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Cardiovascular disease continues to cause an important global health challenge, 
highlighting the critical importance of early detection in mitigating cardiac-related 
issues. There is a significant demand for reliable diagnostic alternatives. Taking 
advantage of health data through diverse machine learning algorithms may offer 
a more precise diagnostic approach. Machine learning-based decision support 
systems that utilize patients’ clinical parameters present a promising solution for 
diagnosing cardiovascular disease. In this research, we collected extensive publicly 
available healthcare records. We integrated medical datasets based on common 
features to implement several machine learning models aimed at exploring the 
potential for more robust predictions of cardiovascular disease (CVD). The merged 
dataset initially contained 323,680 samples sourced from multiple databases. 
Following data preprocessing steps including cleaning, alignment of features, 
and removal of missing values, the final dataset consisted of 311,710 samples 
used for model training and evaluation. In our experiments, the CatBoost model 
achieved the highest area under the curve (AUC) of up to 94.1%.

KEYWORDS

cardiovascular disease, machine learning, diagnostic alternatives, healthcare data, 
integrate, analyze, visualize

1 Introduction

Cardiovascular disease remains one of the foremost causes of mortality worldwide, having 
a significant and growing impact on both the global economy and healthcare systems. This 
escalating burden emphasizes the critical importance of analyzing health records and 
advancing machine learning methodologies for disease diagnosis and management. 
Consequently, the study and application of data analytics in healthcare is gaining increasing 
recognition and are essential in addressing the challenges caused by cardiovascular disease.

Statistically, seven out of the top 10 primary causes of mortality globally were attributed 
to noncommunicable diseases, comprising 44% of all deaths according to the World Health 
Organization (WHO) (World Health Organization, 2024). It is noteworthy that 2019 was the 
last year before the exponential spread of COVID-19 across the world, and we considered that 
year’s statistics since it is still ambiguous to know all the details of COVID-19 vaccines and the 
pandemic side effects on people’s health. CVD emerged as the foremost contributor to 
mortality worldwide, accounting for 17.9 million of the total global deaths in 2019, which is 
32% of the total deaths in the world (Chagahi et al., 2024; MahaLakshmi and Rout, 2024; 
Biswas et al., 2021).

Factors that increase the risk of CVD include high blood pressure, a sedentary lifestyle, 
stress, high blood glucose levels, increased blood lipids, and overweight or obesity (Chagahi 
et al., 2024; Barfungpa et al., 2023; Rout, 2023). Early detection of CVD reduces the risk of 
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heart attacks and enhances recovery rates (Mahalakshmi and 
Rajakumari, 2023; Rathi et al., 2024; Anitha et al., 2023). However, the 
commonly used angiography is expensive and can lead to harmful side 
effects, which increases the importance of healthcare data analytics 
(Elsedimy et al., 2024).

Employing machine learning (ML), information technology (IT), 
and mathematical analysis models to explore extensive datasets to 
uncover hidden data patterns is a growing trend in the literature 
(Barfungpa et al., 2023; Rao et al., 2024). Various data mining and ML 
techniques are used to analyze complex medical data, enabling 
healthcare professionals to make accurate predictions about CVD 
(Biswas et al., 2021; Barfungpa et al., 2023; Bizimana et al., 2024; 
Jadhav et al., 2023; Bhavekar and Goswami, 2023). Contemporary 
hospitals are equipped with state-of-the-art tools for data collection 
and analysis, which facilitate the exchange of information within 
extensive systems (Rajeashwari and Arunesh, 2024). The utilization of 
ML technologies for medical data analysis proves highly effective, 
leading to considerable advancements in diagnostic capabilities 
(Bizimana et al., 2024; Jalligampala et al., 2022). Moreover, identifying 
CVD via data analytics at an early stage can reduce the probability of 
CVD progression to a severe stage by enabling timely and appropriate 
treatment (Rani et al., 2024; Naidu, 2023).

Finding large-scale datasets for cardiovascular diseases is 
challenging due to privacy concerns, fragmented healthcare systems, 
and inconsistent data recording practices across institutions. As 
highlighted by Johnson et al. (2016), clinical data often lacks 
standardization, which limits its utility for large-scale analytics. 
However, the integration of big data can significantly enhance the 
training of machine learning models by improving their predictive 
accuracy (Shameer et al., 2017). Access to diverse and comprehensive 
datasets enables the models to capture complex patterns in 
cardiovascular health outcomes.

The primary contributions of this paper can be outlined as follows:

	•	 Utilization of Extensive Healthcare Records: To the best of our 
knowledge, this study is the one of the pioneers to leverage a vast 
amount of healthcare records for training machine learning 
models to diagnose potential CVD based on common features. 
The results will provide a comparison opportunity with similar 
studies to highlight differences in data size and predictive 
performance of machine learning models. Given the 
comprehensiveness of the dataset utilized, we anticipate a higher 
potential for internal robustness compared to most present 
research. Many existing studies have reported high predictive 
accuracies using machine learning models trained on single, 
often small, datasets. However, these models typically exhibit 
poor predictions when applied to different populations or 
external datasets due to limited sample diversity and overfitting 
to the specific data used in training. Although there has been 
some research utilizing larger datasets, the strategy of merging 
heterogeneous, large-scale datasets to establish a more robust and 
generalizable training resource remains largely underexplored. 
Our study addresses this gap by integrating two extensive health 
datasets, thereby enabling the development of machine learning 
models that may enhance better across diverse populations 
and settings.

	•	 Novel Data Merging Approach: We propose an innovative 
approach to the data preparation stage aimed at utilizing similar 

datasets in healthcare research. This is particularly important as 
some countries or individuals may be reluctant to share 
healthcare records publicly. Developing robust data-gathering 
techniques within publicly available systems is essential. Most 
prior work in cardiovascular disease prediction has relied on 
small or homogeneous datasets, which limit the performance and 
robustness of their machine learning models across diverse 
populations. By merging two large-scale and heterogeneous 
health datasets based on common features, our approach aims to 
overcome these limitations. This data integration strategy enables 
the development of models with a greater potential for reliable 
internal evaluation of CVD risk using harmonized data, thereby 
enhancing their applicability in real-world clinical settings.

The structure of the paper is as follows: section 2 reviews related 
work conducted by various researchers. Section 3 provides an 
overview of the data preparation and models’ details. Section 4 
presents the results of the experiments performed to evaluate the 
performance of the different machine learning models. Finally, section 
5 presents the conclusion and advises directions for future research.

2 Related work

In recent years, there has been a growing research focus on 
leveraging machine learning (ML) and deep learning (DL) techniques 
for cardiovascular disease (CVD) prediction. Nevertheless, most 
existing studies remain limited by the small size and lack of diversity 
of their datasets, frequently relying on legacy repositories such as the 
UCI or small-scale Kaggle datasets containing fewer than 5,000 
records. This constraint primarily arises from the scarcity of publicly 
available health data, driven by privacy regulations and restricted 
access to large clinical databases.

To address these limitations, the present study integrates two of 
the largest publicly accessible health datasets, resulting in a merged 
dataset comprising over 300,000 individual records. This large-scale 
and heterogeneous dataset enables a more comprehensive analysis of 
risk factors and facilitates the development of generalized machine 
learning models for cardiovascular disease prevention and early 
detection. Several studies have proposed innovative model 
architectures to improve prediction accuracy despite these data 
constraints. For instance, recent work detecting CVD uses a stack-
based ensemble classifier enhanced with an aggregation layer and the 
dependent ordered weighted averaging (DOWA) operator. By 
employing feature transformation techniques and carefully selecting 
classifiers based on accuracy and diversity, the proposed model 
achieves a significant improvement in classification performance with 
an accuracy of 94.05% and an AUC of 97.14%. The study demonstrates 
that incorporating the DOWA operator and feature transformation 
techniques substantially enhances the model’s robustness and 
reliability in clinical applications for CVD detection. They used a 
Kaggle dataset in which each patient is represented by 11 features 
comprising information from 70,000 patients (Chagahi et al., 2024).

Başar et al. (2025) developed a multilayer artificial neural network 
for cardiovascular disease prediction using 13,981 clinical records, 
achieving 83.4% accuracy but limited sensitivity. Comparative 
benchmarking showed that traditional machine learning models like 
random forest and support vector machines outperformed the ANN, 
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highlighting the potential of ensemble methods and explainable AI 
techniques for improved prediction and interpretability in 
clinical applications.

Bakshi et al. (2024) developed a multilayer artificial neural 
network model for predicting cardiovascular disease using a dataset 
of 1,236 patients from the UCI Machine Learning Repository. The 
model achieved an accurate score of 83.4%, though it demonstrated 
limited sensitivity to positive cases. Comparative analysis revealed 
that traditional machine learning algorithms such as random forest 
and support vector machines outperformed the ANN in 
discrimination power. The study highlighted the importance of 
interpretability using SHAP and suggested future work involving 
advanced explainability methods and ensemble approaches to 
improve prediction efficacy.

Barfungpa et al. (2023) review various machine learning and deep 
learning approaches for CVD prediction, highlighting their benefits 
and limitations. They introduce an automated hybrid deep learning 
model which integrates an enhanced search algorithm for optimal 
feature selection and residual blocks with an attention mechanism for 
improved prediction accuracy. The proposed model demonstrated 
superior performance metrics such as precision, sensitivity, and 
accuracy compared to existing methods. They used the common CVD 
dataset which combines the Statlog, Cleveland, Switzerland, Hungary, 
and Long Beach VA datasets, comprising a total of 1,190 patient 
records from the UK, US, Hungary, and Switzerland (Barfungpa et 
al., 2023).

Another study (Reshan et al., 2023) presents a robust 
cardiovascular disease prediction system using hybrid deep neural 
networks (HDNN). The proposed model combines CNN and LSTM 
architectures to enhance prediction accuracy by capturing complex 
patterns in cardiovascular disease datasets. This approach outperforms 
traditional machine learning methods like SVM, Decision Tree, KNN, 
and Random Forest, demonstrating superior predictive performance. 
The HDNN model is designed to be effectively integrated into clinical 
practice, providing accurate and reliable predictions that aid 
healthcare specialists in making informed decisions, facilitating earlier 
diagnosis, and improving patient outcomes. They compile and train 
the model using two CVD datasets that have samples from 
Switzerland, Cleveland, Statlog, Hungary, and Long Beach VA, 
totaling 1,498 samples (Reshan et al., 2023).

Various studies have shown that machine learning and deep 
learning techniques effectively predict CVD, especially with small 
datasets. Research (Omkari and Shaik, 2024) introduces a two-layered 
voting framework to improve performance on larger datasets, 
addressing the limitations of previous methods. This study utilized 
two datasets: Kaggle’s cardiovascular disease dataset with over 70,000 
records and UCI’s cardiovascular disease dataset comprising 1,025 
records. Their proposed method with soft voting achieved the highest 
accuracy of 88.09% on Kaggle’s CVD dataset with 70,000 samples 
(Omkari and Shaik, 2024).

Unlike previous models Dalal et al. (2023) emphasize 
incorporating additional health status and quality of life data, typically 
not collected in clinical interactions, to enhance predictive accuracy 
and patient outcomes. They utilize the Kaggle cardiovascular disease 
dataset which contains approximately 70,000 patient records, the 
results demonstrated that machine learning algorithms can effectively 
aid in the early detection of the disease and enhance treatment 
outcomes (Dalal et al., 2023).

A novel ensemble Quine McCluskey Binary Classifier (QMBC) 
model integrates seven machine learning algorithms to enhance the 
prediction accuracy of cardiovascular disease significantly 
outperforming existing state-of-the-art methods (Kapila et al., 2023). 
The datasets utilized in their analysis were the Cleveland dataset with 
303 records, the CVD dataset with 1,190 records and the CVD dataset 
with 70,000 records. By employing advanced feature selection and 
extraction techniques such as Chi-Square, ANOVA, and PCA, the 
QMBC model achieved exceptional performance metrics, including 
an accuracy of up to 99.95% precision of 100%, and recall of 99.91% 
on various CVD. This study employs three standard datasets accessible 
from public repositories, comprising a cumulative total of 
approximately 72,000 samples (Kapila et al., 2023).

Elsedimy et al. introduce a novel CVD detection model named 
integrating quantum-behaved particle swarm optimization with 
support vector machine classification (QPSO-SVM) (Elsedimy et al., 
2024). They demonstrated it on the Cleveland cardiovascular disease 
dataset, the QPSO-SVM model achieves superior predictive accuracy 
and outperforms existing state-of-the-art models in terms of 
sensitivity, specificity, precision, and F1 score. The researchers utilized 
the UCI dataset which includes 297 patients, revealing that 137 of 
them were diagnosed with CVD as indicated by a value of one 
(Elsedimy et al., 2024).

CardioHelp (Mehmood et al., 2021) is a method utilizing 
convolutional neural networks (CNNs) to predict CVD early by 
analyzing temporal data. Achieving an accuracy of 97% on the UCI 
cardiovascular disease dataset, CardioHelp outperforms existing 
methods and underscores the potential for advanced predictive 
models in primarily addressing critical health conditions beyond 
CVD. They employed the UCI cardiovascular disease dataset, which 
comprises 303 samples (Mehmood et al., 2021).

A model was designed for coronary CVD diagnosis that 
incorporates a feature selection approach considering the cost of 
medical inspections (Suryani et al., 2022). The proposed model 
achieved notable performance as AUC of 97.3% with 20 attributes and 
93.7% with only 5 attributes in optimizing diagnostic accuracy while 
minimizing inspection costs. This research utilizes the Z-Alizadeh 
Sani dataset, which includes 54 attributes and 303 data instances 
(Suryani et al., 2022).

Another study (MahaLakshmi and Rout, 2024) proposes an 
intelligent method for cardiovascular disease diagnosis that integrates 
filter-evolutionary search-based feature selection and an optimized 
ensemble classifier. The approach processes raw data using machine 
learning techniques, combining adaptive threshold information gain-
based feature selection, and employs an optimizer algorithm for 
hyperparameter. The experiments utilized datasets from public 
repositories, including a large cardiovascular disease dataset with 
70,000 patient records, the Cleveland CVD dataset with 297 samples, 
and the Z-Alizadeh Sani dataset with 303 samples. Their proposed 
model achieved an accuracy of 99%, demonstrating superior 
performance in accuracy, precision, sensitivity, and other statistical 
measures compared to existing models (MahaLakshmi and 
Rout, 2024).

The proposed model (Rao et al., 2024) integrates bio-inspired 
hybrid mutation-based swarm intelligence with an attention-based 
gated recurrent unit network, achieving a superior prediction accuracy 
of 95.42% for CVD. Their developed method notably outperforms 
traditional models such as artificial neural network, logistic regression, 

https://doi.org/10.3389/frai.2025.1694450
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kahraman� 10.3389/frai.2025.1694450

Frontiers in Artificial Intelligence 04 frontiersin.org

k-nearest neighbor, and naive bayes. Their approach distinctively 
utilizes the Apache Hadoop big data platform for thorough data 
processing, incorporating improved k- means clustering, Synthetic 
Minority Over-sampling Technique (SMOTE) for balancing, and 
recursive feature elimination. This comprehensive and integrated 
methodology sets it apart from similar studies. They employed a 
widely used CVD dataset from public repositories, encompassing 
70,000 patient records (Rao et al., 2024).

Another research (Rajeashwari and Arunesh, 2024) introduces a 
dual Deep CNN for feature extraction combined with a Modified 
Extreme-Random Forest (ME-RF) classifier to predict four chronic 
diseases. Their proposed approach achieves superior accuracy rates 
compared to traditional methods. The innovative use of dual Deep 
CNNs and ME-RF for chronic disease prediction, along with a 
thorough internal comparison and the use of confusion matrices for 
performance validation, distinguishes this study by comprehensively 
addressing feature extraction and classification efficacy (Rajeashwari 
and Arunesh, 2024).

The related work (Rao et al., 2022) section discusses the limitations 
of existing statistical models for predicting heart failure, highlighting 
their generally unsatisfactory predictive performance. It highlights the 
potential of deep learning models to enhance prediction accuracy 
using large-scale electronic health records. The study utilized a dataset 
of 100,071 patients, among whom 13,050 (13%) had incident heart 
failure. However, the data is not publicly available due to licensing 
restrictions (Rao et al., 2022).

A review paper (Rani et al., 2024) comprehensively examines 
datasets and features used in cardiovascular disease prediction, 
including commonly utilized databases such as Cleveland, 
Framingham, and Statlog, with attributes like age, cholesterol, and 
blood pressure being critical predictors. Challenges identified in the 
field include data imbalance, making accurate predictions difficult, 
and complexities in feature selection, which can affect model 
performance. Data privacy concerns necessitate robust encryption 
and adherence to regulations. Additionally, enhancing generalizability 
and real-time data integration through cross-validation and advanced 
data processing frameworks can improve model applicability. Future 
research directions should aim at improving data quality and 
developing models that generalize well across diverse patient 
populations (Rani et al., 2024).

Weng et al. (2017) evaluated machine-learning models using 
a large UK clinical dataset (378,256 samples), finding that neural 
networks achieved the top AUC (0.764), improving prediction 
over conventional statistical tools. However, their dataset is not 
public but is available upon application for ethical use. Yang et al. 
(2020) applied random forest and other classifiers to data from 
29,930 high-risk Chinese patients, with the random forest yielding 
the best AUC (0.787) for 3-year CVD risk prediction. Their 
dataset is from a national initiative and controlled access. Dritsas 
and Trigka (2023) used an open-access dataset (8,734 records, 
after SMOTE balancing) and compared many methods, with a 
stacking ensemble achieving the highest accuracy (87.8%) and 
AUC (98.2%); their work is fully open for reuse. Mahmud et al. 
(2023) analyzed the open Kaggle cardiovascular dataset (70,000 
samples) and showed that a hybrid bagging-stacking ensemble 
achieved the highest accuracy (84%), offering potential 
reproducibility due to public data availability. Azmi et al. (2022) 
systematically reviewed 41 papers (mostly on UCI datasets, ~300 

records), reporting that random forests typically achieved the best 
accuracy (sometimes up to 99% in small samples), but emphasized 
ongoing gaps such as small dataset sizes and inconsistent open 
data standards.

Based on the literature, the UCI Cleveland dataset stands out as 
the most frequently utilized dataset for cardiovascular disease 
prediction (Rani et al., 2024; Bizimana et al., 2024). However, many 
existing datasets are outdated, originating primarily from UCI in 
1982. Addressing the challenge of limited availability and updating 
diverse real-time CVD datasets is crucial for advancing predictive 
accuracy in future research efforts (Bizimana et al., 2024; Shah, 2025).

Considering all the related papers, it is evident that the size of the 
data used, the data processing methods applied, and the importance 
of the data preparation process are crucial factors for an acceptable 
prediction. As a result, we will merge large medical records of 
extraordinary size and provide more generalized CVD prediction 
results compared to previous publications that used small-scale 
datasets. Our most significant and unique contribution is expanding 
the use of publicly available medical records from different sources 
and of different types. This is crucial because the generalization of 
health status prediction results is closely linked to both the size of the 
data and the required preprocessing steps. Recent studies underscore 
the critical importance of employing large and diverse datasets, 
together with hybrid machine learning frameworks, to enhance the 
generalizability and robustness of cardiovascular disease prediction 
models. Although several approaches have demonstrated high 
accuracy when evaluated on limited or single-source datasets, their 
performance often deteriorates when applied to different populations 
or healthcare settings.

By merging two large-scale health datasets, the present study 
provides a more comprehensive and representative sample base that 
mitigates dataset bias and enables models to capture a broader 
spectrum of patient variability. This approach is expected to enhance 
predictive performance across diverse populations, addressing a 
limitation observed in many prior studies that relied on smaller and 
more homogeneous data sources. Between large-scale data integration 
and hybrid modeling strategies to balance accuracy, interpretability, 
and fairness in cardiovascular risk prediction (Teja and Rayalu, 2025; 
Addisu et al., 2025; Ashika and Grac, 2025). Recent studies (de 
Amorim et al., 2023) on CVD prediction have primarily depended on 
small, well-known datasets such as the UCI Cardiovascular disease 
(303 samples) and Framingham (≈4,000 samples) datasets. As 
emphasized by Zhou et al. (2024), the limited sample size and lack of 
population diversity in these datasets restrict the generalizability of 
most existing machine learning models. Similarly, Bhavekar et al. 
(2024) reported that the majority of recent studies continue to employ 
datasets containing fewer than 5,000 instances, highlighting the urgent 
need for larger and more heterogeneous data sources to improve 
prediction robustness.

In this context, our study introduces a significantly broader data 
foundation by merging two large-scale open-access datasets: the 
Diabetes Health Indicators and the CVD datasets. This integration 
yields a harmonized dataset of more than 300,000 individual health 
records, based on 10 overlapping and semantically consistent clinical 
features. Such a large and diverse dataset not only mitigates dataset-
specific bias but also enables a more generalizable and scalable model 
training framework, directly addressing the key limitations 
underscored in the literature.
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3 Methodology

We utilized a combination of publicly available health datasets 
sourced from Kaggle. All available features are used as input variables 
for the machine learning model, and the binary indicators of 
cardiovascular disease presence are designated as the output variable 
to be predicted. The first dataset is one of the most used CVD datasets 
containing 70,000 samples, all collected during medical examinations. 
The second dataset comes from the Behavioral Risk Factor 
Surveillance System (BRFSS), an annual health-related telephone 
survey conducted by the CDC since 1984. Although merging BRFSS 
(self-reported) and CVD (clinically measured) records increases 
sample diversity, it also introduces heterogeneity that may affect 
feature distributions and model calibration. Variables such as smoking 
and physical activity may contain reporting bias in BRFSS compared 
to their clinically measured equivalents. This domain shift can 
influence model performance; hence, normalization was used to 
mitigate this effect. Limiting the merged dataset to 10 harmonized 
features ensured consistency but inevitably excluding clinically 
relevant predictors such as detailed cholesterol subtypes, glucose 
levels, and alcohol use frequency. The reduction likely constrained 
feature diversity and predictive capacity, though it was essential to 
maintain semantic compatibility and reproducibility across 
heterogeneous sources.

The general framework for merging the datasets is illustrated in 
Table 1. During the integration of these two distinct health records, 
we retained only the common input features among both datasets, 
excluding those unique to a single dataset to ensure consistency. We 
considered incorporating additional CVD datasets; however, we 
excluded them because they did not contain all the common features 
found in these two large datasets utilized. This approach resulted in 
the identification of 10 common features: age, gender, smoking status, 
BMI, alcohol consumption, physical activity, high blood pressure, 

cholesterol levels, glucose levels, and cardiovascular disease status. 
Finally, after implementing the developed merging approach, we 
selected two large data sets available on Kaggle.

To ensure compatibility and semantic consistency across features, 
we conducted a thorough harmonization process tailored to both 
continuous and categorical variables. Continuous variables such as 
Age and BMI were standardized by first verifying the units of 
measurement in each dataset to ensure congruency, as both datasets 
record age in years and BMI as kg/m (Chagahi et al., 2024). These 
variables were then normalized using min-max scaling to a 0–1 range 
to facilitate consistent input for machine learning models.

Categorical variables presented greater challenges due to differing 
collection methodologies and value encodings. For example, physical 
activity in the Diabetes Health Indicators dataset records frequency 
responses (e.g., “Yes”/“No” for regular physical activity), whereas the 
cardiovascular disease dataset encodes it through a numerical field 
indicating minutes of activity per day. We harmonized these by 
binarizing the activity status into an indicator variable representing 
engagement in regular physical activity (active vs. inactive) based on 
thresholding minutes per day in the latter dataset.

Similarly, cholesterol levels were reported as categorical risk 
indicators (normal/elevated) in one dataset and as quantitative lipid 
values in the other. We mapped quantitative cholesterol 
measurements to categorical risk bins consistent with clinical 
guidelines to unify these features. This feature alignment was 
essential to maintain semantic equivalence and maximize the utility 
of combined data.

3.1 Dataset details

In the BRFSS dataset, the outcome (“HeartDiseaseorAttack”) 
corresponds to respondents who reported ever being told by a 

TABLE 1  Variable mapping and harmonization across datasets.

Unified variable 
(used in study)

BRFSS field name CVD dataset field 
name

Units/type Harmonization/threshold 
rule

Age Age Age Years (continuous) Directly matched (numeric, identical 

unit)

Gender Sex (1 = Male, 0 = Female) Gender (1 = Male, 

2 = Female)

Categorical (binary) Recoded to common binary (Male = 1, 

Female = 0)

Smoking status Smoker (1 = Yes, 0 = No) Smoke (1 = Yes, 0 = No) Binary Direct mapping

BMI BMI BMI kg/m2 Direct numeric merge; outliers 

removed via IQR

Alcohol consumption HvyAlcoholConsump (1 = Yes, 

0 = No)

Alco (1 = Yes, 0 = No) Binary Direct mapping

Physical activity PhysActivity (1 = Yes, 0 = No) Active (minutes/day) Binary Thresholded ≥30 min/day → 1; else 0

High blood pressure HighBP (1 = Yes, 0 = No) ap_hi/ap_lo (derived) Binary CVD values transformed: HighBP = 1 

if ap_hi ≥ 140 or ap_lo ≥ 90

Cholesterol levels HighChol (1 = Yes, 0 = No) Cholesterol (mg/dL) Categorical/numeric Quantitative values mapped to risk 

bins: ≥200 mg/dL → 1 (high)

Glucose levels Diabetes (1 = Yes, 0 = No) Gluc (1–3) Binary Gluc≥2 → 1 (high); else 0

Cardiovascular disease HeartDiseaseorAttack (1 = Yes, 

0 = No)

Cardio (1 = Yes, 0 = No) Binary Unified target label (1 = CVD present)
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healthcare professional that they had coronary cardiovascular disease 
or a heart attack (coded as 1 = Yes, 0 = No). In the Cardiovascular 
Disease dataset, the target variable (‘cardio’) indicates the presence of 
any diagnosed cardiovascular condition recorded during medical 
examination (coded as 1 = Yes, 0 = No). For harmonization, both 
variables were unified to represent prevalent CVD status (1 = CVD 
present, 0 = CVD absent).

The summary statistics of the raw data are presented in 
Supplementary Figure 1 to provide a comprehensive understanding 
of the dataset. Continuous features such as age and BMI are depicted 
using boxplots and histograms, while categorical features are 
represented with bar charts. The BMI feature demonstrated a higher 
number of outliers compared to other features. Additionally, the 
distribution of cardiovascular disease displayed class imbalance before 
data preprocessing. However, we will share the results for both the 
original data and the data after eliminating the imbalance to provide 
a better comparison.

3.2 Data preprocessing

The dataset was examined for missing values. The essential trends 
and biases of the data were maintained by imputing values based on 
the mean of each corresponding attribute. Using the Interquartile 
Range (IQR) approach (Dash et al., 2023), a function was constructed 
to eliminate outliers in the BMI column. Outlier detection using the 
IQR method was applied exclusively to the BMI feature because BMI 
is known to exhibit a higher degree of variability and is more 
susceptible to extreme values due to measurement or reporting errors, 
as observed in both source datasets. In contrast, other numerical 
features such as Age were already well-bounded by the study inclusion 
criteria (e.g., adult populations) and did not display significant outlier 
behavior upon exploratory data analysis. Therefore, additional outlier 
filtering for Age and similar features was deemed unnecessary to avoid 
the risk of removing valid data points and introducing bias. The 
dataset was split into training (80%), validation (10%), and test (10%) 
sets. Missing values were imputed using a SimpleImputer with a mean 
strategy, fit on the training data only. After imputation, features were 
standardized using StandardScaler, also fit on the training data, and 
the same transformations were applied to the validation and test sets.

Both the Diabetes Health Indicators and Cardiovascular Disease 
datasets are publicly available, de-identified, and collected 
independently, with no shared unique identifiers or linkage keys. 
Therefore, the risk of individual overlapping or data leakage between 
the two sources is negligible. To further prevent information leakage, 
the merged dataset was split into training, validation, and test sets 
prior to any preprocessing. The Synthetic Minority Over-sampling 
Technique (SMOTE) was applied exclusively to the training set, while 
the validation and test sets remained untouched, ensuring unbiased 
model evaluation.

We also utilized a resampling technique in addition to the original 
data. The training set exhibited a class imbalance with the majority 
class (no cardiovascular disease) significantly outweighing the 
minority class (cardiovascular disease). The Synthetic Minority Over-
sampling Technique (SMOTE) (Bhavekar et al., 2024) was utilized to 
balance the classes by generating synthetic instances of the minority 
class. It is crucial for addressing class imbalance, which can 
significantly affect the performance of machine learning models. 

Furthermore, the experimental results are presented both before and 
after applying SMOTE to the training datasets in order to compare 
model performance on the untouched test data.

3.3 Machine learning models

A variety of machine learning algorithms were implemented to 
develop predictive models for cardiovascular disease. Ten different 
models were selected based on their high performance in the initial 
implementation. Classification algorithms are optimized using the 
widely used GridSearchCV method. Each model’s unique 
characteristics and mechanisms were summarized to evaluate 
their effectiveness.

The selection of models in this study was designed to provide a 
comprehensive benchmark across the most widely used and effective 
machine learning paradigms for structured health data. Our final 
model suite includes Random Forest, Gradient Boosting, XGBoost, 
LightGBM, CatBoost, Extra Trees, HistGradientBoosting, AdaBoost, 
Deep Neural Network (DNN), and Voting Classifier. These models 
were chosen to represent a diverse set of algorithmic families: tree-
based ensembles (Random Forest, Extra Trees), boosting methods 
(Gradient Boosting, XGBoost, LightGBM, CatBoost, AdaBoost, 
HistGradientBoosting), deep learning (DL), and ensemble meta-
learners (Voting Classifier). This diversity ensures that both classical 
and state-of-the-art approaches are evaluated, enabling a robust and 
fair comparison of predictive performance and generalizability across 
different modeling strategies.

3.3.1 Random forest
Random Forest is an ensemble learning technique that 

constructs multiple decision trees using bootstrap aggregating 
(bagging) and feature randomness, and aggregates their predictions 
by averaging (regression) or majority voting (classification) of the 
individual trees (Jackins et al., 2021). By generating a diverse set of 
uncorrelated trees, Random Forest reduces variance and improves 
predictive accuracy while maintaining strong robustness against 
overfitting (Zhou et al., 2024).

3.3.2 Gradient boosting
Gradient Boosting builds models sequentially, where each new 

model is trained to correct the residual errors of the preceding ones. 
The method optimizes a specified loss function by iteratively adding 
weak learners until convergence or a predefined number of 
iterations is reached (Srinivas and Katarya, 2022). This approach 
captures complex patterns effectively and delivers high 
predictive accuracy.

3.3.3 XGBoost
XGBoost is an optimized implementation of gradient boosting 

that incorporates advanced regularization techniques and supports 
efficient parallel computation to prevent overfitting (Srinivas and 
Katarya, 2022). It provides excellent computational efficiency, 
scalability, and performance, especially on structured tabular datasets.

3.3.4 LightGBM
LightGBM is a gradient boosting framework designed to be both 

efficient and scalable, utilizing a leaf-wise tree growth strategy and 
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histogram-based feature binning (Omotehinwa et al., 2024). This 
design improves training speed and reduces memory consumption 
while maintaining strong predictive performance on large multi-
dimensional data.

3.3.5 CatBoost
CatBoost is a gradient boosting algorithm with native support for 

categorical features, employing ordered boosting to handle categorical 
data effectively while minimizing overfitting (Baghdadi et al., 2023). 
It requires minimal preprocessing and provides reliable performance 
across diverse categorical feature distributions.

3.3.6 Extra Trees Classifier
The Extra Trees classifier is an ensemble technique that builds a 

large number of randomized decision trees and averages their 
predictions (Tiwari et al., 2022). By selecting both thresholds and 
features at random, the method increases tree diversity, reduces 
variance, and remains computationally efficient.

3.3.7 HistGradientBoosting
HistGradientBoosting is a scalable and fast gradient boosting 

method that accelerates training by binning continuous features into 
histograms and constructing trees based on these binned 
representations (Teja and Rayalu, 2025). It offers rapid training times, 
efficient memory usage, and competitive accuracy on large datasets.

3.3.8 AdaBoost
AdaBoost is an ensemble boosting algorithm that combines the 

predictions of multiple weak learners, adjusting the weights of 
misclassified instances so that subsequent learners focus on more 
difficult samples (Pan et al., 2022). This iterative reweighting improves 
overall model performance and enhances the effectiveness of 
weak classifiers.

3.3.9 Deep Neural Network (DNN)
A Deep Neural Network consists of multiple hidden layers 

between the input and output layers. Using backpropagation to 

update weights and biases, DNNs can model highly complex 
nonlinear relationships. They are effective on large-scale datasets and 
offer high capacity for learning intricate data patterns (Bharti et 
al., 2021).

3.3.10 Voting classifier
The voting classifier is an ensemble method that aggregates the 

predictions of several base models using majority voting for 
classification or averaging for regression (Tiwari et al., 2022). By 
leveraging the complementary strengths of multiple learners, this 
technique improves stability and predictive performance.

4 Experimental results

Accuracy, precision, recall, F1-score, and AUC-ROC were 
among the primary metrics used to evaluate each model’s 
performance on the test set (Muhammad et al., 2020). The Area 
Under the Curve (AUC) is the region under the Receiver Operating 
Characteristic (ROC) curve (Tiwari et al., 2022). It serves as a 
common display for the effectiveness of classification models at 
various threshold values. The AUC represents the degree or measure 
of separability, indicating how well the model can discriminate 
between classes (Tougui et al., 2020). In terms of details related to 
these common performance metrics:

4.1 Performance metrics

Metrics for classification performance are essential for assessing a 
model’s efficacy. They assist practitioners and researchers in 
determining how well their model differentiates between various 
classes. A confusion matrix offers a thorough understanding of a 
classification model’s performance by displaying the counts of true 
positives, true negatives, false positives, and false negatives. It is 
beneficial for calculating other performance metrics (Tougui  
et al., 2020).

TABLE 2  Hyperparameter search spaces used with GridSearchCV.

Model Hyperparameters (ranges)

Random forest n_estimators ∈ {100, 200, 300}; max_depth ∈ {10, 20, 30, None}; min_samples_split ∈ {2, 5, 10}; min_samples_leaf ∈ {1, 2, 4}; max_

features ∈ {“sqrt,” “log2”}

Gradient boosting n_estimators ∈ {100, 200, 300}; learning_rate ∈ {0.01, 0.1, 0.2}; max_depth ∈ {3, 4, 5}

XGBoost n_estimators ∈ {100, 200, 300}; learning_rate ∈ {0.01, 0.1, 0.2}; max_depth ∈ {3, 4, 5}; subsample ∈ {0.6, 0.8, 1.0}; colsample_bytree ∈ 

{0.6, 0.8, 1.0}; min_child_weight ∈ {1, 3, 5}

LightGBM num_leaves ∈ {15, 31, 63}; learning_rate ∈ {0.01, 0.05, 0.1}; n_estimators ∈ {100, 200, 400}; feature_fraction ∈ {0.6, 0.8, 1.0}; bagging_

fraction ∈ {0.6, 0.8, 1.0}; min_child_samples ∈ {10, 20, 50}

CatBoost iterations ∈ {200, 500, 1,000}; learning_rate ∈ {0.01, 0.05, 0.1}; depth ∈ {4, 6, 8}; l2_leaf_reg ∈ {1, 3, 5, 10}

Extra trees n_estimators ∈ {100, 300, 500}; max_depth ∈ {None, 10, 20, 30}; min_samples_split ∈ {2, 5, 10}; min_samples_leaf ∈ {1, 2, 4}; max_

features ∈ {“sqrt,” “log2”}

HistGradientBoosting max_depth ∈ {None, 10, 20}; learning_rate ∈ {0.01, 0.05, 0.1}; max_leaf_nodes ∈ {31, 63, 127}; min_samples_leaf ∈ {20, 50, 100}

AdaBoost n_estimators ∈ {50, 100, 200, 400}; learning_rate ∈ {0.01, 0.1, 0.5, 1.0}; base_estimator: DecisionTreeClassifier(max_depth ∈ {1, 2, 3})

Deep neural network (DNN) hidden_units ∈ {(64,32), (128,64), (256,128)}; activation ∈ {relu, tanh}; dropout ∈ {0.0, 0.2, 0.5}; l2 ∈ {1e-4, 1e-3}; optimizer ∈ {adam, 

sgd}; learning_rate ∈ {1e-3, 5e-4}; epochs ∈ {50, 100, 200}; batch_size ∈ {32, 64}

Voting classifier voting ∈ {“hard,” “soft”}; weights ∈ e.g. {(1,1,1), (2,1,1)}; (main hyperparameters, plus component model grids)
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The ROC Curve plots the True Positive Rate (Recall) against the 
False Positive Rate at various threshold settings. The AUC represents 
the likelihood that the model ranks a random positive instance higher 
than a random negative one (Tiwari et al., 2022). A higher AUC 
reflects a better-performing model, and we employed this performance 
metric as a key measure. To sum up, accuracy is a reliable metric when 
the classes are balanced. Precision is essential when the cost of false 
positives is substantial. Recall is vital when the cost of false negatives 
is critical. The F1-score is useful when precision and recall need to be 
balanced. AUC-ROC provides an overall measure of model 
performance across all thresholds.

AUC-ROC was selected as the primary evaluation metric due to its 
robustness in the context of imbalanced datasets, which are common in 
medical prediction tasks. Unlike simple accuracy, which can be 
misleading when the majority class dominates, AUC-ROC evaluates a 
model’s ability to distinguish between positive and negative classes across 
all possible classification thresholds. This threshold-independence 
provides a more comprehensive assessment of model performance, as it 
considers both sensitivity (true positive rate) and specificity (false positive 
rate) simultaneously. In highly imbalanced datasets, a model may achieve 
high accuracy simply by predicting the majority class nevertheless fail to 
identify minority cases of clinical interest. AUC-ROC, by summarizing 
the trade-off between true and false positives over all thresholds, offers a 
more reliable measure of discriminative power and is widely 
recommended for medical and imbalanced classification problems.

4.2 Analysis of results and comparisons

The combined dataset incorporated records from two major 
sources, totaling approximately 323,680 samples. During preprocessing, 
the dataset was subjected to several cleaning operations such as filtering 
out incomplete records and harmonizing feature spaces. This final 
dataset was then used for subsequent model training and validation. 
The initial dataset consisted of 264,808 samples of class 0 (negative 
cardiovascular disease) and 58,872 samples of class 1 (positive 
cardiovascular disease). After removing BMI outliers and filling 
missing values with mean values, the data size was totally 311,710. This 
data was split into a training set (249,368 samples), a validation set 
(31,171 samples), and a test set (31,171 samples). All experimental 
results were shared for data without SMOTE and after applying 
SMOTE, allowing us to compare the performance metrics for the 
original data and the data after addressing the imbalance.

Before applying SMOTE, the class distribution in the training set 
was 204,914 samples of class 0 and 44,454 samples of class 1. In the 
validation set, there were 25,614 samples of class 0 and 5,557 samples 
of class 1, while the test set had 25,615 samples of class 0 and 5,556 
samples of class 1. After applying SMOTE, the training set was 
balanced to 204,914 samples per class. The validation and test sets 
remained untouched and retained their original class distributions (no 
resampling was performed), ensuring unbiased evaluation.

To ensure robust and fair model comparison, we performed 
hyperparameter optimization for each classifier using GridSearchCV 
with cross-validation. For every model, a comprehensive and model-
appropriate search space was defined, covering the most influential 
hyperparameters as recommended in the literature and by best 
practices for each algorithm. Table 2 summarizes the main 
hyperparameters and their respective search ranges for all models, 

including tree-based ensembles (Random Forest, Extra Trees, 
HistGradientBoosting), boosting methods (Gradient Boosting, 
XGBoost, LightGBM, CatBoost, AdaBoost), DNN, and ensemble 
meta-learners (Voting Classifier). These grids were selected to balance 
computational feasibility with sufficient coverage of the parameter 
space, and they match the settings implemented in our codebase. This 
approach ensures that each model is tuned to its optimal configuration 
within a transparent and reproducible framework, facilitating direct 
and meaningful performance comparisons across diverse machine 
learning paradigms.

The ROC curves demonstrate the performance of various machine 
learning classifiers before and after applying SMOTE. Notably, 
classifiers such as Random Forest and Gradient Boosting show an 
improvement in their AUC scores, indicating enhanced discrimination 
ability between the classes after SMOTE is applied. The two ROC 
curves in Figure 1 illustrate this performance change. Before SMOTE, 
classifiers like Random Forest and Gradient Boosting achieved AUC 
scores of 0.8660 and 0.8981, respectively.

After applying SMOTE, improvements are evident, with Random 
Forest’s AUC increasing to 0.89 and Gradient Boosting’s to 0.93. This 
indicates enhanced performance in handling imbalanced data. 
Additionally, classifiers like XGBoost, LightGBM, CatBoost, and 
Voting Classifier show significant gains, reflecting the positive impact 
of SMOTE on model performance by better addressing class 
imbalances and improving the detection of the minority class. Except 
for the DNN model, all other applied models enhanced their ROC 
performance metrics after SMOTE as shown in Figure 1. 
Corresponding Precision–Recall (PR) curves per data source are 
provided in Supplementary Figure 2. ROC (left) and Precision–Recall 
(PR, right) curves for the BRFSS and CVD datasets using the CatBoost 
model trained on SMOTE-balanced training data and evaluated on 
untouched test sets.

To further evaluate the reliability of probability estimates, 
model calibration was assessed by computing the calibration slope, 
intercept, and Brier score for the top-performing models 
(CatBoost, LightGBM, and Gradient Boosting). CatBoost exhibited 
the most favorable calibration (slope ≈ 0.97, intercept ≈ 0.01, Brier 
score = 0.084), followed by LightGBM and Gradient Boosting, 
indicating that the predicted probabilities were well aligned with 
observed outcomes.

The confusion matrices for various classification algorithms, both 
before and after applying SMOTE, reveal significant insights into their 
performance on the test set as displayed in Figure 2. The significant 
counts in the lower-left cells of the matrices show that prior to the 
SMOTE application, the models often had a bigger number of false 
negatives. This imbalance highlights the algorithms’ tendency to 
mistakenly identify positive cases as negative, a common problem 
when working with imbalanced datasets. Almost all models show a 
noticeable improvement in the classification of positive events after 
using SMOTE. The lower-left cells of the confusion matrices show 
lowered counts, indicating a considerable decrease in the number of 
false negatives. This enhancement demonstrates how well SMOTE 
balances the dataset and improves the models’ capacity to recognize 
positive instances.

Remarkably, algorithms like LightGBM and CatBoost consistently 
show balanced classification results with performance gains, as seen in 
Figure 2, by the almost equal distribution of true negatives and true 
positives in their confusion matrices after SMOTE. These findings 
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FIGURE 1

Comparison of model performance before and after applying SMOTE. The results reflect models trained on SMOTE-balanced training data and 
evaluated on the original, untouched validation and test sets.
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emphasize the importance of addressing class imbalance to enhance 
the predictive performance of machine learning models in binary 
classification tasks.

Additionally, detailed performance metrics for the test datasets 
before and after applying SMOTE are provided in Tables 3, 4.

These tables show that without SMOTE, the overall 
performance was lower in terms of Recall and F1 metrics due to 
the imbalanced data. CatBoost and LightGBM demonstrated the 
best performance after applying SMOTE, with CatBoost achieving 
the highest scores in Recall, F1, and ROC-AUC. The differences 

FIGURE 2

Confusion matrices of models trained with SMOTE-balanced training data and tested on the original, imbalanced validation and test sets.

TABLE 3  Test performance metrics before SMOTE in the training data.

Model Accuracy Precision Recall F1-score ROC AUC

Random forest 0.6841 0.8891 0.4207 0.5711 0.8660

Gradient boosting 0.7004 0.9367 0.4297 0.5892 0.8981

XGBoost 0.7019 0.9351 0.4339 0.5928 0.8899

LightGBM 0.7034 0.9335 0.4379 0.5962 0.8954

CatBoost 0.7063 0.9379 0.4420 0.6008 0.9008

Extra trees classifier 0.6705 0.8857 0.3915 0.5430 0.8557

HistGradientBoosting 0.6883 0.9380 0.4033 0.5641 0.8863

AdaBoost 0.6749 0.9341 0.3763 0.5364 0.8894

Deep NN 0.6535 0.9332 0.3307 0.4884 0.8588

Voting classifier 0.6864 0.9325 0.4018 0.5616 0.8968
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between Tables 3, 4 highlight significant improvements in model 
performance, particularly in Recall and F1 scores. When SMOTE 
is applied to address class imbalance, it provides more balanced 
and effective classifiers based on the experimental results.

To quantify statistical uncertainty, 95% confidence intervals 
were computed using patient-level bootstrap resampling 
(n = 1,000). The CatBoost model achieved an AUC of 0.944 (95% 
CI: 0.940–0.948), F1 = 0.872 (95% CI: 0.868–0.876), 
precision = 0.827 (95% CI: 0.823–0.831), and recall = 0.921 (95% 
CI: 0.917–0.925). LightGBM and Gradient Boosting models 
yielded comparable performance, with overlapping confidence 
intervals, confirming the robustness of the observed differences. 
Furthermore, calibration analysis indicated that CatBoost achieved 
the most favorable calibration (slope ≈ 0.97, intercept ≈ 0.01, Brier 
score = 0.084), followed by LightGBM and Gradient Boosting. 
Detailed calibration metrics for all models are provided in 
Supplementary Table 1. All metrics were accompanied by 95% 
confidence intervals estimated via patient-level bootstrap and 
detailed results are presented in Supplementary Table 2. To quantify 
model variability, 95% confidence intervals for AUC, F1, precision, 
and recall were computed via 1,000 patient-level bootstrap 
resamples on the untouched test set.

The application of SMOTE resampling significantly improved 
the classification performance metrics across all evaluated models. 
Paired-sample t-tests confirmed that Accuracy [t(9) = −32.63, 
p < 0.001], Precision [t(9) = 11.96, p < 0.001], and Recall 
[t(9) = −27.72, p < 0.001] all exhibited statistically significant 
increases after SMOTE balancing, demonstrating the effectiveness 
of this technique in mitigating class imbalance and enhancing 
overall predictive reliability. To further assess differences among 
the classifiers, paired t-tests and McNemar’s tests were conducted 
on the top-performing models. The results indicated that CatBoost 
significantly outperformed LightGBM (t = 3.42, p = 0.007; χ2 = 
9.65, p = 0.0019), while no significant difference was found 
between LightGBM and XGBoost (p > 0.05). These findings 
confirm that CatBoost’s superiority is statistically supported rather 
than a result of random variation.

With the application of SMOTE, CatBoost and LightGBM 
maintain the highest validation and test accuracy, suggesting 
robustness in handling imbalanced data. Specifically, CatBoost and 
the Voting Classifier show superior precision, while CatBoost and 
Gradient Boosting lead in recall, demonstrating their ability to 

capture most true positives. Additionally, CatBoost, LightGBM, 
and Gradient Boosting continue to show F1 scores, effectively 
balancing precision and recall. CatBoost and LightGBM also lead 
in AUC-ROC, indicating their superior discriminative ability. In 
summary, CatBoost, LightGBM, and Gradient Boosting emerge as 
top-performing classifiers across most metrics, demonstrating 
robust performance after applying SMOTE. The performance 
metrics for various classifiers, both with and without the 
application of SMOTE, reveal significant insights into their 
effectiveness through multiple evaluation criteria as illustrated in 
Supplementary Figures 3, 4 for training, validation, and test 
portions. All the experiments were performed on a computer with 
an AMD Ryzen 7 Pro 4.20 GHz processor and 32 GB of RAM in a 
Python 3 environment.

Supplementary Figure 3 illustrates the comparative performance 
of all 10 classifiers before applying SMOTE resampling in the 
training set. The results show that ensemble and boosting-based 
models such as CatBoost, LightGBM, and XGBoost already achieve 
higher accuracy, F1-score, and ROC AUC than the other methods, 
while single estimators and the deep neural network perform 
relatively lower. These pre-balancing outcomes highlight the 
baseline strength of gradient-boosting approaches even without 
class-imbalance correction.

Supplementary Figure 4 presents the corresponding results after 
SMOTE balancing, where a consistent performance increase is 
observed across all models, particularly in Recall and F1-score. The 
improvement is most pronounced for CatBoost and LightGBM, 
confirming that resampling enhanced the classifiers’ sensitivity to 
minority-class instances. The visual comparison between 
Supplementary Figures 3, 4 clearly demonstrates the positive effect of 
SMOTE on overall predictive stability and fairness among models.

While the proposed model achieved promising results, several 
limitations should be acknowledged. First, the merged dataset 
combined self-reported behavioral data from the BRFSS Diabetes 
Health Indicators with clinically measured records from the 
cardiovascular disease dataset, potentially introducing domain 
heterogeneity and reporting bias. Self-reported variables such as 
smoking, physical activity, and diabetes status may contain subjective 
inaccuracies compared to clinically verified measurements. Second, 
restricting the datasets to only 10 overlapping features was necessary 
for compatibility but resulted in the loss of several potentially 
informative predictors, including detailed cholesterol subtypes, glucose 

TABLE 4  Test performance metrics after SMOTE in the training data.

Model Accuracy Precision Recall F1-score ROC AUC

Random forest 0.8077 0.8219 0.7856 0.8033 0.8947

Gradient boosting 0.8579 0.8197 0.9176 0.8659 0.9346

XGBoost 0.8508 0.8207 0.8975 0.8574 0.9322

LightGBM 0.8609 0.8246 0.9169 0.8683 0.9413

CatBoost 0.8632 0.8257 0.9209 0.8707 0.9438

Extra trees classifier 0.7941 0.8217 0.7511 0.7848 0.8816

HistGradientBoosting 0.8399 0.8065 0.8942 0.8481 0.9203

AdaBoost 0.8183 0.7887 0.8695 0.8271 0.9009

Deep NN 0.7943 0.7759 0.8277 0.8010 0.8767

Voting classifier 0.8517 0.8271 0.8894 0.8571 0.9256
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levels, and alcohol consumption frequency. This reduction may have 
limited the model’s predictive depth. Additionally, the absence of an 
external validation cohort restricts the generalizability of our findings 
to other populations or healthcare settings. Lastly, although the merged 
dataset integrates two heterogeneous sources, we did not perform 
explicit cross-source evaluation (e.g., training on one source and testing 
on the other). Consequently, the generalization claims are based on 
pooled data performance and should be interpreted cautiously. Future 
studies should include source-stratified validation to more rigorously 
assess cross-domain generalization.

Despite these limitations, the proposed framework demonstrates 
the feasibility of integrating large-scale, multi-source health data for 
cardiovascular risk prediction. Such an approach could be further 
adapted for integration within Clinical Decision Support Systems 
(CDSS) to assist healthcare professionals in early cardiovascular risk 
screening and personalized intervention planning. By integrating 
automated prediction models with electronic health record platforms, 
CDSS tools could dynamically assess patient risk in real time, 
providing data-driven guidance to clinicians while maintaining 
interpretability and transparency. Future work will focus on external 
validation with additional clinical datasets and exploring model 
deployment within CDSS infrastructures to bridge the gap between 
data-driven research and clinical application. The extensive grid 
search across multiple ensemble and boosting frameworks required 
substantial computational resources and time. Training and 
optimization were performed on high-performance hardware, as the 
large dataset size and parameter complexity of models such as 
CatBoost, LightGBM, and XGBoost imposed notable memory and 
processing demands. These computational challenges emphasize the 
need for efficient model selection strategies and scalable 
implementations in future research.

5 Conclusion

In this study, we merged two large publicly available health datasets 
to inspire future research addressing the challenge of finding substantial 
medical datasets, particularly in the health industry. Using an extensive 
dataset of 323,681 medical records, we applied innovative machine 
learning algorithms to predict CVD effectively. By utilizing diverse 
machine learning models and employing SMOTE to address data 
imbalance, we demonstrated significant improvements in prediction 
accuracy. Our findings suggest that leveraging large and varied datasets 
may enhance the robustness and consistency of machine learning 
models within integrated datasets in CVD diagnosis.

To further improve early identification and diagnosis of 
cardiovascular diseases using machine learning, future research should 
focus on several key areas. First, integrating continuous patient 
information with real-time health monitoring data could yield more 
dynamic and timely predictions. Second, exploring deeper learning 
architectures and advanced ensemble techniques may enhance 
prediction accuracy and consistency. Additionally, as the use of 
comprehensive healthcare records expands, addressing data privacy 
and security concerns will become increasingly critical. Finally, 
collaborating with healthcare professionals to develop user-friendly 
decision support systems can facilitate the clinical deployment of these 
models, ultimately improving patient outcomes and healthcare delivery.
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