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Machine learning techniques for
Improved prediction of
cardiovascular diseases using
integrated healthcare data

Abdulgani Kahraman*

Department of Computer Engineering, Faculty of Engineering, Balikesir University, Balikesir, Turkiye

Cardiovascular disease continues to cause an important global health challenge,
highlighting the critical importance of early detection in mitigating cardiac-related
issues. There is a significant demand for reliable diagnostic alternatives. Taking
advantage of health data through diverse machine learning algorithms may offer
a more precise diagnostic approach. Machine learning-based decision support
systems that utilize patients’ clinical parameters present a promising solution for
diagnosing cardiovascular disease. In this research, we collected extensive publicly
available healthcare records. We integrated medical datasets based on common
features to implement several machine learning models aimed at exploring the
potential for more robust predictions of cardiovascular disease (CVD). The merged
dataset initially contained 323,680 samples sourced from multiple databases.
Following data preprocessing steps including cleaning, alignment of features,
and removal of missing values, the final dataset consisted of 311,710 samples
used for model training and evaluation. In our experiments, the CatBoost model
achieved the highest area under the curve (AUC) of up to 94.1%.
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1 Introduction

Cardiovascular disease remains one of the foremost causes of mortality worldwide, having
a significant and growing impact on both the global economy and healthcare systems. This
escalating burden emphasizes the critical importance of analyzing health records and
advancing machine learning methodologies for disease diagnosis and management.
Consequently, the study and application of data analytics in healthcare is gaining increasing
recognition and are essential in addressing the challenges caused by cardiovascular disease.

Statistically, seven out of the top 10 primary causes of mortality globally were attributed
to noncommunicable diseases, comprising 44% of all deaths according to the World Health
Organization (WHO) (World Health Organization, 2024). It is noteworthy that 2019 was the
last year before the exponential spread of COVID-19 across the world, and we considered that
year’s statistics since it is still ambiguous to know all the details of COVID-19 vaccines and the
pandemic side effects on people’s health. CVD emerged as the foremost contributor to
mortality worldwide, accounting for 17.9 million of the total global deaths in 2019, which is
32% of the total deaths in the world (Chagahi et al., 2024; MahaLakshmi and Rout, 2024;
Biswas et al., 2021).

Factors that increase the risk of CVD include high blood pressure, a sedentary lifestyle,
stress, high blood glucose levels, increased blood lipids, and overweight or obesity (Chagahi
et al,, 2024; Barfungpa et al., 2023; Rout, 2023). Early detection of CVD reduces the risk of
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heart attacks and enhances recovery rates (Mahalakshmi and
Rajakumari, 2023; Rathi et al., 2024; Anitha et al., 2023). However, the
commonly used angiography is expensive and can lead to harmful side
effects, which increases the importance of healthcare data analytics
(Elsedimy et al., 2024).

Employing machine learning (ML), information technology (IT),
and mathematical analysis models to explore extensive datasets to
uncover hidden data patterns is a growing trend in the literature
(Barfungpa et al.,, 2023; Rao et al., 2024). Various data mining and ML
techniques are used to analyze complex medical data, enabling
healthcare professionals to make accurate predictions about CVD
(Biswas et al., 2021; Barfungpa et al., 2023; Bizimana et al., 2024;
Jadhav et al., 2023; Bhavekar and Goswami, 2023). Contemporary
hospitals are equipped with state-of-the-art tools for data collection
and analysis, which facilitate the exchange of information within
extensive systems (Rajeashwari and Arunesh, 2024). The utilization of
ML technologies for medical data analysis proves highly effective,
leading to considerable advancements in diagnostic capabilities
(Bizimana et al., 2024; Jalligampala et al., 2022). Moreover, identifying
CVD via data analytics at an early stage can reduce the probability of
CVD progression to a severe stage by enabling timely and appropriate
treatment (Rani et al., 2024; Naidu, 2023).

Finding large-scale datasets for cardiovascular diseases is
challenging due to privacy concerns, fragmented healthcare systems,
and inconsistent data recording practices across institutions. As
highlighted by Johnson et al. (2016), clinical data often lacks
standardization, which limits its utility for large-scale analytics.
However, the integration of big data can significantly enhance the
training of machine learning models by improving their predictive
accuracy (Shameer etal., 2017). Access to diverse and comprehensive
datasets enables the models to capture complex patterns in
cardiovascular health outcomes.

The primary contributions of this paper can be outlined as follows:

o Utilization of Extensive Healthcare Records: To the best of our
knowledge, this study is the one of the pioneers to leverage a vast
amount of healthcare records for training machine learning
models to diagnose potential CVD based on common features.
The results will provide a comparison opportunity with similar
studies to highlight differences in data size and predictive

Given the

comprehensiveness of the dataset utilized, we anticipate a higher

performance of machine learning models.

potential for internal robustness compared to most present
research. Many existing studies have reported high predictive
accuracies using machine learning models trained on single,
often small, datasets. However, these models typically exhibit
poor predictions when applied to different populations or
external datasets due to limited sample diversity and overfitting
to the specific data used in training. Although there has been
some research utilizing larger datasets, the strategy of merging
heterogeneous, large-scale datasets to establish a more robust and
generalizable training resource remains largely underexplored.
Our study addresses this gap by integrating two extensive health
datasets, thereby enabling the development of machine learning
models that may enhance better across diverse populations
and settings.

o Novel Data Merging Approach: We propose an innovative
approach to the data preparation stage aimed at utilizing similar
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datasets in healthcare research. This is particularly important as
some countries or individuals may be reluctant to share
healthcare records publicly. Developing robust data-gathering
techniques within publicly available systems is essential. Most
prior work in cardiovascular disease prediction has relied on
small or homogeneous datasets, which limit the performance and
robustness of their machine learning models across diverse
populations. By merging two large-scale and heterogeneous
health datasets based on common features, our approach aims to
overcome these limitations. This data integration strategy enables
the development of models with a greater potential for reliable
internal evaluation of CVD risk using harmonized data, thereby
enhancing their applicability in real-world clinical settings.

The structure of the paper is as follows: section 2 reviews related
work conducted by various researchers. Section 3 provides an
overview of the data preparation and models’ details. Section 4
presents the results of the experiments performed to evaluate the
performance of the different machine learning models. Finally, section
5 presents the conclusion and advises directions for future research.

2 Related work

In recent years, there has been a growing research focus on
leveraging machine learning (ML) and deep learning (DL) techniques
for cardiovascular disease (CVD) prediction. Nevertheless, most
existing studies remain limited by the small size and lack of diversity
of their datasets, frequently relying on legacy repositories such as the
UCI or small-scale Kaggle datasets containing fewer than 5,000
records. This constraint primarily arises from the scarcity of publicly
available health data, driven by privacy regulations and restricted
access to large clinical databases.

To address these limitations, the present study integrates two of
the largest publicly accessible health datasets, resulting in a merged
dataset comprising over 300,000 individual records. This large-scale
and heterogeneous dataset enables a more comprehensive analysis of
risk factors and facilitates the development of generalized machine
learning models for cardiovascular disease prevention and early
detection. Several studies have proposed innovative model
architectures to improve prediction accuracy despite these data
constraints. For instance, recent work detecting CVD uses a stack-
based ensemble classifier enhanced with an aggregation layer and the
dependent ordered weighted averaging (DOWA) operator. By
employing feature transformation techniques and carefully selecting
classifiers based on accuracy and diversity, the proposed model
achieves a significant improvement in classification performance with
an accuracy of 94.05% and an AUC of 97.14%. The study demonstrates
that incorporating the DOWA operator and feature transformation
techniques substantially enhances the model’s robustness and
reliability in clinical applications for CVD detection. They used a
Kaggle dataset in which each patient is represented by 11 features
comprising information from 70,000 patients (Chagahi et al., 2024).

Bagar et al. (2025) developed a multilayer artificial neural network
for cardiovascular disease prediction using 13,981 clinical records,
achieving 83.4% accuracy but limited sensitivity. Comparative
benchmarking showed that traditional machine learning models like
random forest and support vector machines outperformed the ANN,
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highlighting the potential of ensemble methods and explainable AI
techniques for improved prediction and interpretability in
clinical applications.

Bakshi et al. (2024) developed a multilayer artificial neural
network model for predicting cardiovascular disease using a dataset
of 1,236 patients from the UCI Machine Learning Repository. The
model achieved an accurate score of 83.4%, though it demonstrated
limited sensitivity to positive cases. Comparative analysis revealed
that traditional machine learning algorithms such as random forest
and support vector machines outperformed the ANN in
discrimination power. The study highlighted the importance of
interpretability using SHAP and suggested future work involving
advanced explainability methods and ensemble approaches to
improve prediction efficacy.

Barfungpa et al. (2023) review various machine learning and deep
learning approaches for CVD prediction, highlighting their benefits
and limitations. They introduce an automated hybrid deep learning
model which integrates an enhanced search algorithm for optimal
feature selection and residual blocks with an attention mechanism for
improved prediction accuracy. The proposed model demonstrated
superior performance metrics such as precision, sensitivity, and
accuracy compared to existing methods. They used the common CVD
dataset which combines the Statlog, Cleveland, Switzerland, Hungary,
and Long Beach VA datasets, comprising a total of 1,190 patient
records from the UK, US, Hungary, and Switzerland (Barfungpa et
al., 2023).

Another study (Reshan et al, 2023) presents a robust
cardiovascular disease prediction system using hybrid deep neural
networks (HDNN). The proposed model combines CNN and LSTM
architectures to enhance prediction accuracy by capturing complex
patterns in cardiovascular disease datasets. This approach outperforms
traditional machine learning methods like SVM, Decision Tree, KNN,
and Random Forest, demonstrating superior predictive performance.
The HDNN model is designed to be effectively integrated into clinical
practice, providing accurate and reliable predictions that aid
healthcare specialists in making informed decisions, facilitating earlier
diagnosis, and improving patient outcomes. They compile and train
the model using two CVD datasets that have samples from
Switzerland, Cleveland, Statlog, Hungary, and Long Beach VA,
totaling 1,498 samples (Reshan et al., 2023).

Various studies have shown that machine learning and deep
learning techniques effectively predict CVD, especially with small
datasets. Research (Omkari and Shaik, 2024) introduces a two-layered
voting framework to improve performance on larger datasets,
addressing the limitations of previous methods. This study utilized
two datasets: Kaggle’s cardiovascular disease dataset with over 70,000
records and UCI’s cardiovascular disease dataset comprising 1,025
records. Their proposed method with soft voting achieved the highest
accuracy of 88.09% on Kaggle’s CVD dataset with 70,000 samples
(Omkari and Shaik, 2024).

Unlike previous models Dalal et al. (2023) emphasize
incorporating additional health status and quality of life data, typically
not collected in clinical interactions, to enhance predictive accuracy
and patient outcomes. They utilize the Kaggle cardiovascular disease
dataset which contains approximately 70,000 patient records, the
results demonstrated that machine learning algorithms can effectively
aid in the early detection of the disease and enhance treatment
outcomes (Dalal et al., 2023).
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A novel ensemble Quine McCluskey Binary Classifier (QMBC)
model integrates seven machine learning algorithms to enhance the
prediction accuracy of cardiovascular disease significantly
outperforming existing state-of-the-art methods (Kapila et al., 2023).
The datasets utilized in their analysis were the Cleveland dataset with
303 records, the CVD dataset with 1,190 records and the CVD dataset
with 70,000 records. By employing advanced feature selection and
extraction techniques such as Chi-Square, ANOVA, and PCA, the
QMBC model achieved exceptional performance metrics, including
an accuracy of up to 99.95% precision of 100%, and recall of 99.91%
on various CVD. This study employs three standard datasets accessible
from public repositories, comprising a cumulative total of
approximately 72,000 samples (Kapila et al., 2023).

Elsedimy et al. introduce a novel CVD detection model named
integrating quantum-behaved particle swarm optimization with
support vector machine classification (QPSO-SVM) (Elsedimy et al.,
2024). They demonstrated it on the Cleveland cardiovascular disease
dataset, the QPSO-SVM model achieves superior predictive accuracy
and outperforms existing state-of-the-art models in terms of
sensitivity, specificity, precision, and F1 score. The researchers utilized
the UCI dataset which includes 297 patients, revealing that 137 of
them were diagnosed with CVD as indicated by a value of one
(Elsedimy et al., 2024).

CardioHelp (Mehmood et al., 2021) is a method utilizing
convolutional neural networks (CNNs) to predict CVD early by
analyzing temporal data. Achieving an accuracy of 97% on the UCI
cardiovascular disease dataset, CardioHelp outperforms existing
methods and underscores the potential for advanced predictive
models in primarily addressing critical health conditions beyond
CVD. They employed the UCI cardiovascular disease dataset, which
comprises 303 samples (Mehmood et al., 2021).

A model was designed for coronary CVD diagnosis that
incorporates a feature selection approach considering the cost of
medical inspections (Suryani et al., 2022). The proposed model
achieved notable performance as AUC of 97.3% with 20 attributes and
93.7% with only 5 attributes in optimizing diagnostic accuracy while
minimizing inspection costs. This research utilizes the Z-Alizadeh
Sani dataset, which includes 54 attributes and 303 data instances
(Suryani et al., 2022).

Another study (MahaLakshmi and Rout, 2024) proposes an
intelligent method for cardiovascular disease diagnosis that integrates
filter-evolutionary search-based feature selection and an optimized
ensemble classifier. The approach processes raw data using machine
learning techniques, combining adaptive threshold information gain-
based feature selection, and employs an optimizer algorithm for
hyperparameter. The experiments utilized datasets from public
repositories, including a large cardiovascular disease dataset with
70,000 patient records, the Cleveland CVD dataset with 297 samples,
and the Z-Alizadeh Sani dataset with 303 samples. Their proposed
model achieved an accuracy of 99%, demonstrating superior
performance in accuracy, precision, sensitivity, and other statistical
measures compared to existing models (MahaLakshmi and
Rout, 2024).

The proposed model (Rao et al., 2024) integrates bio-inspired
hybrid mutation-based swarm intelligence with an attention-based
gated recurrent unit network, achieving a superior prediction accuracy
of 95.42% for CVD. Their developed method notably outperforms
traditional models such as artificial neural network, logistic regression,
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k-nearest neighbor, and naive bayes. Their approach distinctively
utilizes the Apache Hadoop big data platform for thorough data
processing, incorporating improved k- means clustering, Synthetic
Minority Over-sampling Technique (SMOTE) for balancing, and
recursive feature elimination. This comprehensive and integrated
methodology sets it apart from similar studies. They employed a
widely used CVD dataset from public repositories, encompassing
70,000 patient records (Rao et al., 2024).

Another research (Rajeashwari and Arunesh, 2024) introduces a
dual Deep CNN for feature extraction combined with a Modified
Extreme-Random Forest (ME-RF) classifier to predict four chronic
diseases. Their proposed approach achieves superior accuracy rates
compared to traditional methods. The innovative use of dual Deep
CNNs and ME-RF for chronic disease prediction, along with a
thorough internal comparison and the use of confusion matrices for
performance validation, distinguishes this study by comprehensively
addressing feature extraction and classification efficacy (Rajeashwari
and Arunesh, 2024).

The related work (Rao et al., 2022) section discusses the limitations
of existing statistical models for predicting heart failure, highlighting
their generally unsatisfactory predictive performance. It highlights the
potential of deep learning models to enhance prediction accuracy
using large-scale electronic health records. The study utilized a dataset
of 100,071 patients, among whom 13,050 (13%) had incident heart
failure. However, the data is not publicly available due to licensing
restrictions (Rao et al., 2022).

A review paper (Rani et al., 2024) comprehensively examines
datasets and features used in cardiovascular disease prediction,
including commonly utilized databases such as Cleveland,
Framingham, and Statlog, with attributes like age, cholesterol, and
blood pressure being critical predictors. Challenges identified in the
field include data imbalance, making accurate predictions difficult,
and complexities in feature selection, which can affect model
performance. Data privacy concerns necessitate robust encryption
and adherence to regulations. Additionally, enhancing generalizability
and real-time data integration through cross-validation and advanced
data processing frameworks can improve model applicability. Future
research directions should aim at improving data quality and
developing models that generalize well across diverse patient
populations (Rani et al., 2024).

Weng et al. (2017) evaluated machine-learning models using
a large UK clinical dataset (378,256 samples), finding that neural
networks achieved the top AUC (0.764), improving prediction
over conventional statistical tools. However, their dataset is not
public but is available upon application for ethical use. Yang et al.
(2020) applied random forest and other classifiers to data from
29,930 high-risk Chinese patients, with the random forest yielding
the best AUC (0.787) for 3-year CVD risk prediction. Their
dataset is from a national initiative and controlled access. Dritsas
and Trigka (2023) used an open-access dataset (8,734 records,
after SMOTE balancing) and compared many methods, with a
stacking ensemble achieving the highest accuracy (87.8%) and
AUC (98.2%); their work is fully open for reuse. Mahmud et al.
(2023) analyzed the open Kaggle cardiovascular dataset (70,000
samples) and showed that a hybrid bagging-stacking ensemble
achieved the highest accuracy (84%), offering potential
reproducibility due to public data availability. Azmi et al. (2022)
systematically reviewed 41 papers (mostly on UCI datasets, ~300
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records), reporting that random forests typically achieved the best
accuracy (sometimes up to 99% in small samples), but emphasized
ongoing gaps such as small dataset sizes and inconsistent open
data standards.

Based on the literature, the UCI Cleveland dataset stands out as
the most frequently utilized dataset for cardiovascular disease
prediction (Rani et al., 2024; Bizimana et al., 2024). However, many
existing datasets are outdated, originating primarily from UCI in
1982. Addressing the challenge of limited availability and updating
diverse real-time CVD datasets is crucial for advancing predictive
accuracy in future research efforts (Bizimana et al., 2024; Shah, 2025).

Considering all the related papers, it is evident that the size of the
data used, the data processing methods applied, and the importance
of the data preparation process are crucial factors for an acceptable
prediction. As a result, we will merge large medical records of
extraordinary size and provide more generalized CVD prediction
results compared to previous publications that used small-scale
datasets. Our most significant and unique contribution is expanding
the use of publicly available medical records from different sources
and of different types. This is crucial because the generalization of
health status prediction results is closely linked to both the size of the
data and the required preprocessing steps. Recent studies underscore
the critical importance of employing large and diverse datasets,
together with hybrid machine learning frameworks, to enhance the
generalizability and robustness of cardiovascular disease prediction
models. Although several approaches have demonstrated high
accuracy when evaluated on limited or single-source datasets, their
performance often deteriorates when applied to different populations
or healthcare settings.

By merging two large-scale health datasets, the present study
provides a more comprehensive and representative sample base that
mitigates dataset bias and enables models to capture a broader
spectrum of patient variability. This approach is expected to enhance
predictive performance across diverse populations, addressing a
limitation observed in many prior studies that relied on smaller and
more homogeneous data sources. Between large-scale data integration
and hybrid modeling strategies to balance accuracy, interpretability,
and fairness in cardiovascular risk prediction (Teja and Rayalu, 2025;
Addisu et al., 2025; Ashika and Grac, 2025). Recent studies (de
Amorim etal., 2023) on CVD prediction have primarily depended on
small, well-known datasets such as the UCI Cardiovascular disease
(303 samples) and Framingham (x4,000 samples) datasets. As
emphasized by Zhou et al. (2024), the limited sample size and lack of
population diversity in these datasets restrict the generalizability of
most existing machine learning models. Similarly, Bhavekar et al.
(2024) reported that the majority of recent studies continue to employ
datasets containing fewer than 5,000 instances, highlighting the urgent
need for larger and more heterogeneous data sources to improve
prediction robustness.

In this context, our study introduces a significantly broader data
foundation by merging two large-scale open-access datasets: the
Diabetes Health Indicators and the CVD datasets. This integration
yields a harmonized dataset of more than 300,000 individual health
records, based on 10 overlapping and semantically consistent clinical
features. Such a large and diverse dataset not only mitigates dataset-
specific bias but also enables a more generalizable and scalable model
training framework, directly addressing the key limitations
underscored in the literature.
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3 Methodology

We utilized a combination of publicly available health datasets
sourced from Kaggle. All available features are used as input variables
for the machine learning model, and the binary indicators of
cardiovascular disease presence are designated as the output variable
to be predicted. The first dataset is one of the most used CVD datasets
containing 70,000 samples, all collected during medical examinations.
The second dataset comes from the Behavioral Risk Factor
Surveillance System (BRFSS), an annual health-related telephone
survey conducted by the CDC since 1984. Although merging BRFSS
(self-reported) and CVD (clinically measured) records increases
sample diversity, it also introduces heterogeneity that may affect
feature distributions and model calibration. Variables such as smoking
and physical activity may contain reporting bias in BRFSS compared
to their clinically measured equivalents. This domain shift can
influence model performance; hence, normalization was used to
mitigate this effect. Limiting the merged dataset to 10 harmonized
features ensured consistency but inevitably excluding clinically
relevant predictors such as detailed cholesterol subtypes, glucose
levels, and alcohol use frequency. The reduction likely constrained
feature diversity and predictive capacity, though it was essential to
maintain semantic compatibility and reproducibility across
heterogeneous sources.

The general framework for merging the datasets is illustrated in
Table 1. During the integration of these two distinct health records,
we retained only the common input features among both datasets,
excluding those unique to a single dataset to ensure consistency. We
considered incorporating additional CVD datasets; however, we
excluded them because they did not contain all the common features
found in these two large datasets utilized. This approach resulted in
the identification of 10 common features: age, gender, smoking status,
BMI, alcohol consumption, physical activity, high blood pressure,

TABLE 1 Variable mapping and harmonization across datasets.

10.3389/frai.2025.1694450

cholesterol levels, glucose levels, and cardiovascular disease status.
Finally, after implementing the developed merging approach, we
selected two large data sets available on Kaggle.

To ensure compatibility and semantic consistency across features,
we conducted a thorough harmonization process tailored to both
continuous and categorical variables. Continuous variables such as
Age and BMI were standardized by first verifying the units of
measurement in each dataset to ensure congruency, as both datasets
record age in years and BMI as kg/m (Chagahi et al., 2024). These
variables were then normalized using min-max scaling to a 0-1 range
to facilitate consistent input for machine learning models.

Categorical variables presented greater challenges due to differing
collection methodologies and value encodings. For example, physical
activity in the Diabetes Health Indicators dataset records frequency
responses (e.g., “Yes”/“No” for regular physical activity), whereas the
cardiovascular disease dataset encodes it through a numerical field
indicating minutes of activity per day. We harmonized these by
binarizing the activity status into an indicator variable representing
engagement in regular physical activity (active vs. inactive) based on
thresholding minutes per day in the latter dataset.

Similarly, cholesterol levels were reported as categorical risk
indicators (normal/elevated) in one dataset and as quantitative lipid
values in the other. We mapped quantitative cholesterol
measurements to categorical risk bins consistent with clinical
guidelines to unify these features. This feature alignment was
essential to maintain semantic equivalence and maximize the utility
of combined data.

3.1 Dataset details

In the BRFSS dataset, the outcome (“HeartDiseaseorAttack”)
corresponds to respondents who reported ever being told by a

Unified variable BRFSS field name CVD dataset field  Units/type Harmonization/threshold
(used in study) name rule
Age Age Age Years (continuous) Directly matched (numeric, identical
unit)
Gender Sex (1 = Male, 0 = Female) Gender (1 = Male, Categorical (binary) Recoded to common binary (Male = 1,
2 = Female) Female = 0)
Smoking status Smoker (1 = Yes, 0 = No) Smoke (1 = Yes, 0 = No) Binary Direct mapping
BMI BMI BMI kg/m? Direct numeric merge; outliers
removed via IQR
Alcohol consumption HvyAlcoholConsump (1 = Yes, Alco (1 = Yes, 0 = No) Binary Direct mapping
0=No)
Physical activity PhysActivity (1 = Yes, 0 = No) Active (minutes/day) Binary Thresholded >30 min/day — 1; else 0
High blood pressure HighBP (1 = Yes, 0 = No) ap_hi/ap_lo (derived) Binary CVD values transformed: HighBP = 1
if ap_hi > 140 or ap_lo > 90
Cholesterol levels HighChol (1 = Yes, 0 = No) Cholesterol (mg/dL) Categorical/numeric Quantitative values mapped to risk
bins: >200 mg/dL — 1 (high)
Glucose levels Diabetes (1 = Yes, 0 = No) Gluc (1-3) Binary Gluc>2 — 1 (high); else 0
Cardiovascular disease HeartDiseaseorAttack (1 = Yes, Cardio (1 = Yes, 0 = No) Binary Unified target label (1 = CVD present)
0=No)
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healthcare professional that they had coronary cardiovascular disease
or a heart attack (coded as 1 = Yes, 0 = No). In the Cardiovascular
Disease dataset, the target variable (‘cardio’) indicates the presence of
any diagnosed cardiovascular condition recorded during medical
examination (coded as 1 = Yes, 0 = No). For harmonization, both
variables were unified to represent prevalent CVD status (1 = CVD
present, 0 = CVD absent).

The summary statistics of the raw data are presented in
Supplementary Figure 1 to provide a comprehensive understanding
of the dataset. Continuous features such as age and BMI are depicted
using boxplots and histograms, while categorical features are
represented with bar charts. The BMI feature demonstrated a higher
number of outliers compared to other features. Additionally, the
distribution of cardiovascular disease displayed class imbalance before
data preprocessing. However, we will share the results for both the
original data and the data after eliminating the imbalance to provide
a better comparison.

3.2 Data preprocessing

The dataset was examined for missing values. The essential trends
and biases of the data were maintained by imputing values based on
the mean of each corresponding attribute. Using the Interquartile
Range (IQR) approach (Dash et al., 2023), a function was constructed
to eliminate outliers in the BMI column. Outlier detection using the
IQR method was applied exclusively to the BMI feature because BMI
is known to exhibit a higher degree of variability and is more
susceptible to extreme values due to measurement or reporting errors,
as observed in both source datasets. In contrast, other numerical
features such as Age were already well-bounded by the study inclusion
criteria (e.g., adult populations) and did not display significant outlier
behavior upon exploratory data analysis. Therefore, additional outlier
filtering for Age and similar features was deemed unnecessary to avoid
the risk of removing valid data points and introducing bias. The
dataset was split into training (80%), validation (10%), and test (10%)
sets. Missing values were imputed using a SimpleImputer with a mean
strategy, fit on the training data only. After imputation, features were
standardized using StandardScaler, also fit on the training data, and
the same transformations were applied to the validation and test sets.

Both the Diabetes Health Indicators and Cardiovascular Disease
datasets are publicly available, de-identified, and collected
independently, with no shared unique identifiers or linkage keys.
Therefore, the risk of individual overlapping or data leakage between
the two sources is negligible. To further prevent information leakage,
the merged dataset was split into training, validation, and test sets
prior to any preprocessing. The Synthetic Minority Over-sampling
Technique (SMOTE) was applied exclusively to the training set, while
the validation and test sets remained untouched, ensuring unbiased
model evaluation.

We also utilized a resampling technique in addition to the original
data. The training set exhibited a class imbalance with the majority
class (no cardiovascular disease) significantly outweighing the
minority class (cardiovascular disease). The Synthetic Minority Over-
sampling Technique (SMOTE) (Bhavekar et al., 2024) was utilized to
balance the classes by generating synthetic instances of the minority
class. It is crucial for addressing class imbalance, which can
significantly affect the performance of machine learning models.
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Furthermore, the experimental results are presented both before and
after applying SMOTE to the training datasets in order to compare
model performance on the untouched test data.

3.3 Machine learning models

A variety of machine learning algorithms were implemented to
develop predictive models for cardiovascular disease. Ten different
models were selected based on their high performance in the initial
implementation. Classification algorithms are optimized using the
widely used GridSearchCV method. Each model's unique
characteristics and mechanisms were summarized to evaluate
their effectiveness.

The selection of models in this study was designed to provide a
comprehensive benchmark across the most widely used and effective
machine learning paradigms for structured health data. Our final
model suite includes Random Forest, Gradient Boosting, XGBoost,
LightGBM, CatBoost, Extra Trees, HistGradientBoosting, AdaBoost,
Deep Neural Network (DNN), and Voting Classifier. These models
were chosen to represent a diverse set of algorithmic families: tree-
based ensembles (Random Forest, Extra Trees), boosting methods
(Gradient Boosting, XGBoost, LightGBM, CatBoost, AdaBoost,
HistGradientBoosting), deep learning (DL), and ensemble meta-
learners (Voting Classifier). This diversity ensures that both classical
and state-of-the-art approaches are evaluated, enabling a robust and
fair comparison of predictive performance and generalizability across
different modeling strategies.

3.3.1 Random forest

Random Forest is an ensemble learning technique that
constructs multiple decision trees using bootstrap aggregating
(bagging) and feature randomness, and aggregates their predictions
by averaging (regression) or majority voting (classification) of the
individual trees (Jackins et al., 2021). By generating a diverse set of
uncorrelated trees, Random Forest reduces variance and improves
predictive accuracy while maintaining strong robustness against
overfitting (Zhou et al., 2024).

3.3.2 Gradient boosting

Gradient Boosting builds models sequentially, where each new
model is trained to correct the residual errors of the preceding ones.
The method optimizes a specified loss function by iteratively adding
weak learners until convergence or a predefined number of
iterations is reached (Srinivas and Katarya, 2022). This approach
captures high

complex patterns effectively and delivers

predictive accuracy.

3.3.3 XGBoost

XGBoost is an optimized implementation of gradient boosting
that incorporates advanced regularization techniques and supports
efficient parallel computation to prevent overfitting (Srinivas and
Katarya, 2022). It provides excellent computational efficiency,
scalability, and performance, especially on structured tabular datasets.

3.3.4 LightGBM
LightGBM is a gradient boosting framework designed to be both
efficient and scalable, utilizing a leaf-wise tree growth strategy and
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histogram-based feature binning (Omotehinwa et al., 2024). This
design improves training speed and reduces memory consumption
while maintaining strong predictive performance on large multi-
dimensional data.

3.3.5 CatBoost

CatBoost is a gradient boosting algorithm with native support for
categorical features, employing ordered boosting to handle categorical
data effectively while minimizing overfitting (Baghdadi et al., 2023).
It requires minimal preprocessing and provides reliable performance
across diverse categorical feature distributions.

3.3.6 Extra Trees Classifier

The Extra Trees classifier is an ensemble technique that builds a
large number of randomized decision trees and averages their
predictions (Tiwari et al., 2022). By selecting both thresholds and
features at random, the method increases tree diversity, reduces
variance, and remains computationally efficient.

3.3.7 HistGradientBoosting

HistGradientBoosting is a scalable and fast gradient boosting
method that accelerates training by binning continuous features into
histograms and constructing trees based on these binned
representations (Teja and Rayalu, 2025). It offers rapid training times,
efficient memory usage, and competitive accuracy on large datasets.

3.3.8 AdaBoost

AdaBoost is an ensemble boosting algorithm that combines the
predictions of multiple weak learners, adjusting the weights of
misclassified instances so that subsequent learners focus on more
difficult samples (Pan et al., 2022). This iterative reweighting improves
overall model performance and enhances the effectiveness of
weak classifiers.

3.3.9 Deep Neural Network (DNN)
A Deep Neural Network consists of multiple hidden layers
between the input and output layers. Using backpropagation to

TABLE 2 Hyperparameter search spaces used with GridSearchCV.

10.3389/frai.2025.1694450

update weights and biases, DNNs can model highly complex
nonlinear relationships. They are effective on large-scale datasets and
offer high capacity for learning intricate data patterns (Bharti et
al, 2021).

3.3.10 Voting classifier

The voting classifier is an ensemble method that aggregates the
predictions of several base models using majority voting for
classification or averaging for regression (Tiwari et al., 2022). By
leveraging the complementary strengths of multiple learners, this
technique improves stability and predictive performance.

4 Experimental results

Accuracy, precision, recall, F1-score, and AUC-ROC were
among the primary metrics used to evaluate each model’s
performance on the test set (Muhammad et al., 2020). The Area
Under the Curve (AUC) is the region under the Receiver Operating
Characteristic (ROC) curve (Tiwari et al., 2022). It serves as a
common display for the effectiveness of classification models at
various threshold values. The AUC represents the degree or measure
of separability, indicating how well the model can discriminate
between classes (Tougui et al., 2020). In terms of details related to
these common performance metrics:

4.1 Performance metrics

Metrics for classification performance are essential for assessing a
model’s efficacy. They assist practitioners and researchers in
determining how well their model differentiates between various
classes. A confusion matrix offers a thorough understanding of a
classification model’s performance by displaying the counts of true
positives, true negatives, false positives, and false negatives. It is
beneficial for calculating other performance metrics (Tougui
et al., 2020).

Model Hyperparameters (ranges)

Random forest

features € {“sqrt,” “log2”}

n_estimators € {100, 200, 300}; max_depth € {10, 20, 30, None}; min_samples_split € {2, 5, 10}; min_samples_leaf € {1, 2, 4}; max_

Gradient boosting n_estimators € {100, 200, 300}; learning_rate € {0.01, 0.1, 0.2}; max_depth € {3, 4, 5}

XGBoost n_estimators € {100, 200, 300}; learning_rate € {0.01, 0.1, 0.2}; max_depth € {3, 4, 5}; subsample € {0.6, 0.8, 1.0}; colsample_bytree €
{0.6, 0.8, 1.0}; min_child_weight € {1, 3, 5}

LightGBM num_leaves € {15, 31, 63}; learning_rate € {0.01, 0.05, 0.1}; n_estimators € {100, 200, 400}; feature_fraction € {0.6, 0.8, 1.0}; bagging
fraction € {0.6, 0.8, 1.0}; min_child_samples € {10, 20, 50}

CatBoost iterations € {200, 500, 1,000}; learning_rate € {0.01, 0.05, 0.1}; depth € {4, 6, 8}; 12_leaf_reg € {1, 3, 5, 10}

Extra trees

features € {“sqrt,” “log2”}

n_estimators € {100, 300, 500}; max_depth € {None, 10, 20, 30}; min_samples_split € {2, 5, 10}; min_samples_leaf € {1, 2, 4}; max_

HistGradientBoosting

max_depth € {None, 10, 20}; learning_rate € {0.01, 0.05, 0.1}; max_leaf_nodes € {31, 63, 127}; min_samples_leaf € {20, 50, 100}

AdaBoost

n_estimators € {50, 100, 200, 400}; learning_rate € {0.01, 0.1, 0.5, 1.0}; base_estimator: DecisionTreeClassifier(max_depth € {1, 2, 3})

Deep neural network (DNN)

hidden_units € {(64,32), (128,64), (256,128)}; activation € {relu, tanh}; dropout € {0.0, 0.2, 0.5}; 12 € {1e-4, le-3}; optimizer € {adam,
sgd}; learning_rate € {le-3, 5e-4}; epochs € {50, 100, 200}; batch_size € {32, 64}

Voting classifier

voting € {“hard,” “soft”}; weights € e.g. {(1,1,1), (2,1,1)}; (main hyperparameters, plus component model grids)
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The ROC Curve plots the True Positive Rate (Recall) against the
False Positive Rate at various threshold settings. The AUC represents
the likelihood that the model ranks a random positive instance higher
than a random negative one (Tiwari et al., 2022). A higher AUC
reflects a better-performing model, and we employed this performance
metric as a key measure. To sum up, accuracy is a reliable metric when
the classes are balanced. Precision is essential when the cost of false
positives is substantial. Recall is vital when the cost of false negatives
is critical. The F1-score is useful when precision and recall need to be
balanced. AUC-ROC provides an overall measure of model
performance across all thresholds.

AUC-ROC was selected as the primary evaluation metric due to its
robustness in the context of imbalanced datasets, which are common in
medical prediction tasks. Unlike simple accuracy, which can be
misleading when the majority class dominates, AUC-ROC evaluates a
models ability to distinguish between positive and negative classes across
all possible classification thresholds. This threshold-independence
provides a more comprehensive assessment of model performance, as it
considers both sensitivity (true positive rate) and specificity (false positive
rate) simultaneously. In highly imbalanced datasets, a model may achieve
high accuracy simply by predicting the majority class nevertheless fail to
identify minority cases of clinical interest. AUC-ROC, by summarizing
the trade-off between true and false positives over all thresholds, offers a
more reliable measure of discriminative power and is widely
recommended for medical and imbalanced classification problems.

4.2 Analysis of results and comparisons

The combined dataset incorporated records from two major
sources, totaling approximately 323,680 samples. During preprocessing,
the dataset was subjected to several cleaning operations such as filtering
out incomplete records and harmonizing feature spaces. This final
dataset was then used for subsequent model training and validation.
The initial dataset consisted of 264,808 samples of class 0 (negative
cardiovascular disease) and 58,872 samples of class 1 (positive
cardiovascular disease). After removing BMI outliers and filling
missing values with mean values, the data size was totally 311,710. This
data was split into a training set (249,368 samples), a validation set
(31,171 samples), and a test set (31,171 samples). All experimental
results were shared for data without SMOTE and after applying
SMOTE, allowing us to compare the performance metrics for the
original data and the data after addressing the imbalance.

Before applying SMOTE, the class distribution in the training set
was 204,914 samples of class 0 and 44,454 samples of class 1. In the
validation set, there were 25,614 samples of class 0 and 5,557 samples
of class 1, while the test set had 25,615 samples of class 0 and 5,556
samples of class 1. After applying SMOTE, the training set was
balanced to 204,914 samples per class. The validation and test sets
remained untouched and retained their original class distributions (no
resampling was performed), ensuring unbiased evaluation.

To ensure robust and fair model comparison, we performed
hyperparameter optimization for each classifier using GridSearchCV
with cross-validation. For every model, a comprehensive and model-
appropriate search space was defined, covering the most influential
hyperparameters as recommended in the literature and by best
practices for each algorithm. Table 2 summarizes the main
hyperparameters and their respective search ranges for all models,
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including tree-based ensembles (Random Forest, Extra Trees,
HistGradientBoosting), boosting methods (Gradient Boosting,
XGBoost, LightGBM, CatBoost, AdaBoost), DNN, and ensemble
meta-learners (Voting Classifier). These grids were selected to balance
computational feasibility with sufficient coverage of the parameter
space, and they match the settings implemented in our codebase. This
approach ensures that each model is tuned to its optimal configuration
within a transparent and reproducible framework, facilitating direct
and meaningful performance comparisons across diverse machine
learning paradigms.

The ROC curves demonstrate the performance of various machine
learning classifiers before and after applying SMOTE. Notably,
classifiers such as Random Forest and Gradient Boosting show an
improvement in their AUC scores, indicating enhanced discrimination
ability between the classes after SMOTE is applied. The two ROC
curves in Figure 1 illustrate this performance change. Before SMOTE,
classifiers like Random Forest and Gradient Boosting achieved AUC
scores of 0.8660 and 0.8981, respectively.

After applying SMOTE, improvements are evident, with Random
Forest's AUC increasing to 0.89 and Gradient Boosting’s to 0.93. This
indicates enhanced performance in handling imbalanced data.
Additionally, classifiers like XGBoost, LightGBM, CatBoost, and
Voting Classifier show significant gains, reflecting the positive impact
of SMOTE on model performance by better addressing class
imbalances and improving the detection of the minority class. Except
for the DNN model, all other applied models enhanced their ROC
performance metrics after SMOTE as shown in Figure 1.
Corresponding Precision-Recall (PR) curves per data source are
provided in Supplementary Figure 2. ROC (left) and Precision-Recall
(PR, right) curves for the BRFSS and CVD datasets using the CatBoost
model trained on SMOTE-balanced training data and evaluated on
untouched test sets.

To further evaluate the reliability of probability estimates,
model calibration was assessed by computing the calibration slope,
intercept, and Brier score for the top-performing models
(CatBoost, LightGBM, and Gradient Boosting). CatBoost exhibited
the most favorable calibration (slope & 0.97, intercept ~ 0.01, Brier
score = 0.084), followed by LightGBM and Gradient Boosting,
indicating that the predicted probabilities were well aligned with
observed outcomes.

The confusion matrices for various classification algorithms, both
before and after applying SMOTE, reveal significant insights into their
performance on the test set as displayed in Figure 2. The significant
counts in the lower-left cells of the matrices show that prior to the
SMOTE application, the models often had a bigger number of false
negatives. This imbalance highlights the algorithms’ tendency to
mistakenly identify positive cases as negative, a common problem
when working with imbalanced datasets. Almost all models show a
noticeable improvement in the classification of positive events after
using SMOTE. The lower-left cells of the confusion matrices show
lowered counts, indicating a considerable decrease in the number of
false negatives. This enhancement demonstrates how well SMOTE
balances the dataset and improves the models’ capacity to recognize
positive instances.

Remarkably, algorithms like Light GBM and CatBoost consistently
show balanced classification results with performance gains, as seen in
Figure 2, by the almost equal distribution of true negatives and true
positives in their confusion matrices after SMOTE. These findings
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FIGURE 1
Comparison of model performance before and after applying SMOTE. The results reflect models trained on SMOTE-balanced training data and
evaluated on the original, untouched validation and test sets.
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Confusion matrices of models trained with SMOTE-balanced training data and tested on the original, imbalanced validation and test sets.

TABLE 3 Test performance metrics before SMOTE in the training data.

Model Accuracy Precision Recall F1-score ROC AUC
Random forest 0.6841 0.8891 0.4207 0.5711 0.8660
Gradient boosting 0.7004 0.9367 0.4297 0.5892 0.8981
XGBoost 0.7019 0.9351 0.4339 0.5928 0.8899
LightGBM 0.7034 0.9335 0.4379 0.5962 0.8954
CatBoost 0.7063 0.9379 0.4420 0.6008 0.9008
Extra trees classifier 0.6705 0.8857 0.3915 0.5430 0.8557
HistGradientBoosting 0.6883 0.9380 0.4033 0.5641 0.8863
AdaBoost 0.6749 0.9341 0.3763 0.5364 0.8894
Deep NN 0.6535 0.9332 0.3307 0.4884 0.8588
Voting classifier 0.6864 0.9325 0.4018 0.5616 0.8968

emphasize the importance of addressing class imbalance to enhance
the predictive performance of machine learning models in binary
classification tasks.

Additionally, detailed performance metrics for the test datasets
before and after applying SMOTE are provided in Tables 3, 4.
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These tables show that without SMOTE, the overall
performance was lower in terms of Recall and F1 metrics due to
the imbalanced data. CatBoost and LightGBM demonstrated the
best performance after applying SMOTE, with CatBoost achieving
the highest scores in Recall, F1, and ROC-AUC. The differences

frontiersin.org


https://doi.org/10.3389/frai.2025.1694450
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Kahraman

TABLE 4 Test performance metrics after SMOTE in the training data.

10.3389/frai.2025.1694450

Model Accuracy Precision Recall F1-score ROC AUC
Random forest 0.8077 0.8219 0.7856 0.8033 0.8947
Gradient boosting 0.8579 0.8197 0.9176 0.8659 0.9346
XGBoost 0.8508 0.8207 0.8975 0.8574 0.9322
LightGBM 0.8609 0.8246 0.9169 0.8683 0.9413
CatBoost 0.8632 0.8257 0.9209 0.8707 0.9438
Extra trees classifier 0.7941 0.8217 0.7511 0.7848 0.8816
HistGradientBoosting 0.8399 0.8065 0.8942 0.8481 0.9203
AdaBoost 0.8183 0.7887 0.8695 0.8271 0.9009
Deep NN 0.7943 0.7759 0.8277 0.8010 0.8767
Voting classifier 0.8517 0.8271 0.8894 0.8571 0.9256

between Tables 3, 4 highlight significant improvements in model
performance, particularly in Recall and F1 scores. When SMOTE
is applied to address class imbalance, it provides more balanced
and effective classifiers based on the experimental results.

To quantify statistical uncertainty, 95% confidence intervals
were computed using patient-level bootstrap resampling
(n =1,000). The CatBoost model achieved an AUC of 0.944 (95%
CI:  0.940-0.948), F1=0.872 (95% CI: 0.868-0.876),
precision = 0.827 (95% CI: 0.823-0.831), and recall = 0.921 (95%
CI: 0.917-0.925). LightGBM and Gradient Boosting models
yielded comparable performance, with overlapping confidence
intervals, confirming the robustness of the observed differences.
Furthermore, calibration analysis indicated that CatBoost achieved
the most favorable calibration (slope = 0.97, intercept ~ 0.01, Brier
score = 0.084), followed by LightGBM and Gradient Boosting.
Detailed calibration metrics for all models are provided in
Supplementary Table 1. All metrics were accompanied by 95%
confidence intervals estimated via patient-level bootstrap and
detailed results are presented in Supplementary Table 2. To quantify
model variability, 95% confidence intervals for AUC, F1, precision,
and recall were computed via 1,000 patient-level bootstrap
resamples on the untouched test set.

The application of SMOTE resampling significantly improved
the classification performance metrics across all evaluated models.

Paired-sample t-tests confirmed that Accuracy [t(9) = —32.63,
p <0.001], Precision [t(9)=11.96, p<0.001], and Recall
[t(9) = —27.72, p <0.001] all exhibited statistically significant

increases after SMOTE balancing, demonstrating the effectiveness
of this technique in mitigating class imbalance and enhancing
overall predictive reliability. To further assess differences among
the classifiers, paired t-tests and McNemar’s tests were conducted
on the top-performing models. The results indicated that CatBoost
significantly outperformed LightGBM (t = 3.42, p = 0.007; x> =
9.65, p=0.0019), while no significant difference was found
between LightGBM and XGBoost (p > 0.05). These findings
confirm that CatBoost’s superiority is statistically supported rather
than a result of random variation.

With the application of SMOTE, CatBoost and LightGBM
maintain the highest validation and test accuracy, suggesting
robustness in handling imbalanced data. Specifically, CatBoost and
the Voting Classifier show superior precision, while CatBoost and
Gradient Boosting lead in recall, demonstrating their ability to
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capture most true positives. Additionally, CatBoost, LightGBM,
and Gradient Boosting continue to show F1 scores, effectively
balancing precision and recall. CatBoost and LightGBM also lead
in AUC-ROQC, indicating their superior discriminative ability. In
summary, CatBoost, LightGBM, and Gradient Boosting emerge as
top-performing classifiers across most metrics, demonstrating
robust performance after applying SMOTE. The performance
metrics for various classifiers, both with and without the
application of SMOTE, reveal significant insights into their
effectiveness through multiple evaluation criteria as illustrated in
Supplementary Figures 3, 4 for training, validation, and test
portions. All the experiments were performed on a computer with
an AMD Ryzen 7 Pro 4.20 GHz processor and 32 GB of RAM in a
Python 3 environment.

Supplementary Figure 3 illustrates the comparative performance
of all 10 classifiers before applying SMOTE resampling in the
training set. The results show that ensemble and boosting-based
models such as CatBoost, LightGBM, and XGBoost already achieve
higher accuracy, F1-score, and ROC AUC than the other methods,
while single estimators and the deep neural network perform
relatively lower. These pre-balancing outcomes highlight the
baseline strength of gradient-boosting approaches even without
class-imbalance correction.

Supplementary Figure 4 presents the corresponding results after
SMOTE balancing, where a consistent performance increase is
observed across all models, particularly in Recall and F1-score. The
improvement is most pronounced for CatBoost and LightGBM,
confirming that resampling enhanced the classifiers’ sensitivity to
The
Supplementary Figures 3, 4 clearly demonstrates the positive effect of

minority-class  instances. visual comparison between
SMOTE on overall predictive stability and fairness among models.
While the proposed model achieved promising results, several
limitations should be acknowledged. First, the merged dataset
combined self-reported behavioral data from the BRESS Diabetes
Health Indicators with clinically measured records from the
cardiovascular disease dataset, potentially introducing domain
heterogeneity and reporting bias. Self-reported variables such as
smoking, physical activity, and diabetes status may contain subjective
inaccuracies compared to clinically verified measurements. Second,
restricting the datasets to only 10 overlapping features was necessary
for compatibility but resulted in the loss of several potentially

informative predictors, including detailed cholesterol subtypes, glucose
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levels, and alcohol consumption frequency. This reduction may have
limited the model’s predictive depth. Additionally, the absence of an
external validation cohort restricts the generalizability of our findings
to other populations or healthcare settings. Lastly, although the merged
dataset integrates two heterogeneous sources, we did not perform
explicit cross-source evaluation (e.g., training on one source and testing
on the other). Consequently, the generalization claims are based on
pooled data performance and should be interpreted cautiously. Future
studies should include source-stratified validation to more rigorously
assess cross-domain generalization.

Despite these limitations, the proposed framework demonstrates
the feasibility of integrating large-scale, multi-source health data for
cardiovascular risk prediction. Such an approach could be further
adapted for integration within Clinical Decision Support Systems
(CDSS) to assist healthcare professionals in early cardiovascular risk
screening and personalized intervention planning. By integrating
automated prediction models with electronic health record platforms,
CDSS tools could dynamically assess patient risk in real time,
providing data-driven guidance to clinicians while maintaining
interpretability and transparency. Future work will focus on external
validation with additional clinical datasets and exploring model
deployment within CDSS infrastructures to bridge the gap between
data-driven research and clinical application. The extensive grid
search across multiple ensemble and boosting frameworks required
substantial computational resources and time. Training and
optimization were performed on high-performance hardware, as the
large dataset size and parameter complexity of models such as
CatBoost, LightGBM, and XGBoost imposed notable memory and
processing demands. These computational challenges emphasize the
need for efficient model selection strategies and scalable
implementations in future research.

5 Conclusion

In this study, we merged two large publicly available health datasets
to inspire future research addressing the challenge of finding substantial
medical datasets, particularly in the health industry. Using an extensive
dataset of 323,681 medical records, we applied innovative machine
learning algorithms to predict CVD effectively. By utilizing diverse
machine learning models and employing SMOTE to address data
imbalance, we demonstrated significant improvements in prediction
accuracy. Our findings suggest that leveraging large and varied datasets
may enhance the robustness and consistency of machine learning
models within integrated datasets in CVD diagnosis.

To further improve early identification and diagnosis of
cardiovascular diseases using machine learning, future research should
focus on several key areas. First, integrating continuous patient
information with real-time health monitoring data could yield more
dynamic and timely predictions. Second, exploring deeper learning
architectures and advanced ensemble techniques may enhance
prediction accuracy and consistency. Additionally, as the use of
comprehensive healthcare records expands, addressing data privacy
and security concerns will become increasingly critical. Finally,
collaborating with healthcare professionals to develop user-friendly
decision support systems can facilitate the clinical deployment of these
models, ultimately improving patient outcomes and healthcare delivery.
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