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Do generative models learn rare
generative factors?

Fasih Haider*, Edward Moroshko, Yuyang Xue and
Sotirios A. Tsaftaris

School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom

Generative models are becoming a promising tool in AI alongside discriminative
learning. Several models have been proposed to learn in an unsupervised
fashion the corresponding generative factors, namely the latent variables critical
for capturing the full spectrum of data variability. Diffusion Models (DMs),
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are
of particular interest due to their impressive ability to generate highly realistic
data. Through a systematic empirical study, this paper delves into the intricate
challenge of how DMs, GANs and VAEs internalize and replicate rare generative
factors. Our findings reveal a pronounced tendency toward memorization of
these factors. We study the reasons for this memorization and demonstrate that
strategies such as spectral decoupling can mitigate this issue to a certain extent.1
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1 Introduction

In recent years, the machine learning field has witnessed a significant increase in
the popularity and advancement of generative models (Scao et al., 2022; OpenAI, 2022;
Taylor et al., 2022; Zhang S. et al., 2022; Iyer et al., 2022; Touvron et al., 2023). These
models have significantly advanced approaches to e.g., image generation and natural
language processing, demonstrating the ability to create outputs that closely resemble real-
world data (e.g., Karras et al., 2020; Zhang B. et al., 2022). The ongoing development
and increasing adoption of these technologies, particularly large language models, have
garnered substantial attention from academia and industry, while also becoming a topic of
public interest (De Angelis et al., 2023; Mohamadi et al., 2023).

At the heart of these generative models lies the concept of generative factors (also
known as factors of variation or latent variables), which fundamentally affect the
characteristics of the generated outputs (Liu et al., 2023; Bengio et al., 2013; Higgins et al.,
2018; Träuble et al., 2021). These factors encompass many elements, from simple attributes
such as color or size in images to more complex features such as sentence structure or
thematic elements in text. Understanding and manipulating these generative factors is a
key to harnessing the full potential of generative models (Fard et al., 2023; Yang et al., 2021;
Shao et al., 2018).

Despite extensive research surrounding generative models (Bond-Taylor et al., 2022),
one aspect remains notably under-explored: their ability to learn and replicate rare
generative factors. Rare generative factors (RGFs) are latent variables that are highly skewed
in their frequency of appearance in the real world (and hence in datasets) but play a

1 The code will be made available upon acceptance.
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critical role in the underlying data-generating process. RGFs appear
in a wide range of applications, including medical imaging (Liu
et al., 2022), natural language generation (Mercatali and Freitas,
2021), and others.

A motivating example Consider a dataset composed of
electrocardiogram (ECG) recordings with RGF that shows the
presence of Brugada syndrome, a rare disorder that can lead
to sudden cardiac arrest. This syndrome is more prevalent in
people in their 30s or 40s (Speranzon et al., 2024) but can also
occur in childhood (Peltenburg et al., 2022). Therefore, a data
set collected of patients with the disease is more likely to have
people aged 30 to 50 years with the disease. Generative models
could generate new data to enrich the diversity of the dataset,
improve AI-based diagnostic tools, or facilitate the early detection
of this syndrome in a wider patient population, ultimately leading
to timely interventions and more precise medical prognoses. This
goal requires generative models not only to replicate the distinct
ECG patterns associated with the syndrome within the subset of
recordings where it is predominantly found, but also to introduce
these patterns into ECG recordings at other ages not commonly
associated with the syndrome.

Focussing on Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), and Diffusion Models (DMs),
in this paper, we take a step forward by exploring their ability to
capture these rare generative factors. We introduce a framework
specifically designed to examine the effect of rarity in generative
factors on the learning process of generative models. Focussing
on simple canonical models [i.e., the original (plain) GAN
architecture (Goodfellow et al., 2014), the standard VAE, a simple
diffusion probabilistic model (Ho et al., 2020)] allows us to distill
insights without the confounding effects of additional complexities
introduced in variant models. It helps in maintaining focus on core
learning dynamics across all three model types.

By taking rarity to the extreme, considering datasets where
the skew in the distribution of generative factors is pronounced,
we pose a fundamental question: When faced with a dataset
that is heavily skewed in terms of the coverage of generative
factors, will a generative model successfully learn rare generative
factors? Addressing this question is crucial to understanding
the limits of current generative models and developing new
methodologies that can better capture and represent the diversity
of generative factors, especially those that are rare. This exploration
not only aims to enhance the fidelity and diversity of model-
generated output, but also seeks to contribute to the broader
discourse on model robustness and fairness when dealing with
skewed data distributions. Understanding how generative models
behave under extreme data imbalance has direct implications for
fairness, robustness, and trustworthy AI, where under-represented
factors often correspond to minority groups, rare pathologies, or
uncommon real-world conditions that are crucial for equitable
model performance.

We show that plain GAN, VAE, and DM generally struggle to
learn RGFs, tending instead to memorize them. This memorization
is distinct from the memorization of individual training examples,
as highlighted by recent studies. For instance, de Wynter et al.
(2023) demonstrated how large language models exhibit example
memorization, while Carlini et al. (2023) found that diffusion
models tend to reproduce training examples during test time. Maini
et al. (2023) showed that example memorization can be distributed

across various neurons and layers, and Akbar et al. (2023)
demonstrated memorization in diffusion models for synthetic
brain tumor images. However, to the best of our knowledge, the
memorization of generative factors remains significantly under-
explored in the literature (Jegorova et al., 2023).

Our work provides valuable insights into the limitations
of current generative models in learning robust, transferable
representations from imbalanced datasets, opening new avenues
for improving their generalization capabilities.

To summarize, we make five main contributions:

• A framework designed to systematically study the learning of
RGFs in generative models.

• A statistical testing pipeline using z-scores and p-values to
quantify the extent of memorization and assess factor-wise
generalization at a class-specific level, rather than relying on
global distribution metrics.

• A baseline comparison using matched datasets (balanced vs.
skewed) to control for confounding variables and isolate the
impact of data skew on generative learning performance.

• Through an extensive empirical study, we evaluate the
capability of GANs, VAEs, and DMs to learn and replicate
RGFs, providing valuable insights into the dynamics of
generative learning in the presence of data rarity.

• We identify and discuss the limitations in the context of RGF
learning, explore the underlying reasons for these limitations,
and evaluate a potential mitigation strategy specifically
for GANs.

2 Related work

Generative models can replicate the data distribution they are
trained on but this is not what we aim for. We focus on a crucial
aspect of unsupervised feature extraction: the ability to disentangle
and generalize RGF. We deliberately create skewed datasets where
specific generative factors are present only in one class, not to
test if models can mimic this distribution, but to examine if
they can abstract these factors. Hence we focus not on how well
models reproduce training data statistics, but on their capacity
to learn generalizable latent representations from biased inputs.
The tendency of models to memorize rare factor-class associations,
rather than extending them to other classes, reveals a limitation in
their ability to discover the underlying data generating process (Liu
et al., 2022). This memorization of generative factors, highlights
a significant challenge in unsupervised representation learning. It
underscores the difficulty these models face in separating class-
specific features from generalizable attributes when presented with
skewed data. We also differentiate our focus on RGFs from the
causal disentanglement approaches highlighted by Zhang et al.
(2024). While Zhang et al. (2024) provide identifiability guarantees
for disentangling causal variables using soft interventions, their
emphasis lies in leveraging interventions to establish robust
causal structures. Our study takes a different path, examining
how generative models manage Rare generative factors (RGFs)
under extreme data imbalance. Unlike causal disentanglement, we
make no assumptions about causality or intervention-based data.
Instead, we investigate the mechanisms behind the memorization
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and generalization of RGFs, shedding light on the strengths and
limitations of generative models in representing underrepresented
factors (i.e., RGFs). This perspective offers a complementary angle
to the causal disentanglement literature, enriching the broader
discourse on disentanglement in generative modeling.

Garrido et al. (2020) primarily emphasize the prediction of
rare feature combinations in population synthesis (i.e., zero-cell
problem), particularly for unique categorical features, using
Variational Autoencoders (VAE) and Wasserstein Generative
Adversarial Networks (WGAN). While this approach provides
valuable insights into modeling rare occurrences (addressing
zero-cell problem), it operates at a narrow granularity that
often overlooks broader dependencies and emergent patterns
spanning the full image (or in raw data). This limitation
risks underestimating the inherent complexity of rare
variations, particularly when these involve intricate feature
inter-dependencies.

Garrido et al. (2020) evaluate the learning of unique feature
combinations by focusing on sampling zeros (i.e., logically possible
combinations absent from the training data but present in test
data) and structured zeros (i.e., logically impossible absent from
training and test data). However, this methodology confines
rarity to isolated feature combinations, limiting the model’s
ability to capture the interplay of features across the full image
context. Consequently, the proposed evaluation framework lacks
a controlled experimental baseline (i.e., comparison of generated
sampling zeros while trained on balanced and highly skewed
data). Our problem differs from the zero-cell problem because it
focuses on image generation, where rare-generated factors (RGFs)
dynamically affect the dataset. Some RGFs, like color, thickening,
or thinning, influence the entire image globally, while others,
like fractures or swelling, have random, localized effects on parts
of the images. Unlike the zero-cell problem, which deals with
fixed absences in specific feature combinations, our challenge
involves ensuring models can learn and generalize these rare and
dynamically applied factors across samples. Moreover, evaluating
the zero-cell problem is straightforward when dealing with tabular
data, as it involves directly comparing whether the generated
samples match values present in the test data. However, this
approach cannot be directly applied to image generation tasks,
where the outputs are in raw form, high-dimensional, and lack
discrete categories for direct comparison.

Our study addresses these gaps by implementing a controlled
experimental setup and constructing datasets where rarity is
defined at the level of the entire image. Additionally, an
evaluation framework has also been proposed to address this
issue systematically. This approach enables a more comprehensive
assessment of how generative models, including VAEs, GANs, and
Diffusion Models (DMs), handle rare factors (RGFs) present in raw
data (i.e., images).

3 Preliminaries

Consider a dataset {(xi, fi, yi)}n
i=1, where xi ∈ X is a data

instance, fi ∈ {0, 1} is a binary2 generative factor and yi ∈ {1, ..., C}

2 Our work can be extended to non-binary generative factors.

is a class label. For example, xi is an image of a digit, fi indicates the
color (green for 0, red for 1), and yi is the value of the digit.

Central to our work are the generative factors, informally
defined as: [Generative Factors, informal] The generative factors
are the underlying latent variables that fully characterize the
variation of the data in the domain X .

Our work focuses on the case of rare generative factors, formally
defined as follows: [Rare Generative Factor, RGF] For c ∈ {1, ..., C},
let Sc,0 = {i|yi = c and fi = 0} and Sc,1 = {i|yi = c and fi = 1}.
A generative factor f is rare if there exists a class k ∈ {1, ..., C} such
that |Sk,0| � |Sk,1| and for all c �= k, |Sc,0| � |Sc,1|.

Intuitively, a dataset with a RGF is skewed. In this paper, we take
the skewness to the extreme3 and consider the case where |Sk,0| = 0
for a particular class k and |Sc,1| = 0 for all other classes c �= k.

Definition 2 characterizes a rare RGF as one whose distribution
is highly skewed with respect to the class label. Specifically, the
factor f is considered rare if, for some class k ∈ {1, ..., C}, it appears
exclusively (or overwhelmingly) in class k, and is absent (or nearly
absent) in all other classes. The sets Sc,0 and Sc,1 represent the
indices of samples in class c where the generative factor f takes value
0 or 1, respectively. The condition |Sk,0| � |Sk,1| and |Sc,0| � |Sc,1|
for all c �= k implies that f = 1 is strongly concentrated in class
k. This definition implicitly captures a significant variation in the
conditional distribution P(f | y) across classes. In the extreme
case we study, this variation is taken to its limit: f = 1 occurs
only in class k, and f = 0 in all other classes. This setup enables
a controlled analysis of whether generative models generalize the
factor f beyond class k or memorize its co-occurrence, thereby
disentangling generalization from class-conditional memorization.

Although we restrict our current analysis to binary generative
factors for interpretability and statistical tractability (i.e., z-tests
on proportions), the proposed framework naturally generalizes
to continuous or multi-valued factors. In practice, continuous
generative factors can be converted into multiple discrete classes
by defining thresholds or quantile-based bins (e.g., dividing a
continuous attribute such as brightness or texture smoothness into
low, medium, and high levels).

Note that we only use the data instances xi for the training of
generative models. Generative factors fi and class labels yi serve
exclusively to evaluate (after training) the model’s ability to learn the
generative factors. This setting reflects real-world scenarios where
explicit labels or factors might not be readily available, challenging
the model to capture the generative factors accurately.

3.1 Examples

We now briefly discuss motivating real-world examples of
rare generative factors. For each example, we provide a detailed
description of the role of xi, fi and yi.

Example 1: Medical imaging for brain health across
different ages

• xi - MRI scan of the brain.

3 We relax it in Appendix Section 5.
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FIGURE 1

Framework for assessing the learnability of rare generative factors.

• fi - A binary generative factor indicating the age group of the
patient, either young (under 60) or old (60+).

• yi - The health condition identified by the scan, such as normal
aging, mild cognitive impairment, or Alzheimer’s disease.

In this example, the distribution of age is skewed because
Alzheimer’s disease mostly affects older people. Consequently,
learning to understand the concept of age in relation to Alzheimer’s
and generating MRI images that accurately depict Alzheimer’s
in younger individuals, which is still possible with early-onset
Alzheimer’s (Mendez, 2019), poses a significant challenge.
This difficulty arises from the rarity of early-onset Alzheimer’s
cases in younger populations, making it difficult for models to
capture and replicate this condition accurately in generated images.

Example 2: Text style in literary genres

• xi - A passage of text.
• fi - A binary generative factor indicating the text style, e.g.

whether the text includes archaic English words or not (a
modern style).

• yi - The literary genre of the text, such as modern fiction,
contemporary poetry, or historical fiction.

In this example, text style might be a rare generative factor, since
archaic English is uncommon in modern fiction and contemporary
poetry but frequently found in historical fiction. The challenge for
generative models is to learn the concept of text style from such
skewed data.

Example 3: Car images in urban and rural environments

• xi - Image of a car.
• fi - The environment in which the car is captured, urban

or rural.
• yi - The brand of the car.

In this example, the rarity of the generative factor arises because
luxury car brands, such as BMW, are frequently observed in
urban landscapes but are considerably less common in rural
environments. This discrepancy presents a challenge in learning the
generative factor of the environment effectively.

4 Framework for assessing the
learnability of RGFs

We now present our framework for studying the learnability of
Rare generative factors (RGFs), illustrated in Figure 1.
Setup: We start our investigation with a dataset Du =
{(x(u)

i , f (u)
i , y(u)

i )} characterized by a uniform distribution of the
generative factor; that is, within each class, the number of samples
with fi = 1 equals those with fi = 0. This balanced dataset serves as
a baseline for understanding how generative models perform under
standard conditions, where no generative factor is particularly rare.

To understand the impact of an RGF, we construct a new
dataset, Dr = {(x(r)

i , f (r)
i , y(r)

i )}, derived from the original data
instances in Du. In this tailored dataset, we introduce a deliberate
skew: for some selected class k, all examples have fi = 1, which
signifies the presence of the RGF. In contrast, for all other classes
c �= k, all examples have fi = 0, indicating the absence of this factor.
These two datasets (Du and Dr) allow us to closely examine how
the presence of a rare generative factor influences the learning and
generative capabilities of generative models.

To this end, we train two separate generative models (of
the same type) for {x(u)

i } and {x(r)
i }, respectively. From each

trained model, we then generate M samples for evaluation. To
evaluate these generated samples, we employ two oracle classifiers.
These classifiers are trained on the balanced dataset Du, serving
two functions:

1. Label classifier: This classifier is trained using data pairs
{(x(u)

i , y(u)
i )}, which consist of the data instances and their

corresponding class labels. Its role is to categorize the generated
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samples into the correct classes, assessing the model’s ability to
maintain class-specific characteristics in the generated data.

2. Generative factor classifier: This binary classifier, trained on
{(x(u)

i , f (u)
i )} pairs, focuses on identifying the presence or absence

of the generative factor within each sample.

We ensure that both classifiers achieve high accuracy (on a separate
test set).

Next, we use the classifiers to determine both the class label and
the binary generative factor for each of the M samples produced by
the respective generative model, and then calculate the distribution
of the generative factor for each class c. We denote by P(u)

c the
proportion of instances with f = 1 within class c, generated by the
generative model trained on the uniformly distributed dataset Du.
Similarly, P(r)

c represents the proportion of instances with f = 1
from class c, generated by the generative model that is trained on
the skewed dataset Dr .

4.1 Our hypothesis

We hypothesize that for each class c, the proportion of
generated instances by both trained models will be comparable.
This hypothesis is grounded in the notion that effective learning
by generative models should allow them to extract the generative
factors, regardless of their rarity in the training data, with a high
degree of fidelity. Essentially, this suggests that the models’ ability to
discern and generate generative factors is not significantly hindered
by the skewed distribution of these factors in the training dataset.

4.2 Assessing the learning of RGF

We perform a statistical test of the hypothesis to compare
the proportions P(u)

c and P(r)
c . We employ a one-sample z-test,

which allows us to determine whether the observed differences in
proportions between the two groups are statistically significant. We
denote by zc the z-score4 corresponding to class c,

zc =
(

P(r)
c − P(u)

c

)
√√√√P(u)

c

(
1 − P(u)

c

)

M
. (1)

To evaluate the capability of generative models to learn RGFs,
we calculate the p-value associated with each computed z-score zc
for class c. When p-value > 0.05, we uphold the null hypothesis,
which implies that the model has effectively learned the generative
factor. This outcome suggests that there is no significant difference
between the expected and observed frequencies of the RGF among
the generated instances, indicating successful learning by the
generative model.

Conversely, a p-value less than 0.05 leads to the rejection of
the null hypothesis. Specifically, for the class k where the rare
generative factor has been introduced, and where zk > 0, this
outcome signifies that the generative model has not learned but
rather memorized the generative factor for this class. Similarly, if
we observe a p-value below 0.05 for a class c �= k accompanied by

4 The z notation should not be confused with a latent space.

zc < 0, this also indicates memorization of the generative factor
by the generative model for classes other than k. It is noteworthy
to mention that deviations from these specified conditions are rare
in practice, underscoring the models’ tendency to either learn or
memorize generative factors. The subsequent section details the
datasets and the specific generative factors employed in our study.

4.3 Justification for the chosen test
statistic

We employ a one-sample z-test to compare the class-wise
proportions P(u)

c and P(r)
c of the generative factor in the synthetic

data generated from balanced and skewed training datasets,
respectively. The z-test is appropriate in our setting because we
are comparing an observed proportion P(r)

c against a reference
population proportion P(u)

c obtained from the balanced dataset.
Given the sufficiently large number of generated samples (M =
1, 000), to ensure that the sampling distribution of the proportion
approximates a normal distribution, satisfying the assumptions
of the test. This test offers an interpretable and computationally
efficient means of quantifying deviations from the expected
behavior under the null hypothesis that the model has learned
the generative factor in a generalizable way. Moreover, the z-
score provides not just significance testing but also directionality
(i.e., whether the factor appears more or less frequently than
expected), which is critical for distinguishing between learning
and memorization. We selected the one-sample z-test due to its
simplicity, suitability for proportion data in large samples.

5 Dataset and generative factors

In this work we primarily utilized the colored-MNIST
dataset (Arjovsky et al., 2019) and the Morpho-MNIST dataset
(Castro et al., 2019), both are stylish versions of the classical
greyscale handwritten digits classification MNIST dataset (LeCun
et al., 1998). The colored-MNIST dataset enhances the original
digit images by incorporating a color scheme of green and
red. The Morpho-MNIST dataset modifies the digits with
morphological modifications, such as variations in thickness,
swelling, and the introduction of fractures. To extend our
analysis beyond handwritten digits, we also employed a subset
of the Comprehensive Cars (CompCars) Surveillance dataset
(Yang et al., 2015). From this dataset, we selected images of
two car makes (Volkswagen and Toyota) in two colors (black
and white), allowing us to explore our hypotheses in a different
domain. Supplementary Table S2 details the sample distribution
of our CompCars subset. While the datasets employed (colored-
MNIST, Morpho-MNIST, and CompCars) are relatively simple,
their controlled structure is deliberate. They allow us to manipulate
factor rarity in a quantifiable and interpretable way, ensuring that
observed effects are due to data imbalance rather than uncontrolled
complexity. Such canonical datasets have historically provided
valuable insight into generalization behavior before scaling to
complex, real-world scenarios.

We designed our VAE, GAN, and DM to work with RGB (3
channels) images. Consequently, to accommodate the greyscale
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images from the Morpho-MNIST dataset, we transformed them
into color images. This is achieved by randomly assigning either
a red or a green color to each image, ensuring an equal
probability distribution between the two colors for the images with
morphological modifications.

As detailed in Section 4, for each generative factor under
consideration we created two datasets:

1. A balanced dataset Du, where the generative factor is
uniformly distributed across all classes. For MNIST-based
experiments, this dataset comprises 60, 000 images with an equal
representation of each digit. In the case of the CompCars subset,
we utilized 1, 448 images, ensuring an even distribution between
Volkswagen and Toyota cars.

2. A dataset Dr with rare generative factor. For MNIST-derived
datasets, we introduce the rare generative factor to a single digit
class. We specifically chose digits “1” and “2” as representative
cases, conducting separate experiments where the rare factor is
exclusively associated with each of these digits. This approach
allows us to examine how the shape of the digit might influence
the model’s ability to learn or memorize the rare factor. For
the CompCars subset, we assign the rare generative factor to
car make.

We trained VAE, GAN, and DM separately on each dataset.
The full training details and model architectures are described in
Supplementary Section 1.

After training the models for each generative factor, we
generated M = 1, 000 synthetic images. The oracle classifiers are
used to detect the class (digit for MNIST, car make for CompCars)
and the presence of the generative factor in the synthetic images.

5.1 Generative factors

Variations in color and morphology are naturally used in our
work as generating factors, as they are important in determining
the visual appearance of the digits. Specifically, we defined the
following 5 generative factors for digits: Color, Fracture, Thinning,
Thickening, and Swelling. Note that only one generative factor is
introduced at a time. Supplementary Figure S2 demonstrates the
case of rare generative factors where digit “1” is selected as the class
in which the generative factor is introduced (for example, for the
Thickening factor all images of digit “1” are thick while other digits
retain a standard thickness). For the color factor, the presence of
green is designated as the rare generative factor. For CompCars,
color is the generative factor, where all Volkswagen cars are white
and Toyota cars are black.

For digits, the generative factors are introduced in the images
using the Morpho-MNIST python library.5 For Thinning and
Thickening the value of the amount parameters is 0.7 and 1,
respectively. For Swelling the value of the strength parameter is 3
and the radius is 7. For Fracture the value of num_frac is 3. For cars,
the generative factor is introduced by selecting the corresponding
subset of the CompCars dataset.

5 https://github.com/dccastro/Morpho-MNIST

5.2 Oracle classifiers

As mentioned in Section 4, we rely on oracle classifiers
to categorize images generated by VAEs, GANs, and DMs.
We employed Convolutional Neural Networks (CNN) as our
oracle classifiers. The details of the architectures appear in
Supplementary Section 1. For each generative factor we trained
two oracle classifiers on the balanced dataset. For the MNIST-
derived datasets, we trained one classifier for digit classification and
another for factor classification, resulting in a total of 10 classifiers.
Some images from the dataset used to train the digit classifier
(10-class problem) and color classifier (2-class problem) appear in
Supplementary Figure S2 For cars, we trained one classifier for car
make classification and another for color classification, using the
data shown in Supplementary Table S2.

The MNIST oracle classifiers are trained using SGD for 8
epochs employing the cross entropy loss, batch size of 64, learning
rate of 0.01, and momentum of 0.5. For car make classification,
we used 100 epochs. To evaluate the performance of these
classifiers, we used a test-set of 20, 000 samples for digits and
185 samples for cars. The classification accuracies, as detailed in
Supplementary Table S1 , show that all classifiers achieved a test-
set accuracy exceeding 92%, underscoring their high efficacy in
accurately identifying both digits, car make and generative factors.

We further validated the robustness of these oracle classifiers
by evaluating their performance on generated images. Although
detection accuracy decreased slightly (by approximately 5%)
compared to the test set, it remained consistently high across
all generative models. This indicates that the classifiers retained
reliable discrimination capability even when applied to synthetic
data. Therefore, the observed memorization-vs.-learning effects are
unlikely to be artifacts of classifier noise and instead reflect genuine
generative behavior.

5.3 Statistical testing

For each class c, we compare the observed proportion P(r)
c

(model trained on Dr) to the reference proportion P(u)
c (model

trained on Du) using a two-sided one-sample z-test with M =
1, 000 generated samples per model/factor/dataset.

5.4 Frame work pipeline

We have summarized the pipeline as follow:

1. Start from a balanced dataset Du where, for each class y=c, the
factor f is uniform (50/50).

2. Create a skewed dataset Dr by selecting a target class k and
setting f=1 for all y=k and f=0 for all y �=k.

3. Train identical model architectures separately on {x(u)
i } and

{x(r)
i } without access to f or y.

4. Generate M=1, 000 samples per trained model.
5. Use high-accuracy oracle classifiers (trained only on Du) to label

y and detect f in generated samples.
6. Compute class-wise proportions P(u)

c and P(r)
c , then test for

learning vs. memorization as in Equation 1.
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TABLE 1 Z-scores for all models (VAE, GAN, GAN-SD, DM) where all
images of digit “1” have the rare generative factor (RGF).

Digit VAE GAN GAN-SD DM

(a) Color

0 – – – –

1 –6.14 17.05 –5.49 14.77

2 – –40.92 –2.34 –

3 –24.94 –37.48 -82.23 –

4 – – – –

5 – – – –

6 – –34.87 -4.93 –

7 – –40.20 -7.77 –

8 –10.29 –65.37 –2.97 –

9 – –11.09 –6.50 –

Total –75.30 –39.18 –44.87 –42.67

(b) Fracture

0 –1.80 0.01 1.36 –28.56

1 3.92 –0.97 1.44 32.75

2 –1.71 –15.49 –2.34 –4.42

3 –2.30 –10.30 –5.54 –14.90

4 0.03 –15.20 –5.08 –37.92

5 0.59 –4.26 –2.48 –11.92

6 –1.65 –34.87 –4.93 –16.97

7 –0.79 –16.46 –7.77 –14.11

8 –2.25 –0.87 –2.97 –14.22

9 –5.48 –11.09 –6.50 –14.44

Total –2.21 –21.28 –9.57 –18.87

(c) Swell

0 –5.28 –4.77 0.89 –6.51

1 –0.94 4.23 –5.68 9.57

2 –8.48 –4.87 –0.29 –9.43

3 –2.19 –5.89 –11.27 –6.85

4 –7.23 –14.59 –9.91 –7.60

5 –3.55 –9.86 –16.00 –9.21

6 –3.07 –13.66 –8.55 –5.63

7 –10.78 –7.93 –9.53 –13.31

8 –5.66 –8.03 –0.64 –7.26

9 –8.57 –12.33 –3.48 –7.04

Total –14.60 –21.13 –15.49 –17.49

(d) Thickening

0 –4.66 –9.09 – –9.28

1 2.39 2.96 –4.97 26.33

2 –7.11 –4.36 –7.89 –12.10

3 –12.21 –8.36 –4.25 –14.93

(Continued)

TABLE 1 (Continued)

Digit VAE GAN GAN-SD DM

4 –5.97 –56.40 –16.55 –8.45

5 –22.98 –19.24 –15.89 –20.45

6 –12.03 –42.80 –14.31 –14.76

7 –2.38 –8.80 –6.09 –22.88

8 –1.34 –14.22 –3.38 –23.75

9 –1.62 –23.56 –11.47 –15.23

Total –14.01 –33.41 –24.97 –20.64

(e) Thinning

0 –3.70 –8.65 0.82 –40.68

1 7.15 22.90 0.16 14.54

2 –2.36 –5.82 –7.17 –16.81

3 –3.62 –19.58 –7.74 –50.81

4 –1.23 –8.71 –4.45 –15.66

5 –3.60 –12.31 –4.39 –12.13

6 –5.57 –11.97 –11.03 –66.40

7 –0.78 –7.90 0.47 –7.90

8 –5.59 –11.85 –11.35 –13.32

9 –1.25 –11.60 –7.83 –6.49

Total –7.86 –21.09 –13.27 –35.08

Bold values (p > 0.05) indicate RGF learning. -, not estimated or not applicable.
Interpretation. For each digit class c, z compares the proportion of f=1 from the model trained
on Dr (skewed) against the reference proportion from Du (balanced). Bold denotes p>0.05
(no significant difference), interpreted as learning rather than memorization.
Legend. VAE, Variational Autoencoder; GAN, Generative Adversarial Network; GAN-SD,
GAN with Spectral Decoupling; DM, Diffusion Model.
-. Not estimated or not applicable for that cell (e.g., insufficient support).

6 Results and discussion

Utilizing the framework of Section 4 and the datasets (Section
5), we now present our findings. Due to space constraints,
we have placed the majority of tables and figures in the
Appendix.

Initially, we used the balanced datasets Du for each Rare
generative factor (RGF), trained the models, and then generated
M = 1, 000 synthetic images. As expected, P(u)

c approximates 0.5
in the majority of cases, indicating a balanced representation of
the generative factors within the synthetic images (for details see
Supplementary Tables S3, S4)

Subsequently, for each RGF, we trained the models using the
skewed dataset Dr and determined the proportions P(r)

c for each
digit (for MNIST dataset) and car (for CompCars dataset). We then
used Equation 1 to calculate the z-scores and report the results in
Tables 1–3.

We then used Equation 1 to calculate the class-wise z-scores,
which quantify the difference between the proportions of samples
containing the rare generative factor (f = 1) generated by models
trained on the skewed dataset Dr and the balanced dataset Du.
Tables 1–3 summarize these results for all datasets and model types.
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TABLE 2 Z-scores for all models (VAE, GAN, GAN-SD, DM) where all
images of digit “2” have the rare generative factor (RGF).

Digit VAE GAN GAN-SD DM

(a) Color

0 —20.84 – —78.05 –

1 –23.41 –12.64 –22.99 –89.10

2 17.24 13.64 3.12 42.09

3 –26.85 –25.03 –30.88 –

4 –43.88 – – –

5 – – – –

6 – –49.63 –16.42 –

7 –17.70 –35.28 – –70.75

8 –55.44 –45.78 –8.21 –69.90

9 – – – –

Total –39.94 –37.66 –42.60 –47.28

(b) Fracture

0 –1.16 0.59 2.73 –22.58

1 –0.38 –42.82 –38.40 –26.36

2 1.88 0.42 –2.38 1.83

3 –4.10 –0.65 –2.84 –6.92

4 –0.27 –29.01 –6.32 –9.89

5 –4.36 –0.07 –4.39 –3.67

6 –0.76 –19.33 –16.32 –10.92

7 –2.25 –16.87 –7.84 –7.93

8 –0.30 –2.86 –2.12 –7.11

9 –3.49 –23.71 –11.12 –9.14

Total –4.27 –21.74 –19.12 –20.83

(c) Swell

0 –1.63 –4.54 3.36 –24.44

1 –8.76 –11.04 –14.67 –14.38

2 3.27 –0.40 –1.17 8.23

3 –4.10 –4.31 –11.34 –6.57

4 –6.16 –2.21 –10.69 –7.06

5 –2.00 –4.89 –11.96 –21.07

6 –2.17 –6.03 –5.50 –7.05

7 –17.03 –4.31 –5.56 –10.39

8 –7.87 –8.50 –4.17 –7.70

9 –7.85 –7.26 –10.43 –8.23

Total –14.81 –15.71 –19.33 –20.83

(d) Thickening

0 –9.86 –8.20 –4.92 –21.55

1 –7.24 –28.73 –45.43 –15.81

2 6.16 9.99 0.06 11.74

3 –13.58 –15.00 –10.94 –36.83

(Continued)

TABLE 2 (Continued)

Digit VAE GAN GAN-SD DM

4 –5.12 – –62.51 –8.78

5 –22.69 –43.46 –22.24 –

6 –9.70 –27.05 –21.60 –11.03

7 –7.93 –12.31 –22.25 –13.44

8 –1.91 –1.93 –9.05 –22.24

9 –2.80 –32.17 –29.76 –10.42

Total –17.05 –34.28 –43.87 –23.01

(e) Thinning

0 –4.11 –10.53 1.74 –42.08

1 –6.84 –14.10 –5.68 –20.25

2 5.04 7.25 –3.14 15.93

3 –2.26 –32.70 –11.01 –18.24

4 –3.65 –12.04 –12.73 –10.14

5 –2.87 –16.09 –9.24 –12.53

6 –5.34 –17.38 –6.17 –30.48

7 –1.28 –17.33 0.17 –20.80

8 –5.03 –17.35 –6.72 –18.66

9 –4.98 –14.81 –5.90 –10.60

Total –9.95 –35.36 –15.23 –32.41

Bold values (p > 0.05) indicate RGF learning. NA/–, not estimated or not applicable.
Interpretation. For each digit class c, z compares the proportion of f=1 from the model trained
on Dr (skewed) against the reference proportion from Du (balanced). Bold denotes p>0.05
(no significant difference), interpreted as learning rather than memorization.
Legend. VAE, Variational Autoencoder; GAN, Generative Adversarial Network; GAN-SD,
GAN with Spectral Decoupling; DM, Diffusion Model.
“-”. Not estimated or not applicable for that cell (e.g., insufficient support).

• Table 1 presents z-scores for all models (VAE, GAN, GAN–SD,
and Diffusion Model) when the rare generative factor (RGF) is
introduced in digit “1.” Each row corresponds to a digit class,
and each column to a generative model. Bold values indicate
non-significant differences (p > 0.05), interpreted as learning
rather than memorization.

• Table 2 reports the analogous results when the RGF is
introduced in digit “2.”

• Table 3 shows the z-scores for the CompCars dataset,
where the RGF corresponds to color (white Volkswagen vs.
black Toyota). Here again, positive z-scores denote over-
representation of the rare factor, indicating memorization,
whereas values near zero imply generalization.

Together, these tables provide a quantitative summary of the
models’ ability to learn or memorize rare generative factors across
both digit- and object-based datasets.

While standard machine learning theory predicts that
underrepresented features are difficult to learn due to their low
empirical frequency, our focus on rare generative factors (RGFs)
highlights an important distinction: RGFs actively shape the
data generation process, meaning their absence or distortion
can affect not only classification but also the model’s ability to
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TABLE 3 CompCars, z-scores for all models (VAE, GAN without SD, GAN with SD, DM), with color RGF: white Volkswagen, black Toyota.

Make VAE GAN GAN-SD Diffusion models

Black White z Black White z Black White z Black White z

Volkswagen 161 397 13.11 153 425 12.28 132 350 10.64 153 204 9.98

Toyota 336 106 –11.33 334 88 -8.16 454 64 –17.05 605 38 –19.45

Total 497 503 2.09 487 513 4.62 586 414 –1.67 758 242 –2.07

Bold: similar proportions (p > 0.05), indicating RGF learning.

generate coherent, semantically consistent samples. This makes
their impact more profound than that of merely rare labels or
attributes. Theoretically, RGFs define a low-probability region in
the generative manifold, and standard likelihood-based training
may fail to sufficiently penalize errors in such regions. This
underlines the need for tailored inductive biases or priors that
preserve generative completeness, especially in applications where
coverage of rare modes is critical.

6.1 Memorization of RGF

Comparing the proportions P(u)
c and P(r)

c via the z-scores in
Tables 1–3 underscores the propensity of generative models to
memorize RGFs. For instance, GAN exhibits a notable bias toward
associating the green color with digits “1” and “2,” in contrast to
the red color, which is more frequently linked with the remaining
digits. Specifically, when the green color is assigned to digit “1,” an
overwhelming 87% of generated images display this characteristic,
a stark contrast to the 35% for the balanced data. Conversely, the
presence of green in images of other digits is minimal, hovering
around 1%, indicating a clear memorization of the green color for
digit “1” without extending this rare factor to other digits. A similar
trend is evident when the color factor is applied to digit “2” (see
Supplementary Section 4 for detailed results).

6.1.1 Theoretical perspective on RGF
memorization

From a theoretical standpoint, rare generative factors (RGFs)
occupy low-probability regions in the data manifold. In likelihood-
based training objectives such as the VAE’s evidence lower
bound or the diffusion model’s denoising score matching,
gradients are dominated by high-density regions, while low-
density (rare) regions receive vanishing gradient updates. This
imbalance implicitly biases the model toward reconstructing
frequent factors and memorizing rare ones, rather than forming
disentangled, transferable representations. Such behavior aligns
with the “gradient starvation” phenomenon (Pezeshki et al., 2021),
where dominant correlations absorb most gradient flow, leaving
underrepresented modes under-trained. From an information-
theoretic perspective, RGFs correspond to directions of high
Fisher Information curvature but limited support, making
them unstable under empirical risk minimization. Therefore,
memorization emerges naturally as an energy-efficient solution

in overparameterized networks that minimize loss without
guaranteeing uniform coverage of the generative manifold.

The large z-scores highlight the significant differences in
proportions between P(u)

c and P(r)
c , confirming the memorization

effect. This memorization phenomenon is not limited to color
in digit datasets. It extends, yet to varying degrees, across other
generative factors we studied. In the case of car images, we observe a
similar trend where the models tend to strongly associate color with
a car make. The observed pattern suggests a broader trend: GANs
and DMs exhibit a stronger tendency toward memorization of RGFs
compared to VAEs, both in digit recognition and car classification
tasks. Visual inspection suggests that DM provides the highest
image quality, as shown in Figure 2, but at the cost of increased
memorization (the images generated using VAE and GAN are
shown in Supplementary Section 4. This different behavior across
model types and datasets highlights the nuanced ways in which
various generative architectures approach the challenge of learning
from skewed data distributions.

6.1.2 Distinguishing memorization from semantic
correlation

A crucial distinction in our study is between (a) memorization
of rare generative factors (RGFs) and (b) genuine learning of
generative factors that are strongly correlated with semantic
class features. memorization, in our context, refers to the model
reproducing RGFs only within the class where they were seen
during training (e.g., generating green digits exclusively for class “1”
if green was only present in that class). This indicates that the model
has not abstracted the RGF as a transferable concept, but instead
has tightly coupled it with the class identity. In contrast, learning is
evidenced when the model applies the RGF to other classes not seen
with that factor in training, thereby indicating that it has captured
the generative factor independently of class label. To empirically
distinguish the two, we rely on the distributional comparison
between P(r)

c and P(u)
c using the z-test, where P(u)

c acts as a reference
distribution under balanced conditions. A non-significant z-score
(p > 0.05) suggests that the model has generalized the RGF across
classes, whereas a significant z-score in the direction of the skew
(i.e., high P(r)

c for the class with the RGF and low for all others)
indicates memorization. Thus, semantic correlation alone is not
sufficient to explain this behavior unless it holds under balanced
data, in which case P(u)

c would already show asymmetry. Our
framework explicitly controls for such effects by comparing against
the balanced baseline.
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FIGURE 2

Some generated images by a Diffusion model trained on CompCars and colored-MNIST skewed datasets.

6.2 How RGF memorization originates in
GANs?

We are interested in understanding how memorization of
RGFs happens. We picked GANs for two main reasons: first,
because they exhibited a stronger tendency to memorize RGFs in
our experiments compared to VAEs, and second, because their
architecture includes a discriminator that allows us to explore
the role of adversarial training in potentially encouraging this
memorization behavior. Indeed, we analyzed the discriminator
loss during GAN training with respect to the “real label” using a
separate balanced validation set of 2, 000 images of digits and 185
images of cars.

To do this, we computed the loss only for images where
RGFs are applied (“1” and “2” for MNIST and Volkswagen for
CompCars). We differentiate between images featuring RGFs and
those without.

Figure 3 illustrates the discriminator loss for the color
factor in MNIST data, with RGF present in digit “1”
(Supplementary Section 4) presents results for other RGFs
and digits). In this plot, solid lines depict the loss associated
with images containing RGFs (i.e., green images), while dashed
lines indicate the loss for images lacking RGFs (i.e., red images).
A green horizontal dashed line represents the threshold loss
at the discriminator’s decision boundary between identifying
images as real or fake, corresponding to a loss of log(2) when the
discriminator output logit is 0.

When training the GAN with the balanced dataset Du, there
appears to be no significant discrepancy between the loss for images
with RGF and those without, suggesting that the discriminator
does not differentiate based on the presence of RGF. In other
words, the discriminator is invariant to RGF. However, training
on the skewed dataset Dr , we observe a gap between the losses for
images with and without RGF. This indicates that despite all images
being “real,” the discriminator classifies images with and without
RGFs differently, losing its invariance to RGFs. This differentiation
likely stems from the spurious correlation between the digit and
the RGF, reminiscent of the “gradient starvation” phenomenon
identified by Pezeshki et al. (2021) in the context of discriminative
learning. This phenomenon, where the model excessively focuses
on dominant features at the expense of others, may explain the

FIGURE 3

Discriminator loss by presence of the rare factor (color). Solid lines
represent batches containing the RGF (green), while dashed lines
correspond to batches without the RGF (red). The horizontal dashed
line indicates the discriminator’s decision boundary [log(2)].

discriminator’s skewed learning, underlining the complexity of
addressing memorization of RGFs in GANs.

6.3 Mitigating memorization in GANs by
spectral decoupling

Our next focus is to evaluate if the Spectral Decoupling (SD)
technique, previously proposed by Pezeshki et al. (2021) to address
the issue of gradient starvation, can also help in reducing the
memorization of RGFs by GANs.

In the context of discriminative learning, SD augments the
loss function with a regularization term λ

2 ‖ŷ‖2, where λ is a
regularization strength hyperparameter, and ŷ is the logits vector
output by the model for a given input batch. This regulariser
aims to restrain the magnitudes of logits, thereby preventing any
single (and potentially spurious) feature from overpowering the
model’s output.
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We incorporated this regularization method into the GAN
training process for the initial 80 epochs by adding the SD
regulariser to the discriminator’s loss computation for real image
batches, with λ = 0.8 (Supplementary Figures S19, S20 presents
results for different λ values). After 80 epochs we removed the
regulariser for further training until 200 epochs, allowing the GAN
image quality to improve. We use SD as a regulariser: strong
enough to mitigate early gradient starvation, but removed later to
allow the generator to recover full visual quality.

The effect of SD is evident in Figure 3, where the discriminator
loss dynamics (illustrated by solid and dashed black lines) converge
more closely during the SD application phase (up to epoch 80),
suggesting increased discriminator invariance to RGF and thus
mitigating the memorization problem. In addition, Tables 1, 2
demonstrate that applying SD generally results in smaller z-scores,
suggesting reduced memorization.

Finally, in Table 4 we used the p-values corresponding to the
z-scores in Tables 1, 2 (for MNIST data) to deduce whether the
RGF is learned (L) or memorized (M). Note that all DM values are
M, indicating a strong tendency of diffusion models to memorize
RGFs. We observe that SD helps in mitigating memorization to
some extent for GAN. For CompCars data, GAN with SD achieved
learning in one case only (Table 3). We report results using two
additional random seeds in the Supplementary material, further
validating these findings.

Beyond Spectral Decoupling, several complementary strategies
may further mitigate RGF memorization. Causal disentanglement
frameworks Zhang et al. (2024) could encourage the model
to separate causal generative mechanisms from observational
correlations. Similarly, β − VAEs and InfoGANs introduce
inductive biases that promote factorized latent spaces, which may
improve transfer of rare factors. Contrastive or self-supervised
regularisers (e.g., VICReg, SimCLR) could also enhance invariance
by encouraging feature alignment across samples differing only in
rare factors. Investigating these directions remains an important
next step for improving generalization under imbalance.

7 Conclusion

We are interested in examining how generative models
like VAEs, GANs, and DMs learn rare generative factors
(without explicit supervision). Through a systematic empirical
study involving several generative factors and two datasets, we
showed that generative models exhibit a propensity toward
memorizing rare generative factors. We demonstrated that
regularization techniques such as spectral decoupling can mitigate
this memorization tendency to a certain degree.

Our current study deliberately focused on GAN, VAE,
and Diffusion architectures to isolate fundamental learning
dynamics without confounding factors introduced by architectural
enhancements. Future work will extend this analysis to state-
of-the-art variants such as StyleGAN2, VQ-VAE, and Latent
Diffusion Models to assess whether large-scale pretraining or
richer priors alleviate the memorization of RGFs. We also
plan to scale to multimodal datasets and explore causal or
contrastive regularization strategies. Such extensions will clarify
whether memorization of rare generative factors is a fundamental

TABLE 4 Summary of RGF learning (L) vs. memorization (M) for digits “1”
and “2.”

Digit Color Frac Swell Thick Thin

(a) RGF in digit “1”

0 M/M/M/M L/L/L/M M/M/L/M M/M/M/M M/M/L/M

1 M/M/M/M M/L/L/M L/M/M/M M/M/M/M M/M/L/M

2 M/M/M/M L/M/M/M M/M/L/M M/M/M/M M/M/M/M

3 M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M

4 M/M/M/M L/M/M/M M/M/M/M M/M/M/M L/M/M/M

5 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M

6 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M

7 M/M/M/M L/M/M/M M/M/M/M M/M/M/M L/M/L/M

8 M/M/M/M M/L/M/M M/M/L/M L/M/M/M M/M/M/M

9 M/M/M/M M/M/M/M M/M/M/M L/M/M/M L/M/M/M

all M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M

Count 0/0/0/0 6/3/2/0 1/0/3/0 2/0/0/0 3/0/3/0

(b) RGF in digit “2”

0 M/M/M/M L/L/M/M L/M/M/M M/M/M/M M/M/L/M

1 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M

2 M/M/M/M L/L/M/L M/L/L/M M/M/L/M M/M/M/M

3 M/M/M/M M/L/M/M M/M/M/M M/M/M/M M/M/M/M

4 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M

5 M/M/M/M M/L/M/M M/M/M/M M/M/M/M M/M/M/M

6 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M

7 M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/L/M

8 M/M/M/M L/M/M/M M/M/M/M M/L/M/M L/M/M/M

9 M/M/M/M M/M/M/M M/M/M/M L/M/M/M M/M/M/M

all M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M

Count 0/0/0/0 6/4/0/1 1/1/1/0 1/1/1/0 1/0/2/0

Notation: VAE/GAN/GAN-SD/DM. Bold values indicate learning (p > 0.05). A total of 43
cases were learned out of 440.

limitation of generative learning or a challenge mitigable through
architectural and theoretical innovations.
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Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint
arXiv:2211.05100.

Shao, H., Kumar, A., and Thomas Fletcher, P. (2018). “The riemannian geometry of
deep generative models,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 315–323. doi: 10.1109/CVPRW.2018.00071

Speranzon, A., Chicco, D., Bonazza, P., D’Alfonso, R., Bobbo, M., D’Agata
Mottolese, B., et al. (2024). Brugada syndrome: focus for the general pediatrician.
Children 11:281. doi: 10.3390/children11030281

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., et al.
(2022). Galactica: a large language model for science. arXiv preprint arXiv:2211.09085.

Team OpenAI (2022). Chatgpt: Optimizing Language Models for Dialogue. OpenAI.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
et al. (2023). Llama: open and efficient foundation language models. arXiv preprint
arXiv:2302.13971.

Träuble, F., Creager, E., Kilbertus, N., Locatello, F., Dittadi, A., Goyal, A., et al.
(2021). “On disentangled representations learned from correlated data,” in Proceedings
of the 38th International Conference on Machine Learning, eds. M. Meila, and T. Zhang
(PMLR), 10401–10412.

Yang, G., Fei, N., Ding, M., Liu, G., Lu, Z., and Xiang, T. (2021).
“L2m-gan: learning to manipulate latent space semantics for facial attribute
editing,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2951–2960. doi: 10.1109/CVPR46437.2021.
00297

Yang, L., Luo, P., Change Loy, C., and Tang, X. (2015). “A large-scale car dataset
for fine-grained categorization and verification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR.2015.72
99023

Zhang, B., Gu, S., Zhang, B., Bao, J., Chen, D., Wen, F., et al. (2022). “Styleswin:
Transformer-based gan for high-resolution image generation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
11304–11314. doi: 10.1109/CVPR52688.2022.01102

Zhang, J., Greenewald, K., Squires, C., Srivastava, A., Shanmugam, K., and Uhler, C.
(2024). “Identifiability guarantees for causal disentanglement from soft interventions,”
in Advances in Neural Information Processing Systems, 36.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., et al. (2022). Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1697139
https://doi.org/10.1007/s12471-022-01723-6
https://doi.org/10.1109/CVPRW.2018.00071
https://doi.org/10.3390/children11030281
https://doi.org/10.1109/CVPR46437.2021.00297
https://doi.org/10.1109/CVPR.2015.7299023
https://doi.org/10.1109/CVPR52688.2022.01102
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Do generative models learn rare generative factors?
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Examples

	4 Framework for assessing the learnability of RGFs
	4.1 Our hypothesis
	4.2 Assessing the learning of RGF
	4.3 Justification for the chosen test statistic

	5 Dataset and generative factors
	5.1 Generative factors
	5.2 Oracle classifiers
	5.3 Statistical testing
	5.4 Frame work pipeline

	6 Results and discussion
	6.1 Memorization of RGF
	6.1.1 Theoretical perspective on RGF memorization
	6.1.2 Distinguishing memorization from semantic correlation

	6.2 How RGF memorization originates in GANs?
	6.3 Mitigating memorization in GANs by spectral decoupling

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


