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Introduction: Rectal cancer is a globally prevalent cancer, and accurate
segmentation of rectal lesions in abdominal CT images is critical for clinical
diagnosis and treatment planning. Existing methods struggle with imprecise
boundary delineation due to low tissue contrast, image noise, and varied lesion
sizes, prompting the development of a specialized segmentation framework.
Methods: We developed the Hierarchical Hypercolumn-guided Fusion Segment
Anything Model (HHF-SAM) with three core components: 1) A Med-Adapter
SAM Encoder integrating LoRA and Adapter modules to adapt SAM’s natural
image understanding capability to medical-specific features; 2) A Multi-scale
Hypercolumn Processing Module to capture comprehensive features for lesions
of varying sizes and shapes; 3) A Progressive Hierarchical Fusion Decoder
with Hierarchical Fusion Module to aggregate multi-scale features and resolve
boundary blurring. The model was evaluated on two public abdominal CT
datasets (CARE and WORD) using mean Dice coefficient (mDice) and mean
Intersection over Union (mloU) as metrics.

Results: On the CARE dataset, HHF-SAM achieved a mean mDice of 74.05%
and mean mloU of 58.96%, outperforming state-of-the-art methods (U-SAM:
69.28% mbDice, 53.11% mloU; SAM: 65.98% mDice, 49.44% mloU). For tumor
segmentation specifically, it reached 76.42% mDice and 62.03% mloU. On the
WORD dataset, it achieved an average mDice of 85.84% across all organs, with
83.24% mDice for rectal segmentation (surpassing U-SAM’s 80.66% and SAM'’s
72.77%).

Discussion: This study presents an SAM-based framework optimized for the
unique characteristics of abdominal CT images, effectively overcoming the
limitations of general segmentation models in medical image processing. The
proposed HHF-SAM provides a reliable tool for clinical auxiliary diagnosis,
reducing inter-reader variability and improving efficiency in lesion delineation.

KEYWORDS

deep learning, medical image analysis, multi-scale, rectal cancer segmentation, segment
anything model

1 Introduction

Rectal cancer refers to a malignant tumor that occurs in the lining of the rectum
and is a type of colorectal cancer. Rectal cancer is one of the more common cancers
worldwide, especially in developed countries and regions, where its incidence is relatively
high. Early detection of rectal cancer, particularly in its early stages, can significantly
improve patient survival rates. Traditional colorectal cancer screening involves inserting
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a colonoscope into the rectum to examine the inner lining of
the colon. However, this method is relatively complex, requiring
bowel preparation and posing certain risks and discomfort to the
patient. CT colonography is a non-invasive imaging method that
uses computed tomography to generate three-dimensional images
of the colon, helping doctors detect polyps or cancerous tissue.

However, when faced with a large volume of CT colonography
images, the limited availability of radiologists can lead to inaccurate
diagnoses, which may have significant consequences for patients. A
false-negative diagnosis could delay the optimal treatment window,
making treatment more difficult. This is especially critical in cases
of malignant diseases like cancer, where time is crucial, and delayed
treatment may allow the disease to reach an irreversible stage,
endangering the patient’s life. Conversely, a false-positive diagnosis
may result in patients undergoing unwarranted treatments, which
not only offer no therapeutic benefit but also pose the risk of
complications and adverse effects.

Deep learning (DL) has drawn increasing attention across
various domains, particularly in image recognition and
segmentation. When applied to medical CT imaging, deep
learning techniques not only enable the precise identification of
pathological regions but also facilitate the differentiation between
benign and malignant tumors. This capability is crucial for
assisting clinicians in making more informed decisions, especially
in complex or ambiguous cases, thereby enhancing the overall
diagnostic accuracy. Various architectures have been explored
for medical image segmentation, each with inherent limitations.
CNN-based methods, such as U-Net (Ronneberger, 2015), are
adept at automatically extracting features from medical images
and excel at capturing fine-grained details through successive
layers of convolution and pooling operations. However, due to the
local receptive-field characteristics of convolutional kernels, CNNs
struggle to summarize global information and manage long-range
dependencies. Transformer-based approaches (He et al., 2023;
Petit and Thome, 2021) address this limitation by leveraging
powerful global modeling capabilities and flexible architectures,
achieving robust segmentation results in medical applications.
Despite these advantages, Transformers typically require large,
annotated datasets and face computational complexity challenges,
which limits their effectiveness on tasks such as rectal cancer
segmentation, where manually annotated data is scarce.

Anything Model (SAM) has
gained considerable attention due to its exceptional zero-shot

Recently, the Segment
segmentation performance. By leveraging training on over 1.1
billion masks across 11 million natural images, SAM demonstrates
proficiency in performing general-purpose image segmentation
tasks. In medical image segmentation, there is a growing interest in
harnessing SAM to achieve more refined segmentation outcomes.
However, several studies (Wald et al., 2023; Shi et al., 2023; Mattjie
et al.,, 2023) have revealed that SAM’s zero-shot performance in
medical image segmentation remains suboptimal, primarily due to
the significant structural differences between natural and medical
images. The discrepancy between the training and application
domains has led to limited accuracy, with performance being
highly sensitive to factors such as dimensions, modality, size,
and contrast. While some research (Wu et al., 2023; Chen et al.,
2023) has attempted to fine-tune SAM to varying degrees, these
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approaches entail substantial training costs and pose risks of
instability, feature degradation, and catastrophic forgetting.

Considering the aforementioned challenge, we propose an
end-to-end learning framework based on SAM, called HHF-
SAM, for rectal lesion segmentation. Specifically, we leverage
SAM’s strong capability in understanding natural images to extract
image features. To bridge the gap between natural and medical
image domains, we freeze the pre-trained parameters of the SAM
encoder and introduce adapter modules to enhance the model’s
adaptability to medical domain information. Additionally, we
incorporate the Multi-scale Hypercolumn Processing Module to
improve the model’s robustness. This module enables the model
to extract multi-scale features from the SAM encoder, which is
effective at handling lesions of varying sizes and shapes. Due
to the intricate textures in colonoscopy images and the small
density differences between soft tissues, distinguishing between
them is challenging. The simplistic decoder design in the original
SAM struggles to accurately segment lesions. To address this, we
propose a Progressive Hierarchical Fusion Decoder that aggregates
multi-scale features and provides a more complete representation
of the structure in medical images. Extensive experiments on
two large abdominal CT image datasets demonstrate that our
HHF-SAM framework consistently outperforms other typical
segmentation methods.

In summary, our contributions are as follows:

e We propose a novel SAM-based learning framework for
rectal cancer segmentation and enhance SAM’s adaptability to
medical domain information by designing adapter modules.

e We designed a multi-scale hypercolumn processing module
that can extract and fuse multi-scale features from the SAM
encoder, effectively handling lesion areas of varying shapes
and sizes.

e We propose a progressive hierarchical fusion decoder that
generates highly accurate, detailed segmentation masks for
rectal cancer regions.

e Experimental results demonstrate that, on two large public
abdominal CT datasets, our proposed framework outperforms
all existing methods in terms of performance.

2 Related research

2.1 Rectal cancer segmentation

Early methods (Benson et al., 2012; Gambacorta et al., 2013;
Kim et al., 2021; Petrillo et al., 2015; Silberhumer et al., 2015)
for rectal cancer segmentation from CT images typically relied
on global or local thresholding techniques, setting specific gray-
level thresholds to distinguish foreground from background.
These methods performed well when processing high-contrast,
well-structured images, effectively extracting regions of interest.
However, when applied to complex medical images, particularly
those with noise, overlapping gray values, or blurred tumor
boundaries, their performance significantly deteriorated, resulting
in inaccurate segmentation. With the rapid advancement of big
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data and computational power, deep learning techniques have
gradually emerged as a powerful tool. By automatically learning
complex features from images, deep learning not only significantly
improves segmentation accuracy but also demonstrates excellent
adaptability, enabling it to handle diverse medical imaging
modalities. Today, deep learning methods have become the
mainstream approach in CT image segmentation for rectal cancer.

2.2 CNN-based medical image
segmentation

CNNs have become a dominant approach in medical image
segmentation due to their ability to automatically learn hierarchical
features from images. Meng et al. (2025) proposed a boundary-
constrained mask segmentation network based on CNNs, which
effectively reduces the impact of low contrast on the accuracy
of medical image segmentation. Sha et al. (2023) proposed
a segmentation framework for rectal cancer radiotherapy that
uses a registration model to remove noise, thereby enhancing
segmentation performance. Zhang et al. (2024) used a traditional
UNet to extract global features and incorporated a ResNeSt
module to obtain more robust segmentation features. Cai
et al. (2024) proposed a segmentation model based on multi-
level image features that can more comprehensively capture
tumor characteristics, including both fine-grained details and
global context. However, due to the local receptive field
characteristics of convolutional kernels, CNNs struggle to directly
capture a global receptive field. This limitation leads to certain
deficiencies in handling long-range dependencies or global
contextual information. While the receptive field can be expanded
by increasing the network’s depth and number of layers, this
approach is generally inefficient and may lead to issues such as
vanishing gradients or information loss.

2.3 Transformer-based medical image
segmentation

Transformer architecture has demonstrated remarkable
success in medical image segmentation by capturing long-
range dependencies and global context. Sang et al. (2024)
proposed a network architecture, FCTformer, that integrates
convolutional operations with Transformer modules to achieve
precise segmentation of rectal tumors in 3D MRI. Meng et al.
(2025) designed a boundary-constrained multi-task learning
network that can automatically localize and segment both
rectal cancer and the rectal wall. Tan et al. (2023) introduced a
Transformer-based multiple-instance learning framework that
combines global and local features to achieve high-accuracy lymph
node detection. Liu et al. (2023) combined CNNs with Transformer
to develop a parallel hybrid network architecture, which efficiently
segments skin melanomas and has also achieved remarkable
results in the segmentation of colon polyps with ambiguous
boundaries. Sun et al. (2024) proposed the DA-TransUNet, which
integrates the Transformer and dual attention blocks into the
traditional U-shaped architecture. It optimizes the intermittent
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channels of dual attention and applies it to each skip connection
to effectively filter out irrelevant information. Lan et al. (2024)
proposed BRAUNet++, which reconstructs skip connections
using bi-level routing attention and channel-spatial attention, and
employs a hierarchical U-shaped encoder-decoder structure to
learn global semantic information while reducing computational
complexity and enhancing the interaction of global dimensions
across multi-scale features. However, the precise segmentation
results produced by Transformer typically rely on large, annotated
datasets. In the task of rectal cancer segmentation, the limited size
of manually annotated datasets often constrains the effectiveness
and potential of the Transformer.

2.4 SAM-based medical image
segmentation

To bridge the gap between natural and medical images,
several studies have explored adaptive strategies to improve
SAM’s performance in medical image segmentation tasks. He
et al. (2023) evaluated SAM’s zero-shot capabilities across 12
public medical image segmentation datasets, revealing that its
performance is highly sensitive to factors such as dimensions,
modality, size, and contrast. Yan et al. (2024) proposed the
AFTer-SAM architecture, which optimizes SAM through low-
rank adaptation. It also leverages axial fusion transformers to
seamlessly integrate intra- and inter-slice contextual information,
significantly enhancing segmentation performance on medical
images. Xie et al. (2024) introduced a few-shot fine-tuning strategy
that reconstructs the mask decoder within SAM. It uses derived
few-shot embeddings as prompts to segment objects captured in
the query image embeddings, thereby improving segmentation
accuracy. Cheng et al. (2024) proposed the H-SAM architecture,
an adaptive SAM algorithm based on a two-stage hierarchical
decoding process, enabling efficient fine-tuning for medical images.
Paranjape et al. (2024) introduced an adaptive strategy for S-
SAM that enables the generation of precise segmentation masks
for medical images. Although these SAM-based approaches have
achieved commendable segmentation accuracy, they still suffer
from performance degradation and limited generalization when
handling low-contrast samples, indistinct boundaries, complex
shapes, or small sizes.

3 Math

As illustrated in Figure 1, the overall framework of our method
comprises three key modules: the Med-Adapter SAM Encoder
(MSE), the Multi-scale Hypercolumn Processing Module (MHPM),
and the Progressive Hierarchical Fusion Decoder (PHFD). Each
module will be explained in detail in the subsections that follow.

3.1 Med-adapter SAM encoder

SAM has been pre-trained on a large-scale dataset, learning
rich feature representations. Using it as a backbone network
allows us to fully leverage these pre-trained features, improving
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FIGURE 1

Overview of the proposed Hierarchical Hypercolumn-guided Fusion Segment Anything Model (HHF-SAM) for rectal cancer segmentation. Best

viewed by zooming in

the model’s convergence speed and performance on downstream
tasks. However, due to the significant differences between natural
and medical images, directly applying the pre-trained SAM to
medical image segmentation tasks is not optimal. Therefore, we
propose a SAM encoder specifically designed for medical image
segmentation. As shown in Figure 2, we retain the core components
of the original SAM encoder and keep its parameters fixed during
training. Additionally, to bridge the gap between natural and
medical images, we incorporate LoRA (Hu et al., 2021) and
Adapter (Houlsby et al,, 2019) within the Transformer. More
specifically, let X; € RN*P be the input of the i-th Transformer
block. where N is the number of tokens and D denotes the
embedding dimension. The output of the MHSA layer can be
expressed as follows:

Qi = Wy(Xi) + Wy (Wi (Xy), (1)
Ki = Wi(Xy), (2)
Vi = Wy(X) + WP (Wi (X)), 3)
Xi = MHSA (Q;,Ki, Vi) + Xi, (4)

where W, Wy, and W, are the weights of three linear projection
layers used to generate the original Query, Key, and Value
matrices, respectively. W,i?,w”and W;ﬁ are the weights of two
linear projections that constitute LoRA. The parameters of LoRA
are learnable during training. Additionally, the output of the i-th
Transformer layer can be expressed as follows:

~

X; = MLP (LN (X)), ©)
vi = Wi (o (Wi (%)) + X ()

where LN and MLP stand for the Layer Normalization (LN)
and Multilayer Perceptron (MLP), respectively. o represents the
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only includes these two linear projections but also incorporates
a ReLU activation function to enhance its expressive capability.
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By freezing the original parameters of the SAM encoder while
unfreezing the parameters of LoRA and Adapter, we can fully
leverage the pre-trained features of SAM on large-scale datasets.
This approach helps mitigate the significant differences between
natural and medical images, enabling the extraction of more robust
feature information.

3.2 Multi-scale hypercolumn processing
module

Colonoscopy images are characterized by low contrast and
complex structures, with lesion areas that are uncertain in scope
and variable in size. To address this challenge, we propose an
MHPM that extracts features from both spatial and channel
dimensions, enabling a more efficient capture of key information in

these images. Specifically, given an input image X € RF*Wx3,

we
pass it through the SAM encoder, extracting features from the 3rd,
6th, 9th, and 12th layers of the Transformer as Y;(i = 3,6,9,12).
In general, shallow layers capture fine-grained details, while deeper
layers capture more semantic information. We then reshape these
features into spatial feature maps and input them into the MHPM.

The architecture of the MHPM is depicted in Figure 3. Initially,
a convolutional layer is employed to reduce the number of channels
to one-quarter of Y;. Subsequently, four dilated convolutional
layers are used to extract multi-scale features, progressively
expanding the receptive fields. The features from these four
branches are concatenated along the channel dimension, followed
by a convolutional layer to aggregate them. Finally, a residual
connection is introduced to generate the HEM module’s final
output, ensuring efficient feature fusion.

H = Convix(Yi), (7)
H; = Convyyyd—1(H), H, = Convsys4-; (H),
H3 = Convsys 4= (H), Hy = Convsy; 4-3(H), (8)

— -] '
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—
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FIGURE 3
The structure of our proposed multi-scale Hypercolumn Processing
Module (MHPM).
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H = Y; + Convix1([Hi; Ha; Hz; Hyl), %)

where d represents the dilation rate. The dilation rates of 1, 1, 2, and
3 are specifically chosen to create a gradual expansion of receptive
fields. The first two branches (d = 1) capture fine-grained local
details, while the latter branches (d = 2,3) progressively enlarge
the receptive field to capture broader contextual information.
This configuration balances the trade-off between capturing local
texture details and global structural patterns, which is particularly
important for segmenting rectal lesions with varying sizes and
irregular boundaries. We further integrate features along the
channel dimension. By dynamically assigning different weights to
each channel, the model becomes better able to focus on features
relevant to the target task. The hypermap M; can be expressed
as follows:

-~

M = H x §(Convix1(GAP(H))) + H, (10)
M; = Convsys(¥(M)). (11)

where GAP stands for the Global Average Pooling, § represents
the Sigmoid function, and  is a deconvolutional layer. By using
convolutional kernels of various sizes and dilation rates, the model
can capture features at various scales. Further integration of these
multi-receptive field features along the channel dimension enables
the model to gain a more comprehensive understanding of the
image, thereby improving overall performance.

Regarding the multi-scale hypercolumn fusion process: (1)
Spatial alignment: since all features extracted from different
Transformer layers share the same spatial resolution of (H/16) x
(W/16), no additional spatial alignment or interpolation is
required before concatenation; (2) Channel normalization: Batch
Normalization (BN) is applied after each convolutional layer in
the MHPM to normalize feature distributions across channels,
ensuring stable training and preventing feature scale discrepancies;
(3) Feature scale handling: the channel attention mechanism
(Equation 8) dynamically assigns weights to different channels
based on their global statistics, effectively handling variations in
feature scales and distributions from different encoder layers.

3.3 Progressive hierarchical fusion decoder

Colonoscopy images contain a large amount of intricate,
complex textures, particularly subtle density differences among soft
tissues, making them difficult to distinguish. The simple decoder
design in the original SAM struggles to accurately segment lesion
areas. To address this issue, we propose a Progressive Hierarchical
Fusion Decoder for efficient segmentation predictions. This
decoder adopts a pyramidal structure, progressively integrating
features from the SAM encoder and the Hierarchical Fusion
Module (HFM) to generate precise segmentation results. As shown
in Figure 1, we concatenate the output of the MHPM with the
output of the previous-level HFM along the channel dimension
and then use the next-level HEM for further feature enhancement.
Thus, the output of the i-th stage of the pyramid can be expressed
as follows:

Fj11 = HEM(Convyy [Mj; Fi]),j = 1,2,3. (12)
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FIGURE 4
The structure of our Hierarchical Fusion Module (HFM).

where M; represents the output of the MHPM, and F; represents the
output of the previous-level HFM. HEM refers to the Hierarchical
Fusion Module, and its structure is shown in Figure 4. This
module enhances the model’s feature representation capability by
integrating features at three levels: global, regional, and local,
thereby capturing richer and more profound semantic information.
Specifically, let D; be the input of the HFM module at the i-th
stage of the pyramid. Then, the output of HFM can be expressed
as follows:

Fglobar = Di x 8(Convyx1(GAP(Dy))) + Dj, (13)

Fhegion = DF x 8(Convi1(GAP(DY))) + DX, (14)
2. .k

FRegian = [Flllegion’ FRegionf o FRegion]’ (15)

Frocal = MLP(D;), (16)

F; = Convixi1([Fglobal; Fregion; FLocal])- (17)

where D¥ represents the division of D; into K groups along the
channel dimension, and MLP represents the linear projection. This
grouping method effectively prevents the model from relying too
heavily on any single channel, thereby enhancing its generalization.
Through the synergistic effect of the pyramidal structure and HFM,
our framework can generate highly refined, detailed segmentation
masks for lesions of varying shapes and sizes.

Our PHFD differs from existing pyramid-style decoders in
several key aspects: (1) Unlike U-Net++, which uses dense nested
skip connections, PHFD employs a progressive fusion strategy
that explicitly combines multi-scale hypercolumn features with
hierarchical decoder outputs; (2) Unlike HRNet, which maintains
high-resolution representations throughout, PHFD focuses on
efficient feature aggregation through the HFM module that
captures global, regional, and local information simultaneously; (3)
Compared to FPN, which uses top-down feature propagation with
lateral connections, PHFD incorporates channel-wise attention
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mechanisms within HFM to dynamically weight features based on
their relevance to the segmentation task.

3.4 Loss function

To fully optimize the proposed framework, we introduced
multi-scale supervision signals to the outputs of each layer in the
model’s decoder. Additionally, we integrated the predictions from
the previous layers to obtain the final prediction results using the
following formula:

F = Convyx([F1; F2; F3; F4), (18)

where Fy, (k = 1,2,3,4) refers to the prediction result at the i-th
stage of the pyramid. To ensure the classification accuracy of each
pixel, we employed the cross-entropy loss function for supervision,
as shown in the following equation:

e XH: iv: [GTijIn (8 (Piy)) +

(- et (5 (3],

where GT refers to the ground truth. Through the aforementioned

(19)

supervision, the network parameters were thoroughly optimized.
This optimization significantly improved the model’s ability to
capture fine-grained details across various scales, resulting in
superior performance in segmenting rectal cancer lesions.

4 Experiments

4.1 Datasets and evaluation metrics

To validate the performance of the proposed model, we trained
and tested it on two publicly available large-scale abdominal CT
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datasets. The CARE dataset (Wan et al., 2024) was annotated
in detail by more than ten experienced gastrointestinal surgeons,
who meticulously outlined the diseased and normal rectal regions
layer by layer. This dataset is divided into two subsets: the
training set contains 318 samples with a total of 36,563 slice pairs,
and the test set contains 81 samples with 6,461 slice pairs. The
WORD dataset (Luo et al., 2021) is a large-scale abdominal organ
segmentation dataset comprising 150 scans spanning the entire
abdominal region, totaling 30,495 slices. Among them, 100 scans
are used for training, 20 for validation, and 30 for testing. The
evaluation on these two datasets demonstrates the robustness and
practical effectiveness of the proposed model.

We used the mean Dice coeflicient (mDice) and mean
intersection over Union (mlIoU) to quantitatively evaluate the
model’s performance. mDice is a widely used metric in image
segmentation tasks. It measures the similarity between predicted
segmentation results and ground-truth labels, effectively reflecting
overall segmentation performance.

. 2|A N B|
Dice(A,B) = ———— (20)
|Al + |B|
1 &
mDice = C ;Dicei, (21)

where A is the ground truth binary mask, B is the predicted
binary mask, |A N B| represents the common elements between
sets A and B, and |A| + |B|
of elements in A and B, respectively. mIoU is a more

denotes the total number

stringent metric, as it focuses solely on the overlapping regions
between the predicted and actual areas, making it particularly
well-suited for evaluating segmentation accuracy, especially in
multi-class scenarios.

|AN B
IoU = (22)
|AU B|
1 C
mloU = re i:EI IoU;, (23)

where |A U B| represents the total number of pixels covered by A,
B, or both.

4.2 Implementation details

We implemented the model using the PyTorch toolkit and
conducted experiments on two RTX 3090 GPUs, each equipped
with 24 GB of video memory. For the backbone network of
the model, we adopted the SAM-B weights pre-trained on
natural images and froze their parameters, fine-tuning only
the other parts. To enhance data diversity and improve the
model’s generalization, we applied two common data augmentation
methods: random flipping and random rotation. Consistent with
previous work (Oktay et al., 2018; Jha et al.,, 2019; Ibtehaz and
Rahman, 2020), all input images were resized to 224 x 224. Due to
memory limitations, we set the batch size to 16. We employed the
widely recognized AdamW optimizer for parameter updates, with
an initial learning rate of 0.001 and a weight decay coefficient of 0.1.
To improve convergence, the learning rate was reduced by a factor
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of 10 every 20 epochs, and the training process spanned 50 epochs.
Our code will be made publicly available to enable other researchers
to reproduce our results and further optimize the model.

4.3 Comparison with state-of-the-arts

In this section, we compare the proposed method with other
state-of-the-art methods on two large abdominal CT datasets.
Consistent with previous work, we use the Dice coefficient
and Intersection over Union (IoU) as evaluation metrics for
the CARE dataset, while reporting the Dice coeflicient for all
organs in the WORD dataset. Tables 1, 2 present the quantitative
comparison results for the CARE and WORD datasets, respectively.
AttenUnet (Oktay et al., 2018) introduces an attention gate (AG)
module, which can implicitly learn to suppress irrelevant
regions in the input image while highlighting salient features
relevant to the specific task. The AG module is plug-and-play
and can significantly enhance model sensitivity and prediction
accuracy with minimal computational overhead. ResUNet++ (Jha
et al, 2019) presents an improved ResUNet architecture for
colonoscopic  image segmentation, incorporating residual
units, squeeze-and-excitation units, ASPP, and attention units.
This architecture has demonstrated outstanding segmentation
performance on public datasets. MultiResUNet (Ibtehaz and
Rahman, 2020) introduces a lightweight, memory-efficient
MultiRes module that significantly improves the model’s
segmentation performance on complex images. Although the
segmentation results may not be perfect in extreme cases, the
model demonstrates substantial improvements over the classical
U-Net in most situations. MISSFormer (Huang et al., 2022)
proposes a U-shaped Transformer encoder that enhances feature
discrimination by reintegrating local contextual information
and global dependencies. Additionally, a ReMixed Transformer
Context Bridge is introduced into the decoder to further improve
fine-grained segmentation accuracy. SwinUnet (Cao et al,
2022) uses a hierarchical Swin Transformer as the encoder to
extract contextual features via a shifted-window mechanism.
It incorporates a symmetric Swin Transformer-based decoder,
combined with expanded layers for upsampling operations,
to restore the spatial resolution of feature maps. The model
excels at medical image segmentation tasks, effectively learning
global semantic information and long-range dependencies,
yielding superior segmentation performance. TransUNet (Chen
et al, 2021) employs a Transformer encoder, combined with
a U-Net to preserve local spatial information, and ultimately
demonstrates excellent performance in medical applications
such as multi-organ segmentation. UCTransNet (Wang et al,
2022) proposes a Transformer-based segmentation model from a
channel-wise perspective, incorporating an attention mechanism
and integrating recurrent neural networks and channel-wise
cross-attention. This approach ultimately achieved excellent
results across multiple medical image segmentation datasets.
nnU-Net (Isensee et al, 2021) can automatically configure its
network architecture, training strategies, and preprocessing steps
based on the given dataset, significantly reducing the complexity
of deep learning applications. SAM (Kirillov et al., 2023) is a
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TABLE 1 Performance comparison on the CARE dataset.

Methods Normal Tumor Mean
mDice (%) mioU (%) mDice (%) mloU (%)  mDice (%) mloU (%)

AttenUnet (Oktay et al., 2018) 63.05 46.04 71.39 55.50 67.22 50.77
ResUnet++ (Jha et al., 2019) 58.08 40.93 69.87 53.69 63.97 47.31
MultiResUnet (Ibtehaz and Rahman, 2020) 62.25 45.19 72.11 56.39 67.18 50.79
MissFormer (Huang et al., 2022) 53.63 36.64 68.58 52.19 61.11 44.41
SwinUnet-B (Cao et al., 2022) 63.32 46.32 72.63 57.02 67.97 51.67
SwinUnet-L (Cao et al., 2022) 61.66 44.57 72.58 56.97 67.12 50.77
TransUnet-B (Chen et al., 2021) 60.21 43.08 70.69 54.67 65.45 48.87
TransUnet-L (Chen et al., 2021) 63.75 46.79 72.60 56.98 68.17 51.86
UCTransNet (Wang et al., 2022) 63.53 46.55 70.67 54.64 67.10 50.59
nnUNet (Isensee et al., 2021) 59.73 43.68 72.00 57.62 65.86 50.65
SAM (Kirillov et al., 2023) 60.95 43.83 71.00 55.04 65.98 49.44
SAM+LoRA (Zhang, 2023) 57.57 40.42 70.70 54.68 64.14 47.55
AFTer-SAM (Yan et al., 2024) 62.35 45.12 71.58 55.87 66.97 50.50
U-SAM (Wan et al., 2024) 65.72 48.94 72.84 57.28 69.28 53.11
HHEF-SAM 72.14 56.24 76.42 62.03 74.05 58.96

The table shows evaluation metrics for different methods. The best results for each metric are highlighted in bold. Our proposed method achieves superior performance compared to existing

approaches.

universal, promptable image segmentation model that achieves
efficient segmentation of any object by combining large-scale
data and advanced model architecture, significantly expanding
the application scope and convenience of image segmentation.
SAM+LoRA (Zhang, 2023) proposed a LoRA fine-tuning strategy
and, together with the prompt encoder and mask decoder, fine-
tuned on medical image segmentation datasets. This successfully
improved SAM’s performance in medical image segmentation
tasks. AFTer-SAM (Yan et al., 2024) introduced adapter modules
into SAM and leveraged axial fusion transformers to integrate
contextual information, thereby improving performance on
medical images. U-SAM (Wan et al., 2024) proposed a U-shaped
adapter architecture, correcting the inherent structural limitations
of SAM when applied to medical image analysis. This architecture
significantly improves the efficiency and accuracy of rectal cancer
diagnosis in clinical practice.

The aforementioned methods have all demonstrated strong
performance in rectal cancer segmentation tasks. However, our
approach fully leverages the rich semantic information embedded
in SAM’s pre-trained weights, combined with a multi-scale
feature enhancement module and a refined pyramid decoder
structure. This enables our model to segment fine-grained lesion
areas more accurately. Compared to adapter-based methods like
AFTer-SAM, which primarily focus on domain adaptation, our
HHF-SAM additionally extracts multi-scale hypercolumn features
from different encoder layers, enabling richer spatial-semantic
representation. Furthermore, unlike U-SAM, which employs a
U-shaped decoder structure, our Progressive Hierarchical Fusion
Decoder systematically aggregates features through the HFM
module, which simultaneously captures global, regional, and local
information, thereby providing more refined boundary delineation
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for complex lesion shapes. Results on two large abdominal
CT datasets show that our model significantly outperforms the
previously mentioned techniques.

4.4 Qualitative comparisons

To facilitate a more intuitive comparison of segmentation
performance across models, we have visualized each model’s output
features in Figure 5. Specifically, yellow denotes normal rectal
tissue, while red denotes rectal cancer tumors; the boxes highlight
the regions where the models’ predictions differ from the ground-
truth annotations. Evidently, compared to other models, our model
achieves more refined segmentation while preserving intricate
shape information. Regarding the boundaries between tumors and
healthy rectal walls, our model’s segmentation results are also
closer to the ground truth annotations. We acknowledge that
in Rows 1 and 2 of Figure 5, none of the compared methods,
including ours, achieve complete lesion coverage. This is primarily
due to the inherent challenges in these cases: (1) the lesions
exhibit extremely low contrast with surrounding tissues, making
boundary delineation difficult; (2) the lesion shapes are highly
irregular and diffuse, which poses challenges for all segmentation
methods. However, our HHF-SAM still demonstrates relatively
better performance in capturing the main lesion regions compared
to other methods. These challenging cases also highlight the
need for future research on handling low-contrast and diffuse
lesions in clinical applications. To validate the effectiveness of
the proposed architecture, we further visualized the features of
each module. As illustrated in Figure 6, the segmentation regions
become increasingly detailed as our key modules are progressively
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FocalUnet (Naderi et al., 2022) 93.21 89.54 88.64 88.68 83.43 61.29 57.83 60.57 45.20 70.72 7247 | 4803 | 70.08 | 90.47 | 84.63 | 83.77 | 74.28
R2Unet (Alom et al.,, 2019) 84.73 90.35 90.56 87.78 80.21 59.56 71.12 72.64 49.74 70.77 7330 | 4826 | 7299 | 8820 | 7417 | 4778 | 72.63
ResUnet++ (Jha et al,, 2019) 95.08 93.71 93.92 94.22 89.28 69.28 72.95 75.82 57.15 79.80 80.73 | 6559 | 7527 | 9320 | 9226 | 92.01 | 8252
MultiResUnet (Ibtehaz and Rahman, 2020) 95.19 93.73 93.12 93.33 90.73 69.83 73.11 75.33 60.36 81.32 82.51 | 6451 | 7835 | 9357 | 8525 | 87.94 | 8230
MissFormer (Huang et al., 2022) 85.65 94.60 91.00 91.30 90.22 71.62 7227 76.02 57.85 80.44 80.87 | 64.02 | 7655 | 9353 | 87.26 | 8690 | 81.89
SwinUnet-B (Cao et al., 2022) 9491 91.73 89.80 89.76 90.43 70.05 72.33 74.01 56.69 79.85 80.47 | 61.67 | 7801 | 9327 | 8771 | 8782 | 81.16
SwinUnet-L (Cao et al., 2022) 95.19 92.69 89.87 89.94 90.45 72.97 72.66 72.89 58.37 79.67 80.51 | 59.77 | 77.55 | 93.63 | 87.76 | 87.69 | 81.37
TransUnet-B (Chen et al., 2021) 95.46 93.21 91.47 91.63 90.01 70.99 70.61 75.38 55.47 78.73 8125 | 6474 | 76.66 | 9376 | 87.2 | 87.56 | 81.50
TransUnet-L (Chen et al., 2021) 94.93 89.88 90.56 90.47 91.62 95.52 75.17 76.51 60.41 81.78 83.18 | 6733 | 79.63 | 9433 | 88.40 | 88.07 | 82.99
UCTransNet (Wang et al., 2022) 95.19 94.18 94.27 94.62 89.04 65.83 68.67 73.30 58.44 79.60 80.59 | 6436 | 7543 | 9223 | 8931 | 8979 | 81.55
nnUNet (Isensee et al., 2021) 95.44 93.91 94.55 94.60 89.63 66.56 74.78 78.85 63.57 82.45 8541 | 65.85 | 7242 | 9242 | 8476 | 77.58 | 82.05
SAM (Kirillov et al., 2023) 94.50 91.67 89.44 88.91 87.77 59.83 61.90 70.15 51.53 71.91 7583 | 5171 | 7277 | 9191 | 8824 | 8834 | 77.28
U-SAM (Wan et al., 2024) 95.47 94.94 95.33 95.46 91.66 76.91 77.91 75.58 65.60 83.38 8327 | 6939 | 80.66 & 9420 | 8823 | 8831 | 84.83
HHF-SAM 96.12 95.03 95.41 95.87 92.17 77.87 82.21 80.37 66.03 83.72 84.41 | 73.85 | 83.24 9545 | 9221 | 91.18 & 85.84

Higher values reflect better performance across all evaluation metrics. The best results for each metric are highlighted in bold.
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nnUNet

FIGURE 5

zooming in.

TransUNet

Visual comparisons of different methods on the CARE dataset. The results illustrate the segmentation performance of each method. Best viewed by

SwinUNet SAM

applied. This further underscores the significant advantages of our
proposed model.

4.5 Failure case analysis

To provide a comprehensive evaluation of our method, we
present a failure case analysis in Figure 6. These cases represent
challenging scenarios where most methods struggle to achieve
accurate segmentation. As shown in the figure, the original
SAM (Kirillov et al., 2023) tends to produce over-segmented results
due to its lack of domain-specific knowledge for medical imaging.
AFTer-SAM (Yan et al.,, 2024) and U-SAM (Wan et al., 2024)
show improved localization but still fail to capture the complete
tumor regions accurately. In contrast, our HHF-SAM demonstrates
superior performance even in these difficult cases, owing to its
multi-scale hypercolumn features and the progressive hierarchical
fusion mechanism. The red regions in the last column indicate the
remaining tumor areas that our method successfully captures, while
other methods miss them. These results highlight the robustness of
our approach in handling challenging cases with low contrast and
irregular lesion boundaries.

4.6 Ablation study

To validate the effectiveness of each module in the proposed
model, we conducted experiments on the CARE dataset, and the
results are shown in Table 3 and Figure 7.

Frontiersin Artificial Intelligence

4.6.1 Effects of LoRA and adapter

As shown in rows 1-3 of Table 3, the pre-trained SAM in zero-
shot mode achieved an mlIoU of 47.55% on the CARE dataset,
further confirming the significant differences between natural
images and medical images. After incorporating LoRA, the mIoU
increased by 1.89%, and with the additional integration of the
Adapter, the mIoU improved by a further 1.19%. The experimental
results demonstrate that by introducing these two efficient fine-
tuning mechanisms, the gap between natural and medical images
can be effectively reduced, enabling the extraction of more robust
feature information.

4.6.2 Effects of key modules

As shown in rows 3-6 of Table 3, we validated the effectiveness
of the key modules by incorporating them into the backbone
network. By constructing the PHFD, the model can aggregate
multi-level features and more comprehensively represent the
overall structure of medical images, resulting in a 1.62%
improvement in mIoU on the CARE dataset. After introducing
HEM, the model effectively prevents excessive reliance on specific
channels, thereby enhancing its generalization. The inclusion of
HEM led to an additional 1.52% increase in mloU. Finally,
the MHPM further captures multi-scale information, which is
particularly effective for segmenting lesions of different sizes,
contributing to an additional 2.95% improvement in mloU.
Compared to SAM with LoRA and Adapter, incorporating all key
modules resulted in a total improvement of 6.09% in mIoU on the
CARE dataset.
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FIGURE 6

Failure case analysis on challenging samples. (Left to right) Original image, ground truth, SAM, AFTer-SAM, U-SAM, and our HHF-SAM. Yellow
represents normal rectal tissue, and red indicates tumor regions. Our method achieves better segmentation even in these difficult cases.

TABLE 3 Quantitative results of the ablation study on the CARE dataset.

Configurations Methods CARE
Adapter PHFD HFM L mDice(%) mloU(%)

(a) —1 —1 —1 —1 1 —1 64.14 47.55
(B) 1 —1 —1 —1 1 1 65.98 49.44
(© 1 1 1 1 1 1 66.54 50.63
(D) (- 1 (- 1 1 1 67.84 52.25
(B) 1 1 1 1 1 1 69.12 53.77
(F) 1 1 1 (- (. — 72.98 56.72
(©) 1 1 1 1 1 (| 74.05 58.96

Different combinations of components are evaluated to assess their contributions to overall segmentation performance.

FIGURE 7
Visualization of performance comparisons using different combinations of model components. Each combination demonstrates the contribution of
specific modules to the overall segmentation performance. Best viewed by zooming in. (A-G) Correspond to different configurations in the ablation
study, as defined in Table 3.

4.6.3 Effects of different losses

We validated the adequacy of model training by adjusting
both the placement and the number of loss functions.
As shown in Table3, row 6 represents the model with
the loss function applied only at the final output, while
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row 7 shows the loss function applied at all stages of the
decoder. It can be observed that single-point supervision
the With  the
introduction of additional supervision, the model achieves

is insufficient for fully training model.

better segmentation results.
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4.6.4 Effects of different combinations and k
groups in HFM

In designing the HFM module to capture rich semantic
information, we divided the input features into three levels:
global, regional, and local, thereby enhancing the model’s feature
representation capability. Figure 8 shows the performance results
with different combinations. It can be observed that when the
regional branch is not introduced, the model achieves only 57.44%
mloU. This also indicates that including the regional branch
prevents the model from relying on specific channels, thereby
improving its generalization.

Figure 9 illustrates the impact of dividing the regional features
into k groups on performance. The introduction of the regional
branch enables the model to capture finer-grained information,
thereby improving performance. In our work, we divided the
regional features into four groups to strike a balance between
accuracy and complexity. Specifically, we tested k values of 0, 2,

Frontiersin Artificial Intelligence

4, and 8. As shown in Figure 9, k = 0 (no regional branch) yields
the lowest mIoU of 57.44%, confirming the importance of regional
feature extraction. Increasing k to 2 improves mlIoU to 58.35%,
while k = 4 achieves the best performance at 58.96%. Further
increasing k to 8 shows no additional improvement (58.93%),
suggesting that excessive grouping may introduce redundancy.
Therefore, k = 4 provides an optimal trade-off between feature
granularity and computational efficiency.

4.6.5 Effects of input resolution

To investigate the impact of input resolution on segmentation
performance, we conducted experiments with different input
sizes on the CARE dataset. As shown in Table4, higher
input resolutions lead to notable performance improvements.
Since the CARE dataset contains rich, fine-grained details in
lesion boundaries, increasing the resolution significantly enhances
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TABLE 4 Performance comparison of different input resolutions on the
CARE dataset.

Resolution mDice(%) mloU(%) GPU Memory (GB)
224 x 224 74.05 58.96 14.8
512 x 512 75.12 59.81 326
1,024 x 1,024 76.35 60.79 58.4

TABLE 5 Comparison of the number of trainable parameters across
several typical methods on the CARE dataset.

Methods mDice(%) mloU(%) TParam(M)
UCTransNet 67.10 50.59 66.24
TransUnet-B 65.45 48.87 93.23
SwinUnet-B 67.97 51.67 149.11
TransUnet-L 68.17 51.86 315.08
SwinUnet-L 67.12 50.77 335.26
SAM-B 65.98 49.44 90.21
U-SAM 69.28 53.11 103.36
HHF-SAM 74.05 58.96 113.11

segmentation accuracy. Specifically, the 512 x 512 resolution
improves mDice by 1.07% and mloU by 0.85% compared to
224 x 224, while the 1,024 x 1,024 resolution achieves gains
of 2.30% in mDice and 1.83% in mloU. However, considering
a fair comparison with previous methods (Oktay et al, 2018;
Jha et al., 2019; Ibtehaz and Rahman, 2020) and the substantial
computational overhead at higher resolutions, we maintain the
same experimental settings (224 x 224) as prior works in our
main experiments.

4.7 Computational cost

To highlight the computational advantages, we compared the
number of trainable parameters across several typical methods.
As shown in Table5, the SAM model, without using any
prompt information (e.g., points or boxes), has 90.21 million
trainable parameters. U-SAM, which extends SAM’s backbone
by incorporating U-shaped adapters into both the encoder and
decoder, has 103.36 million trainable parameters. In contrast, our
approach uses SAM as the backbone and introduces MHPM and
PHEFD to generate highly accurate, detailed segmentation masks for
colorectal cancer regions. Compared to U-SAM, our model adds
only a small number of trainable parameters while achieving better
segmentation performance.

5 Conclusion

In this study, we propose a novel feature-learning framework
for rectal cancer segmentation, which we name HHF-SAM.
Specifically, we use the pre-trained SAM as the backbone of the
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proposed model. To address the gap between natural and medical
images, we freeze the parameters of the original SAM encoder
and introduce two efficient fine-tuning mechanisms. Subsequently,
we incorporate the MHPM module, which employs a multi-
scale feature-extraction mechanism to more effectively capture
critical information in colonoscopy images. Finally, we propose a
Progressive Hierarchical Fusion Decoder (PHFD) with a pyramid
structure, which, combined with the Hierarchical Fusion Module
(HFM), enables efficient segmentation predictions. In the future,
we will explore further optimizations and integrate more advanced
strategies to enhance the model’s performance.
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