
Frontiers in Artificial Intelligence 01 frontiersin.org

Advancing engineering research
through context-aware and
knowledge graph–based
retrieval-augmented generation
Soham Ghosh 1,2* and Gaurav Mittal 3

1 Department of Electrical Engineering, Black & Veatch, Overland Park, KS, United States, 2 IEEE IAS/PES
Kansas City Section, Kansas City, KS, United States, 3 Enterprise Solutions, Black & Veatch, Overland
Park, KS, United States

Large language models (LLMs) are powerful in language understanding and content
generation but frequently fall short of technical accuracy when they are applied to
engineering code, standards, and design documents. To mitigate this, we are seeing
the emergence of Retrieval-Augmented Generation (RAG) models that ground outputs
of LLMs with information from external trustworthy resources, increasing the factual
consistency. However, traditional RAG techniques are limited in the treatment of
isolated information (limited to the amount of information in a fixed-size chunk)
and are deemed ill-equipped to traverse semantically linked technical information.
This study introduces a collection of new and highly deployable RAG-LLMs built
on the n8n automation system and specifically designed for engineering domains.
Framework effectiveness was tested on a set of prompts developed with the help
of practicing electrical engineering professionals and should be read through the
framework’s lens for interpretation of national engineering codes, technical standards,
and design standards. To mitigate the shortcomings of the conventional retrieval-
based chunking methods, a contextual RAG-based approach is employed to align
the retrieved content with the query context to improve relevance. Moreover, RAG
is adopted to structure knowledge graph retrieval, which can retrieve densely linked
concepts from multiple knowledge graphs, thereby promoting more profound
semantic understanding in complex technical domains. The study describes the
relative benefits of these improvements, points to practical deployment issues,
strengths, and weaknesses. All the n8n workflows employed in this study are made
available as supplementary materials to facilitate reproducibility and sharing within
the engineering research community and practitioners.

KEYWORDS

context-aware information retrieval, RAG architectures, engineering design
automation, knowledge graphs, LLM and intelligence

1 Introduction

Over the past half a decade, large language models (LLMs) have revolutionized many
fields, ranging from natural language processing to artificial intelligence. However, despite
their extraordinary linguistic skills, LLMs are known to be highly prone to hallucinations, i.e.,
outputs that are factually wrong or non-sensible for no evident reason. This is due to several
challenges of LLM design and operation, which include but are not limited to the use of large
training datasets that are often unfiltered, and to the auto-regressive nature of these models,
which can cause generated content to be inconsistent (Li et al., 2023; Roustan and Bastardot,
2025). As such, LLM hallucinations can take forms such as fake evidence, false inference, and

OPEN ACCESS

EDITED BY

Yeon-Chang Lee,
Ulsan National Institute of Science and
Technology, Republic of Korea

REVIEWED BY

Joel Oduro-Afriyie,
OriGen AI, United States
Feng Zhang,
Sinopec Research Institute of Petroleum
Processing, China

*CORRESPONDENCE

Soham Ghosh
 sghosh27@ieee.org

RECEIVED 01 September 2025
ACCEPTED 28 October 2025
PUBLISHED 19 November 2025

CITATION

Ghosh S and Mittal G (2025) Advancing
engineering research through context-aware
and knowledge graph–based
retrieval-augmented generation.
Front. Artif. Intell. 8:1697169.
doi: 10.3389/frai.2025.1697169

COPYRIGHT

© 2025 Ghosh and Mittal. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE  Original Research
PUBLISHED  19 November 2025
DOI  10.3389/frai.2025.1697169

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1697169&domain=pdf&date_stamp=2025-11-19
https://www.frontiersin.org/articles/10.3389/frai.2025.1697169/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1697169/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1697169/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1697169/full
mailto:sghosh27@ieee.org
https://doi.org/10.3389/frai.2025.1697169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1697169

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 02 frontiersin.org

totally wrong replies. These hallucinations can be dangerous in critical
applications like engineering, reasoning, and diagnosis, and
information retrieval (Zhang et al., 2023). For example, one study
shows that the hallucination rate for the different LLMs ranges
between 50 and 82% depending on the operational settings,
emphasizing the prevalence of such a phenomenon in machine-
produced texts (Omar et al., 2025).

Because hallucinations can have severe consequences, particularly
in fields like engineering, healthcare, and law, there is a pressing need to
explore new approaches that make LLM outputs more dependable. One
approach with potential is Retrieval Augmented Generation (RAG),
which integrates LLMs’ skills with retrieval-based approaches to enhance
correctness and relevance. RAG enables LLMs to dynamically and
modularly include external sources into the generation flow, which
greatly mitigates the limitation of being confined to pre-defined training
datasets (Gopi et al., 2024; Siddharth and Luo, 2024). In an applied
context, leveraging RAG technology is observed to significantly enhance
the capabilities of LLMs in emergent scenarios such as rapid identification
of relevant clauses in engineering design code and standard or query-
based knowledge exploration for an engineering document cluster. By
allowing LLMs to access additional information, a RAG system increases
coherence and factuality of outputs, demonstrating their wide
applicability across different high-stakes settings (Superbi et al., 2024).

In addition, the recent developments in the comprehension and
management of hallucinations relate to the increase in the use of RAG
techniques. Using RAG mechanisms (which mix generative capabilities
with well-defined retrieval processes), LLMs can self-repair incorrect
results by referencing (on-the-fly access) information fetched
dynamically from reliable databases. This not only provides the means
for a more dependable computational environment but also enhances
user confidence in intelligent systems (Chen et al., 2023). As LLMs
develop, the integration of RAG methods seems to be an important
move in order to guarantee that such technologies are capable of
generating suitable, context-sensitive, and reliable answers in a growing
variety of use cases. Although retrieval-augmented generation (RAG)
models can address the aforementioned problems by grounding answers
in well-documented sources, the actual implementations of RAG for
engineering remain underdeveloped, and there are a number of practical
challenges hindering their implementation. These are as follows:

	 1.	 The barrier to entry is still quite high for the RAG-LLM
combination, given that building a well-performing RAG-LLM
pipeline usually demands a good deal of programming
expertise, which may not be available to many engineering
professionals and researchers.

	 2.	 For an RAG-LLM application to truly be successful, it should
have the ability to access a user’s existing document repository
in a manner similar to popular applications like Google Drive
or SharePoint. Unfortunately, building such integrations is never
that simple, and would likely add layers of complexity, such as
us having to implement authentication protocols, configure a set
of APIs, and understand how to parse a document.

	 3.	 In order to make a RAG pipeline work well, one often also has
to adopt more advanced tweaks, such as reranking strategies,
context retrieval mechanisms, or knowledge graph-based
augmentation. While those approaches increase retrieval
precision and relevance of output, they tend to be technically
challenging and are based on the use of several NLP tools and
frameworks. Altogether, these subtleties limit the accessibility
and effective usage of RAG-LLM systems for numerous
engineers and applied researchers.

Real-world engineering research and application have faced these
obstacles down, and many practitioners have included them as “given”
variables. To mitigate the high entry barrier and technical complexities,
a fast-deployable recipe has been articulated employing open LLMs
and modular RAG pipelines and enjoying simple deployment
capabilities at accessible platforms such as LM Studio, AnythingLLM,
and n8n. This eliminates the requirement for elaborate programming
and allows practitioners to remain focused on the engineering content
and not the software infrastructure. A number of workflow
implementations have been showcased in the n8n automation
framework, including document retrieval, reranking, contextual
querying, and knowledge graph integration. Performance testing has
been performed to a large extent, based on engineering documents,
technical standards, and literature from, e.g., the National Fire
Protection Association (NFPA), the Institute of Electrical and
Electronics Engineers (IEEE), and the International Council on Large
Electric Systems (CIGRE). The findings validate that a rapidly
deployable RAG-LLM design can achieve good usability and high
performance in technically challenging domains.

1.1 Manuscript contribution

This study pushes forward the methodology when it comes to the
development of rapidly deployable retrieval-augmented generation
(RAG) systems and evaluation of technical document querying tuned
for practicing power system professionals. The specific contributions
are as follows:

	 1.	 RAG-LLM pipeline implementation: Example of a rapid
deployable RAG-LLM pipeline, using LM Studio and
AnythingLLM to secure local document retrieval and language
model inference is provided. The code to be used for parsing
and embedding corpus-specific documents is released and
available through the ‘Data Availability’ section of the article.

	 2.	 Practitioner-oriented evaluation and design considerations: The
manuscript frames the design and evaluation of RAG
workflows with a focus on practitioner guidance, particularly
for electrical engineers and applied researchers working in
rapidly deployable environments such as n8n. Special attention
is given to the challenges encountered by traditional RAG
systems when processing dense tabular data and multi-layered
exceptions commonly found in technical codes and standards.

	 3.	 Contextual retrieval workflow via n8n: We introduce a novel
RAG contextual workflow implemented in n8n, which
supports better processing of tabular structures and ‘exception
logic’ by orchestration of document processing and dynamic
retrieval logic. The full workflow is released to the public and

Abbreviations: IEEE, Institute of Electrical and Electronics Engineers; LLM, Large

Language Models; NEC, National Electric Code (also known as NFPA 70); NFPA,

National Fire Protection Association (US); RAG, Retrieval-Augmented Generation.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 03 frontiersin.org

is available through ‘Data Availability’ for reproducibility and
the enablement of practical use.

	 4.	 Knowledge graph-based retrieval workflow via n8n and
Infranodus: We present a state-of-the-art knowledge graph-
augmented RAG workflow leveraging n8n and Infranodus to
semantically structure engineering documents and reveal
hidden relationships among engineering concepts. This
method allows developers to make exploratory queries and
cross-reference between linked standards, which is beneficial
for complex design and compliance activities. The full process,
from graph construction to integration and retrieval logic, is
released to the public in the ‘Data Availability’ section for
reproducibility and to serve as a practical tool.

1.2 Manuscript organization

The remainder of the manuscript is structured as follows: in
Section 2, we describe the basics of Retrieval Augmented Generation
(RAG), which presents the basic building blocks of the RAG system
and a typical structure of the RAG system architecture. Section 3
describes a simple-to-adopt private RAG framework constructed from
open-source LLMs, which uses LM Studio and AnythingLLM to
be deployed locally. In Section 4, we focused on quickly deployable
integration of n8n for document retrieval, performing an in-depth
evaluation and ranked prompts based on a question set built from the
NFPA 70 National Electrical Code (NEC) 2017. This section also
highlights important observations about when traditional RAG-LLM-
based pipelines do and do not perform well. Section 5 mitigates the
above restrictions via targeted improvements in the area of reranking
and contextual RAG workflows. We show scores in comparison to
various rerankers (e.g., bge-reranker-base and Cohere Reranker v3. 5)
over various embedding models such as OpenAI and Voyage. As an
advanced use case, Section 6 discusses a multi-brain RAG
implementation of a state-of-the-art knowledge graph-based RAG
system and how it can be applied for exploratory querying on a
network of engineering standards. Practical guidelines for reducing
the consumption and related costs of APIs are presented. Finally,
Section 7 summarizes with a summary of our findings, the current
limitations, and future work ahead.

2 Fundamentals of
retrieval-augmented generation (RAG)
and present limitations

Large language models (LLMs), such as GPT-4 and LLaMA, have
demonstrated remarkable capabilities at generating coherent,
contextually appropriate text. They have an impressive flaw, though
they often “hallucinate,” generating plausible-sounding but incorrect
(or impossible to verify) information. This observation is due to the
fact that LLMs produce outputs by relying on statistical associations
in their training data and not on grounded truth or domain-specific
knowledge. To address this limitation, retrieval-augmented generation
(RAG), a novel architectural style, has emerged as a compelling
approach. With RAG, the generation process is combined with a
retrieval module to dynamically retrieve relevant documents or
context passages from an external knowledge source. This is similar in

spirit to giving a model access to a domain-specific textbook at test
time, to consult ground truth sources before generating answers.

By building retrieval directly into the generation loop, as illustrated
in Figure 1, a RAG system can largely improve the end quality of
correctness and domain relevance. For example, in power systems
engineering or regulatory compliance, where specific terms and
references are required, RAG provides answers that are tied to source
materials collected for that domain. This renders RAG especially well-
suited for use cases where there is a high emphasis on knowledge-
intensive question answering, code documentation, engineering
reasoning, and queries, and where hallucinations can be high-stakes.
Nevertheless, RAG is not a replacement for domain adaptation or
continual learning. It does not allow a model to generalize new syntactic
constructions, programming languages, or stylistic conventions.
Instead, it offers an efficient amplification process for enhancing
response accuracy within a predefined information domain. In this way,
RAG facilitates retrieval, and not representation, which is more suitable
for fine-grained applications rather than general domain training.

Although hosted LLM interfaces like ChatGPT offer the ability for
a user to upload domain-specific documents (e.g., an electronic
engineering textbook or an IEEE master volume) and then engage in
retrieval-augmented querying, there are multiple limitations when
one has to resort to a cloud-based service for professional or industrial
use. These are as follows:

	 1.	 Data sovereignty and confidentiality, become a pressing
concern. Uploaded documents are outside of the control of
personal or corporate workstations, effectively by-passing
internal policies on data handling, intellectual property
agreements, or even regulatory requirements, especially when
proprietary designs, sensitive specs, or restricted standards
are concerned.

	 2.	 Hosted models often tend to have limits on the length of tokens
and contexts that make it hard for technology to work. For
instance, in the case of a long publication such as a multi-
chapter standard or a big handbook, the material may go above
the maximum token limit, even with approaches for breaking
up and summarizing documents. This might lead to insufficient
context or retrieval and may make response generation
less accurate.

	 3.	 In the case of hosted solutions, there is usually no persistent
user-manageable storage of the parsed knowledge. After the
document is uploaded and used for one session, the embedding
and index layers are transient and not seen (allowed access to)
by the user. This makes it impossible for engineers to construct
long-term, reusable vector databases that can adapt to the
progress of ongoing projects or to organizational requirements
in terms of the knowledge needed.

	 4.	 The other limitation is the higher cost of operation, and this is
more applicable to frequent or large-scale document
processing. Subscription fees, usage-based pricing, and data
upload limitations while attempting to submit jobs to external
services can add up to prevent hosted LLM services at scale
economically feasible for long-term engineering workflows or
enterprise integration.

These shortcomings also reveal the importance of self-hosted
RAG pipelines, i.e., a system where people could download LLMs

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 04 frontiersin.org

themselves and run them locally, parse their own engineering
documents, and keep the embeddings in a vector database of their
selection (e.g., FAISS, Pinecone, or Qdrant). This kind of configuration
gives users full access to the retrieval layer, the ability to customize
indexing strategies, and integrate with in-house tools or platforms. In
the context of electrical engineering, this means sensitive design
documents, grid planning standards, or equipment protocols can
be queried securely, reliably, and repeatedly, without using third-party
APIs or external cloud services. It also provides the opportunity for
sensitive document access policies, auditability, and retention of
understanding over time, which is important in high-assurance
engineering contexts.

3 Opensource LLM and private
RAG-LLM pipeline for engineering
applications

Open-source large language models (LLMs) are especially
attractive in that their deployments can be conducted locally on
premises, such that users can locally perform inference in a secure and
private way and without relying on proprietary API endpoints or any
external, possibly cloud-based, service. This is especially useful in
retrieval-augmented generation (RAG) tasks in engineering domains
where data privacy, reproducibility, and system-level control are
important. Engineers can consult the Hugging Face Open LLM
Leaderboard (Huggingface, 2025) to find candidate models for local
deployment. Through the filtering into “mid-range” models (typically
14B-32B range as shown in Table 1), users can choose those models

that compromise between inference performance and
hardware feasibility.

The private and locally executed RAG-LLM leverages two open
source softwares, namely LM Studio and AnythingLLM; see Figure 2.
Within LM Studio, users can download target LLM models from open
source and launch them in their quantized formats (e.g., GGUF)
without extra tuning. The settings that may be tuned are those of the
system prompt, randomness temperature, and top-K sampling
parameter. For an entire RAG pipeline, a second open-source
application, AnythingLLM, is leveraged for establishing a local
retrieval work environment. PDF files consisting of IEEE standards,
electrical codes, or equipment manuals have to be initially changed
into the Markdown (. md) and one may upload them to
AnythingLLM. Markdown works better for RAG because it provides
clean, structured, and token-efficient text that enables accurate
chunking and retrieval, unlike the noisy and layout-heavy content
in PDFs.

AnythingLLM also permits users to set the ‘Text Chunk Size’
and ‘Text Chunk Overlap’, which are crucial parameters that
determine how fine and how much of the context is preserved in
document embeddings. AnythingLLM communicates with LM
Studio (which is (supposed to be) running locally), in which
we embed the LLM, and it makes requests to the cached model to
generate text in response to questions about the embedded content.
Such a setup guarantees that the model and the knowledge base are
local to the user’s computer, and that the user remains in complete
control of the data, the execution, and the experimental
reproducibility, without the need to rely on cloud inference or
third-party services.

FIGURE 1

Illustration of RAG architecture, where a user query initiates a retrieval process from a knowledge base (e.g., vector database or document store).

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 05 frontiersin.org

4 Rapidly deployable integration with
n8n for document retrieval and
framework limitations

Although LM Studio and AnythingLLM provide a fast, secure,
and locally deployable solution for developing retrieval-augmented
generation (RAG) systems, it comes with limitations in workflow
automation, integration, and orchestration capability. For more
advanced use cases, when integrating document ingestion, vector
store, and even multi-channel query, a flexible, growable automation
frame is required. Which is precisely where n8n, a free and open-
source, node.js-based workflow automation tool, excels. User of n8n
can create automated workflows that incorporate AI with corporate-
level business process automation. It runs on-premises, which
guarantees data privacy and allows for custom logic, APIs, and
plugins, so it is appropriate for engineering, document intelligence,
and RAG applications.

Figure 3 shows an example RAG workflow using n8n based on the
use case of this paper. The workflow functions as follows:

	 1.	 Document upload: Engineers/technical professionals upload
documents such as PPT, PDF, Datasheets, Word-based

Specifications, or Manuals built as per the standards in 1 above,
into a Google Drive folder assigned for them.

	 2.	 Automated ingestion: n8n monitors the Google Drive folder for
new uploads. When a file is discovered, it initiates a processing
pipeline to extract the content, optionally parse it into Markdown
or plain text, and embed the text using the user-provided
embedding model.

	 3.	 Vector storage: The resulting representations are saved in a vector
database (can be local or cloud-hosted), such as Qdrant, Chroma,
Pinecone, to be queried against later.

	 4.	 Query interface: The end users pose queries using different
interfaces such as Gmail, Slack, or a web-based chatbot. There, an
n8n agent returns the top-K related chunks from the
vector database.

	 5.	 LLM generation: The resulting snippets are sent to the LLM of the
user’s preference1, which is hosted in a local machine to generate
a grounded, context-aware reply.

This modular and event-driven design further decouples ingestion
and querying phases, and allows users to automate multi-step, cross-
platform knowledge workflows, resulting in a more scalable and
maintainable RAG-LLM solution in engineering settings.

In order to demonstrate the effectiveness of the proposed RAG-LLM
pipeline, we performed an experiment on a collection of curated,
domain-specific search queries to the National Electrical Code (NEC), a
complex regulatory document relied on by practicing electrical
engineers. The NEC codebook (in parsed text) was uploaded by the user
to the RAG system, allowing for grounded-document retrieval for
inference. The evaluation searches were specified to check if the
system can:

	 1.	 Locate and extract numerical values from NEC tables (e.g.,
minimum burial depths, conductor ampacity ratings, and
overcurrent protection limits).

	 2.	 Extract exceptions and conditional clauses from the codebook,
as they frequently manifest as annotations or as structural
deviations from the norm.

	 3.	 Retrieve the relevant sections and apply necessary contextual
logic (e.g., identifying requirements that vary by installation
type, voltage class, or application environment).

Each generated response was evaluated against user-defined
ground truth answers, see Table 2, simulating expert validation. For

TABLE 1  Open LLM leaderboard filtered by ‘mid-range’ models and sorted by weighted average of normalized scores from all benchmarks (as of June
2025).

Model Average score across all
benchmarks

IFEva† GPQA‡ CO2 cost

Qwen2.5-test-32b-it 47.37% 78.89% 15.21% 29.54 kg

Horizon-AI-Avengers-V1-32B 47.34% 79.72% 14.99% 7.95 kg

FluentlyLM-Prinum 47.22% 80.90% 18.23% 21.25 kg

Qwen.5-14b-v1.0-e3 47.09% 73.24% 22.26% 1.56 kg

Qwen2.5-32B-Instruct-

abliterated-v2
46.89% 83.34% 15.66% 13.49 kg

†Instruction-following evaluation (IFEval): This metric tests the model’s ability to follow explicit formatting instructions.
‡Graduate-level Google-Proof Q&A (GPQA): This metric scores the LLM performance based on PhD-level knowledge multiple-choice questions in science.
Boldface scores represent the highest scores or the lowest carbon footprint.

FIGURE 2

Illustration of a private and locally executed RAG-LLM pipeline using
LM Studio and AnythingLLM.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 06 frontiersin.org

scoring, we used the correctness measure of DeepEval with GEval
criteria, which assesses semantic alignment, factual grounding, and
contextual completeness between the model’s response and the
reference answer.

The GEval metric provides a detailed evaluation based on the
following criteria:

	 1.	 Grounding: Did the model reference or integrate pertinent
language from the retrieved NEC section?

	 2.	 Exactness: In terms of exactness, was the LLM output able to
accurately deduce essential quantitative thresholds and
regulatory stipulations?

	 3.	 Verifiability: Can the assertions made by the LLM output
be traced back to the source sections of the document?

This evaluation framework ensures that the RAG-LLM system not
only generates plausible text but also provides code-compliant,
reference-anchored answers suitable for technical decision-making in
real-world engineering workflows.

Several significant insights were derived from the assessment of
the RAG-LLM pipeline via NEC-based queries:

	 1.	 Semantic prompting and section identification: The RAG-LLM
workflow demonstrated efficacy in identifying and correlating
the relevant NEC regulations for a specified inquiry. The
accuracy was enhanced when prompts were subtly reconfigured
to more effectively guide the model toward the desired retrieval
pathway. Inquiries that reflected the phrasing or technical
terminology of the NEC yielded more accurate outcomes,

highlighting the importance of semantic alignment between
user input and coding language.

	 2.	 Numerical table retrieval and chunking limitations: The system’s
effectiveness in handling numerical lookup queries from tabular
data was only somewhat successful. Challenges were observed
with NEC tables, where the retrieval procedure often failed to
consistently reproduce the table. The main cause for this
behavior is in the method of content division: when vast tables
are segmented into multiple sections, the model tends to
frequently acquire only fragments of the original context. This
limited viewpoint may generate responses that are either
incorrect or just partially accurate. From the way the table’s
continuity is digested, it is recognized that there is a shortcoming
in current Retrieval Augmented Generation approaches.

	 3.	 Challenges with multi-condition exceptions: The RAG-LLM
pipeline faced challenges with regulations using multi-conditioned
exceptions, commonly seen in NEC provisions that provide
different requirements dependent on voltage, environment, or
application type. These exceptions are often expressed as
enumerated or hierarchical logical criteria, and the system faced
difficulties in analyzing and reasoning through the extensive array
of situations. As a result, responses sometimes omitted critical
qualifying criteria or incorrectly applied the rule entirely. This
indicates a current deficiency in handling hierarchical exception
logic within extensive regulatory documents.

These observations suggest specific areas for refinement,
particularly in document chunking, semantic prompting, and
exception reasoning, which point toward the need for more advanced

FIGURE 3

n8n RAG-LLM workflow with a Google Drive-based retrieval system offering a user-friendly framework for engineers and researchers.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 07 frontiersin.org

TABLE 2  Validation of traditional RAG-LLM responses using an n8n workflow on query tasks based on the 2017 National Electrical Code (NEC).

Question and ground truth Actual output and evaluation

Q1. Prompt: I am trying to find the table in the NEC that

deals with a single-phase AC motor and the associated full

load current.

A1. Ground truth: Table 430.248 of the NEC addresses

single-phase AC motors. It also addresses the

corresponding full load current.

A1. Actual output: The NEC section is Article 430. This section is titled “Motors, Motor Circuits, and

Controllers.” Do refer to Table 430.248 of Article 430 to determine the minimum full-load current required for

a single-phase AC motor, as indicated by the motor’s nameplate rating.

Score: 0.9072185128712421

Reason: The output was found to correctly cite NEC Table 430.248. It aligns with the expected outcome. It

additionally provides supplementary context by citing Article 430 and its title, both of which augment factual

accuracy and comprehensiveness. The supplementary detail slightly exceeds the expected simplicity; yet, there

are no discrepancies or omissions.

Q2. Prompt: I want to know what is the minimum cover

required per Section 300.5 of the NEC, for direct buried

cables running under a parking lot, based on Table 300.5.

A2. Ground truth: According to Table 300.5 of the NEC,

the minimum cover necessary for a direct buried cable

beneath a parking lot is 24 inches.

A2. Actual output: According to NEC Table 300.5, the minimum burial depth for a direct-buried cable

installation under a parking lot is 24 inches (609 mm). This relates to the upper surface of the finished grade,

and further criteria may be considered when determining the appropriate cover for your specific installation.

Score: 0.859266659995407

Reason: The actual production accurately determines the necessary minimum cover as 24 inches, consistent

with the anticipated output. It offers supplementary context by specifying the measurement in millimeters and

acknowledging that other factors may affect the cover, which, although not included in the anticipated output,

does not contradict it. The information is accurate and complete; nonetheless, the additional details somewhat

diverge from the anticipated conciseness.

Q3. Prompt: In the NEC, which section deals with the

minimum cover requirement for cables and conduits.

A3. Ground truth: In the NEC, section 300.5 deals with

the minimum cover requirement for cables and conduits.

A3. Actual output: The minimum cover requirements for cables and conduits are specified in Section 300.5 of

the NEC. This section delineates the minimum cover requirements for direct-buried cables, conduits, or other

raceways. Furthermore, additional information concerning mechanical protection for direct-buried cables can

be found in sections 840.48 and 830.47 of the NEC.

Score: 0.8009300906486064

Reason: The output accurately identifies Section 300.5 of the NEC as pertaining to minimum cover

requirements for cables and conduits. It also offers further information regarding related areas, which is not

mandatory but does not contradict the anticipated outcome. There are no factual flaws or omissions about the

basic topic, but the other facts, albeit accurate, are superfluous to the specific inquiry.

Q4. Prompt: Is there any restriction on running

conductors in parallel in the NEC.

A4. Ground truth: NEC section 310.10(H) talks about

conductors in parallel.

A4. Actual output: Indeed, Section 310.10(H) of the NEC permits the installation of parallel conductors in

raceways, multiconductor cables, or direct-buried single-conductor cables.

Score: 0.5432697039021899

Reason: The actual output accurately recognizes NEC section 310.10(H) as pertinent to parallel conductors,

consistent with the anticipated output. However, the output introduces supplementary details regarding

installation methods that are not in the anticipated output. These additional outputs may be perceived as

superfluous information. While there are no factual flaws or contradictions, the additional details may detract

from the emphasis on the essential information.

Q5. Prompt: Based on section 310.10(H) of the NEC, if

I have two parallel #8 AWG conductors, what is my

restriction on overcurrent protection?

A5. Ground truth: The overcurrent protection for two

parallel #8 AWG conductors must ensure that the

ampacity of each individual conductor is not surpassed if

one or more of the parallel conductors become

unintentionally disconnected.

A5. Actual output: Section 310.10(H) of the NEC permits parallel conductors in raceways, multiconductor

cables, or direct-buried single conductor cables, provided they satisfy specific criteria:

One of these is that the cumulative current-carrying capacity of the parallel circuits must not surpass the

ampacity rating of the raceway or overhead circuit.

In the specified context, when utilizing two parallel #8 AWG conductors, it is crucial to verify that the

cumulative current-carrying capability of both circuits does not surpass the ampacity rating of the raceway or

overhead circuit.

Score: 0.2610665811531422

Reason: The actual output fails to specifically mention the restriction on overcurrent protection related to the

scenario where one or more parallel conductors become disconnected, which is a key aspect of the expected

output.

Q6. Prompt: I am trying to find the table in the NEC that

deals with AC motors and associated current.

A6. Ground truth: Tables 430.248 through 430.250 reflect

the typical and most used 4-pole and 2-pole induction

motors (AC) in use.

A6. Actual output: Article 440 of the National Electrical Code (NEC), entitled “Motor Controllers,” addresses

AC motors and their corresponding currents. Refer to Table 440.5 of Article 440 for the minimum full-load

current specifications for single-phase or three-phase AC motors, as determined by the motor’s nameplate

rating.

Score: 0.20462199541570797

Reason: The actual output erroneously designates Article 440 and Table 440.5 as the pertinent part for AC

motors. The correct output should point to Tables 430.248 through 430.250. This signifies a factual inaccuracy

and a substantial discrepancy.

Score is computed using DeepEval’s correctness with the criteria [GEval] metric.
*A parsed version of the 2017 NFPA 70 – National Electric Code (NEC) was used for the above RAG implementation.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 08 frontiersin.org

FIGURE 4

(A) n8n RAG-LLM workflow with Cohere reranking. (B) Relevant scoring based on Cohere chunking on a 10,000-token document.

RAG strategies such as reranking based on a higher number of top-K
results and contextual RAG strategies. These enhancements are
discussed in detail in the subsequent section.

5 Novel enhancements to traditional
RAG-LLM workflow to improve
performance

The following section presents targeted upgrades, including
re-ranking and contextual retrieval, to overcome the constraints of the
typical RAG-LLM pipeline outlined in the preceding section,
specifically addressing issues of relevance and specificity. Although
sophisticated, the additional features are easy to integrate into the fast-
deployable n8n approach. For the purpose of reproducibility and
adoption in practice, these advanced n8n workflow JSON files are
made available and referred to in the “Data Availability” section.

5.1 Enhancements based on reranking

Reranking is a crucial stage in modern information retrieval and
retrieval-augmented generation (RAG) pipelines, where a basic retriever
first gathers a diverse set of candidate documents, subsequently followed
by a more sophisticated model that rearranges them based on their true
relevance to the query. Among reranking approaches, cross-attention-
based reranking is notable for its ability to represent intricate semantic
congruence between the query and candidate passages. Unlike
bi-encoder systems that independently encode queries and documents

into fixed-length embeddings, cross-attention models (such as BERT or
T5 in a cross-encoder configuration) concurrently process the query-
document pair within a cohesive transformer architecture. This allows
the model to compute token-level interactions, thereby concentrating
on contextually relevant segments of each passage in relation to the
query. As a result, the representations yield significantly more accurate
relevance ratings, often leading to a considerable enhancement in
retrieval performance, especially in tasks requiring nuanced
understanding or disambiguation. This method requires heightened
processing capabilities, making it relatively unfeasible for initial retrieval
from large data sets; nonetheless, it is exceptionally effective for
reranking a limited selection of top-K candidates, attaining a robust
balance between precision and scalability.

On the implementation side, reranking-based gains are within
reach in an n8n pipeline. A vector database in n8n could be enabled
to rerank results and link the reranking node to a reranking model,
such as Cohere Rerank 3.5, see Figure 4A. At the back-end, the Rerank
API disaggregates the input query into smaller text segments
according to the relevant document. Each segment comprises the
query followed by a portion of the document, with the segment size
determined by the context length of the employed model. For instance,
contemplate the subsequent scenario:

	•	 The model in use is rerank-v3.5, which supports a maximum
context length of 4,096 tokens, and

	•	 The input query consists of 100 tokens, and,
	•	 The document to be ranked is 10,000 tokens long, and
	•	 Document truncation is turned off by assigning ‘max_tokens_

per_doc’ a value of 10,000.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 09 frontiersin.org

Under this setup, the API splits the document into three chunks, as
illustrated in Figure 4B. The final relevance score assigned to the
document corresponds to the highest score obtained across these chunks.

To assess the performance of various embedding models and
rerankers, multiple retrieval tests were conducted. Table 3 presents the
evaluation results using two standard information retrieval metrics:
hit rate and Mean Reciprocal Rank (MRR). Three reranking
configurations were compared:

	 1.	 Without any reranking (baseline),
	 2.	 bge-reranker-base, and
	 3.	 Cohere V3.5 reranker.

With results documented in Table 3, the following conclusions
were reached:

	 1.	 OpenAI + Cohere rerank combinations were found to
consistently achieve the highest scores across both hit rate and
MRR, thereby positioning them as the top-performing setup.

	 2.	 CohereRerank and bge-reranker-base provide consistent
enhancements across various embedding models. This
demonstrates their strength and effectiveness in improving
search quality, irrespective of the type of embedding
backbone employed.

The influence of rerankers cannot be overstated, as they play a key
role in improving the MRR for many embeddings, showing their
importance in making search results better. In the next section, the
discussion will be directed toward another popular RAG enhancement
technique using contextual retrieval.

5.2 Enhancements based on contextual
retrieval pipeline and its advantages

For traditional RAG pipelines, source documents are split into
smaller text chunks to achieve retrieval precision and efficiency. This
segment-wise approach is currently widely used in practice and is
effective, especially when the context is self-contained within each
segment. However, in domain-specific use cases such as electrical
codes and standards, this approach may lead to significant context
fragmentation. As an example, consider the following question asked
of a database that stores the National Electrical Code (NEC):

What is the minimum burial depth for direct-buried conductors
under a parking lot?

A retrieved chunk might contain the following response:

The minimum cover depth shall be 24 inches for direct-
buried conductors.

While this statement appears relevant, it lacks critical contextual
qualifiers. The retrieved chunk may omit the information that the
requirement applies only for certain types of installations (for
example, circuits that are rated 0 to 600 volts) and is located under
certain locations (such as driveways or parking lots subject to
vehicular traffic). Although the retrieval might be considered
successful, the response output by the RAG pipeline might
be incomplete or not follow the desired semantics if the installation
condition or voltage rating is mentioned in a previous chunk. This
points to a fundamental limitation of traditional chunk-based RAG
systems: it is possible for each chunk to contain insufficient semantic
or structural context to potentially support an in-depth, regulation-
compliant answer. In more complex documents such as the NEC,
where applicability is often determined by a combination of table
values, conditional rules, and cross-referenced sections, such
fragmentation can harm both the relevance of retrieved sections and
the accuracy of a generative search. These limitations warrant
looking for context-aware RAG approaches that try to keep and
restore larger contextual windows during both retrieval
and generation.

To address this, contextual RAG augments each chunk with its
surrounding textual context (e.g., parent sections, headers, or
preceding paragraphs) during embedding. This allows the retriever to
maintain semantic continuity and structural fidelity. However, this
comes at the cost of an increased token volume. Empirically,
contextual RAG embeddings can require 2–3 times more tokens per
chunk than traditional RAG approaches.

As token volume increases, careful model selection becomes
essential, especially for real-time or cost-sensitive applications. For
retrieval and summarization tasks that do not require advanced
reasoning, it was found to be preferable to select lightweight
LLMs with:

	o	 High token throughput (e.g., 200–300 tokens/s),
	o	 Low per-token cost (e.g., <$0.10 per input million tokens), and.
	o	 Extended context windows (e.g., 1 million tokens).

These characteristics, summarized in Table 4, ensure that
contextual RAG systems remain responsive and scalable, even as
embedding and inference loads grow with richer document
representations. At the time of writing the paper, Llama 4 Scout 17B

TABLE 3  Evaluation of rerankers using two standard information retrieval metrics.

Embedding Without any reranking
(baseline)

bge-reranker-base Cohere V3.5 reranker

Hit rate MRR Hit rate MRR Hit Rate MRR

OpenAI 0.828 0.692 0.899 0.822 0.932 0.877

Voyage 0.766 0.650 0.818 0.777 0.891 0.830

Google-PaLM 0.815 0.676 0.892 0.752 0.916 0.865

Boldface score indicates the highest performance.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 10 frontiersin.org

16E fulfilled these criteria and was used for the subsequent
demonstrations of contextual RAG; however, given the rapid
developmental pace in this domain, researchers should look for
similar lightweight LLMs that might better align with the preferred
characteristics listed in Table 4.

From a system architecture standpoint, the implementation of
contextual RAG within an n8n workflow closely mirrors that of
traditional RAG pipelines; recall Figure 3. The overall structure, as
illustrated in Figure 5A, comprises document ingestion, embedding
generation, vector storage, retrieval, and language model invocation,
and remains fundamentally the same. However, contextual RAG
introduces two key enhancements that differentiate it in both design
philosophy and execution:

	 1.	 First, the text splitting and chunking were also done more
deliberately, with explicit control on the size, overlap, and
structural boundaries of the chunks. This splitting/chunking
strategy ensures that semantically cohesive units, for example,
complete table entries, complete regulatory exceptions, or
paragraph-level logical constructs, are preserved as individual
retrieval units. This refinement is essential for preserving the
context that is valuable for the downstream retrieval
and reasoning.

	 2.	 Second, instead of aggregating top-K retrievals into a single
prompt, each chunk is individually passed to a “Basic LLM
Chain” node within n8n. This node is configured with a well-
crafted, structured prompt (user message), Figure 5B, that
guides the LLM in evaluating each chunk’s relevance and
factual contribution to the original query. The design of this
prompt is inspired by prompt templates found in contextual
RAG applications, such as those published by Anthropic
(2024). The chain then filters or ranks responses from multiple
chunks before synthesizing a final answer.

The working of the contextual retrieval system is tested by
comparing the responses of both the traditional and contextual
retrieval systems to questions that would require the system to refer
to tabular data or exceptions to code sections in the NEC, and these
results are shown in Table 5. The questions in Table 5 were framed
through a collaborative series of discussions with practitioner
engineers familiar with electrical codes and standards. As such, for the
design of the experiment, the practitioner engineers had the
following responsibilities:

	•	 Ensuring the queries being structured are technically correct and
align with NEC 2017,

	•	 Ensuring that the queries being compiled are a fair representative
sample covering all chapters of the NEC,

	•	 Developing the ground truth for evaluation purposes.

The median and interquartile range (IQR) of the performance
scoring for contextual and traditional RAG were found to be 0.83
[0.79, 0.89] and 0.62 [0.26, 0.77], respectively. To determine
whether there was a significant improvement in the performance
of contextual RAG over the traditional RAG, we decided to conduct
a one-sided paired Wilcoxon Signed test. The choice of the
Wilcoxon Signed test was dictated by the non-normal distribution
of the observed scores for the traditional RAG. Considering a
significance level of 0.05, the resulting Wilcoxon test reported a
p-value of <0.0001, indicating the scores from contextual RAG to
be statistically greater than those of the traditional RAG.

While contextual RAG is a significant improvement over
traditional RAG-LLM (or LLMs on their own) in terms of retrieval
fidelity, both traditional and contextual RAG suffer from hallucination,
especially in the following situations:

	 1.	 Complex or multi-layered prompts, when the question requires
reasoning across several conditions or sentences.

	 2.	 Cross-referenced rules are ubiquitous in engineering and
regulatory documents. One area of the document refers to
definitions, exceptions, or constraints in another section.

In such instances, the language model is capable of generating
plausible, yet semantically distorted responses, even if the correct
passage is partially retrieved. This issue arises because the generative
component of the pipeline still relies on learned statistical patterns and
does not inherently verify or enforce rule-bound reasoning.

Therefore, rather than being considered as final sources of truth,
both traditional and contextual RAG should be viewed as instruments
to speed up the search and localization of domain-specific
information. The final output must always be checked against the
original text from the authoritative source, whether it be a technical
handbook, regulatory code, or engineering standard, even if these
systems greatly lessen the cognitive and temporal strain of manual
technical engineering code-book navigation. In high-assurance fields
where precision, safety, and regulatory compliance are non-negotiable,
this verification phase is nevertheless crucial.

6 State-of-the-art advanced
implementation with multi-brain
knowledge graph–based RAG

Knowledge graphs (Ji et al., 2022a; Peng et al., 2023; Tiwari et al.,
2021) provide a superior approach for modeling relationships between
concepts by structuring information, including entities and their
interconnected associations. While vector databases use numerical
proximity in an embedding space to show semantic similarity,
knowledge graphs use a graph-based design to keep obvious,

TABLE 4  A comparison between traditional vs. novel contextual RAG chunking strategies, highlighting trade-offs.

RAG strategy Avg token per chunk (or
chunk + context)

Retrieval fidelity Embedding cost

Traditional RAG ~250–350 tokens Medium Low

Contextual RAG ~600–1,000 tokens High Higher (unless models like Gemini 2.5 Flash are

used, with low $/million token cost)

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 11 frontiersin.org

understandable relationships, like hierarchical, causal, or functional
connections. Between vector RAG systems and knowledge graph-
based RAG systems, each has its own advantages and use case
scenarios, and one is not a replacement for the other.

In a knowledge graph, each node represents a distinct concept or
entity, and the edges illustrate the nature of their interaction, enabling
advanced reasoning, ontology-based inference (Baclawski et al., 2017),
and contextual elucidation. Neo4j shows that graph databases are the
basic building blocks that make it possible for users to run complex
queries using graph traversal or SPARQL-like languages. This graph
style is highly useful in sectors where there are obvious paths for

making decisions, rules-based logic, or where explainability and
relationship integrity are very important. Knowledge graphs not only
have clear and easy-to-understand structures, but they also have
unique analytical benefits that go beyond those of typical embedding-
based representations. These affordances make it easier to find hidden
patterns, undertake exploratory research, and look into nuanced
linkages across complex information domains:

	 1.	 Identification of structural gaps and blind spots: Knowledge
graphs, as a visual and relational depiction of information, can
reveal under-connected or isolated nodes, which may signify

FIGURE 5

(A) n8n RAG-LLM workflow with contextual retrieval system allowing for prepending chunk-specific explanatory context to each chunk before
embedding. (B) Prompt that instructs the model to provide concise, chunk-specific context that explains the chunk using the context of the overall
document.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 12 frontiersin.org

TABLE 5  Validation of traditional versus contextual RAG-LLM responses using n8n workflows on query tasks based on the 2017 National Electrical
Code (NEC).

Q&A responses and scores with traditional RAG-LLM Q&A responses and scores with contextual RAG-LLM

Q1. Prompt: Based on the NEC, for solar photovoltaic (PV) system application,

I want to know what is the correction factor that needs to be applied to PV cables for

an ambient temperature of 55 °C. The temperature rating of the conductor being

75 °C rated.

A1. Ground truth: According to NEC Table 690.31(A), the applicable correction

factor is 0.67.

A1. Actual output from traditional RAG: According to the National Electrical Code

(NEC) 2017, specifically Table 310.15(B)(2)(a) (renumbered in later versions as

Table 310.15(B)(1) or Table 310.15(B)(1) Adjustment Factors), the required

correction factor is 0.70 for 75 °C rated PV conductors in 55 °C ambient conditions.

Score: 0.1981536822161493

Reason: The actual output yields a correction factor of 0.70 derived from a distinct

NEC table, whereas the expected output indicates a correction factor of 0.67 from

Table 690.31(A). This signifies a factual inaccuracy and a contradiction with the

anticipated product. The real result fails to include the precise reference to

Table 690.31(A), which is crucial information from the expected output.

Q1. Prompt: Based on the NEC, for solar photovoltaic (PV) system application,

what is the correction factor that needs to be applied to PV cables for an ambient

temperature of 55 °C, and the temperature rating of the conductor being 75 °C rated.

A1. Ground truth: According to NEC Table 690.31(A), the applicable correction

factor is 0.67.

A1. Actual output from contextual RAG: According to NEC Table 690.31(A), for a

75 °C rated conductor in an ambient temperature of 51–55 °C, the applicable

correction factor is 0.67.

Score: 0.8918686352485045

Reason: The output is factually true and presents the correct adjustment factor of

0.67, as anticipated. It comprehensively handles the anticipated output by delineating

the NEC table and the temperature range, thereby enhancing clarity. The output is

consistent and conforms to the context and specifications of the input. The sole small

shortcoming is the rather excessive elaboration; however, it does not undermine the

accuracy.

Score improved over traditional RAG implementation.

Q2. Prompt: Could you please tell me the correction factor for a four current-

carrying conductor based on NEC section 310?

A2. Ground Truth: According to NEC Table 310.15(B)(3)(a), the applicable

correction factor is 80%.

A2. Actual output from traditional RAG: According to Section 310.15(3)(a) of the

National Electrical Code (NEC), the adjustment factors for four current-carrying

conductors are 1 and 2%. These factors are used to adjust the load diversity of the

installation.

Score: 0.08819886431169416

Reason: The actual output erroneously designates the adjustment factors as 1 and 2%,

which is inconsistent with the Expected Output’s 80% correction factor. It incorrectly

cites section 310.15(3)(a) instead of Table 310.15(B)(3)(a). This illustrates factual

flaws and inconsistencies with the expected output.

Q2. Prompt: Based on NEC section 310, what is the adjustment factor for a 4

current-carrying conductor?

A2. Ground truth: According to NEC Table 310.15(B)(3)(a), the applicable

correction factor is 80%.

A2. Actual output from contextual RAG: According to the National Electrical

Code (NEC) 2017, specifically Table 310.15(B)(3)(a), the applicable correction

factor, as adjusted for ambient temperature if necessary, is 80%.

Score: 0.7562603783294554

Reason: The output accurately designates the adjustment factor as 80% in

accordance with NEC Table 310.15(B)(3)(a), consistent with the anticipated

outcome. However, it introduces extraneous information on ambient temperature

adjustment, which is neither required by the input nor anticipated in the output, so it

slightly diverges from the predicted response.

Score improved over traditional RAG implementation.

Q3. Prompt: Based on section 310.10(H) of the NEC, if I have two parallel #8 AWG

conductors, what is my restriction on overcurrent protection?

A3. Ground truth: The system’s overcurrent protection for two parallel #8 AWG

conductors must be built to prevent each conductor’s ampacity from being exceeded

in the event that one or more of the parallel conductors are inadvertently

disconnected.

A3. Actual output from traditional RAG: Section 310.10(H) of the NEC permits

parallel conductors in raceways, multiconductor cables, or direct-buried single-

conductor cables, provided they satisfy specific standards.

The cumulative current-carrying capacity of the parallel circuits must not surpass the

ampacity rating of the raceway or overhead circuit.

If the ungrounded service-entrance conductors are installed in parallel, they must

be scaled to correspond with the ampacity and rated voltage of the ungrounded

service-entrance wires.

In the provided context, it is crucial to ensure that the combined current-carrying

capability of two parallel #8 AWG conductors does not surpass the ampacity rating of

the raceway or overhead circuit.

Score: 0.2610665811531422

Reason: The actual result does not explicitly address the restriction on overcurrent

protection concerning the scenario in which one or more parallel conductors become

disconnected, a crucial element of the anticipated output.

Q3. Prompt: Based on section 310.10(H) of the NEC, if I have two parallel #8 AWG

conductors, what is my restriction on overcurrent protection?

A3. Ground truth: With two parallel #8 AWG conductors, the overcurrent

protection should be such that the ampacity of individual conductors will not

be exceeded if one or more of the parallel conductors become inadvertently

disconnected.

A3. Actual output from contextual RAG: NEC 2017, Section 310.10(H) says that

for two parallel #8 AWG conductors, each one must be safeguarded so that no one

exceeds its ampacity.

Score: 0.8042020327293316

Reason: The actual output aligns well with the expected output by stating that each

conductor must be protected to not exceed its ampacity, which is consistent with the

requirement that the ampacity of individual conductors should not be exceeded.

Score improved over traditional RAG implementation.

Score is computed using DeepEval’s correctness with the criteria [GEval] metric.
*For this implementation, a chunk size of 2,000 was used for both traditional RAG setup and contextual RAG setup, with an overlap of 20.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 13 frontiersin.org

neglected or poorly integrated concepts. These blind spots can
be utilized to produce innovative discoveries by encouraging
new, contextually pertinent linkages between
dissimilar concepts.

	 2.	 Exploratory pathways for idea navigation: Knowledge graphs
facilitate intuitive exploration among concepts. By using the
connectivity of a node inside the graph, users might uncover
indirect yet substantial relationships between concepts and
hypotheses, perhaps leading to interdisciplinary discoveries or
revisions of conceptual frameworks.

	 3.	 Revealing nuance through concept removal: By algorithmically
or manually removing dominant or highly connected nodes,
knowledge graphs can surface latent structures and peripheral
relationships. This technique brings to the forefront more
subtle, contextually rich ideas that are crowded out by the
prevailing big picture and thus supports a deeper interpretation
and nuanced understanding of the information space.

In the relation extraction process, semantic relationships are first
identified from unstructured text and mapped as edges connecting
concept nodes in the knowledge graph (Ji et al., 2022b). The graph is
then analyzed using the Louvain community detection algorithm

(Blondel et al., 2008) from network science, which clusters densely
connected nodes together. Nodes belonging to the same community
are assigned the same color, visually revealing meaningful relational
groupings and latent structure within the extracted knowledge.
Figure 6 shows such a knowledge graph for the following simplified
example: “The ever-increasing demand for fossil fuels due to explosive
growth in automotive and other industrial sectors has rendered the earth
lacking fossil fuels.”

When extended to real-life text-rich applications, knowledge
graphs offer powerful capabilities for representing structured
knowledge, and these can be combined with an intelligent AI
agent inside a knowledge-graph–driven Retrieval-Augmented
Generation (RAG) framework. In this setup, the agent does not
follow a single linear path but instead navigates across one or
more linked knowledge graphs depending on the input prompt.
Using the graph structure to guide retrieval, the system is able to
capture semantically rich context, highlight hidden connections,
and generate answers that are both precise and easier to interpret
because they remain tied to structured domain knowledge. Such
an approach is particularly useful in engineering research, where
overlapping and interdependent domains require contextual
representation. To illustrate the concept, three separate

FIGURE 6

A simple knowledge graph with the clustering of similar nodes based on the Louvain community detection algorithm. Each cluster is assigned a unique
color.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 14 frontiersin.org

knowledge graphs were built, each organized around a specific
theme. In this case, the thematic focus was an electrical
engineering challenge: enhancing grid resiliency by drawing on
both the researcher’s own work and technical reference materials
published through IEEE and CIGRE. For demonstration
purposes, these three custom-built knowledge graphs, labeled
brain 1, brain 2, and brain 3, were created through a manual
curation process leveraging the authors’ domain knowledge to
support the construction of these knowledge graphs. For more
advanced applications, an AI agent can be leveraged to curate the
necessary manuscripts before passing them into a knowledge
graph for processing. The composition level details for brain 1,
brain 2, and brain 3 are as follows:

	 1.	 Brain #1 contains the authors’ own body of work, including
prior publications (Ghosh and Suryawanshi, 2024; Ghosh
and Dutta, 2020) and internal reports addressing topics such
as grid maintenance strategies, resilience measurement,
substation floor layout, and fire hazard evaluation.

	 2.	 Brain #2 is built from IEEE resources, including technical
reports like IEEE TR83 (Bose et al., 2020) and selected
papers (Safdarian et al., 2024; Bhattarai et al., 2022;
Tabassum et al., 2024) from the IEEE Xplore Digital Library.
The IEEE resources focus on technical frameworks,
analytical tools, and performance indicators that
support resilience.

	 3.	 Brain #3 draws on selected CIGRE technical reports
(Ciapessoni et al., 2023) and related manuscripts (Itotani
et al., 2024), and assembled to provide expertise on
sustainable practices for strengthening substation
reliability. This includes the integration of environmentally
friendly technologies and the use of remote
maintenance approaches.

The structure of the knowledge graph–based RAG system is
shown in Figure 7A, with all three knowledge graphs (brain 1, 2, and
3) being created and deployed using the InfraNodus platform
(Paranyushkin, 2024). Figure 7B highlights one of these graphs as an
example. Much like earlier versions of traditional and contextual
RAG, this implementation was built with the n8n platform and has
been made accessible for external use, as noted in the data availability
section. Depending on the detail and scope of a given research
query, the AI agent may consult a single graph, multiple graphs, or
all three interconnected “brains” to capture the most relevant context
and expand the depth of retrieved knowledge. Examples of these
queries, along with the corresponding graph-driven outputs, are
provided in Table 6. As shown, the agent actively decides which
graph or combination of graphs to draw from in order to refine
its responses.

An interesting question that may arise here is how the AI agent
intelligently selects which knowledge graph(s) to query? In essence,
during the construction of the AI agents that tap into the different
knowledge graphs, an Infranodus compliant system message is added
within the AI agent as follows, which holds to key to the method’s
intelligence: “Always use either EightOS or Polysingularity tool before
sending a response to the model. You have to use at least one of them,
the one that think is more suitable. Or both or all if both or all can
provide some help.”

This system message gives the AI agent the necessary context, and
as each graph is described, it will know when to choose it, depending
on what the user has defined.

Based on a series of prompting interactions with the knowledge
graph-based RAG system, the following conclusions were made:

	 1.	 Higher API usage cost for knowledge graph generation: In
practice, building a knowledge graph from materials such as
PDFs or structured documents uses far more API resources
than simply loading text into a vector database. A standard
embedding job might use only one or two tokens for each
word, but graph generation is different. When relation
extraction, entity resolution, or ontology alignment are
involved, token use can rise to five to ten times higher for the
same document. The extra cost comes from the heavier
semantic parsing and the need to map relationships rather than
just storing word vectors.

	 2.	 Recommendation to reduce API usage: Figure 8 presents a
staged approach for rolling out RAG systems with cost in
mind. The idea is to begin with conventional setups and only
move toward contextual or knowledge-graph–driven RAG
when the task at hand truly demands stronger semantic depth
or reasoning across domain-specific relationships.

	 3.	 Limitations with numerical tabular data: Knowledge graphs are
a poor fit for dense numerical tables since their strength lies in
capturing concepts and relationships, not large matrix-style
datasets. Applying them to standards with heavy tabular
content, like the NEC or NFPA documents, ends up being
restrictive. In practice, forcing numerical tables into a graph
strips out detail and makes retrieval clumsy. Row-to-row
dependencies, column statistics, and numeric precision do not
map cleanly into entity–relation triples, so the ability to run
meaningful graph-based inference is reduced.

	 4.	 Expanded exploratory potential with multiple knowledge graphs:
One primary advantage of implementing many domain-
specific knowledge graphs is that it expands the range of
information available to the AI system. The agent can traverse
one or more graphs simultaneously, based upon the
requirements of the query. This enables the identification of
relationships that may not be evident in a singular graph.
Consequently, it facilitates more exploratory analysis and
thereby aids users in tracking concepts across interconnected
domains. This can often reveal obscured connections that may
inspire novel avenues of study.

	 5.	 Other observations: Some additional observations that were
made are docketed as follows:

	 a	 In a traditional vector-based RAG setup, there is a loss of
structural information when chunking documents, while such
hierarchies and relationships are preserved in a knowledge
graph-RAG setup.

	 b	 Knowledge graph-RAG was better able to support complex
reasoning across multiple facts, such as exceptions to certain
engineering code sections, or supplementary discussions on a
particular subject within a research paper.

	 c	 While both contextual RAG and knowledge graph–based RAG
aim to improve retrieval-augmented generation, they are
architecturally and functionally optimized for different types
of information retrieval tasks. Contextual RAG excels at

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 15 frontiersin.org

FIGURE 7

(A) n8n RAG-LLM workflow with multiple custom knowledge graphs, each housing unique knowledge. (B) A visualization of the ‘author research
expert’ (brain 1) knowledge graph. Similar nodes are clustered together based on the Louvain community detection, and each of these clusters is
assigned a unique color.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 16 frontiersin.org

retrieving and preserving semantic continuity from
unstructured text, making it particularly effective for answering
questions that rely on narrative explanations or rule statements
embedded in paragraphs (e.g., code clauses or installation
descriptions). In contrast, KG-RAG is optimized for relational
reasoning and structured knowledge traversal, making it well-
suited for queries that involve interdependence, multi-node
relationships, or exception handling.

	 6.	 Author’s recommendation: As a user, one should make a
predetermined assessment as to what RAG structure might
work best for their particular use case.

7 Summary and future work

This paper shows that modern automation platforms like n8n
make it possible to set up Retrieval-Augmented Generation (RAG)
pipelines with very little coding. Engineers and researchers can
use these tools to create working RAG systems that pull and
process domain-specific material with ease. Depending on the
application, repositories can be indexed either through vector
databases or knowledge graphs, giving users flexible options for
context-aware retrieval. Vector-based RAG remains the more
common choice because of its efficiency and simple deployment,
but knowledge-graph approaches provide stronger semantic
structure and clearer interpretability. That makes them especially
useful when navigating the dense interconnections found in
engineering standards.

At the moment, large-scale use of graph-augmented RAG is
held back by higher computational demands and API costs linked
to graph construction and reasoning. As these costs drop and APIs
improve, knowledge-graph retrieval is expected to grow in
adoption and could eventually outperform vector search in
precision and domain relevance. This pathway is particularly
important in electrical engineering, where understanding how
technical terms, clauses, and procedures relate to one another is
critical. The combination of n8n with tools like Infranodus
already demonstrates that this direction is feasible and practical
for document-heavy environments.

TABLE 6  Testing the working mechanism of the knowledge graph-based RAG implementation with the AI agent intelligently tapping the necessary
dynamic knowledge graphs (brains).

Prompt into knowledge graph-
based RAG

Brains that the
AI agent
consulted

Response from the knowledge graph-based RAG agent

Q1. Prompt: Referring to the IEEE technical

reference documents and the author’s own research,

can you summarize very briefly how fast trip relay

settings can help in high fire threat areas.

Brain 1 and Brain 2

(see Figure 7A)

A1. Actual output from knowledge graph-based RAG agent: Fast-trip relay

configurations are particularly advantageous for power systems functioning in areas

susceptible to wildfires. Research and IEEE publications indicate that these configurations

assist in several essential aspects.

They facilitate the prompt identification and resolution of faults on a line. Prompt isolation

prevents a minor disturbance from escalating into a significant failure that could ignite a

fire.

In addition, by decreasing the detection threshold, relays act as a preventative measure,

diminishing the likelihood of an electrical fault becoming an ignition source.

This method not only mitigates fire danger but also enhances overall reliability by

maintaining power continuity and diminishing the probability of outages that could hinder

firefighting operations. In summary, implementing fast-trip settings serves as a focused

preventive strategy and a pragmatic dependability measure in high-risk zones.

Q2. Prompt: Referring to CIGRE documents and the

author’s own research, can you list briefly what are

the benefits of the SF6 alternative circuit breaker?

Brain 1 and Brain 3

(see Figure 7A)

A2. Actual output from knowledge graph-based RAG agent: Vacuum and synthetic-air

circuit breakers offer clear advantages over SF₆ types. The biggest difference is seen to be in

the environmental aspect, given that SF₆ is a potent greenhouse gas, while these alternatives

eliminate that problem entirely.

Handling is also simpler as operators do not need to deal with gas recovery systems or

think about accidental release of potent greenhouse gases.

Maintenance costs are also lower as a result.

Additionally, vacuum breakers, for example, can run for long periods without service,

which reduces expenses and downtime. Together, these factors make SF₆-free breakers a

practical choice, especially where sustainability targets and safety requirements are

becoming stricter.

FIGURE 8

Illustration shows a multi-step guide to reduce API usage for RAG
implementation.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 17 frontiersin.org

Looking ahead, several areas offer opportunities for further
development. These include:

	 1.	 Multimodal retrieval capabilities: A promising direction for
future work is the integration of multimodal retrieval
capabilities into contextual and knowledge graph RAG
systems. In engineering, valuable information is not limited
to text but is often embedded in schematics, drawings,
tables, and other structured resources. Future RAG
workflows should be able to extract relationships from
these non-textual artifacts, associate them with textual
knowledge, and represent them within a unified graph
structure. For example, a retrieval system could pair a
relay’s specification sheet with the relevant section of a
one-line diagram to answer technical queries with greater
accuracy. This kind of integrated retrieval would allow
reasoning over multiple formats at once and significantly
enhance practical utility in engineering applications,

	 2.	 Improving chunking and indexing strategies: Another
important area of development involves improving
chunking and indexing strategies, particularly when
dealing with dense numerical tables that are common in
engineering standards and equipment specifications.
Traditional chunking methods often treat these tables as
plain text, which strips away their structural meaning and
makes retrieval inefficient. Large tables can consume
excessive tokens without preserving the underlying
relationships between rows, columns, and units. A more
structure-aware chunking approach would preserve table
headers, normalize units, and index individual cells or
logical table sections, allowing the system to retrieve only
the relevant values rather than entire tables. This targeted
strategy would reduce computational cost and significantly
improve precision when responding to engineering queries
that rely on numerical data,

	 3.	 Real-time feedback mechanisms: Future research should also
explore real-time feedback mechanisms that allow RAG
systems to learn from expert users. Engineering work is
inherently iterative, and domain experts can quickly
identify gaps or inaccuracies in system outputs. By
incorporating features that let users tag, approve, or correct
specific pieces of information, RAG systems can refine their
retrieval models over time. This type of closed feedback
loop would lead to higher precision and reduce the amount
of human effort required to verify answers, resulting in
more dependable system performance in real engineering
workflows., and.

	 4.	 Expanding multilingual capabilities: Finally, expanding
multilingual capabilities will be essential to make RAG
systems more robust and globally relevant. Engineering
standards and operational manuals are often published in
multiple languages, and collaborative projects frequently
involve international teams.

	 5.	 Hybrid RAG architecture: Another promising direction for
future research is the development of a hybrid RAG
architecture that balances performance with cost efficiency.
Knowledge graph–based RAG (KG) approaches provide

strong contextual reasoning but are typically associated
with significantly higher API and computational costs
compared to vector-based methods. To address this, a
combined strategy can be explored in which KG RAG is
selectively applied to complex, reasoning-heavy queries,
while VectorRAG handles more direct or fact-based
retrieval tasks.

Data availability statement

The n8n templates generated as part of this manuscript can be
accessed on the project’s GitHub page: https://github.com/sghosh27/
Low-Code-RAG-LLM-Framework-for-Context-Aware-Querying-in-
Electrical-Standards-Design-and-Research along with Python code
for document parsing. A Python notebook is also available for scoring
LLM generated outputs versus ground truth.

Author contributions

SG: Visualization, Resources, Conceptualization, Project
administration, Software, Methodology, Writing – review & editing,
Supervision, Investigation, Writing – original draft. GM: Writing –
original draft, Conceptualization, Writing – review & editing,
Software, Methodology, Investigation, Resources.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors thank Dmitry Paranyushkin, founder of
InfraNodus for his seminal work on the knowledge graphs and for
making the InfraNodus platform available to the public and
research community.

Conflict of interest

SG and GM were employed at Black & Veatch.

Generative AI statement

The authors declare that Gen AI was used in the
creation of this manuscript. Tables 2, 5, and 6 within the
manuscript contain engineering prompts and answers generated
from the Retrieval Augmented Generation systems that were
implemented. No Generative AI was used to write the body of
the manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://github.com/sghosh27/Low-Code-RAG-LLM-Framework-for-Context-Aware-Querying-in-Electrical-Standards-Design-and-Research
https://github.com/sghosh27/Low-Code-RAG-LLM-Framework-for-Context-Aware-Querying-in-Electrical-Standards-Design-and-Research
https://github.com/sghosh27/Low-Code-RAG-LLM-Framework-for-Context-Aware-Querying-in-Electrical-Standards-Design-and-Research

Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 18 frontiersin.org

intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The views and conclusions expressed are solely those of the
authors and do not represent the views of any affiliated organization.
This study was conducted independently without institutional or
agency sponsorship.

References
Anthropic, "Introducing Contextual Retrieval," (2024). Available online at: https://

www.anthropic.com/news/contextual-retrieval. (Accessed 06 2025).

Baclawski, K., Chan, E. S., Gawlick, D., Ghoneimy, A., Gross, K., Liu, Z. H., et al.
(2017). Framework for ontology-driven decision making. Appl. Ontol. 12, 245–273. doi:
10.3233/AO-170189

Bhattarai, S., Sapkota, A., and Karki, R. (2022). “Analyzing investment strategies for
power system resilience” in IEEE Power & Energy Society General Meeting
(PESGM) (Denver, Colorado, US: IEE). doi: 10.1109/PESGM48719.2022.991
6980

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. J. Stat. Mech. Theory Exp. 2008:P10008. doi:
10.1088/1742-5468/2008/10/P10008

Bose, A., Brown, S., Chalamala, B., Immerman, D., Khodaei, A., Liu, J., et al. (2020).
“Resilience framework, methods, and metrics for the electricity sector” in IEEE Power
& Energy Society (PES-TR83). IEEE.

Chen, Y., Fu, Q., Yuan, Y., Wen, Z., Fan, G., and Liuet, D. (2023). "Hallucination
detection: robustly discerning reliable answers in large language models," in Proceedings
of the 32nd ACM International Conference on Information and Knowledge
Management. ACM.

Ciapessoni, E., Cirio, D., Pitto, A., Van Harte, M., and Panteli, M. (2023). Power system
resilience: definition, features and properties. CIGRE Sci. Eng. CSE030:10.

Ghosh, S., and Dutta, S. (2020). A comprehensive forecasting, risk modelling and
optimization framework for electric grid hardening and wildfire prevention in the US.
Int. J. Energy Eng. 10, 80–89.

Ghosh, S., and Suryawanshi, P. (2024). Enhancing grid resiliency in high fire or flood
risk areas: integrating protective relay settings, broken conductor detection, and grid
hardening for climate-induced event preparedness. J Inst Eng 106, 393–405. doi:
10.1007/s40031-024-01146-4

Gopi, S., Sreekanth, D., and Dehboz, N., "Enhancing engineering education through
LLM-driven adaptive quiz generation: a RAG-based approach," in IEEE Frontiers in
Education Conference (FIE), Washington, DC, US: IEE, (2024). doi: 10.1109/
FIE61694.2024.10893146

Huggingface, "Open LLM Leaderboard," (2025). Available online at: https://
huggingface.co/spaces/open-l lm-leaderboard/open_llm_leaderboard#/
(Accessed 2025).

Itotani, R., Sadahiro, K., Tokai, M., Hama, H., Sugino, K., and Takeda, M.
(2024). “Sustainable improvement on substation resilience and reliability by using
eco-friendly equipment and remote maintenance systems” in CIGRE Paris
session. CIGRE.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S. (2022). A survey on knowledge
graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn.
Syst. 33, 494–514. doi: 10.1109/TNNLS.2021.3070843

Li, J., Cheng, X., Zhao, W. X., Nie, J.Y., and Wen, J.R. (2023). “HaluEval: a large-scale
hallucination evaluation benchmark”, in Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing. Singapore: Association for
Computational Linguistics.

Omar, M., Sorin, V., Collins, J. D., Reich, D., Freeman, R., Gavin, N., et al. (2025).
Large language models are highly vulnerable to adversarial hallucination attacks in
clinical decision support: a multi-model assurance analysis. MedRxiv. doi:
10.1101/2025.03.18.25324184

Paranyushkin, D. "InfraNodus: Discover what everyone else is missing," (2024).
Available online at: https://infranodus.com/ (Accessed 07 2025).

Peng, C., Xia, F., Naseriparsa, M., and Osborne, F. (2023). Knowledge graphs:
opportunities and challenges. Artif. Intell. Rev. 56, 13071–13102. doi: 10.1007/
s10462-023-10465-9

Roustan, D., and Bastardot, F. (2025). The clinicians’ guide to large language models:
a general perspective with a focus on hallucinations. Interact. J. Med. Res. 14. doi:
10.2196/59823

Safdarian, F., Wert, J. L., Cyr, D., and Overbye, T. J. (2024). “Power system resiliency
and reliability issues from renewable resource droughts” in IEEE Kansas power and
energy conference (KPEC) (Manhattan, Kansas, US: IEE). doi: 10.1109/
KPEC61529.2024.10676081

Siddharth, L., and Luo, J. (2024). Retrieval Augmented Generation using engineering
design knowledge. Knowl.-Based Syst. 303:112410. doi: 10.1016/j.knosys.2024.112410

Superbi, J., Pereira, H., Santos, E., Lattari, L., and Castro, B. (2024). “Enhancing large
language model performance on ENEM math questions using retrieval-augmented
generation” in Proceedings of the XVIII Brazilian e-science workshop (Florianopolis, SC,
BreSci).

Tabassum, A., Lee, S., Bhusal, N., and Chinthavali, S. (2024). “Power outage forecasting
for system resiliency during extreme weather events” in IEEE international conference
on big data (BigData) (Washington, DC, US: IEE). doi: 10.1109/
BigData62323.2024.10825805

Tiwari, S., Al-Aswadi, F. N., and Gaurav, D. (2021). Recent trends in knowledge
graphs: theory and practice. Soft. Comput. 25, 8337–8355. doi:
10.1007/s00500-021-05756-8

Zhang, T., Qiu, L., Guo, Q., Deng, C., Zhang, Y., Zhang, Z., et al, (2023). “Enhancing
uncertainty-based hallucination detection with stronger focus,” Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing (Singapore:
Association for Computational Linguistics), 915–932.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval
https://doi.org/10.3233/AO-170189
https://doi.org/10.1109/PESGM48719.2022.9916980
https://doi.org/10.1109/PESGM48719.2022.9916980
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/s40031-024-01146-4
https://doi.org/10.1109/FIE61694.2024.10893146
https://doi.org/10.1109/FIE61694.2024.10893146
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1101/2025.03.18.25324184
https://infranodus.com/
https://doi.org/10.1007/s10462-023-10465-9
https://doi.org/10.1007/s10462-023-10465-9
https://doi.org/10.2196/59823
https://doi.org/10.1109/KPEC61529.2024.10676081
https://doi.org/10.1109/KPEC61529.2024.10676081
https://doi.org/10.1016/j.knosys.2024.112410
https://doi.org/10.1109/BigData62323.2024.10825805
https://doi.org/10.1109/BigData62323.2024.10825805
https://doi.org/10.1007/s00500-021-05756-8

	Advancing engineering research through context-aware and knowledge graph–based retrieval-augmented generation
	1 Introduction
	1.1 Manuscript contribution
	1.2 Manuscript organization

	2 Fundamentals of retrieval-augmented generation (RAG) and present limitations
	3 Opensource LLM and private RAG-LLM pipeline for engineering applications
	4 Rapidly deployable integration with n8n for document retrieval and framework limitations
	5 Novel enhancements to traditional RAG-LLM workflow to improve performance
	5.1 Enhancements based on reranking
	5.2 Enhancements based on contextual retrieval pipeline and its advantages

	6 State-of-the-art advanced implementation with multi-brain knowledge graph–based RAG
	7 Summary and future work

	References

