbounded, model size is integer-valued, communication cost is 
in bytes), we apply min-max normalization, see Equation 8, across 
candidate models to ensure that each term contributes comparably 
to the final FIC:
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Where ix  is the raw value of a component for model i, and ò  is a 
small constant to prevent division-by-zero. If certain penalties (e.g., 
communication cost) dominate by orders of magnitude, log-scaling 
may optionally be used before normalization.

The FIC proposed here thereby facilitates informed selection 
among federated algorithms by accounting for statistical, 
computational, and infrastructural considerations in a unified metric. 
It should be noted that non-IIDness is often an inherent property of 
the data in federated learning; for example, patients from different 
hospitals, sensors from different substations, or users on different 
devices naturally generate diverse data. The key point, however, is 
that how well a federated learning algorithm accommodates or adapts 
to that heterogeneity should influence model selection, which is 
precisely what the heterogeneity penalty in the Federated Information 
Criterion (FIC) aims to capture.

Under theoretical setup, the FIC value can range from large 
negative to large positive numbers, depending on the balance 

between predictive loss, model complexity, and federated system 
costs. Models achieving strong predictive performance with 
minimal complexity and communication overhead tend to have 
lower (more negative) FIC scores, while overparameterized or 
resource-intensive models exhibit higher FIC values. Provides a 
conceptual comparison of the Federated Information Criterion 
(FIC) across four commonly used federated learning algorithms, 
illustrating how each balances model fit, communication cost, 
heterogeneity handling, and complexity. The comparison in Table 6 
highlights why relying solely on accuracy can be misleading in 
heterogeneous settings.

Assuming a classification task across five clients with moderate 
non-IID data (Dirichlet 𝛼 = 0.3), simulations were performed, and the 
FIC values were calculated using: average local log-loss per client, 100 
communication rounds, model size of 1.2 MB, and Euclidean 
divergence between local and global weights. Using normalized 
penalty weights λ1 = 0.5, λ2 = 1.0, and ã  = 2, the FIC values obtained 
for the different cases are:

	 1	 FedAvg: Fit = 1.20, Comm = 0.60, Heterogeneity = 1.10, 
Complexity = 2.0 ⟹ FIC ≈ 4.90

	 2	 FedAvgM: Fit = 1.10, Comm = 0.65, Heterogeneity = 0.85, 
Complexity = 2.0 ⟹ FIC ≈ 4.60

	 3	 FedProx: Fit = 1.05, Comm = 0.65, Heterogeneity = 0.55, 
Complexity = 2.0 ⟹ FIC ≈ 4.25

	 4	 FedBN: Fit = 1.00, Comm = 0.65, Heterogeneity = 0.30, 
Complexity = 2.4 ⟹ FIC ≈ 4.35

Despite FedBN’s and FedProx’s slightly higher model 
complexity (due to personalized BN layers or due to the need of 
modification of local training objective), its ability to significantly 
reduce inter-client divergence results in the lowest overall 
heterogeneity penalty, allowing it to outperform others on FIC in 
this setup, with FedProx gaining the most favorable FIC score in 
this experimental setup.

In summary, the Federated Information Criterion (FIC) is 
particularly useful when multiple candidate models exhibit similar 
accuracy but differ significantly in communication overhead or 
on-device computation, common in edge-deployed FL scenarios. 
FIC helps systematically reject over-engineered models that offer 
diminishing returns relative to their operational cost, providing a 
principled model selection mechanism for FL under resource 
constraints. Unlike AIC/BIC, FIC explicitly incorporates FL-specific 

TABLE 6  Comparative assessment of Federated Information Criterion (FIC) components across common federated learning algorithms.

Algorithm ( )θ̂


L ak k
model fit



1
 

λ ⋅C
communication cost

2
 

λ ⋅


H
heterogeneity penelty



 
γ ⋅ p

complexity penalty
FIC value 
(relative rank)

FedAvg Moderate to poor (under 

non-IID)

Low High (no personalization or 

correction)

Low High

FedAvgM Moderate to good (faster 

convergence)

Moderate Moderate Low Medium

FedProx Good (handles drift) Moderate Low (proximal term 

stabilizes)

Moderate Moderate to Low

FedBN Good (handles feature 

skew)

Moderate Very Low (no BN sharing 

improves personalization)

Moderate (more 

parameters)

Low
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costs, making it more appropriate for real-world deployments 
involving battery-constrained, bandwidth-limited, or heterogeneous 
devices; see Table 7 for comparison. Moreover, it offers tunable 
flexibility: in scenarios where communication is cheap, but compute 
is expensive (or vice versa), the penalty weights can be 
adjusted accordingly.

6 The role of dirichlet and alternative 
distributions in data partition

The role of Dirichlet and alternative distributions - Several commonly 
used platforms for implementing federated learning, including Flower, 
FedML, and TFF (TensorFlow Federated) provide built-in utilities to 
partition datasets using the Dirichlet distribution due to its ease of 
implementation and tunability. However, these implementations are often 
heuristic in nature and lack analytical treatment or comparative 
justification of the Dirichlet distribution’s (Lin 2016) advantages over 
other distribution-based partitioning strategies, such as Zipf or Beta (Zhu 
et al., 2018; McDonald and Xu, 1995), in capturing real-world 
heterogeneity. The authors hope that the subsequent sections cover the 
analytical gap that exists in current literature.

In federated learning, introducing controlled data heterogeneity 
across clients is crucial for realistically simulating non-IID settings, 
particularly under label skew. Among various probabilistic 
approaches, the Dirichlet distribution, Zipf distribution, and Beta 
distribution are commonly employed to partition data in a statistically 
meaningful manner. For a classification task with K classes, the 
Dirichlet distribution models a client’s label distribution 

α= 1( , ... , ) ( .1 )i i ik kp p p Dir , where 𝛼 > 0 is a tunable concentration 
parameter. This allows each client to possess a distinct yet 
probabilistically valid label mix, with the degree of skew inversely 
related to 𝛼.

In contrast, the Zipf distribution generates label frequencies,  

=∑ 1

1
( ; ) = 

1

s

K s
n

k
P k s

n
 capturing power-law behavior where lower-

index classes dominate, useful in mimicking real-world data 
imbalances but offering less control over client-specific label 
proportions. Zipf generates a global class distribution, ∝ 1( ; ) sP k s

k
 

not per-client label distributions. That is, it determines which labels 
are common overall, but not how each client’s dataset should be 
composed. The Beta distribution, beta (α, β) on the other hand 
requires two parameters 𝛼 and β, to model the proportion of a binary 
label, with different parameter combinations yield different shapes—
uniform, skewed, or peaked across clients. The beta distribution 
approach is limited to binary classification and needs more parameter 

tuning per client group, making it less scalable for multiclass tasks. 
While both Zipf and Beta can induce skew, they lack the flexible 
multi-class partitioning and fine-grained control that the Dirichlet 
framework offers.

The primary advantage of the Dirichlet distribution lies in its 
mathematical structure: it defines a distribution over the 
K-dimensional probability simplex, ensuring that all generated label 
distributions are valid (non-negative and summing to one) and 
tunable through a single scalar. This makes Dirichlet-based 
partitioning both practical and theoretically robust for federated 
learning experiments involving multiclass tasks and heterogeneous 
client populations.

Visualizations in Figure 9 demonstrate the mechanics of how the 
Dirichlet distribution provides a simple yet powerful mechanism to 
control label skew across clients in federated learning through a single 
tunable parameter, while illustrating the complexity of tuning Zipf and 
Beta distributions for inducing label skew, in contrast to the simplicity 
of the Dirichlet distribution.

7 Summary, challenges, and future 
work

7.1 Manuscript summary

This study presents a novel contribution to the field of predictive 
maintenance for power systems by demonstrating the applicability of 
federated learning (FL) frameworks on real-world datasets drawn 
from high-voltage substation assets. By capturing the nuanced 
challenges of data heterogeneity, stemming from differences in 
equipment types, sensor modalities, and data collection protocols 
across utilities, the work highlights the critical need for algorithmic 
adaptability in FL deployments.

Among the evaluated methods, Federated Batch Normalization 
(FedBN) largely outperforms alternatives like FedAvgM and FedProx 
in handling distributional shifts. However, the observed performance 
gains are contingent on the nature and granularity of equipment-level 
data collected at each client node. To support more principled 
algorithm selection, this study also proposes a Federated Information 
Criterion (FIC) that balances predictive accuracy with model fit, 
communication overhead, heterogeneity penalties, and model 
complexity. These findings emphasize that while tailored FL 
algorithms offer promise, achieving robust and scalable predictive 
maintenance solutions requires a deep understanding of the 
heterogeneity introduced by underlying asset and sensor 
configurations. This work therefore offers both conceptual 
foundations and applied direction for implementing federated 

TABLE 7  Contrasting AIC, BIC, and the proposed Federated Information Criterion (FIC).

Criterion Centralized data Penalizes 
parameters

Penalizes 
computation

Penalizes 
communication

Suitable for 
FL

AIC Yes ✓ ✗ ✗ ✗

BIC Yes ✓ (stricter) ✗ ✗ ✗

FIC ✗ (FL setting) ✓ ✓ ✓ ✓
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FIGURE 9

Visual comparison of distribution-based label skew generation methods in federated learning. (Top) Dirichlet distributions with varying concentration 
parameter , showing smooth control over label heterogeneity across clients. Lower values yield highly skewed distributions, while higher values approach 
IID. (Middle) Zipf distributions with varying exponent, demonstrating increasing skew toward lower-index classes as increases. Unlike Dirichlet, Zipf does 
not generate client-specific label mixtures. (Bottom) Beta distributions for binary label proportions across clients with different α, β parameterizations. 
Beta distribution based partitioning approach enables binary skew modeling but requires two parameters and lacks support for multi-class tasks.
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learning in operational power systems, enabling secure and 
cooperative asset management at scale.

7.2 Implementation challenges

Despite its promise, the practical deployment of federated learning 
in power system predictive maintenance faces two key implementation 
challenges. First, inter-utility collaboration is constrained by limited 
awareness and institutional inertia, with many utilities yet to recognize 
the full potential of privacy-preserving machine learning for improving 
asset reliability. Promoting cross-utility partnerships will require 
sustained engagement, trust-building, and regulatory alignment. 
Second, sensor calibration inconsistencies across different devices and 
utilities introduce variability in measurement scales and noise profiles, 
which can hinder model convergence and reliability. Establishing 
standardized data preprocessing protocols or sensor harmonization 
frameworks will be essential to ensure meaningful aggregation across 
heterogeneous sources.

7.3 Future scope of work

This study focused on label skew due to its relevance in modeling class 
imbalance across clients. Although feature skew was discussed conceptually, 
it was not experimentally evaluated. This decision was made to maintain 
model comparability and avoid confounding effects arising from 
inconsistent feature distributions. Future research may implement 
controlled feature-skew scenarios, such as covariate shift and conditional 
divergence, to better evaluate algorithm robustness under realistic 
federated heterogeneity.

Looking ahead, future work may also be directed towards the 
exploration of dynamic client clustering based on asset similarity, 
real-time model adaptation to evolving equipment behavior, and 
integration of domain-specific priors to further enhance model 
robustness. Extensions to multi-modal sensor data, secure 
aggregation techniques, and edge-device optimization will also be 
critical to operationalizing FL frameworks at scale across diverse 
utility environments. From a security standpoint, safeguarding 
FL-based smart grid systems against diverse attack vectors is 
critical. Byzantine attacks are particularly concerning, where 
malicious clients inject falsified model updates that can degrade 
or destabilize the global model. These attacks are notoriously 
difficult to detect, as they are often indistinguishable from 
legitimate updates. While robust aggregation techniques have 
been introduced to counter such threats, further advancements 
are necessary to ensure resilience under adversarial conditions. 
Another key vulnerability is the backdoor attack, wherein 
adversaries embed covert malicious behaviors into the global 
model while maintaining high accuracy on standard tasks. 
Mitigating this threat requires strengthening defense strategies 
such as differential privacy enforcement and anomaly-based 
detection mechanisms. Although federated learning inherently 
limits data exposure by keeping raw data local, these indirect 
leakages remain a concern. Enhancing the use of privacy-
preserving techniques, including homomorphic encryption and 
secure multi-party computation, is essential to bolstering 
protection against such inference-based threats.
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