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Large language models (LLMs) are powerful in language understanding and content 
generation but frequently fall short of technical accuracy when they are applied to 
engineering code, standards, and design documents. To mitigate this, we are seeing 
the emergence of Retrieval-Augmented Generation (RAG) models that ground outputs 
of LLMs with information from external trustworthy resources, increasing the factual 
consistency. However, traditional RAG techniques are limited in the treatment of 
isolated information (limited to the amount of information in a fixed-size chunk) 
and are deemed ill-equipped to traverse semantically linked technical information. 
This study introduces a collection of new and highly deployable RAG-LLMs built 
on the n8n automation system and specifically designed for engineering domains. 
Framework effectiveness was tested on a set of prompts developed with the help 
of practicing electrical engineering professionals and should be read through the 
framework’s lens for interpretation of national engineering codes, technical standards, 
and design standards. To mitigate the shortcomings of the conventional retrieval-
based chunking methods, a contextual RAG-based approach is employed to align 
the retrieved content with the query context to improve relevance. Moreover, RAG 
is adopted to structure knowledge graph retrieval, which can retrieve densely linked 
concepts from multiple knowledge graphs, thereby promoting more profound 
semantic understanding in complex technical domains. The study describes the 
relative benefits of these improvements, points to practical deployment issues, 
strengths, and weaknesses. All the n8n workflows employed in this study are made 
available as supplementary materials to facilitate reproducibility and sharing within 
the engineering research community and practitioners.
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1 Introduction

Over the past half a decade, large language models (LLMs) have revolutionized many 
fields, ranging from natural language processing to artificial intelligence. However, despite 
their extraordinary linguistic skills, LLMs are known to be highly prone to hallucinations, i.e., 
outputs that are factually wrong or non-sensible for no evident reason. This is due to several 
challenges of LLM design and operation, which include but are not limited to the use of large 
training datasets that are often unfiltered, and to the auto-regressive nature of these models, 
which can cause generated content to be inconsistent (Li et al., 2023; Roustan and Bastardot, 
2025). As such, LLM hallucinations can take forms such as fake evidence, false inference, and 
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totally wrong replies. These hallucinations can be dangerous in critical 
applications like engineering, reasoning, and diagnosis, and 
information retrieval (Zhang et al., 2023). For example, one study 
shows that the hallucination rate for the different LLMs ranges 
between 50 and 82% depending on the operational settings, 
emphasizing the prevalence of such a phenomenon in machine-
produced texts (Omar et al., 2025).

Because hallucinations can have severe consequences, particularly 
in fields like engineering, healthcare, and law, there is a pressing need to 
explore new approaches that make LLM outputs more dependable. One 
approach with potential is Retrieval Augmented Generation (RAG), 
which integrates LLMs’ skills with retrieval-based approaches to enhance 
correctness and relevance. RAG enables LLMs to dynamically and 
modularly include external sources into the generation flow, which 
greatly mitigates the limitation of being confined to pre-defined training 
datasets (Gopi et al., 2024; Siddharth and Luo, 2024). In an applied 
context, leveraging RAG technology is observed to significantly enhance 
the capabilities of LLMs in emergent scenarios such as rapid identification 
of relevant clauses in engineering design code and standard or query-
based knowledge exploration for an engineering document cluster. By 
allowing LLMs to access additional information, a RAG system increases 
coherence and factuality of outputs, demonstrating their wide 
applicability across different high-stakes settings (Superbi et al., 2024).

In addition, the recent developments in the comprehension and 
management of hallucinations relate to the increase in the use of RAG 
techniques. Using RAG mechanisms (which mix generative capabilities 
with well-defined retrieval processes), LLMs can self-repair incorrect 
results by referencing (on-the-fly access) information fetched 
dynamically from reliable databases. This not only provides the means 
for a more dependable computational environment but also enhances 
user confidence in intelligent systems (Chen et al., 2023). As LLMs 
develop, the integration of RAG methods seems to be an important 
move in order to guarantee that such technologies are capable of 
generating suitable, context-sensitive, and reliable answers in a growing 
variety of use cases. Although retrieval-augmented generation (RAG) 
models can address the aforementioned problems by grounding answers 
in well-documented sources, the actual implementations of RAG for 
engineering remain underdeveloped, and there are a number of practical 
challenges hindering their implementation. These are as follows:

	 1.	 The barrier to entry is still quite high for the RAG-LLM 
combination, given that building a well-performing RAG-LLM 
pipeline usually demands a good deal of programming 
expertise, which may not be available to many engineering 
professionals and researchers.

	 2.	 For an RAG-LLM application to truly be successful, it should 
have the ability to access a user’s existing document repository 
in a manner similar to popular applications like Google Drive 
or SharePoint. Unfortunately, building such integrations is never 
that simple, and would likely add layers of complexity, such as 
us having to implement authentication protocols, configure a set 
of APIs, and understand how to parse a document.

	 3.	 In order to make a RAG pipeline work well, one often also has 
to adopt more advanced tweaks, such as reranking strategies, 
context retrieval mechanisms, or knowledge graph-based 
augmentation. While those approaches increase retrieval 
precision and relevance of output, they tend to be technically 
challenging and are based on the use of several NLP tools and 
frameworks. Altogether, these subtleties limit the accessibility 
and effective usage of RAG-LLM systems for numerous 
engineers and applied researchers.

Real-world engineering research and application have faced these 
obstacles down, and many practitioners have included them as “given” 
variables. To mitigate the high entry barrier and technical complexities, 
a fast-deployable recipe has been articulated employing open LLMs 
and modular RAG pipelines and enjoying simple deployment 
capabilities at accessible platforms such as LM Studio, AnythingLLM, 
and n8n. This eliminates the requirement for elaborate programming 
and allows practitioners to remain focused on the engineering content 
and not the software infrastructure. A number of workflow 
implementations have been showcased in the n8n automation 
framework, including document retrieval, reranking, contextual 
querying, and knowledge graph integration. Performance testing has 
been performed to a large extent, based on engineering documents, 
technical standards, and literature from, e.g., the National Fire 
Protection Association (NFPA), the Institute of Electrical and 
Electronics Engineers (IEEE), and the International Council on Large 
Electric Systems (CIGRE). The findings validate that a rapidly 
deployable RAG-LLM design can achieve good usability and high 
performance in technically challenging domains.

1.1 Manuscript contribution

This study pushes forward the methodology when it comes to the 
development of rapidly deployable retrieval-augmented generation 
(RAG) systems and evaluation of technical document querying tuned 
for practicing power system professionals. The specific contributions 
are as follows:

	 1.	 RAG-LLM pipeline implementation: Example of a rapid 
deployable RAG-LLM pipeline, using LM Studio and 
AnythingLLM to secure local document retrieval and language 
model inference is provided. The code to be used for parsing 
and embedding corpus-specific documents is released and 
available through the ‘Data Availability’ section of the article.

	 2.	 Practitioner-oriented evaluation and design considerations: The 
manuscript frames the design and evaluation of RAG 
workflows with a focus on practitioner guidance, particularly 
for electrical engineers and applied researchers working in 
rapidly deployable environments such as n8n. Special attention 
is given to the challenges encountered by traditional RAG 
systems when processing dense tabular data and multi-layered 
exceptions commonly found in technical codes and standards.

	 3.	 Contextual retrieval workflow via n8n: We introduce a novel 
RAG contextual workflow implemented in n8n, which 
supports better processing of tabular structures and ‘exception 
logic’ by orchestration of document processing and dynamic 
retrieval logic. The full workflow is released to the public and 

Abbreviations: IEEE, Institute of Electrical and Electronics Engineers; LLM, Large 

Language Models; NEC, National Electric Code (also known as NFPA 70); NFPA, 

National Fire Protection Association (US); RAG, Retrieval-Augmented Generation.
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is available through ‘Data Availability’ for reproducibility and 
the enablement of practical use.

	 4.	 Knowledge graph-based retrieval workflow via n8n and 
Infranodus: We present a state-of-the-art knowledge graph-
augmented RAG workflow leveraging n8n and Infranodus to 
semantically structure engineering documents and reveal 
hidden relationships among engineering concepts. This 
method allows developers to make exploratory queries and 
cross-reference between linked standards, which is beneficial 
for complex design and compliance activities. The full process, 
from graph construction to integration and retrieval logic, is 
released to the public in the ‘Data Availability’ section for 
reproducibility and to serve as a practical tool.

1.2 Manuscript organization

The remainder of the manuscript is structured as follows: in 
Section 2, we describe the basics of Retrieval Augmented Generation 
(RAG), which presents the basic building blocks of the RAG system 
and a typical structure of the RAG system architecture. Section 3 
describes a simple-to-adopt private RAG framework constructed from 
open-source LLMs, which uses LM Studio and AnythingLLM to 
be deployed locally. In Section 4, we focused on quickly deployable 
integration of n8n for document retrieval, performing an in-depth 
evaluation and ranked prompts based on a question set built from the 
NFPA 70 National Electrical Code (NEC) 2017. This section also 
highlights important observations about when traditional RAG-LLM-
based pipelines do and do not perform well. Section 5 mitigates the 
above restrictions via targeted improvements in the area of reranking 
and contextual RAG workflows. We show scores in comparison to 
various rerankers (e.g., bge-reranker-base and Cohere Reranker v3. 5) 
over various embedding models such as OpenAI and Voyage. As an 
advanced use case, Section 6 discusses a multi-brain RAG 
implementation of a state-of-the-art knowledge graph-based RAG 
system and how it can be  applied for exploratory querying on a 
network of engineering standards. Practical guidelines for reducing 
the consumption and related costs of APIs are presented. Finally, 
Section 7 summarizes with a summary of our findings, the current 
limitations, and future work ahead.

2 Fundamentals of 
retrieval-augmented generation (RAG) 
and present limitations

Large language models (LLMs), such as GPT-4 and LLaMA, have 
demonstrated remarkable capabilities at generating coherent, 
contextually appropriate text. They have an impressive flaw, though 
they often “hallucinate,” generating plausible-sounding but incorrect 
(or impossible to verify) information. This observation is due to the 
fact that LLMs produce outputs by relying on statistical associations 
in their training data and not on grounded truth or domain-specific 
knowledge. To address this limitation, retrieval-augmented generation 
(RAG), a novel architectural style, has emerged as a compelling 
approach. With RAG, the generation process is combined with a 
retrieval module to dynamically retrieve relevant documents or 
context passages from an external knowledge source. This is similar in 

spirit to giving a model access to a domain-specific textbook at test 
time, to consult ground truth sources before generating answers.

By building retrieval directly into the generation loop, as illustrated 
in Figure  1, a RAG system can largely improve the end quality of 
correctness and domain relevance. For example, in power systems 
engineering or regulatory compliance, where specific terms and 
references are required, RAG provides answers that are tied to source 
materials collected for that domain. This renders RAG especially well-
suited for use cases where there is a high emphasis on knowledge-
intensive question answering, code documentation, engineering 
reasoning, and queries, and where hallucinations can be high-stakes. 
Nevertheless, RAG is not a replacement for domain adaptation or 
continual learning. It does not allow a model to generalize new syntactic 
constructions, programming languages, or stylistic conventions. 
Instead, it offers an efficient amplification process for enhancing 
response accuracy within a predefined information domain. In this way, 
RAG facilitates retrieval, and not representation, which is more suitable 
for fine-grained applications rather than general domain training.

Although hosted LLM interfaces like ChatGPT offer the ability for 
a user to upload domain-specific documents (e.g., an electronic 
engineering textbook or an IEEE master volume) and then engage in 
retrieval-augmented querying, there are multiple limitations when 
one has to resort to a cloud-based service for professional or industrial 
use. These are as follows:

	 1.	 Data sovereignty and confidentiality, become a pressing 
concern. Uploaded documents are outside of the control of 
personal or corporate workstations, effectively by-passing 
internal policies on data handling, intellectual property 
agreements, or even regulatory requirements, especially when 
proprietary designs, sensitive specs, or restricted standards 
are concerned.

	 2.	 Hosted models often tend to have limits on the length of tokens 
and contexts that make it hard for technology to work. For 
instance, in the case of a long publication such as a multi-
chapter standard or a big handbook, the material may go above 
the maximum token limit, even with approaches for breaking 
up and summarizing documents. This might lead to insufficient 
context or retrieval and may make response generation 
less accurate.

	 3.	 In the case of hosted solutions, there is usually no persistent 
user-manageable storage of the parsed knowledge. After the 
document is uploaded and used for one session, the embedding 
and index layers are transient and not seen (allowed access to) 
by the user. This makes it impossible for engineers to construct 
long-term, reusable vector databases that can adapt to the 
progress of ongoing projects or to organizational requirements 
in terms of the knowledge needed.

	 4.	 The other limitation is the higher cost of operation, and this is 
more applicable to frequent or large-scale document 
processing. Subscription fees, usage-based pricing, and data 
upload limitations while attempting to submit jobs to external 
services can add up to prevent hosted LLM services at scale 
economically feasible for long-term engineering workflows or 
enterprise integration.

These shortcomings also reveal the importance of self-hosted 
RAG pipelines, i.e., a system where people could download LLMs 

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 04 frontiersin.org

themselves and run them locally, parse their own engineering 
documents, and keep the embeddings in a vector database of their 
selection (e.g., FAISS, Pinecone, or Qdrant). This kind of configuration 
gives users full access to the retrieval layer, the ability to customize 
indexing strategies, and integrate with in-house tools or platforms. In 
the context of electrical engineering, this means sensitive design 
documents, grid planning standards, or equipment protocols can 
be queried securely, reliably, and repeatedly, without using third-party 
APIs or external cloud services. It also provides the opportunity for 
sensitive document access policies, auditability, and retention of 
understanding over time, which is important in high-assurance 
engineering contexts.

3 Opensource LLM and private 
RAG-LLM pipeline for engineering 
applications

Open-source large language models (LLMs) are especially 
attractive in that their deployments can be  conducted locally on 
premises, such that users can locally perform inference in a secure and 
private way and without relying on proprietary API endpoints or any 
external, possibly cloud-based, service. This is especially useful in 
retrieval-augmented generation (RAG) tasks in engineering domains 
where data privacy, reproducibility, and system-level control are 
important. Engineers can consult the Hugging Face Open LLM 
Leaderboard (Huggingface, 2025) to find candidate models for local 
deployment. Through the filtering into “mid-range” models (typically 
14B-32B range as shown in Table 1), users can choose those models 

that compromise between inference performance and 
hardware feasibility.

The private and locally executed RAG-LLM leverages two open 
source softwares, namely LM Studio and AnythingLLM; see Figure 2. 
Within LM Studio, users can download target LLM models from open 
source and launch them in their quantized formats (e.g., GGUF) 
without extra tuning. The settings that may be tuned are those of the 
system prompt, randomness temperature, and top-K sampling 
parameter. For an entire RAG pipeline, a second open-source 
application, AnythingLLM, is leveraged for establishing a local 
retrieval work environment. PDF files consisting of IEEE standards, 
electrical codes, or equipment manuals have to be initially changed 
into the Markdown (. md) and one may upload them to 
AnythingLLM. Markdown works better for RAG because it provides 
clean, structured, and token-efficient text that enables accurate 
chunking and retrieval, unlike the noisy and layout-heavy content 
in PDFs.

AnythingLLM also permits users to set the ‘Text Chunk Size’ 
and ‘Text Chunk Overlap’, which are crucial parameters that 
determine how fine and how much of the context is preserved in 
document embeddings. AnythingLLM communicates with LM 
Studio (which is (supposed to be) running locally), in which 
we embed the LLM, and it makes requests to the cached model to 
generate text in response to questions about the embedded content. 
Such a setup guarantees that the model and the knowledge base are 
local to the user’s computer, and that the user remains in complete 
control of the data, the execution, and the experimental 
reproducibility, without the need to rely on cloud inference or 
third-party services.

FIGURE 1

Illustration of RAG architecture, where a user query initiates a retrieval process from a knowledge base (e.g., vector database or document store).
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4 Rapidly deployable integration with 
n8n for document retrieval and 
framework limitations

Although LM Studio and AnythingLLM provide a fast, secure, 
and locally deployable solution for developing retrieval-augmented 
generation (RAG) systems, it comes with limitations in workflow 
automation, integration, and orchestration capability. For more 
advanced use cases, when integrating document ingestion, vector 
store, and even multi-channel query, a flexible, growable automation 
frame is required. Which is precisely where n8n, a free and open-
source, node.js-based workflow automation tool, excels. User of n8n 
can create automated workflows that incorporate AI with corporate-
level business process automation. It runs on-premises, which 
guarantees data privacy and allows for custom logic, APIs, and 
plugins, so it is appropriate for engineering, document intelligence, 
and RAG applications.

Figure 3 shows an example RAG workflow using n8n based on the 
use case of this paper. The workflow functions as follows:

	 1.	 Document upload: Engineers/technical professionals upload 
documents such as PPT, PDF, Datasheets, Word-based 

Specifications, or Manuals built as per the standards in 1 above, 
into a Google Drive folder assigned for them.

	 2.	 Automated ingestion: n8n monitors the Google Drive folder for 
new uploads. When a file is discovered, it initiates a processing 
pipeline to extract the content, optionally parse it into Markdown 
or plain text, and embed the text using the user-provided 
embedding model.

	 3.	 Vector storage: The resulting representations are saved in a vector 
database (can be local or cloud-hosted), such as Qdrant, Chroma, 
Pinecone, to be queried against later.

	 4.	 Query interface: The end users pose queries using different 
interfaces such as Gmail, Slack, or a web-based chatbot. There, an 
n8n agent returns the top-K related chunks from the 
vector database.

	 5.	 LLM generation: The resulting snippets are sent to the LLM of the 
user’s preference1, which is hosted in a local machine to generate 
a grounded, context-aware reply.

This modular and event-driven design further decouples ingestion 
and querying phases, and allows users to automate multi-step, cross-
platform knowledge workflows, resulting in a more scalable and 
maintainable RAG-LLM solution in engineering settings.

In order to demonstrate the effectiveness of the proposed RAG-LLM 
pipeline, we  performed an experiment on a collection of curated, 
domain-specific search queries to the National Electrical Code (NEC), a 
complex regulatory document relied on by practicing electrical 
engineers. The NEC codebook (in parsed text) was uploaded by the user 
to the RAG system, allowing for grounded-document retrieval for 
inference. The evaluation searches were specified to check if the 
system can:

	 1.	 Locate and extract numerical values from NEC tables (e.g., 
minimum burial depths, conductor ampacity ratings, and 
overcurrent protection limits).

	 2.	 Extract exceptions and conditional clauses from the codebook, 
as they frequently manifest as annotations or as structural 
deviations from the norm.

	 3.	 Retrieve the relevant sections and apply necessary contextual 
logic (e.g., identifying requirements that vary by installation 
type, voltage class, or application environment).

Each generated response was evaluated against user-defined 
ground truth answers, see Table 2, simulating expert validation. For 

TABLE 1  Open LLM leaderboard filtered by ‘mid-range’ models and sorted by weighted average of normalized scores from all benchmarks (as of June 
2025).

Model Average score across all 
benchmarks

IFEva† GPQA‡ CO2 cost

Qwen2.5-test-32b-it 47.37% 78.89% 15.21% 29.54 kg

Horizon-AI-Avengers-V1-32B 47.34% 79.72% 14.99% 7.95 kg

FluentlyLM-Prinum 47.22% 80.90% 18.23% 21.25 kg

Qwen.5-14b-v1.0-e3 47.09% 73.24% 22.26% 1.56 kg

Qwen2.5-32B-Instruct-

abliterated-v2
46.89% 83.34% 15.66% 13.49 kg

†Instruction-following evaluation (IFEval): This metric tests the model’s ability to follow explicit formatting instructions.
‡Graduate-level Google-Proof Q&A (GPQA): This metric scores the LLM performance based on PhD-level knowledge multiple-choice questions in science.
Boldface scores represent the highest scores or the lowest carbon footprint.

FIGURE 2

Illustration of a private and locally executed RAG-LLM pipeline using 
LM Studio and AnythingLLM.

https://doi.org/10.3389/frai.2025.1697169
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ghosh and Mittal� 10.3389/frai.2025.1697169

Frontiers in Artificial Intelligence 06 frontiersin.org

scoring, we used the correctness measure of DeepEval with GEval 
criteria, which assesses semantic alignment, factual grounding, and 
contextual completeness between the model’s response and the 
reference answer.

The GEval metric provides a detailed evaluation based on the 
following criteria:

	 1.	 Grounding: Did the model reference or integrate pertinent 
language from the retrieved NEC section?

	 2.	 Exactness: In terms of exactness, was the LLM output able to 
accurately deduce essential quantitative thresholds and 
regulatory stipulations?

	 3.	 Verifiability: Can the assertions made by the LLM output 
be traced back to the source sections of the document?

This evaluation framework ensures that the RAG-LLM system not 
only generates plausible text but also provides code-compliant, 
reference-anchored answers suitable for technical decision-making in 
real-world engineering workflows.

Several significant insights were derived from the assessment of 
the RAG-LLM pipeline via NEC-based queries:

	 1.	 Semantic prompting and section identification: The RAG-LLM 
workflow demonstrated efficacy in identifying and correlating 
the relevant NEC regulations for a specified inquiry. The 
accuracy was enhanced when prompts were subtly reconfigured 
to more effectively guide the model toward the desired retrieval 
pathway. Inquiries that reflected the phrasing or technical 
terminology of the NEC yielded more accurate outcomes, 

highlighting the importance of semantic alignment between 
user input and coding language.

	 2.	 Numerical table retrieval and chunking limitations: The system’s 
effectiveness in handling numerical lookup queries from tabular 
data was only somewhat successful. Challenges were observed 
with NEC tables, where the retrieval procedure often failed to 
consistently reproduce the table. The main cause for this 
behavior is in the method of content division: when vast tables 
are segmented into multiple sections, the model tends to 
frequently acquire only fragments of the original context. This 
limited viewpoint may generate responses that are either 
incorrect or just partially accurate. From the way the table’s 
continuity is digested, it is recognized that there is a shortcoming 
in current Retrieval Augmented Generation approaches.

	 3.	 Challenges with multi-condition exceptions: The RAG-LLM 
pipeline faced challenges with regulations using multi-conditioned 
exceptions, commonly seen in NEC provisions that provide 
different requirements dependent on voltage, environment, or 
application type. These exceptions are often expressed as 
enumerated or hierarchical logical criteria, and the system faced 
difficulties in analyzing and reasoning through the extensive array 
of situations. As a result, responses sometimes omitted critical 
qualifying criteria or incorrectly applied the rule entirely. This 
indicates a current deficiency in handling hierarchical exception 
logic within extensive regulatory documents.

These observations suggest specific areas for refinement, 
particularly in document chunking, semantic prompting, and 
exception reasoning, which point toward the need for more advanced 

FIGURE 3

n8n RAG-LLM workflow with a Google Drive-based retrieval system offering a user-friendly framework for engineers and researchers.
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TABLE 2  Validation of traditional RAG-LLM responses using an n8n workflow on query tasks based on the 2017 National Electrical Code (NEC).

Question and ground truth Actual output and evaluation

Q1. Prompt: I am trying to find the table in the NEC that 

deals with a single-phase AC motor and the associated full 

load current.

A1. Ground truth: Table 430.248 of the NEC addresses 

single-phase AC motors. It also addresses the 

corresponding full load current.

A1. Actual output: The NEC section is Article 430. This section is titled “Motors, Motor Circuits, and 

Controllers.” Do refer to Table 430.248 of Article 430 to determine the minimum full-load current required for 

a single-phase AC motor, as indicated by the motor’s nameplate rating.

Score: 0.9072185128712421

Reason: The output was found to correctly cite NEC Table 430.248. It aligns with the expected outcome. It 

additionally provides supplementary context by citing Article 430 and its title, both of which augment factual 

accuracy and comprehensiveness. The supplementary detail slightly exceeds the expected simplicity; yet, there 

are no discrepancies or omissions.

Q2. Prompt: I want to know what is the minimum cover 

required per Section 300.5 of the NEC, for direct buried 

cables running under a parking lot, based on Table 300.5.

A2. Ground truth: According to Table 300.5 of the NEC, 

the minimum cover necessary for a direct buried cable 

beneath a parking lot is 24 inches.

A2. Actual output: According to NEC Table 300.5, the minimum burial depth for a direct-buried cable 

installation under a parking lot is 24 inches (609 mm). This relates to the upper surface of the finished grade, 

and further criteria may be considered when determining the appropriate cover for your specific installation.

Score: 0.859266659995407

Reason: The actual production accurately determines the necessary minimum cover as 24 inches, consistent 

with the anticipated output. It offers supplementary context by specifying the measurement in millimeters and 

acknowledging that other factors may affect the cover, which, although not included in the anticipated output, 

does not contradict it. The information is accurate and complete; nonetheless, the additional details somewhat 

diverge from the anticipated conciseness.

Q3. Prompt: In the NEC, which section deals with the 

minimum cover requirement for cables and conduits.

A3. Ground truth: In the NEC, section 300.5 deals with 

the minimum cover requirement for cables and conduits.

A3. Actual output: The minimum cover requirements for cables and conduits are specified in Section 300.5 of 

the NEC. This section delineates the minimum cover requirements for direct-buried cables, conduits, or other 

raceways. Furthermore, additional information concerning mechanical protection for direct-buried cables can 

be found in sections 840.48 and 830.47 of the NEC.

Score: 0.8009300906486064

Reason: The output accurately identifies Section 300.5 of the NEC as pertaining to minimum cover 

requirements for cables and conduits. It also offers further information regarding related areas, which is not 

mandatory but does not contradict the anticipated outcome. There are no factual flaws or omissions about the 

basic topic, but the other facts, albeit accurate, are superfluous to the specific inquiry.

Q4. Prompt: Is there any restriction on running 

conductors in parallel in the NEC.

A4. Ground truth: NEC section 310.10(H) talks about 

conductors in parallel.

A4. Actual output: Indeed, Section 310.10(H) of the NEC permits the installation of parallel conductors in 

raceways, multiconductor cables, or direct-buried single-conductor cables.

Score: 0.5432697039021899

Reason: The actual output accurately recognizes NEC section 310.10(H) as pertinent to parallel conductors, 

consistent with the anticipated output. However, the output introduces supplementary details regarding 

installation methods that are not in the anticipated output. These additional outputs may be perceived as 

superfluous information. While there are no factual flaws or contradictions, the additional details may detract 

from the emphasis on the essential information.

Q5. Prompt: Based on section 310.10(H) of the NEC, if 

I have two parallel #8 AWG conductors, what is my 

restriction on overcurrent protection?

A5. Ground truth: The overcurrent protection for two 

parallel #8 AWG conductors must ensure that the 

ampacity of each individual conductor is not surpassed if 

one or more of the parallel conductors become 

unintentionally disconnected.

A5. Actual output: Section 310.10(H) of the NEC permits parallel conductors in raceways, multiconductor 

cables, or direct-buried single conductor cables, provided they satisfy specific criteria:

One of these is that the cumulative current-carrying capacity of the parallel circuits must not surpass the 

ampacity rating of the raceway or overhead circuit.

In the specified context, when utilizing two parallel #8 AWG conductors, it is crucial to verify that the 

cumulative current-carrying capability of both circuits does not surpass the ampacity rating of the raceway or 

overhead circuit.

Score: 0.2610665811531422

Reason: The actual output fails to specifically mention the restriction on overcurrent protection related to the 

scenario where one or more parallel conductors become disconnected, which is a key aspect of the expected 

output.

Q6. Prompt: I am trying to find the table in the NEC that 

deals with AC motors and associated current.

A6. Ground truth: Tables 430.248 through 430.250 reflect 

the typical and most used 4-pole and 2-pole induction 

motors (AC) in use.

A6. Actual output: Article 440 of the National Electrical Code (NEC), entitled “Motor Controllers,” addresses 

AC motors and their corresponding currents. Refer to Table 440.5 of Article 440 for the minimum full-load 

current specifications for single-phase or three-phase AC motors, as determined by the motor’s nameplate 

rating.

Score: 0.20462199541570797

Reason: The actual output erroneously designates Article 440 and Table 440.5 as the pertinent part for AC 

motors. The correct output should point to Tables 430.248 through 430.250. This signifies a factual inaccuracy 

and a substantial discrepancy.

Score is computed using DeepEval’s correctness with the criteria [GEval] metric.
*A parsed version of the 2017 NFPA 70 – National Electric Code (NEC) was used for the above RAG implementation.
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FIGURE 4

(A) n8n RAG-LLM workflow with Cohere reranking. (B) Relevant scoring based on Cohere chunking on a 10,000-token document.

RAG strategies such as reranking based on a higher number of top-K 
results and contextual RAG strategies. These enhancements are 
discussed in detail in the subsequent section.

5 Novel enhancements to traditional 
RAG-LLM workflow to improve 
performance

The following section presents targeted upgrades, including 
re-ranking and contextual retrieval, to overcome the constraints of the 
typical RAG-LLM pipeline outlined in the preceding section, 
specifically addressing issues of relevance and specificity. Although 
sophisticated, the additional features are easy to integrate into the fast-
deployable n8n approach. For the purpose of reproducibility and 
adoption in practice, these advanced n8n workflow JSON files are 
made available and referred to in the “Data Availability” section.

5.1 Enhancements based on reranking

Reranking is a crucial stage in modern information retrieval and 
retrieval-augmented generation (RAG) pipelines, where a basic retriever 
first gathers a diverse set of candidate documents, subsequently followed 
by a more sophisticated model that rearranges them based on their true 
relevance to the query. Among reranking approaches, cross-attention-
based reranking is notable for its ability to represent intricate semantic 
congruence between the query and candidate passages. Unlike 
bi-encoder systems that independently encode queries and documents 

into fixed-length embeddings, cross-attention models (such as BERT or 
T5 in a cross-encoder configuration) concurrently process the query-
document pair within a cohesive transformer architecture. This allows 
the model to compute token-level interactions, thereby concentrating 
on contextually relevant segments of each passage in relation to the 
query. As a result, the representations yield significantly more accurate 
relevance ratings, often leading to a considerable enhancement in 
retrieval performance, especially in tasks requiring nuanced 
understanding or disambiguation. This method requires heightened 
processing capabilities, making it relatively unfeasible for initial retrieval 
from large data sets; nonetheless, it is exceptionally effective for 
reranking a limited selection of top-K candidates, attaining a robust 
balance between precision and scalability.

On the implementation side, reranking-based gains are within 
reach in an n8n pipeline. A vector database in n8n could be enabled 
to rerank results and link the reranking node to a reranking model, 
such as Cohere Rerank 3.5, see Figure 4A. At the back-end, the Rerank 
API disaggregates the input query into smaller text segments 
according to the relevant document. Each segment comprises the 
query followed by a portion of the document, with the segment size 
determined by the context length of the employed model. For instance, 
contemplate the subsequent scenario:

	•	 The model in use is rerank-v3.5, which supports a maximum 
context length of 4,096 tokens, and

	•	 The input query consists of 100 tokens, and,
	•	 The document to be ranked is 10,000 tokens long, and
	•	 Document truncation is turned off by assigning ‘max_tokens_

per_doc’ a value of 10,000.
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Under this setup, the API splits the document into three chunks, as 
illustrated in Figure  4B. The final relevance score assigned to the 
document corresponds to the highest score obtained across these chunks.

To assess the performance of various embedding models and 
rerankers, multiple retrieval tests were conducted. Table 3 presents the 
evaluation results using two standard information retrieval metrics: 
hit rate and Mean Reciprocal Rank (MRR). Three reranking 
configurations were compared:

	 1.	 Without any reranking (baseline),
	 2.	 bge-reranker-base, and
	 3.	 Cohere V3.5 reranker.

With results documented in Table 3, the following conclusions 
were reached:

	 1.	 OpenAI + Cohere rerank combinations were found to 
consistently achieve the highest scores across both hit rate and 
MRR, thereby positioning them as the top-performing setup.

	 2.	 CohereRerank and bge-reranker-base provide consistent 
enhancements across various embedding models. This 
demonstrates their strength and effectiveness in improving 
search quality, irrespective of the type of embedding 
backbone employed.

The influence of rerankers cannot be overstated, as they play a key 
role in improving the MRR for many embeddings, showing their 
importance in making search results better. In the next section, the 
discussion will be directed toward another popular RAG enhancement 
technique using contextual retrieval.

5.2 Enhancements based on contextual 
retrieval pipeline and its advantages

For traditional RAG pipelines, source documents are split into 
smaller text chunks to achieve retrieval precision and efficiency. This 
segment-wise approach is currently widely used in practice and is 
effective, especially when the context is self-contained within each 
segment. However, in domain-specific use cases such as electrical 
codes and standards, this approach may lead to significant context 
fragmentation. As an example, consider the following question asked 
of a database that stores the National Electrical Code (NEC):

What is the minimum burial depth for direct-buried conductors 
under a parking lot?

A retrieved chunk might contain the following response:

The minimum cover depth shall be  24 inches for direct-
buried conductors.

While this statement appears relevant, it lacks critical contextual 
qualifiers. The retrieved chunk may omit the information that the 
requirement applies only for certain types of installations (for 
example, circuits that are rated 0 to 600 volts) and is located under 
certain  locations (such as driveways or parking lots subject to 
vehicular traffic). Although the retrieval might be  considered 
successful, the response output by the RAG pipeline might 
be incomplete or not follow the desired semantics if the installation 
condition or voltage rating is mentioned in a previous chunk. This 
points to a fundamental limitation of traditional chunk-based RAG 
systems: it is possible for each chunk to contain insufficient semantic 
or structural context to potentially support an in-depth, regulation-
compliant answer. In more complex documents such as the NEC, 
where applicability is often determined by a combination of table 
values, conditional rules, and cross-referenced sections, such 
fragmentation can harm both the relevance of retrieved sections and 
the accuracy of a generative search. These limitations warrant 
looking for context-aware RAG approaches that try to keep and 
restore larger contextual windows during both retrieval 
and generation.

To address this, contextual RAG augments each chunk with its 
surrounding textual context (e.g., parent sections, headers, or 
preceding paragraphs) during embedding. This allows the retriever to 
maintain semantic continuity and structural fidelity. However, this 
comes at the cost of an increased token volume. Empirically, 
contextual RAG embeddings can require 2–3 times more tokens per 
chunk than traditional RAG approaches.

As token volume increases, careful model selection becomes 
essential, especially for real-time or cost-sensitive applications. For 
retrieval and summarization tasks that do not require advanced 
reasoning, it was found to be  preferable to select lightweight 
LLMs with:

	o	 High token throughput (e.g., 200–300 tokens/s),
	o	 Low per-token cost (e.g., <$0.10 per input million tokens), and.
	o	 Extended context windows (e.g., 1 million tokens).

These characteristics, summarized in Table  4, ensure that 
contextual RAG systems remain responsive and scalable, even as 
embedding and inference loads grow with richer document 
representations. At the time of writing the paper, Llama 4 Scout 17B 

TABLE 3  Evaluation of rerankers using two standard information retrieval metrics.

Embedding Without any reranking 
(baseline)

bge-reranker-base Cohere V3.5 reranker

Hit rate MRR Hit rate MRR Hit Rate MRR

OpenAI 0.828 0.692 0.899 0.822 0.932 0.877

Voyage 0.766 0.650 0.818 0.777 0.891 0.830

Google-PaLM 0.815 0.676 0.892 0.752 0.916 0.865

Boldface score indicates the highest performance.
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16E fulfilled these criteria and was used for the subsequent 
demonstrations of contextual RAG; however, given the rapid 
developmental pace in this domain, researchers should look for 
similar lightweight LLMs that might better align with the preferred 
characteristics listed in Table 4.

From a system architecture standpoint, the implementation of 
contextual RAG within an n8n workflow closely mirrors that of 
traditional RAG pipelines; recall Figure 3. The overall structure, as 
illustrated in Figure 5A, comprises document ingestion, embedding 
generation, vector storage, retrieval, and language model invocation, 
and remains fundamentally the same. However, contextual RAG 
introduces two key enhancements that differentiate it in both design 
philosophy and execution:

	 1.	 First, the text splitting and chunking were also done more 
deliberately, with explicit control on the size, overlap, and 
structural boundaries of the chunks. This splitting/chunking 
strategy ensures that semantically cohesive units, for example, 
complete table entries, complete regulatory exceptions, or 
paragraph-level logical constructs, are preserved as individual 
retrieval units. This refinement is essential for preserving the 
context that is valuable for the downstream retrieval 
and reasoning.

	 2.	 Second, instead of aggregating top-K retrievals into a single 
prompt, each chunk is individually passed to a “Basic LLM 
Chain” node within n8n. This node is configured with a well-
crafted, structured prompt (user message), Figure  5B, that 
guides the LLM in evaluating each chunk’s relevance and 
factual contribution to the original query. The design of this 
prompt is inspired by prompt templates found in contextual 
RAG applications, such as those published by Anthropic 
(2024). The chain then filters or ranks responses from multiple 
chunks before synthesizing a final answer.

The working of the contextual retrieval system is tested by 
comparing the responses of both the traditional and contextual 
retrieval systems to questions that would require the system to refer 
to tabular data or exceptions to code sections in the NEC, and these 
results are shown in Table 5. The questions in Table 5 were framed 
through a collaborative series of discussions with practitioner 
engineers familiar with electrical codes and standards. As such, for the 
design of the experiment, the practitioner engineers had the 
following responsibilities:

	•	 Ensuring the queries being structured are technically correct and 
align with NEC 2017,

	•	 Ensuring that the queries being compiled are a fair representative 
sample covering all chapters of the NEC,

	•	 Developing the ground truth for evaluation purposes.

The median and interquartile range (IQR) of the performance 
scoring for contextual and traditional RAG were found to be 0.83 
[0.79, 0.89] and 0.62 [0.26, 0.77], respectively. To determine 
whether there was a significant improvement in the performance 
of contextual RAG over the traditional RAG, we decided to conduct 
a one-sided paired Wilcoxon Signed test. The choice of the 
Wilcoxon Signed test was dictated by the non-normal distribution 
of the observed scores for the traditional RAG. Considering a 
significance level of 0.05, the resulting Wilcoxon test reported a 
p-value of <0.0001, indicating the scores from contextual RAG to 
be statistically greater than those of the traditional RAG.

While contextual RAG is a significant improvement over 
traditional RAG-LLM (or LLMs on their own) in terms of retrieval 
fidelity, both traditional and contextual RAG suffer from hallucination, 
especially in the following situations:

	 1.	 Complex or multi-layered prompts, when the question requires 
reasoning across several conditions or sentences.

	 2.	 Cross-referenced rules are ubiquitous in engineering and 
regulatory documents. One area of the document refers to 
definitions, exceptions, or constraints in another section.

In such instances, the language model is capable of generating 
plausible, yet semantically distorted responses, even if the correct 
passage is partially retrieved. This issue arises because the generative 
component of the pipeline still relies on learned statistical patterns and 
does not inherently verify or enforce rule-bound reasoning.

Therefore, rather than being considered as final sources of truth, 
both traditional and contextual RAG should be viewed as instruments 
to speed up the search and localization of domain-specific 
information. The final output must always be checked against the 
original text from the authoritative source, whether it be a technical 
handbook, regulatory code, or engineering standard, even if these 
systems greatly lessen the cognitive and temporal strain of manual 
technical engineering code-book navigation. In high-assurance fields 
where precision, safety, and regulatory compliance are non-negotiable, 
this verification phase is nevertheless crucial.

6 State-of-the-art advanced 
implementation with multi-brain 
knowledge graph–based RAG

Knowledge graphs (Ji et al., 2022a; Peng et al., 2023; Tiwari et al., 
2021) provide a superior approach for modeling relationships between 
concepts by structuring information, including entities and their 
interconnected associations. While vector databases use numerical 
proximity in an embedding space to show semantic similarity, 
knowledge graphs use a graph-based design to keep obvious, 

TABLE 4  A comparison between traditional vs. novel contextual RAG chunking strategies, highlighting trade-offs.

RAG strategy Avg token per chunk (or 
chunk + context)

Retrieval fidelity Embedding cost

Traditional RAG ~250–350 tokens Medium Low

Contextual RAG ~600–1,000 tokens High Higher (unless models like Gemini 2.5 Flash are 

used, with low $/million token cost)
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understandable relationships, like hierarchical, causal, or functional 
connections. Between vector RAG systems and knowledge graph-
based RAG systems, each has its own advantages and use case 
scenarios, and one is not a replacement for the other.

In a knowledge graph, each node represents a distinct concept or 
entity, and the edges illustrate the nature of their interaction, enabling 
advanced reasoning, ontology-based inference (Baclawski et al., 2017), 
and contextual elucidation. Neo4j shows that graph databases are the 
basic building blocks that make it possible for users to run complex 
queries using graph traversal or SPARQL-like languages. This graph 
style is highly useful in sectors where there are obvious paths for 

making decisions, rules-based logic, or where explainability and 
relationship integrity are very important. Knowledge graphs not only 
have clear and easy-to-understand structures, but they also have 
unique analytical benefits that go beyond those of typical embedding-
based representations. These affordances make it easier to find hidden 
patterns, undertake exploratory research, and look into nuanced 
linkages across complex information domains:

	 1.	 Identification of structural gaps and blind spots: Knowledge 
graphs, as a visual and relational depiction of information, can 
reveal under-connected or isolated nodes, which may signify 

FIGURE 5

(A) n8n RAG-LLM workflow with contextual retrieval system allowing for prepending chunk-specific explanatory context to each chunk before 
embedding. (B) Prompt that instructs the model to provide concise, chunk-specific context that explains the chunk using the context of the overall 
document.
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TABLE 5  Validation of traditional versus contextual RAG-LLM responses using n8n workflows on query tasks based on the 2017 National Electrical 
Code (NEC).

Q&A responses and scores with traditional RAG-LLM Q&A responses and scores with contextual RAG-LLM

Q1. Prompt: Based on the NEC, for solar photovoltaic (PV) system application, 

I want to know what is the correction factor that needs to be applied to PV cables for 

an ambient temperature of 55 °C. The temperature rating of the conductor being 

75 °C rated.

A1. Ground truth: According to NEC Table 690.31(A), the applicable correction 

factor is 0.67.

A1. Actual output from traditional RAG: According to the National Electrical Code 

(NEC) 2017, specifically Table 310.15(B)(2)(a) (renumbered in later versions as 

Table 310.15(B)(1) or Table 310.15(B)(1) Adjustment Factors), the required 

correction factor is 0.70 for 75 °C rated PV conductors in 55 °C ambient conditions.

Score: 0.1981536822161493

Reason: The actual output yields a correction factor of 0.70 derived from a distinct 

NEC table, whereas the expected output indicates a correction factor of 0.67 from 

Table 690.31(A). This signifies a factual inaccuracy and a contradiction with the 

anticipated product. The real result fails to include the precise reference to 

Table 690.31(A), which is crucial information from the expected output.

Q1. Prompt: Based on the NEC, for solar photovoltaic (PV) system application, 

what is the correction factor that needs to be applied to PV cables for an ambient 

temperature of 55 °C, and the temperature rating of the conductor being 75 °C rated.

A1. Ground truth: According to NEC Table 690.31(A), the applicable correction 

factor is 0.67.

A1. Actual output from contextual RAG: According to NEC Table 690.31(A), for a 

75 °C rated conductor in an ambient temperature of 51–55 °C, the applicable 

correction factor is 0.67.

Score: 0.8918686352485045

Reason: The output is factually true and presents the correct adjustment factor of 

0.67, as anticipated. It comprehensively handles the anticipated output by delineating 

the NEC table and the temperature range, thereby enhancing clarity. The output is 

consistent and conforms to the context and specifications of the input. The sole small 

shortcoming is the rather excessive elaboration; however, it does not undermine the 

accuracy.

Score improved over traditional RAG implementation.

Q2. Prompt: Could you please tell me the correction factor for a four current-

carrying conductor based on NEC section 310?

A2. Ground Truth: According to NEC Table 310.15(B)(3)(a), the applicable 

correction factor is 80%.

A2. Actual output from traditional RAG: According to Section 310.15(3)(a) of the 

National Electrical Code (NEC), the adjustment factors for four current-carrying 

conductors are 1 and 2%. These factors are used to adjust the load diversity of the 

installation.

Score: 0.08819886431169416

Reason: The actual output erroneously designates the adjustment factors as 1 and 2%, 

which is inconsistent with the Expected Output’s 80% correction factor. It incorrectly 

cites section 310.15(3)(a) instead of Table 310.15(B)(3)(a). This illustrates factual 

flaws and inconsistencies with the expected output.

Q2. Prompt: Based on NEC section 310, what is the adjustment factor for a 4 

current-carrying conductor?

A2. Ground truth: According to NEC Table 310.15(B)(3)(a), the applicable 

correction factor is 80%.

A2. Actual output from contextual RAG: According to the National Electrical 

Code (NEC) 2017, specifically Table 310.15(B)(3)(a), the applicable correction 

factor, as adjusted for ambient temperature if necessary, is 80%.

Score: 0.7562603783294554

Reason: The output accurately designates the adjustment factor as 80% in 

accordance with NEC Table 310.15(B)(3)(a), consistent with the anticipated 

outcome. However, it introduces extraneous information on ambient temperature 

adjustment, which is neither required by the input nor anticipated in the output, so it 

slightly diverges from the predicted response.

Score improved over traditional RAG implementation.

Q3. Prompt: Based on section 310.10(H) of the NEC, if I have two parallel #8 AWG 

conductors, what is my restriction on overcurrent protection?

A3. Ground truth: The system’s overcurrent protection for two parallel #8 AWG 

conductors must be built to prevent each conductor’s ampacity from being exceeded 

in the event that one or more of the parallel conductors are inadvertently 

disconnected.

A3. Actual output from traditional RAG: Section 310.10(H) of the NEC permits 

parallel conductors in raceways, multiconductor cables, or direct-buried single-

conductor cables, provided they satisfy specific standards.

The cumulative current-carrying capacity of the parallel circuits must not surpass the 

ampacity rating of the raceway or overhead circuit.

If the ungrounded service-entrance conductors are installed in parallel, they must 

be scaled to correspond with the ampacity and rated voltage of the ungrounded 

service-entrance wires.

In the provided context, it is crucial to ensure that the combined current-carrying 

capability of two parallel #8 AWG conductors does not surpass the ampacity rating of 

the raceway or overhead circuit.

Score: 0.2610665811531422

Reason: The actual result does not explicitly address the restriction on overcurrent 

protection concerning the scenario in which one or more parallel conductors become 

disconnected, a crucial element of the anticipated output.

Q3. Prompt: Based on section 310.10(H) of the NEC, if I have two parallel #8 AWG 

conductors, what is my restriction on overcurrent protection?

A3. Ground truth: With two parallel #8 AWG conductors, the overcurrent 

protection should be such that the ampacity of individual conductors will not 

be exceeded if one or more of the parallel conductors become inadvertently 

disconnected.

A3. Actual output from contextual RAG: NEC 2017, Section 310.10(H) says that 

for two parallel #8 AWG conductors, each one must be safeguarded so that no one 

exceeds its ampacity.

Score: 0.8042020327293316

Reason: The actual output aligns well with the expected output by stating that each 

conductor must be protected to not exceed its ampacity, which is consistent with the 

requirement that the ampacity of individual conductors should not be exceeded.

Score improved over traditional RAG implementation.

Score is computed using DeepEval’s correctness with the criteria [GEval] metric.
*For this implementation, a chunk size of 2,000 was used for both traditional RAG setup and contextual RAG setup, with an overlap of 20.
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neglected or poorly integrated concepts. These blind spots can 
be utilized to produce innovative discoveries by encouraging 
new, contextually pertinent linkages between 
dissimilar concepts.

	 2.	 Exploratory pathways for idea navigation: Knowledge graphs 
facilitate intuitive exploration among concepts. By using the 
connectivity of a node inside the graph, users might uncover 
indirect yet substantial relationships between concepts and 
hypotheses, perhaps leading to interdisciplinary discoveries or 
revisions of conceptual frameworks.

	 3.	 Revealing nuance through concept removal: By algorithmically 
or manually removing dominant or highly connected nodes, 
knowledge graphs can surface latent structures and peripheral 
relationships. This technique brings to the forefront more 
subtle, contextually rich ideas that are crowded out by the 
prevailing big picture and thus supports a deeper interpretation 
and nuanced understanding of the information space.

In the relation extraction process, semantic relationships are first 
identified from unstructured text and mapped as edges connecting 
concept nodes in the knowledge graph (Ji et al., 2022b). The graph is 
then analyzed using the Louvain community detection algorithm 

(Blondel et al., 2008) from network science, which clusters densely 
connected nodes together. Nodes belonging to the same community 
are assigned the same color, visually revealing meaningful relational 
groupings and latent structure within the extracted knowledge. 
Figure 6 shows such a knowledge graph for the following simplified 
example: “The ever-increasing demand for fossil fuels due to explosive 
growth in automotive and other industrial sectors has rendered the earth 
lacking fossil fuels.”

When extended to real-life text-rich applications, knowledge 
graphs offer powerful capabilities for representing structured 
knowledge, and these can be combined with an intelligent AI 
agent inside a knowledge-graph–driven Retrieval-Augmented 
Generation (RAG) framework. In this setup, the agent does not 
follow a single linear path but instead navigates across one or 
more linked knowledge graphs depending on the input prompt. 
Using the graph structure to guide retrieval, the system is able to 
capture semantically rich context, highlight hidden connections, 
and generate answers that are both precise and easier to interpret 
because they remain tied to structured domain knowledge. Such 
an approach is particularly useful in engineering research, where 
overlapping and interdependent domains require contextual 
representation. To illustrate the concept, three separate 

FIGURE 6

A simple knowledge graph with the clustering of similar nodes based on the Louvain community detection algorithm. Each cluster is assigned a unique 
color.
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knowledge graphs were built, each organized around a specific 
theme. In this case, the thematic focus was an electrical 
engineering challenge: enhancing grid resiliency by drawing on 
both the researcher’s own work and technical reference materials 
published through IEEE and CIGRE. For demonstration 
purposes, these three custom-built knowledge graphs, labeled 
brain 1, brain 2, and brain 3, were created through a manual 
curation process leveraging the authors’ domain knowledge to 
support the construction of these knowledge graphs. For more 
advanced applications, an AI agent can be leveraged to curate the 
necessary manuscripts before passing them into a knowledge 
graph for processing. The composition level details for brain 1, 
brain 2, and brain 3 are as follows:

	 1.	 Brain #1 contains the authors’ own body of work, including 
prior publications (Ghosh and Suryawanshi, 2024; Ghosh 
and Dutta, 2020) and internal reports addressing topics such 
as grid maintenance strategies, resilience measurement, 
substation floor layout, and fire hazard evaluation.

	 2.	 Brain #2 is built from IEEE resources, including technical 
reports like IEEE TR83 (Bose et  al., 2020) and selected 
papers (Safdarian et  al., 2024; Bhattarai et  al., 2022; 
Tabassum et al., 2024) from the IEEE Xplore Digital Library. 
The IEEE resources focus on technical frameworks, 
analytical tools, and performance indicators that 
support resilience.

	 3.	 Brain #3 draws on selected CIGRE technical reports 
(Ciapessoni et al., 2023) and related manuscripts (Itotani 
et  al., 2024), and assembled to provide expertise on 
sustainable practices for strengthening substation 
reliability. This includes the integration of environmentally 
friendly technologies and the use of remote 
maintenance approaches.

The structure of the knowledge graph–based RAG system is 
shown in Figure 7A, with all three knowledge graphs (brain 1, 2, and 
3) being created and deployed using the InfraNodus platform 
(Paranyushkin, 2024). Figure 7B highlights one of these graphs as an 
example. Much like earlier versions of traditional and contextual 
RAG, this implementation was built with the n8n platform and has 
been made accessible for external use, as noted in the data availability 
section. Depending on the detail and scope of a given research 
query, the AI agent may consult a single graph, multiple graphs, or 
all three interconnected “brains” to capture the most relevant context 
and expand the depth of retrieved knowledge. Examples of these 
queries, along with the corresponding graph-driven outputs, are 
provided in Table 6. As shown, the agent actively decides which 
graph or combination of graphs to draw from in order to refine 
its responses.

An interesting question that may arise here is how the AI agent 
intelligently selects which knowledge graph(s) to query? In essence, 
during the construction of the AI agents that tap into the different 
knowledge graphs, an Infranodus compliant system message is added 
within the AI agent as follows, which holds to key to the method’s 
intelligence: “Always use either EightOS or Polysingularity tool before 
sending a response to the model. You have to use at least one of them, 
the one that think is more suitable. Or both or all if both or all can 
provide some help.”

This system message gives the AI agent the necessary context, and 
as each graph is described, it will know when to choose it, depending 
on what the user has defined.

Based on a series of prompting interactions with the knowledge 
graph-based RAG system, the following conclusions were made:

	 1.	 Higher API usage cost for knowledge graph generation: In 
practice, building a knowledge graph from materials such as 
PDFs or structured documents uses far more API resources 
than simply loading text into a vector database. A standard 
embedding job might use only one or two tokens for each 
word, but graph generation is different. When relation 
extraction, entity resolution, or ontology alignment are 
involved, token use can rise to five to ten times higher for the 
same document. The extra cost comes from the heavier 
semantic parsing and the need to map relationships rather than 
just storing word vectors.

	 2.	 Recommendation to reduce API usage: Figure  8 presents a 
staged approach for rolling out RAG systems with cost in 
mind. The idea is to begin with conventional setups and only 
move toward contextual or knowledge-graph–driven RAG 
when the task at hand truly demands stronger semantic depth 
or reasoning across domain-specific relationships.

	 3.	 Limitations with numerical tabular data: Knowledge graphs are 
a poor fit for dense numerical tables since their strength lies in 
capturing concepts and relationships, not large matrix-style 
datasets. Applying them to standards with heavy tabular 
content, like the NEC or NFPA documents, ends up being 
restrictive. In practice, forcing numerical tables into a graph 
strips out detail and makes retrieval clumsy. Row-to-row 
dependencies, column statistics, and numeric precision do not 
map cleanly into entity–relation triples, so the ability to run 
meaningful graph-based inference is reduced.

	 4.	 Expanded exploratory potential with multiple knowledge graphs: 
One primary advantage of implementing many domain-
specific knowledge graphs is that it expands the range of 
information available to the AI system. The agent can traverse 
one or more graphs simultaneously, based upon the 
requirements of the query. This enables the identification of 
relationships that may not be  evident in a singular graph. 
Consequently, it facilitates more exploratory analysis and 
thereby aids users in tracking concepts across interconnected 
domains. This can often reveal obscured connections that may 
inspire novel avenues of study.

	 5.	 Other observations: Some additional observations that were 
made are docketed as follows:

	 a	 In a traditional vector-based RAG setup, there is a loss of 
structural information when chunking documents, while such 
hierarchies and relationships are preserved in a knowledge 
graph-RAG setup.

	 b	 Knowledge graph-RAG was better able to support complex 
reasoning across multiple facts, such as exceptions to certain 
engineering code sections, or supplementary discussions on a 
particular subject within a research paper.

	 c	 While both contextual RAG and knowledge graph–based RAG 
aim to improve retrieval-augmented generation, they are 
architecturally and functionally optimized for different types 
of information retrieval tasks. Contextual RAG excels at 
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FIGURE 7

(A) n8n RAG-LLM workflow with multiple custom knowledge graphs, each housing unique knowledge. (B) A visualization of the ‘author research 
expert’ (brain 1) knowledge graph. Similar nodes are clustered together based on the Louvain community detection, and each of these clusters is 
assigned a unique color.
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retrieving and preserving semantic continuity from 
unstructured text, making it particularly effective for answering 
questions that rely on narrative explanations or rule statements 
embedded in paragraphs (e.g., code clauses or installation 
descriptions). In contrast, KG-RAG is optimized for relational 
reasoning and structured knowledge traversal, making it well-
suited for queries that involve interdependence, multi-node 
relationships, or exception handling.

	 6.	 Author’s recommendation: As a user, one should make a 
predetermined assessment as to what RAG structure might 
work best for their particular use case.

7 Summary and future work

This paper shows that modern automation platforms like n8n 
make it possible to set up Retrieval-Augmented Generation (RAG) 
pipelines with very little coding. Engineers and researchers can 
use these tools to create working RAG systems that pull and 
process domain-specific material with ease. Depending on the 
application, repositories can be  indexed either through vector 
databases or knowledge graphs, giving users flexible options for 
context-aware retrieval. Vector-based RAG remains the more 
common choice because of its efficiency and simple deployment, 
but knowledge-graph approaches provide stronger semantic 
structure and clearer interpretability. That makes them especially 
useful when navigating the dense interconnections found in 
engineering standards.

At the moment, large-scale use of graph-augmented RAG is 
held back by higher computational demands and API costs linked 
to graph construction and reasoning. As these costs drop and APIs 
improve, knowledge-graph retrieval is expected to grow in 
adoption and could eventually outperform vector search in 
precision and domain relevance. This pathway is particularly 
important in electrical engineering, where understanding how 
technical terms, clauses, and procedures relate to one another is 
critical. The combination of n8n with tools like Infranodus 
already demonstrates that this direction is feasible and practical 
for document-heavy environments.

TABLE 6  Testing the working mechanism of the knowledge graph-based RAG implementation with the AI agent intelligently tapping the necessary 
dynamic knowledge graphs (brains).

Prompt into knowledge graph-
based RAG

Brains that the 
AI agent 
consulted

Response from the knowledge graph-based RAG agent

Q1. Prompt: Referring to the IEEE technical 

reference documents and the author’s own research, 

can you summarize very briefly how fast trip relay 

settings can help in high fire threat areas.

Brain 1 and Brain 2 

(see Figure 7A)

A1. Actual output from knowledge graph-based RAG agent: Fast-trip relay 

configurations are particularly advantageous for power systems functioning in areas 

susceptible to wildfires. Research and IEEE publications indicate that these configurations 

assist in several essential aspects.

They facilitate the prompt identification and resolution of faults on a line. Prompt isolation 

prevents a minor disturbance from escalating into a significant failure that could ignite a 

fire.

In addition, by decreasing the detection threshold, relays act as a preventative measure, 

diminishing the likelihood of an electrical fault becoming an ignition source.

This method not only mitigates fire danger but also enhances overall reliability by 

maintaining power continuity and diminishing the probability of outages that could hinder 

firefighting operations. In summary, implementing fast-trip settings serves as a focused 

preventive strategy and a pragmatic dependability measure in high-risk zones.

Q2. Prompt: Referring to CIGRE documents and the 

author’s own research, can you list briefly what are 

the benefits of the SF6 alternative circuit breaker?

Brain 1 and Brain 3 

(see Figure 7A)

A2. Actual output from knowledge graph-based RAG agent: Vacuum and synthetic-air 

circuit breakers offer clear advantages over SF₆ types. The biggest difference is seen to be in 

the environmental aspect, given that SF₆ is a potent greenhouse gas, while these alternatives 

eliminate that problem entirely.

Handling is also simpler as operators do not need to deal with gas recovery systems or 

think about accidental release of potent greenhouse gases.

Maintenance costs are also lower as a result.

Additionally, vacuum breakers, for example, can run for long periods without service, 

which reduces expenses and downtime. Together, these factors make SF₆-free breakers a 

practical choice, especially where sustainability targets and safety requirements are 

becoming stricter.

FIGURE 8

Illustration shows a multi-step guide to reduce API usage for RAG 
implementation.
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Looking ahead, several areas offer opportunities for further 
development. These include:

	 1.	 Multimodal retrieval capabilities: A promising direction for 
future work is the integration of multimodal retrieval 
capabilities into contextual and knowledge graph RAG 
systems. In engineering, valuable information is not limited 
to text but is often embedded in schematics, drawings, 
tables, and other structured resources. Future RAG 
workflows should be  able to extract relationships from 
these non-textual artifacts, associate them with textual 
knowledge, and represent them within a unified graph 
structure. For example, a retrieval system could pair a 
relay’s specification sheet with the relevant section of a 
one-line diagram to answer technical queries with greater 
accuracy. This kind of integrated retrieval would allow 
reasoning over multiple formats at once and significantly 
enhance practical utility in engineering applications,

	 2.	 Improving chunking and indexing strategies: Another 
important area of development involves improving 
chunking and indexing strategies, particularly when 
dealing with dense numerical tables that are common in 
engineering standards and equipment specifications. 
Traditional chunking methods often treat these tables as 
plain text, which strips away their structural meaning and 
makes retrieval inefficient. Large tables can consume 
excessive tokens without preserving the underlying 
relationships between rows, columns, and units. A more 
structure-aware chunking approach would preserve table 
headers, normalize units, and index individual cells or 
logical table sections, allowing the system to retrieve only 
the relevant values rather than entire tables. This targeted 
strategy would reduce computational cost and significantly 
improve precision when responding to engineering queries 
that rely on numerical data,

	 3.	 Real-time feedback mechanisms: Future research should also 
explore real-time feedback mechanisms that allow RAG 
systems to learn from expert users. Engineering work is 
inherently iterative, and domain experts can quickly 
identify gaps or inaccuracies in system outputs. By 
incorporating features that let users tag, approve, or correct 
specific pieces of information, RAG systems can refine their 
retrieval models over time. This type of closed feedback 
loop would lead to higher precision and reduce the amount 
of human effort required to verify answers, resulting in 
more dependable system performance in real engineering 
workflows., and.

	 4.	 Expanding multilingual capabilities: Finally, expanding 
multilingual capabilities will be  essential to make RAG 
systems more robust and globally relevant. Engineering 
standards and operational manuals are often published in 
multiple languages, and collaborative projects frequently 
involve international teams.

	 5.	 Hybrid RAG architecture: Another promising direction for 
future research is the development of a hybrid RAG 
architecture that balances performance with cost efficiency. 
Knowledge graph–based RAG (KG) approaches provide 

strong contextual reasoning but are typically associated 
with significantly higher API and computational costs 
compared to vector-based methods. To address this, a 
combined strategy can be explored in which KG RAG is 
selectively applied to complex, reasoning-heavy queries, 
while VectorRAG handles more direct or fact-based 
retrieval tasks.
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