3 frontiers ‘ Frontiers in Artificial Intelligence

® Check for updates

OPEN ACCESS

EDITED BY
Sukhijit Singh Sehra,
Wilfrid Laurier University, Canada

REVIEWED BY

Pankaj Bhambri,

Guru Nanak Dev Engineering College, India
Chandra Pareek,

Nicolaus Copernicus University in Torun,
Poland

*CORRESPONDENCE
Priyank Desai
priyankd@ieee.org

RECEIVED 30 August 2025
REVISED 28 October 2025
ACCEPTED 17 November 2025
PUBLISHED 03 December 2025

CITATION

Desai P, Singh S and Amilkanthwar S (2025)
The Test Pyramid 2.0: Al-assisted testing
across the pyramid.

Front. Artif. Intell. 8:1695965.

doi: 10.3389/frai.2025.1695965

COPYRIGHT

© 2025 Desai, Singh and Amilkanthwar. This is

an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Artificial Intelligence

TYPE Conceptual Analysis
PUBLISHED 03 December 2025
pol 10.3389/frai.2025.1695965

The Test Pyramid 2.0: Al-assisted
testing across the pyramid

Priyank Desai'*, Snahil Singh' and Shubham Amilkanthwar?

*Independent Researcher, Seattle, WA, United States, 2Independent Researcher, San Francisco, CA,
United States

Ensuring robust test coverage, high code quality, and a strong security posture
are persistent challenges in modern industrial software development, especially
as systems grow in complexity and release cycles accelerate with recent Artificial
Intelligence (Al) related productivity gains. This paper introduces a conceptual
framework, "The Test Pyramid 2.0", which offers a clear and actionable path to
integrate the latest advances in Al and DevSecOps principles into engineering
workflows to achieve greater efficiency, reduce defect leakage, and create
more resilient systems. We examine how Al enhances each layer of the test
pyramid through capabilities such as automated test generation, coverage
analysis, test data synthesis, anomaly detection, and intelligent Ul exploration.
In parallel, we embed DevSecOps practices directly into the pyramid by aligning
security controls with each testing layer, ranging from static analysis and policy
enforcement to dynamic testing, misconfiguration detection, and adversarial
simulation. We also explore how Al strengthens these security practices through
adaptive learning, risk prioritization, and context-aware detection. Together,
these advances create a holistic, Al-augmented, and security-conscious testing
strategy that supports the speed of modern development without compromising
quality or safety.

KEYWORDS

software testing, quality assurance, artificial intelligence, DevSecOps, shift left,
continuous integration, security testing

1 Introduction and background

Testing remains a cornerstone of modern software delivery. Existing challenges in
ensuring robust test coverage and maintaining a strong security posture are further
exacerbated by unprecedented productivity gains achieved through the use of Generative
AT in the software development life-cycle (Rolls, 2025). As developer velocity increases,
so does the urgency to ensure that production-ready software is backed by automation-
enabled quality and security practices. In addition, for practitioners, test coverage alone
is not sufficient; automated testing and fast feedback loops are essential to support rapid
iteration without compromising reliability or safety (Shahin et al., 2017). Meanwhile,
according to the DevSecOps philosophy, Security must also “shift left,” becoming a first-
class citizen in testing strategies rather than an afterthought of deployment (Lietz, 2015).
This paper addresses these needs by re-examining the classical test pyramid through the
dual lenses of AT and DevSecOps.

“The Test Pyramid” (Cohn, 2009) is a fundamental and widely adopted concept in
modern software quality engineering. From unit, component and integration tests to
UI/API and manual exploratory tests, it is a structured framework for balancing effort,
isolation, and speed in different layers of application testing. Originally proposed by Mike
Cohn and expanded by various practitioners such as Vocke (2018), the pyramid encourages
teams to build a test suite that is comprehensive, efficient, and maintainable. The basic

01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1695965
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1695965&domain=pdf&date_stamp=2025-12-03
mailto:priyankd@ieee.org
https://doi.org/10.3389/frai.2025.1695965
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1695965/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

principle is that tests become broader, fewer, and more expensive
to execute as we move up the pyramid. This structure emphasizes
speed and feedback efficiency at the lower levels, while it captures
essential behavioral checks at the upper layers (Figure 1). The
concept has been widely adopted in Agile environments and forms
a cornerstone of scalable test automation strategies.

We extend this model into “The Test Pyramid 2.0,” embedding
security testing directly into each layer. It is important to note
that in this paper we operate on a more granular version of the
Test Pyramid proposed by Mike Cohen in his book “Succeeding
with Agile: Software Development Using Scrum.” The original test
pyramid had three layers (Unit, Service, and UI/E2E), while we
operate on a pyramid with five layers that incorporate various
testing methodologies used across the industry and academia today.
This allows us to dive deeper into the advances and vend our
recommendation at each granular layer.

Further, we explore the role of AI in amplifying both
quality and security outcomes. From automated test generation,

10.3389/frai.2025.1695965

intelligent test orchestration, and anomaly detection to adaptive
vulnerability scanning and context-aware risk prioritization,
various Al techniques transform each layer of the pyramid into
a smarter, more proactive quality and security checkpoint. By
framing these advances within a familiar model, this document
offers a practical framework for teams seeking to deliver
faster, safer, and more resilient software in today’s high-velocity
engineering environments.

2 Changes to the test pyramid—The
Test Pyramid 2.0

In each sub-section below, we start by defining the traditional
role of each layer in the test pyramid. We then cover the proposed
changes: (a) application of various Al techniques based on existing
research and (b) embed a concrete suite of tests borrowed from the
DevSecOps philosophy. These changes are summarized in Figure 2.

LR Ei rManuaI/Eproratory1
Tests, Slow § Testing)
Execution h g
W UI/API-level Testing
High # of , \
Tests, Fast ' _
FIGURE 1
The Test Pyramid.
Slow Manual/Exploratory
Execution, + Pen/Chaos Tests
Less # of
tests W UI_/API-IeveI %
Testing + DAST °
Integration 3
Testing + IAST s
[
(0]
- A
Execution, ec Ctrls Validation
High # of Unit Testing +
tests SAST

FIGURE 2
The Test Pyramid 2.0

Frontiersin Artificial Intelligence

02

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

2.1 Unit testing (Layer-1)

Unit tests form the foundation of the pyramid and are the
most comprehensive in terms of code coverage. These tests focus
on the narrowest scope, typically a single function or method at
the package or module level. The goal is to validate that individual
units of code behave as expected for various inputs, often through
stubbing or mocking external dependencies to ensure isolation.
Due to their lightweight nature and fast execution time, unit tests
provide the quickest feedback loop and are critical for supporting
rapid development cycles. Obtaining close to 100% coverage at
this level is generally considered ideal. Their close relationship
with code modules makes them prime candidates for AI-driven
automation. Here are some of the automation techniques that we
recommend applying at this layer:

2.1.1 Automated testcase generation

A broad spectrum of studies have been published that used
Large-Language Models (LLMs) to generate test-cases. Chen et al.
(2024) proposes “ChatUniTest,” which is a framework for LLM-
based Test Generation. The authors use four Java projects (from
different domains eCommerce, Binance connectors, etc.) and
compare it's performance with “EvoSuite” (Fraser and Arcuri,
2011) which is based on evolutionary algorithms. Compared to the
overall coverage of 38.2% achieved by EvoSuite, the LLM-based
solution yielded 59.6%. Further, Adu (2024) discusses Prompt
engineering, Fine-tuning, and Retrieval-Augmented Generation
(RAG) techniques. Through experiments, the research shows the
performance improvement of an LLM (gpt-3.5-turbo), generating
up to 85% relevant tests, with the remaining 15% scenarios deemed
Minor (not important; good to have).

In addition, studies such as Takerngsaksiri et al. (2025),
provide a solution to generate automated test-cases using Deep
Reinforcement Learning. This text-to-testcase generation approach
enables test-driven development (TDD), where code is not available
for testcase generation. Finally, Bagar and Khanda (2025) discusses
case studies that demonstrate how AI can effectively enhance
testing efficiency in both legacy and modern software systems.
Building on these prior researches, we see LLMs (along with other
AT techniques like RL playing a smaller role) as a potent tool
to generate unit test cases by parsing code structures, identifying
logical branches, and proposing scaffolds that test key execution
paths, providing a valuable tail-wind for users in both industry
and academia.

2.1.2 Code coverage analysis

As mentioned in the above section, LLMs can help automate
test case generation, which improves code coverage. However, the
application of Reinforcement Learning (RL) can further improve
code coverage. In CGFT Engineering (2025), the authors used
test-coverage guided RL to fine-tune a model with 7B params
and deployed a custom unit-testing agent. The agent significantly
improved code coverage (at a coverage increase rate of 0.41),
outperforming general-purpose models like 03-mini/o4 (at a 0.3
increase rate), even while being relatively small @ 7B params.
Similarly, in Zhang et al. (2025), researchers optimized LLMs

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

for unit test generation via chain-of-thought (CoT) prompt and
reinforcement learning (RL) from coverage feedback. This strategy
helped LLMs understand the semantic intricacies and logical
constructs, along with the diversity of the generated tests. Such
Al-enhanced tooling can provide real-time code coverage insights,
identifying untested paths, and auto-generating tests to fill those
gaps. Smith (2024) offers a sample methodology along with some
case studies.

Furthermore, we envision that such tools will increasingly
be integrated with code editors to offer live assessments of
cyclomatic complexity, refactor suggestions, and maintainability
scores, helping elevate code quality along with test completeness.
Almeida et al. (2024), presents a research investigation into the
application of Artificial Intelligence to enhance the quality and
efficiency of code. An Intelli] IDEA plugin was developed to achieve
this objective, leveraging GPT-3.5 as the foundational framework
for automated code assessment. The researchers tested the tool in
a test group and control group setting and found: (a) a higher
average of 28 code smells compared to the control group’s 20 and
(b) detection of 25 refactored code smells on average, as opposed to
the control group’s 13. By automating test generation and providing
intelligent feedback during development, we visualize Al enabling
teams to scale their unit testing practices more effectively and with
greater precision.

2.1.3 Introducing static application security
testing in Layer-1

In the updated test pyramid, we extend the base layer to include
Static Application Security Testing (SAST) alongside traditional
unit tests. SAST analyzes the source code to identify common
security vulnerabilities such as injection risks, hard-coded secrets,
or unsafe API usage, well before the code reaches production.
Embedding SAST at this foundational level aligns with shift-left
principles and ensures that security becomes a default part of the
developer workflow, not a delayed checkpoint. SAST’s frequency,
proximity to the source code, and fast execution speeds are our
primary motivations for aligning it with the unit testing layer.

Artificial Intelligence meaningfully enhances the effectiveness
of this layer. Using a large corpus of known vulnerabilities and
secure coding patterns to learn, Russell et al. (2018) demonstrated
the potential of using ML to detect software vulnerabilities directly
from the source code. The study experiments with a variety
of ML techniques and achieves the best overall results using
features learned through a convolutional neural network (CNN)
and classified with an ensemble tree algorithm. Such Al-augmented
SAST tools can detect complex or context-dependent issues that
traditional rule-based scanners often miss. In addition, Santos et al.
(2021) presents a comparison of manual code review, traditional
SAST tools, and SAST tools with ML to provide a starting point
for organizations. Involvement of ML also ensures that these
systems continuously adapt to emerging threats, evolving their
detection capabilities in response to new Common Vulnerabilities
and Exposures (CVEs), code-bases, and language ecosystems.

One of the most impactful contributions of AI here is the
reduction of false positives, a long-standing challenge in static
analysis. Klieber and Flynn (2024) uses LLMs, which show
promising initial results in adjudicating static analysis alerts and

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

providing rationales for adjudication, offering possibilities for
better vulnerability detection and reducing false positives. Through
a deeper contextual understanding of code flow and function
interactions, the researchers aim to enable LLMs to improve the
signal-to-noise ratio and developer trust in these tools.

Combining unit testing with intelligent static analysis at
the base of the pyramid allows teams to catch functional and
security defects early, resulting in faster remediation, better security
posture, and stronger development velocity.

2.2 Component testing (Layer-2)

Located above unit tests in the pyramid, component tests
validate the
or methods. They are designed to test logical groupings

interaction between a small number of units

of code, methods, or functions, often by mocking remote
endpoints, aiming to verify internal behaviors and relationships.
These tests still maintain relatively fast execution times and
contribute significantly to understanding behavioral patterns
within components. Although slightly less granular than unit tests,
they provide broader insight into how different units collaborate.

2.2.1 Automated testcase generation and code
coverage

Like unit testing, component tests are numerous and fast,
and their proximity to business logic makes them ideal for high-
coverage functional testing using the AI-powered automation
mentioned above in Sections 2.1.1, 2.1.2. For automated test case
generation and analyzing/improving code coverage, we visualize AT
to assist this layer using the same techniques as Layer-1. The goal is
for teams to continue to make it easier to validate component-level
behavior independently of the larger system context.

2.2.2 Smart test maintenance and self-updates

As component tests often span functions, methods, and
modules, even small changes to the code-base can break numerous
tests. Advanced tools have historically provided features for
updating tests in response to changes in source code; however,
applications of Al like Code Language Models (CLMs) significantly
improve this capability. Saboor Yaraghi et al. (2025) introduces
TaRGET (Test Repair GEneraTor), a new method that utilizes
CLMs to automatically repair test cases. The best performing
model in this rigorous study achieves 66.1% exact match accuracy
(EM) and 80% plausible repair accuracy (PR) on an extensive
benchmark. Recent advances in the field have further improved
the capability of CLMs, giving way for Large Language Models
for Code Understanding and Generation. In Wang et al. (2023),
researchers explore a new family of open code LLMs to support
a wide range of tasks. In this study, the researchers verified
the code-LLMs via extensive experiments on more than 20 code
intelligence benchmarks.

Additionally, recent studies such as Pathik and Sharma (2022)
focus on the use of deep learning models to perform an accurate
impact analysis of code changes. With a clear understanding
of the semantic relationships between different elements of the

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

code, teams can create automation that can reliably predict
the ripple effects of a change and update tests automatically.
Researchers achieve a precision of up to 97.2% using their
proposed approach. Given all these advances, we recommend that
industry and academia teams take advantage of such Al-enabled
tools to detect outdated or broken tests and proactively update
them before execution, saving significant engineering time and
bandwidth. This is particularly valuable in complex applications
with large, interdependent components, where maintaining test
suites manually becomes increasingly burdensome.

2.2.3 Enhanced test execution and orchestration

Two primary issues for test-driven development (TDD) and
continuous integration (CI) are rapidly changing environments
and slow test execution, both leading to slower developer feedback.
Al is poised to make meaningful improvements to both these issues.
Bagherzadeh et al. (2022) highlights an RL-based approach for Test
Case Prioritization, with prioritization strategies that produce high
accuracy [Normalized Rank Percentile Average (NRPA) > 0.96],
approaching the optimal ranking of the test cases based on actual
failure data and execution times. Similarly, Agentic Orchestration
platforms like Mathew (2025) optimize test execution, balance
test loads, and predict flaky tests. Such capabilities accelerate the
feedback loop, where individual developers benefit from faster
results, and engineering teams gain greater velocity and confidence
in the code-base’s behavior at the component level.

2.2.4 Introducing security controls validation in
Layer-2

In the second layer of the updated test pyramid, we
propose extending component testing to include Security Controls
Validation (SCV), a DevSecOps practice focused on verifying that
an application’s security measures work as intended. In other
words, SCV ensures that the security mechanisms themselves
are functional, enforced, and resilient in production; it bridges
the gap between secure development and secure operations. This
involves systematically evaluating enforcement points, such as
access control policies, data handling rules, and configuration
settings within individual components. We see this layer as a
natural place to codify and enforce security policies as code
(PaC), given the cost of executing tests in the higher layers. Also,
security controls validation does not need to rely on component
interactions, aligning well with Layer-2 restrictions.

Recent advances in AI have made way for research such
as Romeo et al. (2025) an agentic system that combines
LLMs, Retrieved-Augmented-Generation (RAG) and tool-based
validation to automate the generation and verification of PaC
rules. Through experiments, researchers baseline different LLMs
(Claude Sonnet 4, GPT-40, and Qwen3:30b) in plain-LLM, RAG,
and Agentic RAG setups and show that Claude Sonnet 4 is able
to generate Rego rules without external knowledge and also verify
them on the test application. Similarly, Nobi et al. (2022) surveys
and summarizes the emerging benefits of machine learning in
various areas of access control, including attribute engineering,
policy mining, and access control policy verification. Policies could
come from internal governance rules, compliance frameworks, or

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

cloud configuration baselines. Solutions like this allow teams to
catch policy non-compliance before code moves to higher layers
of testing.

At this level, Al-techniques like ML and LLM have been
shown to automate vulnerability scanning and identifying security
misconfigurations. In addition, Shiri Harzevili et al. (2024) shares a
systematic literature review on Automated Software Vulnerability
using various Classic and Deep Learning ML models. While Wen
et al. (2025) highlights the use of LLMs for misconfiguration
detection, outperforming existing data-driven approaches with
a precision of 72.88%, recall of 88.18%
79.75%. Teams can deploy such solutions to continuously analyze

and Fl-score of

application components and infrastructure definitions for insecure
configurations, drift, or known weaknesses.

Embedding security controls validation into the component
testing layer ensures that security policies are not just present but
effective, and that violations are caught early, while changes are still
isolated and inexpensive to fix. This is key to our vision of making
this layer a crucial checkpoint for building secure systems from the
inside out.

2.3 Integration testing (Layer-3)

As we ascend the test pyramid, the emphasis shifts from
code-level precision to validating cross-component interactions
and system behaviors. Integration tests reside in the third layer
of the pyramid and focus on system-level behaviors rather
than isolated units. These tests are generally fewer in number
compared to the previous layers’ tests but are vital to verify that
distinct services or modules communicate and function together as
expected. Unlike unit or component tests, integration tests typically
do not mock remote services and are often run in controlled
environments such as staging or beta environments. As an example,
a common use-case involves verifying database integrations to
ensure that the entire stack behaves correctly with databases under
real-world conditions.

Below, we explore how Al can augment this layer by addressing
longstanding challenges related to test data fidelity and use
intelligent defect targeting to further improve effectiveness.

2.3.1 Testdata generation and management

A persistent challenge in integration testing is managing
test data across environments. Unlike unit or component tests,
integration scenarios typically involve communication between
multiple subsystems. This often requires that test entities exist
in a specific (and valid) state before testing begins. For example,
a test verifying a users subscription retrieval must ensure
that the user account exists and has associated subscription
history configured.

Existing research like Behjati et al. (2019) has proposed the
use of Recurrent Neural Networks to generate synthetic test data,
however advances in LLM technology have unlocked additional
capabilities. In Baudry et al. (2024), researchers experiment with
GPT-4 and show improved data adequacy (63 case studies),
executability (69% success rate), and high-degree of compatibility
with existing faking libraries. Such Al-powered tools reduce the

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

manual effort required to provision and maintain contextual test
data. Teams can leverage them in an attempt to generate (or clone)
valid entity states and ensure data consistency across test runs. Long
et al. (2024) surveys the current available research on LLM-driven
test data generation and articulates directions for future research
for adoption in diverse organizations. In addition, the enhanced
ability to generate synthetic data helps teams ensure compliance
with privacy and data protection standards.

In addition, studies such as Rashidi et al. (2024) show the
role of ML in the quality of synthetic data generated for tests.
Researchers embedded an auto-ML module in the loop, allowing
users without deep expertise to generate usable synthetic datasets
and fully automating the synthetic data generation.

2.3.2 Defect prediction and risk analysis

ML techniques enable teams to intelligently forecast where
defects are most likely to occur within or between integrated
components. In Madeyski and Stradowski (2025), researchers
propose a lightweight approach for ML-based Software Defect
Prediction (SDP), along with the use of explainable Al to provide
feedback to stakeholders. They used a real world scenario to
validate their solution, vended the solution to professionals,
and solicited feedback from industry experts to achieve high
precision (up to 0.981). In practical scenarios, various features
such as historical bug patterns, test reports, change frequency,
and dependency graphs are available for ML models to identify
and highlight risky areas. In addition to applications that use ML,
several DL-based mechanisms have also been proposed that exploit
such features (Giray et al., 2023). Insights from such solutions
help engineering teams allocate testing resources strategically
(to focus on defective areas) and preempt issues before they
reach production.

Separately, the authors of “The use of artificial intelligence for
automatic analysis and reporting of software defects” (Esposito
et al, 2024) concluded that companies that incorporate Al
algorithms will be able to include an agile model in their life cycle,
as they will reduce the rate of failures, errors, and breakdowns,
allowing cost savings and ensuring quality. When paired with
automated test generation, we visualize defect prediction capability
to target risk areas and produce high-value test cases, effectively
closing the loop between prediction and prevention. We see this
approach as not only improving test coverage but also helping
teams avoid wasted cycles in low-risk areas.

2.3.3 Introducing interactive application security
testing in Layer-3

In this layer of the enhanced testing pyramid, we expand
integration testing to include Interactive Application Security
Testing (IAST), which is a dynamic technique that observes
application behavior, data flow, and interactions during runtime.
IAST uniquely provides accurate, runtime-verified vulnerability
detection with full code-level context. Since integration tests
validate how components work together at runtime, this is a natural
point to embed IAST as it instruments the running application
during test execution, offering real-time insights without requiring
security scripts. This layer provides an opportunity where it is still

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

early in the development cycle to allow for quick remediation, yet
rich in execution context.

Researches like Wang et al. (2025) have proposed the use of
LLMs to identify data flows across component boundaries. This
is a critical capability as it allows IAST to dynamically detect data
flows. Models can now learn and establish behavioral baselines for
how components typically interact. When these patterns deviate,
they become a signal of potential vulnerability; researchers in
Chang et al. (2025) use CNNs with such signals for anomaly
detection. Their algorithm algorithm achieves an average accuracy
0f 95.88% a recall rate of 91.23% and a false positive rate of 2.34%.
Such solutions adds net value in addition to standard rule-based
detection, which is widely used in existing IAST tools.

Recent research like Mehmood et al. (2023) and Basheer et al.
(2024) also presents approaches that use ML to detect issues
like privileged access escalation through chained components and
insecure API invocations. The former achieved accuracy of up to
97% in detecting and classifying a Privilege Escalation Attack, while
the latter achieved up to 88%These are often difficult to detect with
static rules alone, but become apparent when ML models learn the
expected patterns and spot deviations.

Finally, similar to previous layers, Al-techniques can be
leveraged to generate targeted test data as security testing often
requires crafted inputs to probe for specific vulnerabilities such
as injection vectors or malformed headers. Meng et al. (2024)
employs the use of LLMs to mutate inputs for broad code coverage.
Using this solution, the authors discovered 9 distinct and previously
unknown zero-day vulnerabilities in widely-used and extensively-
tested protocol implementations, while the baseline tools only
discovered 3 or 4 of them.

By combining integration testing with Al-enhanced IAST, this
layer becomes a powerful mechanism to uncover complex, cross-
service security flaws early in the life cycle.

2.4 UI/API testing (Layer-4)

UI and API tests operate on the user interface or the external
interface of the application. This is the fourth layer of the pyramid
and generally comprises the final level of automated testing.
These tests assess how the system behaves from an end-user or
external consumer (client application) perspective, and hence play
a critical role in ensuring end-to-end functionality. Depending
on the application, this may involve graphical Uls, RESTful APIs,
etc. These tests also verify the integration of the application with
external systems and services. Given their broader scope and
dependency on full system contexts, they have the slowest feedback
cycle and the lowest isolation among automated tests. Given their
broad scope and proximity to real-world usage patterns, this layer
presents unique opportunities for various Al techniques to improve
the quality, speed, and efficiency of tests, as described below.

2.4.1 Al-enabled behavior driven development
and testing

At this level, we conceptualize the use of Generative Al to create
Behavior-Driven Development (BDD) (Terhorst-North, 2006)

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

test-cases, along with the corresponding test code. Chemnitz et al.
(2023) proposes a similar vision for the generation of source code
from the BDD syntax; however, we propose deploying GenAl
for the creation of tests and test code. By feeding Al systems
with Business Requirements Documents (BRDs), which are
standard in the software development industry, teams can generate
BDD-aligned test cases that enable them to test the behavior of the
target application.

BDD emphasizes the creation of tests based on expected
user behavior and business requirements, often written in
human-readable formats such as Gherkin. Meanwhile, Generative
Al thrives on large and well-structured textual data (Moyer,
2025). We envision tools that leverage these capabilities and
generate BDD tests (from BRDs) to reduce the developer
effort and improve coverage. Reliance on text/specs also helps
improve collaboration between product, development, and QA
teams, ensuring clearer specifications and earlier detection of
misalignment while producing and managing essential test cases.
The result is software that better aligns with user expectations and
business goals, supported by a comprehensive and human-readable
acceptance testing framework.

2.4.2 Visual testing

Al has expanded the scope of visual regression testing.
Instead of relying on brittle pixel-by-pixel comparisons, Al-
enabled tools use object recognition and contextual awareness
to evaluate visual correctness. For example, Gamal et al.
(2023), researchers propose Owl Eye, which is an Al-driven
visual testing tool. It uses a combination of traditional image
processing and deep learning to identify visual defects in GUI
testing, achieving an Fl-score of 72%Similarly, in Komar et al.
(2024), researchers use neural networks to detect layout changes,
misalignments, color inconsistencies or missing elements, many
times in varying screen sizes and browsers. This form of intelligent
visual validation supports consistent user experiences, particularly
in modern multi-platform applications where UI variations
are common. We expect development of capable AI agents
can also maintain baseline images, highlight only meaningful
differences, and ignore inconsequential changes like anti-aliasing
or font rendering.

2.4.3 Improved defect identification and
reporting

We envision that AI tools (and agents) at this layer can go
beyond simply executing tests. LLMs can be used to analyze logs,
outputs, and API responses to detect anomalies, correlate error
patterns, and categorize failures. Researchers in Anjali et al. (2023)
employ ML techniques to automatically identify probable root
causes and recommend next steps for classification and resolution,
achieving an accuracy of 96.56%Also, similar to SDP applications,
Al agents can learn from historical defects, error reports, and
behavioral patterns to detect and report failures.

Researchers have also used LLMs to improve the quality
of bug reporting. Acharya and Ginde (2025) demonstrates
how instruction fine-tuned LLMs can automatically convert
unstructured bug reports into well-structured ones that closely

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

follow standard templates. In their study, the fine-tuned Qwen
2.5 achieved a CTQRS (Crowd-sourced Test Report Quality
Score) of 77%. Such detailed reporting capabilities can provide
actionable diagnostics to developers, while Quality Assurance
engineers can gain visibility into recurring trends or system hot
spots, enabling both the roles to effectively partner in expediting
development cycles.

2.4.4 Introducing dynamic application security
testing in Layer-4

At the top of the automated testing stack, we extend traditional
UI and API-level testing to include Dynamic Application Security
Testing (DAST). Similarly to UI/API Testing, DAST is a black-
box testing technique that simulates attacks against a running
application to identify vulnerabilities that an external attacker could
exploit. Unlike static analysis, DAST does not require access to
source code as it evaluates the application as an outsider, making
it a natural fit for this layer, where automated tests validate system
functionality across real endpoints and user flows. As the highest
layer with automated testing, this is the ideal point for simulating
real-world security threats and evaluating how the system responds
under attack.

One of the persistent challenges in DAST is the accuracy of
crawling dynamic and complex applications to uncover all available
endpoints and inputs. Recent research has shown significant
promise in the discovery of applications’ attack surface. For
example, Yang et al. (2025) proposes “CrawlMLLM,” a framework
using multi-modal large language models to simulate human
web browsing. It attempts to address the challenges of complex
page relationship discovery and contextually inappropriate input
generation to identify attack surface. In six real-world applications,
CrawlMLLM detected 20 vulnerabilities while the next best method
found six. Similarly, Varga (2025) proposes an ML-enhanced web-
crawler for vulnerability detection. Such solutions can substantially
enhance DAST’s effectiveness by identifying the full attack surface,
including hidden routes, conditional flows, etc. and ensuring that
testing is not limited to known paths.

Next, similar to Section 3.3.1, various AI techniques can
be employed to generate synthetic data input that can simulate
vulnerabilities such as SQL injection or cross-site scripting (XSS).
Jha et al. (2024) proposes a BERT and Reinforcement Learning
Based fuzzer that helps identify vulnerabilities. The RL-guided
feedback loop enables it to automatically generate and search the
space of attack vectors to exploit the weaknesses of the given victim
application without the need to create labeled training data. The
researchers observed a significant improvement in terms of time to
first attack (54% less than the closest competing tool). By learning
which vectors are the most successful against specific technologies
or patterns, the solution improved both detection accuracy and
testing efficiency over time.

By combining UI/API-level testing with Al-augmented DAST,
this layer delivers high-value security insights and identifies issues
before they reach production. It is important to understand that the
addition of DAST at this layer makes it heavier and more expensive;
we have provided some high-level insights later in the paper, while
a deeper cost-benefit analysis will be covered in future work for
this manuscript.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

2.5 Manual or exploratory testing (Layer-5)

At the top of the pyramid lies manual or exploratory testing,
sometimes referred to in industrial settings as "Friends and Family"
testing or acceptance testing. This stage focuses on unscripted
human-centered evaluation, where testers creatively explore a
running system to identify quality issues, usability challenges, or
unexpected behavior. These tests are valuable for surfacing real-
world issues that are not captured by scripted tests. The ideal
approach is to automate the insights gained from the exploratory
sessions, thereby enriching the automated test suite over time. With
the rise of generative Al and autonomous agents, even this layer is
poised to see a meaningful transformation.

2.5.1 Generative Al for scenario exploration

We expect teams to be able to use Generative Al (GenAl)
tools to simulate various user interactions, exploring combinations
of actions and edge cases that may not be explicitly covered in
business requirements, coded assumptions, or test cases. These
tools can act as “imaginative testers,” proposing scenarios that
go beyond what the engineering team anticipated. Pyhéjirvi,
(2025) narrates the perspectives of practitioners’ in using Al as a
tool for exploratory thinking. By identifying boundary conditions
and behavioral inconsistencies, GenAl can enhance the depth
of exploratory testing and reduce the likelihood of latent bugs
escaping into production.

Although this layer has historically been manual, the emergence
of Al agents is promising. As agents become more capable of
automating manual human tasks, we envision that exploratory
QA can be led by AI agents, enabling continuous, intelligent
exploration that adapts as the system evolves.

2.5.2 Introducing penetration and chaos testing
in Layer-5

At the top of the testing pyramid, we broaden the traditional
scope of manual and exploratory testing to include Penetration
(Pen) Testing and Chaos Testing, both of which are essential
for validating a system’s resilience against real-world threats and
failures. Penetration testing simulates the behavior of an attacker
to uncover exploitable security vulnerabilities. Similarly, Chaos
Testing intentionally injects failures into a system to evaluate
its ability to withstand unexpected disruptions. Like exploratory
testing, both of these are largely driven manually and are often
reserved for critical checkpoints because of their cost and effort.

In penetration testing, we envision GenAI (LLMs) to help
in various steps of the process, such as the planning phase,
identifying potential attack paths, and prioritizing vulnerabilities.
In Cirkovi¢ et al. (2025) researchers apply LLMs for the automated
generation of malicious payloads in penetration testing processes.
They successfully generated advanced payloads for three key types
of attacks: XSS, SQL Injection, and Command Injection, where
the total time required to generate a single synthetic attack was
10.5231 s. Their experimental results confirm that this approach
not only reduces the time required for penetration test but also
significantly improves the coverage and accuracy of vulnerability
detection compared to traditional methods.

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

We envision similar benefits for chaos testing. Hernandez-
Serrato et al. (2020) visualizes machine learning techniques that can
learn from existing a-priori data, stream data, or both to address
various challenges in automating chaos testing. They propose ML
applicability in data labeling, feature engineering, system modeling,
experiment management, post-mortem analysis, and automated
recovery, covering the full life-cycle of chaos tests. At this layer
of the pyramid, the system is still under test and does not
serve production traffic, allowing automation to iteratively cycle
components offline and online and adapting fault patterns, without
causing production customer impact.

Together, these practices elevate the top of the pyramid from
occasional manual testing to strategic simulation and resilience
validation, with different AI techniques acting as an intelligent
orchestrator of deeper, broader, and more adaptive test coverage.

The diagram below summarizes our concept of the “The Test
Pyramid 2.0” in it’s entirety.

3 Cross-cutting improvements with Al

While the previous sections examined how various AI
techniques can augment each layer of the test pyramid, this section
explores the broader, cross-layer capabilities that Al unlocks and
how it can unlock holistic improvements to testing strategies,
pipelines, security, and overall software quality practices.

3.1 Use of generative Al to develop a
comprehensive QA strategy

Beyond individual tools and workflows, we envision engineers
and leaders to partner with Generative Al capabilities (of existing
LLMs) to craft end-to-end quality assurance strategies. This
involves selecting the right Al-driven tools and models for
different layers of the pyramid, aligning them with organizational
goals, and integrating them into a cohesive test capability. By
incorporating critical productivity and efficiency metrics (aimed
at performance evaluation, impact assessments, and observed
quality/security improvements) as a feedback loop, teams can
continuously refine their QA strategy. This “learn and adapt”
loop enables organizations to drive consistent efficiency gains and
increase the resilience of their software systems over time.

3.2 Agentic testing across the pyramid

The emergence of Autonomous Al agents capable of navigating
software applications autonomously opens new possibilities.
Although research in this area is still nascent, industrial
applications of AI agents are on the rise. Andrades (2025) discusses
the use of AI Agents to autonomously drive self-healing testing
scripts, self-learning and adaptive tests, predictive error detection,
continuous optimization, and autonomous test implementation.
Kumar (2025) covers industrial case studies on the use of AI Agents
in testing, where an online retailer (eCommerce application)
reported a 95% reduction in the maintenance effort of their tests.

Although this is still an emerging area, agentic testing
represents a promising avenue for future investment. In the

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

longer term, we envision the entire test pyramid, including the
traditionally manual top layer, to be automated through intelligent
agents that cover testing for application and security defects.

4 Discussion and practical
considerations

Al-augmented testing combined with embedded DevSecOps
principles holds significant promise, but realizing its full potential
requires intentional strategy and cultural adaptation. The goal is
not just to automate more, but to integrate quality and security
thinking into every stage of delivery and turn Al into a trusted
partner rather than a disconnected tool.

4.1 Role evolution for developers and
quality assurance engineers

From a velocity point of view, AI accelerates development by
automating repetitive test authoring, maintenance, and execution
while also orchestrating test runs based on risk, historical flakiness,
security exposure, and business priority. This results in faster
feedback loops, reduced developer wait-times, and earlier surfacing
of both functional and security issues. Coverage also improves
meaningfully, as Al can generate tests that target untested paths,
simulate complex user or attacker behaviors, and validate security
controls that humans may overlook. These capabilities allow teams
to validate more functionality with less manual effort. And when
combined with predictive analytics, AI increases confidence by
focusing validation efforts on the areas with the highest-risk and
revealing insights that drive informed quality decisions.

However, achieving these gains requires a “role evolution” of
existing teams. Engineers must move from being test executors to
becoming quality and security orchestrators or conductors. Instead
of manually crafting each test, developers and QA engineers should
design intelligent, policy-aware frameworks that can generate,
adapt, and monitor thousands of test cases. Their role expands to
curating data, refining prompts, managing test agents, and building
observability into every testable unit.

For Quality Assurance Engineers (QAE), manual bug hunting
and risk resolution give way to investigative collaboration with
AT agents, exploring risk maps, defect trends, and intelligent
diagnostics. This demands a mindset of trust, continuous tuning,
and technical curiosity. As these practices become rooted, the role
of QAE increases in strategic importance and becomes a force
multiplier. Achieving these outcomes depends not just on what AI
can do, but also on how organizations enable their teams to work
with it.

4.2 Practical considerations: overlaps and
potential redundancies

Embedding security at the unit, integration, and system or user
interface layers is not redundant, but is optimal for risk because
it exposes vulnerabilities before release and reduces the chances
of unauthorized access, privilege escalation, lateral movement, and
compliance violations. Boehm and Basili (2001) synthesize decades

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

of evidence showing that defect removal cost escalates the later
an issue is found, which underwrites the return-on-investment of
shift-left security in multi-stage testing pipelines.

To focus efforts where it matters the most, organizations
should maintain an application inventory and drive security depth
with a formal risk function defined as likelihood multiplied by
impact. Felderer and Schieferdecker (2014) formalize this in their
risk-based testing taxonomy, which aligns risk assessment and
test strategy across all phases and provides a framework for
selecting and tailoring techniques depending on system criticality.
In practice, critical services (ex. that process critical/PII data)
sit high on both likelihood and impact and therefore warrant
comprehensive controls such as SAST, DAST, and IAST, while
internal applications that handle only public information may
be assigned a lighter control baseline. Industrial evidence in
Felderer and Ramler (2013) shows that this inventory driven
prioritization improves resource allocation and test effectiveness in
real organizations and can be introduced stepwise without stopping
delivery cadence.

We argue that coverage should be multi-method rather than
a single tool because static, dynamic, and interactive techniques
cover different classes of vulnerabilities. Large empirical studies on
real web systems like Qadir et al. (2025) confirm complementary
detection profiles in different types of security tests. This ultimately
advocates layered gates rather than one-shot scans. To make this
efficient, CI and CD pipelines should enforce policy driven quality
gates that block merges or releases when high or critical issues
appear and allow progress only after remediation or formally
recorded risk acceptance, a practice reflected in systematic reviews
of continuous practices and CI trade-offs in the research literature
(Shahin et al., 2017).

Overlaps between various security tests (across different layers)
may help catch the same class of vulnerabilities, but that may be
visible in a different execution context. For example, DAST and Pen
Test both simulate external attackers probing for vulnerabilities;
however, both have a place in team testing strategies today
(Badman and Forrest, 2024). Meanwhile, we also acknowledge
that such overlaps can turn into wasteful redundancies (noise).

10.3389/frai.2025.1695965

For example, if a vulnerability is accepted in a lower layer, it
may resurface in a higher layer, leading to redundant triage and
acceptance discussions. To avoid redundant noise when multiple
layers indicate the same flaw, findings should be correlated and
de-duplicated. Triage policies should be made explicit, a need
highlighted by empirical studies of how developers respond to static
analysis warnings and why poor signal quality leads to under-use of
tools (Johnson et al., 2013).

4.3 Practical considerations: challenges

Embedding security controls at every layer of the test pyramid
offers earlier vulnerability detection and reduced remediation costs,
but this architectural choice introduces challenges that teams must
carefully navigate.

Based on our initial assessments, the practical challenges for
embedding Security Testing in existing QA workflows manifest
themselves in three dimensions. First, from a licensing perspective,
commercial SAST and DAST platforms typically charge per
developer, per scan, or per application, with enterprise-grade
solutions representing substantial annual investments that scale
with team size and application portfolio. Open-source alternatives
reduce direct licensing costs, but shift the burden on tuning and
ongoing maintenance. Next, based on Byrne and Solis (2025),
DAST scanners that exercise complete application workflows
through instrumented browsers can require between one and three
hours of execution time for moderately complex web applications
with several hundred routes. This forces teams to extend CI timeout
thresholds from the typical 15-min limit to multi hour windows,
delaying feedback, and consuming expensive CI runner minutes.
Finally, TAST instrumentation, while lighter in comparison to
DAST, imposes runtime overhead. Industry benchmarks place
this drag around 10% per test execution (OX Security, 2025),
which accumulates across integration and contract test suites that
may execute hundreds or thousands of scenarios per build. We
summarize the practical challenges in Table 1.

TABLE 1 Summary of primary value and key challenge applicable due to introduction of various security tests.

Layer-1 (Unit tests)

Static application security testing

Analyzes the source code to identify
common security vulnerabilities.

[High Monetary Cost] Tests/Scans at
layer-1 run frequently, licensing/run
cost may be an issue.

Layer-2 (Component tests) Security controls validations

Verify that an application’s security
measures work as intended.

[High Monetary Cost] Some teams may
run SAST again (with broader context),
resulting in increased licensing/run cost.

Interactive application security
testing

Layer-3 (Integration tests)

Provides runtime-verified vulnerability
detection with full code-level context.

[Higher Execution Time] Integration
may run each beta deployment, IAST
may introduce runtime overhead of as
much as 10% per execution.

Layer-4 (UI/API Testing) Dynamic application security

testing

A black-box testing that simulates
attacks against a running application.

[High Execution Time] May introduce
1+ hours of execution time per run.

Layer-5 (Manual and exploratory testing) | Penetration & Chaos Testing

Penetration testing simulates the
behavior of an attacker. While, Chaos
Testing intentionally injects failures into
a system.

[Significantly higher execution time]
most expensive form of security &
resiliency testing.

Frontiersin Artificial Intelligence

09

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

We recommend that teams be pragmatic and exercise the same
level of testing as application testing. For instance, in the past
application teams may configure software to run Layer-1 and Layer-
2 (from Pyramid 1.0), on each code commit/build; however, UI/API
testing and Manual tests may be on a need by basis. Similarly, SAST
and Security Controls can be frequent, while penetration testing
can be periodic. Our motivation is to shift left and ensure the same
level of focus on security testing as application testing. We highly
recommend that teams identify mechanisms that ensure that they
concretely define and follow the repeatability of each layer in the
Test Pyramid 2.0.

5 Future work

Although we have commenced incrementally adopting our
concept of the Test Pyramid 2.0 in our corresponding work,
empirical data on productivity, efficiency, and effectiveness are
not yet available. As a next step, we will conduct surveys and
structured interviews with engineering teams applying this model,
gathering both quantitative and qualitative feedback. These results
will be used to validate our vision, refine best practices, and identify
mitigation measures for any unanticipated challenges.

Another area of focus will be the cost-benefit analysis of the
embedded security and AI-driven mechanisms, particularly tools
that enabled Interactive Application Security Testing (IAST) and
Dynamic Application Security Testing (DAST), which tend to have
longer (and more expensive) runs. As covered above, these practices
can significantly improve coverage and risk detection, but they
can also increase resource consumption, costs, or extend testing
timelines if not applied selectively. Measurement of execution
times, infrastructure usage, and remediation outcomes will help
ensure that these additions deliver net value without making the
testing process prohibitively expensive or operationally impractical.

Finally, we will iteratively explore the changes in deployment
practices enabled by the adoption of this model. By embedding
functional and security testing earlier and automating risk
prioritization, we expect that release pipelines will be accelerated
while maintaining a high quality bar. We will evaluate how these
practices affect the frequency of deployment, rollback rates, and
mean time to recovery (MTTR), with the goal of creating a more
secure, efficient, and resilient delivery process.

6 Conclusion

As modern software systems become more distributed and
rapidly evolving, the demands on testing teams have never been
higher. This paper presents a concept “The Test Pyramid 2.0,
which integrates Artificial Intelligence and DevSecOps practices
to strengthen every layer of the testing stack. We envision that
this practical methodology (/road-map) that embeds functional
validation, security enforcement, and intelligent automation into
a single model, software development can move beyond manual
bottlenecks and fragmented efforts to build resilient, scalable, and
intelligent quality practices.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1695965

Advances in Al enable this transformation by scaling
test generation, optimizing execution, improving coverage, and
providing contextually appropriate risk detection. DevSecOps
ensures that security controls are applied consistently and
proactively throughout the delivery process. Together, they shift
the paradigm from reactive defect detection to predictive, policy-
driven, and risk-focused validation.

However, realizing these benefits is not only a matter of
technology. It depends on the evolution of the culture, in which
developers, QA engineers, and security specialists evolve to become
architects of an intelligent, secure, and resilient quality pipeline.
The outcome is a framework that enables organizations to deliver
faster without compromising trust.

Author contributions

PD: Conceptualization, Investigation, Methodology,
Supervision, Visualization, Writing - original draft, Writing
- review & editing. SS: Investigation, Methodology, Writing —
review & editing. SA: Investigation, Methodology, Writing -
review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

References

Acharya, J., and Ginde, G. (2025). Can we enhance bug report quality using
LLMS? An empirical study of LLM-based bug report generation. arXiv preprint
arXiv:2504.18804.

Adu, G. (2024). Artificial intelligence in software testing: Test scenario and case
generation with an ai model (gpt-3.5-turbo) using prompt engineering, fine-tuning and
retrieval augmented generation techniques. Master’s thesis, It-Suomen yliopisto.

Almeida, Y., Albuquerque, D., Filho, E. D., Muniz, F., de Farias Santos, K,
Perkusich, M., et al. (2024). Aicodereview: Advancing code quality with Al-enhanced
reviews. SoftwareX 26, 101677. doi: 10.1016/j.s0ftx.2024.101677

Andrades, G. (2025). Agentic Automation in Testing: Smarter Work Flows,
Faster Results. ACCELQ. Available online at: https://www.accelq.com/blog/agentic-
automation/ (Accessed October 17, 2025).

Anjali, C., Dhas, J. P. M., and Singh, J. A. P. (2023). Automated program and
software defect root cause analysis using machine learning techniques. Automatika 64,
878-885. doi: 10.1080/00051144.2023.2225344

Badman, A., and Forrest, A. (2024). What is Dynamic Application Security
Testing (dast)? IBM. Available online at: https://www.ibm.com/think/topics/dynamic-
application-security- testing (Accessed October 25, 2025).

Bagherzadeh, M., Kahani, N, and Briand, L. (2022). Reinforcement
learning for test case prioritization. IEEE Trans. Softw. Eng. 48, 2836-2856.
doi: 10.1109/TSE.2021.3070549

Baqar, M., and Khanda, R. (2025). Intelligent Computing: Proceedings of the 2025
Computing Conference, Volume 2. Cham: Springer Nature Switzerland.

Basheer, N, Islam, S., Alwaheidi, M. K. S., and Papastergiou, S. (2024). Adoption
of deep-learning models for managing threat in API calls with transparency obligation
practice for overall resilience. Sensors 24:4859. doi: 10.3390/s24154859

Baudry, B., Etemadi, K., Fang, S., Gamage, Y. Liu, Y, Liu, Y, et al
(2024). Generative ai to generate test data generators. IEEE Softw. 41, 55-64.
doi: 10.1109/MS.2024.3418570

Behjati, R., Arisholm, E., Bedregal, M. M., and Tan, C. (2019). “Synthetic test data
generation using recurrent neural networks: a position paper,” in Proceedings of the
7th International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, RAISE ’19 (IEEE Press), 22-27. doi: 10.1109/RAISE.2019.00012

Boehm, B., and Basili, V. R. (2001). Software defect reduction top 10 list. Computer
34, 135-137. doi: 10.1109/2.962984

Byrne, J., and Solis, J. (2025). Tips to Configure Browser-Based Dast Scans. Gitlab.
Available online at: https://about.gitlab.com/blog/tips-to-configure-browser-based-
dast-scans/ (Accessed October 24, 2025).

CGFT Engineering (2025). Codebase-Specific RL: Fine-Tuning LLMs for Generating
Unit Tests That Boost Coverage. Available online at: https://www.cgft.io/blog/rl-unit-
test (Accessed October 15, 2025).

Chang, J., Shi, L., Li, Z., Zuo, X., and Hou, B. (2025). Security detection algorithm
using CNN: anomaly detection for API call sequence. J. Comput. Methods Sci. Eng. 25,
3239-3254. doi: 10.1177/14727978251318813

Chemnitz, L., Reichenbach, D., Aldebes, H., Naveed, M., Narasimhan, K., and
Mezini, M. (2023). “Towards code generation from BDD test case specifications: a
vision,” in 2023 IEEE/ACM 2nd International Conference on Al Engineering —Software
Engineering for AI (CAIN), 139-144. doi: 10.1109/CAIN58948.2023.00031

Chen, Y., Hu, Z.,, Zhi, C, Han, J, Deng, S., and Yin, J. (2024). “Chatunitest:
a framework for LLM-based test generation,” in Companion Proceedings of the
32nd ACM International Conference on the Foundations of Software Engineering,
FSE 2024 (New York, NY, USA: Association for Computing Machinery), 572-576.
doi: 10.1145/3663529.3663801

Cirkovi¢, S., Mladenovié, V., Tomié, S., Drljaéa, D., and Risti¢, O. (2025). Utilizing
fine-tuning of large language models for generating synthetic payloads: enhancing web
application cybersecurity through innovative penetration testing techniques. Comput.
Mater. Continua 82, 4409-4430. doi: 10.32604/cmc.2025.059696

Cohn, M. (2009). Succeeding with Agile: Software Development Using Scrum. Boston:
Addison-Wesley Professional.

Esposito, M., Sarbazvatan, S., Tse, T., and Silva-Atencio, G. (2024). The use of
artificial intelligence for automatic analysis and reporting of software defects. Front.
Artif. Intell. 7:1443956. doi: 10.3389/frai.2024.1443956

Felderer, M., and Ramler, R. (2013). Integrating risk-based testing in industrial test
processes. Softw. Qual. J. 22, 543-575. doi: 10.1007/s11219-013-9226-y

Felderer, M., and Schieferdecker, I. (2014). A taxonomy of risk-based testing. Int. J.
Softw. Tools Technol. Transf. 16, 559-568. doi: 10.1007/s10009-014-0332-3

Fraser, G., and Arcuri, A. (2011). “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE
11 (New York, NY, USA: Association for Computing Machinery), 416-419.
doi: 10.1145/2025113.2025179

Frontiersin Artificial Intelligence

11

10.3389/frai.2025.1695965

Gamal, A., Emad, R, Mohamed, T., Mohamed, O. Hamdy, A. and Ali,
S. (2023). “Owl eye: an Al-driven visual testing tool” in 2023 5th Novel
Intelligent and Leading Emerging Sciences Conference (NILES), 312-315.
doi: 10.1109/NILES59815.2023.10296575

Giray, G., Bennin, K. E., Koksal, O., Babur, O., and Tekinerdogan, B. (2023). On
the use of deep learning in software defect prediction. J. Syst. Softw. 195:111537.
doi: 10.1016/j.jss.2022.111537

Herndndez-Serrato, J., Velasco, A., Nifio, Y., and Linares-Vsquez, M. (2020).
“Applying machine learning with chaos engineering in 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), 151-152.
doi: 10.1109/ISSREW51248.2020.00057

Jha, P., Scott, J., Ganeshna, J. S., Singh, M., and Ganesh, V. (2024). “Bertrlfuzzer: a
bert and reinforcement learning based fuzzer (student abstract),” in Proceedings of the
Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on
Educational Advances in Artificial Intelligence, AAAT'24/IAAT24/EAAT24 (AAAI
Press). doi: 10.1609/aaai.v38i21.30455

Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. (2013). “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th International
Conference on Software Engineering (ICSE), 672-681. doi: 10.1109/ICSE.2013.
6606613

Klieber, W., and Flynn, L. (2024). Evaluating Static Analysis Alerts With LLMS.
SEI Blog. Available online at: https://www.sei.cmu.edu/blog/evaluating- static-analysis-
alerts-with-1lms/ (Accessed June 19, 2025).

Komar, M., Fedorovych, V., Poidych, V., and Taborovskyi, A. (2024). “Intelligent
system for visual testing of software products,” in Artificial Intelligence for Sustainable
Development 2024.

Kumar, R. (2025). The Agentic AI Testing Revolution: How Intelligent Quality
Engineering is Transforming Software Development Forever. Virtuoso QA Blog.
Available online at: https://www.virtuosoqa.com/post/agentic-ai- testing-revolution/
(Accessed October 19, 2025).

Lietz, S. (2015). DevSecOps Manifesto. DevSecOps. Available online at: https://www.
devsecops.org/ (Accessed May 25, 2025).

Long, L., Wang, R,, Xiao, R, Zhao, J., Ding, X., Chen, G., et al. (2024). “On LLMs-
driven synthetic data generation, curation, and evaluation: a survey,” in Findings of
the Association for Computational Linguistics: ACL 2024, eds. L.-W. Ku, A. Martins,
and V. Srikumar (Bangkok, Thailand: Association for Computational Linguistics),
11065-11082. doi: 10.18653/v1/2024.findings-acl.658

Madeyski, L., and Stradowski, S. (2025). Predicting test failures induced by software
defects: a lightweight alternative to software defect prediction and its industrial
application. J. Syst. Softw. 223:112360. doi: 10.1016/j.js5.2025.112360

Mathew, J. (2025). Achieving Lightning-Fast Parallel Testing with AI Qyrus.
Available online at: https://www.qyrus.com/post/achieving-lightning- fast- parallel-
testing-with-ai/ (Accessed October 17, 2025).

Mehmood, M., Amin, R., Muslam, M. M. A., Xie, J., and Aldabbas, H. (2023).
Privilege escalation attack detection and mitigation in cloud using machine learning.
IEEE Access 11, 46561-46576. doi: 10.1109/ACCESS.2023.3273895

Meng, R., Mirchev, M., Bohme, M., and Roychoudhury, A. (2024). “Large language
model guided protocol fuzzing,” in Network and Distributed System Security (NDSS)
Symposium 2024. doi: 10.14722/ndss.2024.24556

Moyer, F. (2025). Cucumber Testing: A Key to Generative Al in Test Automation.
Kobiton. Available online at: https://kobiton.com/blog/cucumber- testing-a-key-to-
generative-ai-in- test-automation/ (Accessed June 28, 2025).

Nobi, M. N., Gupta, M., Praharaj, L., Abdelsalam, M., Krishnan, R., and Sandhu,
R. (2022). Machine learning in access control: a taxonomy and survey. arXiv preprint
arXiv:2207.01739.

OX Security (2025). Application Security Testing Guide: Tools & Methods 2025.
OX Security. Available online at: https://www.ox.security/blog/application-security-
testing/ (Accessed October 22, 2025).

Pathik, B., and Sharma, M. (2022). Source code change analysis with
deep learning based programming model. Autom. Softw. Eng. 29:15.
doi: 10.1007/s10515-021-00305-x

Pyhdjarvi, M. (2025). Exploratory Testing With GenAl: How AI Becomes
an External Imagination in Software QA. The Qt Company. Available online
at: https://www.qt.io/quality-assurance/blog/exploratory- testing- with- genai- how-ai-
becomes-an-external-imagination- in- software- qa/ (Accessed July 18, 2025).

Qadir, S., Waheed, E., Khanum, A., and Jehan, S. (2025). Comparative evaluation

of approaches tools for effective security testing of web applications. Peer] Comput. Sci.
11:¢2821. doi: 10.7717/peerj-cs.2821

Rashidi, H. H., Albahra, S., Rubin, B. P, and Hu, B. (2024). A novel and fully
automated platform for synthetic tabular data generation and validation. Sci. Rep.
14:23312. doi: 10.1038/s41598-024-73608-0

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://doi.org/10.1016/j.softx.2024.101677
https://www.accelq.com/blog/agentic-automation/
https://www.accelq.com/blog/agentic-automation/
https://doi.org/10.1080/00051144.2023.2225344
https://www.ibm.com/think/topics/dynamic-application-security-testing
https://www.ibm.com/think/topics/dynamic-application-security-testing
https://doi.org/10.1109/TSE.2021.3070549
https://doi.org/10.3390/s24154859
https://doi.org/10.1109/MS.2024.3418570
https://doi.org/10.1109/RAISE.2019.00012
https://doi.org/10.1109/2.962984
https://about.gitlab.com/blog/tips-to-configure-browser-based-dast-scans/
https://about.gitlab.com/blog/tips-to-configure-browser-based-dast-scans/
https://www.cgft.io/blog/rl-unit-test
https://www.cgft.io/blog/rl-unit-test
https://doi.org/10.1177/14727978251318813
https://doi.org/10.1109/CAIN58948.2023.00031
https://doi.org/10.1145/3663529.3663801
https://doi.org/10.32604/cmc.2025.059696
https://doi.org/10.3389/frai.2024.1443956
https://doi.org/10.1007/s11219-013-9226-y
https://doi.org/10.1007/s10009-014-0332-3
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/NILES59815.2023.10296575
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1109/ISSREW51248.2020.00057
https://doi.org/10.1609/aaai.v38i21.30455
https://doi.org/10.1109/ICSE.2013.6606613
https://www.sei.cmu.edu/blog/evaluating-static-analysis-alerts-with-llms/
https://www.sei.cmu.edu/blog/evaluating-static-analysis-alerts-with-llms/
https://www.virtuosoqa.com/post/agentic-ai-testing-revolution/
https://www.devsecops.org/
https://www.devsecops.org/
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.1016/j.jss.2025.112360
https://www.qyrus.com/post/achieving-lightning-fast-parallel-testing-with-ai/
https://www.qyrus.com/post/achieving-lightning-fast-parallel-testing-with-ai/
https://doi.org/10.1109/ACCESS.2023.3273895
https://doi.org/10.14722/ndss.2024.24556
https://kobiton.com/blog/cucumber-testing-a-key-to-generative-ai-in-test-automation/
https://kobiton.com/blog/cucumber-testing-a-key-to-generative-ai-in-test-automation/
https://www.ox.security/blog/application-security-testing/
https://www.ox.security/blog/application-security-testing/
https://doi.org/10.1007/s10515-021-00305-x
https://www.qt.io/quality-assurance/blog/exploratory-testing-with-genai-how-ai-becomes-an-external-imagination-in-software-qa/
https://www.qt.io/quality-assurance/blog/exploratory-testing-with-genai-how-ai-becomes-an-external-imagination-in-software-qa/
https://doi.org/10.7717/peerj-cs.2821
https://doi.org/10.1038/s41598-024-73608-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Desai et al.

Rolls, C. (2025). AI in Software Development: Productivity Gains, But at What
Cost? TTC Global. Available online at: https:/ttcglobal.com/what-we-think/blog/
ai-in-software- development- productivity- gains-but-at-what- cost/ (Accessed May 26,
2025).

Romeo, F., Arena, L., Blefari, F., Pironti, F. A., Lupinacci, M., and Furfaro, A. (2025).
“Arpaccino: an agentic-rag for policy as code compliance,” in New Trends in Database
and Information Systems, eds. P. K. Chrysanthis, K. Neorvag, K. Stefanidis, Z. Zhang, E.
Quintarelli, and E. Zumpano (Cham: Springer Nature Switzerland), 467-481.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., et al. (2018).
“Automated vulnerability detection in source code using deep representation learning,”
in 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), 757-762. doi: 10.1109/ICMLA.2018.00120

Saboor Yaraghi, A., Holden, D., Kahani, N., and Briand, L. (2025). Automated
test case repair using language models. IEEE Trans. Softw. Eng. 51, 1104-1133.
doi: 10.1109/TSE.2025.3541166

Santos, R., Rizvi, S., Cesarone, B., Gunn, W., and McConnell, E. (2021). “Reducing
software vulnerabilities using machine learning static application security testing,” in
2021 International Conference on Software Security and Assurance (ICSSA), 43-46.
doi: 10.1109/ICSSA53632.2021.00016

Shahin, M., Ali Babar, M., and Zhu, L. (2017). Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909-3943. doi: 10.1109/ACCESS.2017.2685629

Shiri Harzevili, N., Boaye Belle, A., Wang, J., Wang, S., Jiang, Z. M. ., and Nagappan,
N. (2024). A systematic literature review on automated software vulnerability
detection using machine learning. ACM Comput. Surv. 57, 1-36. doi: 10.1145/
3699711

Smith, H. (2024). AI-Enhanced Test Coverage Analysis and Expansion Through
Machine Learning Algorithms. ResearchGate. Available online at: https://www.
researchgate.net/publication/386380351_AI-Enhanced_Test_Coverage_Analysis_
and_Expansion_through_Machine_Learning Algorithms (Accessed July 7, 2025).

Frontiersin Artificial Intelligence

12

10.3389/frai.2025.1695965

Takerngsaksiri, W., Charakorn, R., Tantithamthavorn, C., and Li, Y.-F. (2025).
Pytester: Deep reinforcement learning for text-to-testcase generation. J. Syst. Softw.
224:112381. doi: 10.1016/j.js5.2025.112381

Terhorst-North, D. (2006). Introducing bdd. Dan North & Associates Limited.
Available online at: https://dannorth.net/blog/introducing-bdd (Accessed July 11,
2025).

Varga, A. (2025). A Machine Learning-enhanced web-crawler for vulnerability
detection: A binary classification approach. PhD thesis, Blekinge Institute of
Technology, Faculty of Computing.

Vocke, H. (2018). The Practical Test Pyramid. martinfowler.com. Available online
at: https://martinfowler.com/articles/practical- test- pyramid.html#TheTestPyramid
(Accessed May 14, 2025).

Wang, C., Zhang, W, Su, Z., Xu, X,, Xie, X,, and Zhang, X. (2025). “LLMDFA:
analyzing dataflow in code with large language models,” in Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS °24 (Red
Hook, NY, USA: Curran Associates Inc.).

Wang, Y., Le, H., Gotmare, A. D,, Bui, N. D. Q, Li, J., and Hoi, S. C. H.
(2023). “Codet5+: Open code large language models for code understanding and
generation,” in Conference on Empirical Methods in Natural Language Processing.
doi: 10.18653/v1/2023.emnlp-main.68

Wen, J., Chen, Z., Zhu, Z,, Sarro, F., Liu, Y., Ping, H,, et al. (2025). LLM-based
misconfiguration detection for aws serverless computing. ACM Trans. Softw. Eng.
Methodol. Just Accepted. doi: 10.1145/3745766

Yang, W., Wang, E,, Gui, Z., Zhou, Y., Wang, B., and Xie, W. (2025). An
mllm-assisted web crawler approach for web application fuzzing. Appl. Sci. 15:962.
doi: 10.3390/app15020962

Zhang, J., Hu, X, Xia, X., Cheung, S.-C,, and Li, S. (2025). Automated unit test
generation via chain of thought prompt and reinforcement learning from coverage
feedback. ACM Trans. Softw. Eng. Methodol. Just Accepted. doi: 10.1145/3745765

frontiersin.org

https://doi.org/10.3389/frai.2025.1695965
https://ttcglobal.com/what-we-think/blog/ai-in-software-development-productivity-gains-but-at-what-cost/
https://ttcglobal.com/what-we-think/blog/ai-in-software-development-productivity-gains-but-at-what-cost/
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/TSE.2025.3541166
https://doi.org/10.1109/ICSSA53632.2021.00016
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1145/3699711
https://www.researchgate.net/publication/386380351_AI-Enhanced_Test_Coverage_Analysis_and_Expansion_through_Machine_Learning_Algorithms
https://www.researchgate.net/publication/386380351_AI-Enhanced_Test_Coverage_Analysis_and_Expansion_through_Machine_Learning_Algorithms
https://www.researchgate.net/publication/386380351_AI-Enhanced_Test_Coverage_Analysis_and_Expansion_through_Machine_Learning_Algorithms
https://doi.org/10.1016/j.jss.2025.112381
https://dannorth.net/blog/introducing-bdd
https://martinfowler.com/articles/practical-test-pyramid.html#TheTestPyramid
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.1145/3745766
https://doi.org/10.3390/app15020962
https://doi.org/10.1145/3745765
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	The Test Pyramid 2.0: AI-assisted testing across the pyramid
	1 Introduction and background
	2 Changes to the test pyramid—The Test Pyramid 2.0
	2.1 Unit testing (Layer-1)
	2.1.1 Automated testcase generation
	2.1.2 Code coverage analysis
	2.1.3 Introducing static application security testing in Layer-1

	2.2 Component testing (Layer-2)
	2.2.1 Automated testcase generation and code coverage
	2.2.2 Smart test maintenance and self-updates
	2.2.3 Enhanced test execution and orchestration
	2.2.4 Introducing security controls validation in Layer-2

	2.3 Integration testing (Layer-3)
	2.3.1 Testdata generation and management
	2.3.2 Defect prediction and risk analysis
	2.3.3 Introducing interactive application security testing in Layer-3

	2.4 UI/API testing (Layer-4)
	2.4.1 AI-enabled behavior driven development and testing
	2.4.2 Visual testing
	2.4.3 Improved defect identification and reporting
	2.4.4 Introducing dynamic application security testing in Layer-4

	2.5 Manual or exploratory testing (Layer-5)
	2.5.1 Generative AI for scenario exploration
	2.5.2 Introducing penetration and chaos testing in Layer-5

	3 Cross-cutting improvements with AI
	3.1 Use of generative AI to develop a comprehensive QA strategy
	3.2 Agentic testing across the pyramid

	4 Discussion and practical considerations
	4.1 Role evolution for developers and quality assurance engineers
	4.2 Practical considerations: overlaps and potential redundancies
	4.3 Practical considerations: challenges

	5 Future work
	6 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

