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Large pre-trained language models have become a crucial backbone for many
downstream tasks in natural language processing (NLP), and while they are
trained on a plethora of data containing a variety of biases, such as gender
biases, it has been shown that they can also inherit such biases in their
weights, potentially affecting their prediction behavior. However, it is unclear to
what extent these biases also affect feature attributions generated by applying
“explainable artificial intelligence” (XAI) techniques, possibly in unfavorable
ways. To systematically study this question, we create a gender-controlled text
dataset, GECO, in which the alteration of grammatical gender forms induces
class-specific words and provides ground truth feature attributions for gender
classification tasks. This enables an objective evaluation of the correctness of XAI
methods. We apply this dataset to the pre-trained BERT model, which we fine-
tune to different degrees, to quantitatively measure how pre-training induces
undesirable bias in feature attributions and to what extent fine-tuning can
mitigate such explanation bias. To this extent, we provide GECOBench, a rigorous
quantitative evaluation framework for benchmarking popular XAI methods. We
show a clear dependency between explanation performance and the number of
fine-tuned layers, where XAI methods are observed to benefit particularly from
fine-tuning or complete retraining of embedding layers.
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1 Introduction

Large neural network architectures are often complex, making it difficult to understand
the mechanisms by which model outputs are generated. This has led to the development
of dedicated post-hoc analysis tools, commonly referred to as “explainable artificial
intelligence” (XAI). In many cases, XAI methods provide so-called feature attributions,
which assign an “importance” score to each feature of a given input (e.g. Ribeiro et al., 2016;
Lundberg and Lee, 2017; Sundararajan et al., 2017). In the Natural Language Processing
(NLP) domain, feature attribution methods in supervised learning settings are expected to
highlight parts of an input text (e.g., words or sentences) that are related to the predicted
target, such as a sentiment score.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1694388
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1694388&domain=pdf&date_stamp=2026-01-05
mailto:haufe@tu-berlin.de
https://doi.org/10.3389/frai.2025.1694388
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1694388/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wilming et al. 10.3389/frai.2025.1694388

However, it remains unclear to what extent feature attribution
methods help answer specific explanation goals, such as model
debugging (Haufe et al., 2024). With it, questions arise about
the correctness of feature attributions. One reason why it is
challenging to determine the correctness of attribution methods is
the tension between model-centric and data-centric explanations
(e.g. Murdoch et al., 2019; Chen et al., 2020; Fryer et al., 2020;
Haufe et al., 2024). In these scenarios, it is unknown how to define
notions of correctness in a principled manner; thus, the extent to
which feature attribution methods provide explanations that are
purely model-centric or data-centric is unknown. Empirical studies
on synthetic datasets have demonstrated that numerous feature
attribution methods fail to fulfill basic data-centric requirements,
such as highlighting features that have a statistical association with
the prediction target (also referred to as the Statistical Association
Property (SAP)) (e.g. Wilming et al., 2022; Oliveira et al., 2024;
Clark et al., 2024). Here, we adopt this data-centric view of assessing
the correctness of feature attributions and apply it to the NLP
domain.

Furthermore, within the NLP domain attribution methods are
typically applied to large pre-trained language models, which are
adapted to downstream tasks through transfer learning [e.g., BERT
(Devlin et al., 2019) and its variants (Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2018; Bugliarello et al., 2021; Dodge et al., 2020;
OpenAI, 2023)].

Pre-trained language models are commonly trained on large
corpora of text scraped from public and non-public sources,
including Wikipedia, Project Gutenberg,1 or OpenWebText.2

These large corpora contain a variety of biases, such as biases
against demographic groups (Beukeboom, 2014; Graells-Garrido
et al., 2015; Reagle and Rhue, 2011). It has been shown that such
biases affect model weights (Mitchell, 2007; Montañez et al., 2019)
and that text corpora exhibiting problematic biases are amplified
in large language models, such as BERT (e.g. Bordia and Bowman,
2019; Gonen and Goldberg, 2019; Blodgett et al., 2020; Nadeem
et al., 2021).

However, it remains unclear to what extent biases contained
in pre-training corpora are reflected in explanations provided
by feature attribution methods, potentially hindering them from
meeting specific correctness requirements such as the SAP with
respect to the target data distribution and prediction task. Using
the example of grammatical gender, we can imagine one particular
way in which pre-training biases might lead to incorrect feature
attributions or point to residual bias in fine-tuned models. In
a gender classification task, asymmetries in the frequencies of
specific words may be present in a pre-training corpus but not in
the target domain. For example, historical novels may be biased
toward male protagonists and depict women less frequently and
in more narrowly defined roles, often adhering to historical gender
norms. However, the association between, for example, role-specific
words and gender in these texts is irrelevant when it comes to
distinguishing grammatical gender (as well as for many other
tasks). A feature attribution method that highlights respective
words, thus suggesting the influence of pre-training biases.

1 https://www.gutenberg.org

2 https://github.com/jcpeterson/openwebtext

To study and quantify the data-centric correctness of feature
attribution methods and the influence of biases, we make
two key contributions: (1) GECO—a gender-controlled dataset
and (2) GECOBench—a quantitative benchmarking framework
to assess the correctness of feature attributions for language
models on gender classification tasks. Both contribute to the
future development of novel XAI methods, helping with their
evaluation and correctness assessment. An overview is shown in
Figure 1.

GECO3 is a gender-controlled dataset in which each sentence x
appears in three grammatically gendered variants: male xM , female
xF , and non-binary xNB. The three variants are identical apart from
gender-specific words such as pronouns. For example, consider the
sentence “She loves to spend time with her favorite cat.” We label
this sentence as “female (‘F’)” because it entails the pronouns “she”
and “her.” By replacing the pronouns with “he” and “his,” we define
the “male (‘M’)” counterpart of this sentence. Our approach to
creating sentences with minimal changes can be seen as similar to
counterfactual data augmentation (Kaushik et al., 2019; Liu et al.,
2021).

GECOBench4 is a workflow to quantitatively benchmark the
correctness of feature attributions, specifically evaluating XAI
methods for NLP classification tasks induced by GECO or similar
datasets. Here, we showcase the use of GECOBench, where BERT
(Devlin et al., 2019), a language model pre-trained on Wikipedia
data, serves as an exemplary language model. While this benchmark
can be extended to include more models, our primary focus is
on benchmarking explanation methods rather than the language
models themselves.

With the gender-controlled dataset GECO, we aim to construct
sentences composed of discriminative features (or words) and,
therefore, ground truth feature attributions that are gender-
balanced concerning the classification task. Further, it is known
that BERT suffers from gender biases (Nadeem et al., 2021; Ahn
and Oh, 2021). Thus, when using GECO as a test set, any residual
asymmetry in feature attributions can be traced back to biases
induced by pre-training. Via the data-centric notion of correctness,
we quantify this effect for different stages of retraining or fine-
tuning distinct layers of BERT’s architecture to investigate to
what extent retraining or fine-tuning BERT on gender-controlled
data can mitigate gender bias in feature attributions. In other
words, we analyze to what extent the correctness of feature
attribution is indicative of biases in models. By ensuring that the
distinctly trained models have equivalent classification accuracy
throughout the considered fine-tuning stages, we can assess how
these training regimes impact correctness performance with the
proposed dataset. Generally, we do not expect any XAI method
to perform perfectly, as data-centric correctness is only one goal
of interpreting machine learning models and not necessarily the
primary purpose of each explanation approach. Using GECO and
GECOBench, we aim to answer the following two main research
questions:

3 Available on OSF: https://osf.io/74j9s/?view_only=

8f80e68d2bba42258da325fa47b9010f.

4 All code, including dataset generation, model training, evaluation, and

visualization, is available at: https://github.com/braindatalab/gecobench.
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FIGURE 1

Overview of the benchmarking approach for evaluating the correctness of XAI methods. Starting from a clear definition of discriminative features that
induce statistical associations between features/words and the prediction target, we specify ground-truth explanations. With that, we craft a
gender-focused dataset, GECO, by sourcing text from Wikipedia and labeling and altering the grammatical gender of specific words. The resulting
training and validation datasets are used to train the BERT language model. The test dataset, together with the trained model, serves as input to the
XAI method, which outputs explanations for the test set. The word-based ground truth explanations, provided by the previous labeling process, are
then used to measure the correctness of each sentence’s generated explanations using the Mass Accuracy metric (Arras et al., 2022; Clark et al.,
2024, 2025).

RQ1: What is the performance of widely adopted XAI
methods in the regime of data-centric feature
importance given word/token-level ground truth
feature attributions?

RQ2: Does gender bias contained in pre-trained language
models affect data-centric explanation performance
of feature attribution methods, and if so, does this
effect depend on the selection of layers that are fine-
tuned or re-trained?

2 Related research

Although the applications of XAI have increased in the past
years (e.g. Lundberg et al., 2018; Jiménez-Luna et al., 2020; Tran
et al., 2021; Zhang et al., 2022), the problems to be addressed by
XAI have rarely been formally defined (Murdoch et al., 2019). In
particular, the widely used metaphor of identifying features “used”
by a model, measured through “faithfulness” or “fidelity” metrics
(e.g. Jacovi and Goldberg, 2020; Hooker et al., 2019; Rong et al.,
2022), can lead to fundamental misinterpretations, as such a notion
depends strongly on the structure of the underlying data generative
model and the resulting distribution of the (training) data (Haufe
et al., 2014; Wilming et al., 2023; Haufe et al., 2024). Wilming et al.
(2023) investigate such metrics, showing that many perturbation
and pixel-flipping methods fail to detect statistical dependencies or

other feature effects like suppressor variables (Friedman and Wall,
2005; Haufe et al., 2014), and are therefore unsuitable to directly
measure certain meaningful notions of explanation “correctness.”
To objectively evaluate whether a feature attribution method
possesses this property, the availability of ground truth data is
instrumental. Ground truth data for feature attributions in domains
such as image, tabular, and time series data have been developed in
the last few years (e.g. Kim et al., 2018; Ismail et al., 2019, 2020; Tjoa
and Guan, 2023; Agarwal et al., 2022; Arras et al., 2022). However,
most of these benchmarks do not present realistic correlations
between class-dependent and class-agnostic features (e.g., the
foreground or object of an image vs. the background) (Clark
et al., 2024), and often use surrogate metrics, such as faithfulness,
instead of directly measuring explanation performance. Other
works discuss the need for normative frameworks (Sullivan, 2024)
or studying data manipulation and its impact on XAI methods’
output (Mhasawade et al., 2024), rather than focusing on ground
truth feature attributions. Several NLP-related benchmarks have
been presented (DeYoung et al., 2020; Rychener et al., 2020);
however, they also have certain limitations. In the case of DeYoung
et al. (2020), faithfulness of the model is measured in alignment
with human-annotated rationales, which do not necessarily align
with statistical association—opening the door to cognitive biases.
Rychener et al. (2020) presents a benchmark dataset consisting
of a question-answering task, where the ground truth feature
attributions originate from a text context providing the answer.
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However, as the authors emphasize, defining a ground truth for
question-answering cannot depend on a single word but rather
on a context of words that provides the prediction models with
sufficient information. This work, therefore, does not provide
word-level ground truth feature attributions in the sense of
statistical association. Balagopalan et al. (2022) and Dai et al. (2022)
analyze the fairness behavior of XAI methods, focusing on model
fidelity, highlighting disparities between social groups, rather than
considering the correctness aspect of feature attributions.

Moreover, Joshi et al. (2024) propose a mitigation technique
for gender bias in natural language generation based on feature
attribution methods’ output. However, since no token-level ground
truth is provided, neither the correctness nor the selection-ability
of biased tokens by feature attributions can be verified. Gamboa
and Lee (2024) introduce the bias attribution score, an information-
theoretic metric for quantifying token-level contributions to
biased behavior in multilingual pre-trained language models,
demonstrating the presence of sexist and homophobic biases in
these models. Unlike GECO, neither a controlled counterfactual
dataset nor ground truth attributions for evaluating the correctness
of feature attribution methods are provided. Dehdarirad (2025)
propose a unified framework for evaluating feature attribution
methods in language classification models, comparing SHAP,
LIME, Integrated Gradients, and interaction-based approaches
across classical and transformer architectures to assess their
faithfulness (Samek et al., 2019; Jacovi and Goldberg, 2020) under
different datasets. However, a controlled dataset with ground truth
attributions is not provided. Given the tension between model-
centric and data-centric feature attributions, ground-truth-based
evaluations, as in GECOBench, enable a more principled study of
feature attribution methods in the context of language models.

In the NLP research community, the development of datasets
for bias detection, metrics for fairness and bias assessment,
and methods for bias mitigation is an active field of research.
For example, Bolukbasi et al. (2016) demonstrated that word
embeddings encode gender stereotypes and proposed subspace-
based debiasing, specifically learning a “gender direction” and
projecting it out from gender-neutral words. This was refined by
Prost et al. (2019), Dev et al. (2020) utilizes natural language
inference as a surrogate to study and mitigate biased inferences
arising from embeddings systematically. Further benchmarks for
social bias analysis in large pre-trained language models have been
proposed, for example, in Manzini et al. (2019), Nangia et al. (2020),
Costa-jussà et al. (2020), Nadeem et al. (2021), Parrish et al. (2022),
Jentzsch and Turan (2022), Zakizadeh et al. (2023), Navigli et al.
(2023), and Cimitan et al. (2024). Nevertheless, identical sentences
for each grammatical gender, which differ only in specific and
controlled positions across grammatical gender forms, providing
a ground truth for feature attribution benchmarking, are not
currently possible based on these datasets and benchmarks.

3 Materials and methods

To enable correctness evaluations for explanation methods,
we introduce the GECO dataset, which comprises a set of
manipulated sentences x in which grammatical subjects and
objects assume either their male xM , female xF , or non-binary

xNB forms. These three grammatically gendered variants give
rise to the downstream task of gender classification, with labels
“M,” “F,” and “NB,” which involves discriminating between the
variants of sentences and is represented by the dataset D
:= {(x(i,M), “M”), (x(i,F), “F”), (x(i,NB), “NB”)}n

i=1. Importantly, in all
cases, ground truth feature attributions on a word-level basis are
available by construction.

3.1 Data sourcing and generation

For the dataset, we restrict ourselves to source sentences with
a human subject, such that each sentence of our manipulated
dataset is guaranteed to have a well-defined gender label. This
type of sentence naturally occurs in books and novels. The
Gutenberg archive offers a vast collection of classical titles, enabling
users to identify relevant text content from well-known novels
and nonfiction works. To comply with licensing requirements
surrounding the listed books, we collect the content of their
corresponding Wikipedia pages and use only text pieces related
to the plot of the story. We query the list of the top 100 popular
books on the Gutenberg project and obtain their corresponding
Wikipedia pages. More details on data licensing are provided in
Supplementary material 1.1.1.

We create two ground truth data sets DS and DA. Each
contains 1, 610 sentences in a male, a female, and a non-binary
version, comprising 4830 sentences in total (see Table 1). DS
contains sentences in which only words specifying the gender of
the grammatical subject are manipulated to be either in male
xM

S , female xF
S , or non-binary xNB

S form, while DA contains
sentences in which all gender-related words are manipulated, which
we denote as xM

A , xF
A, or xNB

A , respectively. Table 2 shows an
exemplary sentence and the resulting manipulations employing this
labeling scheme. The dataset DS instantiates a substantially more
challenging task compared to dataset DA due to the reduction of
discriminative features. In this scenario, the model is required to
differentiate between subject and object when they have different
grammatical genders, necessitating a deeper understanding of the
sentence’s context and structure to address the task effectively.
Thus, employing both types of datasets allows us to investigate
whether the model inadvertently focuses on irrelevant parts of the
sentence for the prediction task, potentially introducing bias that
could impact explanation performance. The process for creating
these datasets consists of two consecutive steps: (i) Preprocessing of
scraped Wikipedia pages. (ii) Manual labeling is used to detect and
adapt relevant subjects and objects in a sentence. More details on
labeling and format are provided in Supplementary material 1.1.2.
Further details on hosting and future maintenance are provided in
the Supplementary material.

3.2 Bias assessment of GECO

We employ a co-occurrence metric (Zhao et al., 2017), a
rudimentary bias measure, highlighting the unbiasedness of GECO.
Specifically, we adopt the co-occurrence metric proposed by
Cabello et al. (2023) to measure gender bias in the datasets
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TABLE 1 Overview of the GECO dataset properties.

Dataset Manipulation scope # Base sent. # Variants Total Sent. # Train sent. # Test sent.

DS Subject words only 1, 610 3 (M, F, NB) 4, 830 3, 864 966

DA All gender-related words 1, 610 3 (M, F, NB) 4, 830 3, 864 966

Each dataset variant contains sentences in three gendered forms: male (M), female (F), and non-binary (NB).

TABLE 2 Example of the labeling and alteration scheme of sentences, showing the original sentence and the six manipulated versions.

Version Sentence

Original She touches the heart of her Aunt.

Subj. Female (xF
S ) She touches the heart of her Aunt.

Subj. Male (xM
S ) He touches the heart of his Aunt.

Subj. Non-binary (xNB
S ) They touch the heart of their Aunt.

All Female (xF
A) She touches the heart of her Aunt.

All Male (xM
A ) He touches the heart of his Uncle.

All Non-binary (xNB
A ) They touch the heart of their Parent’s Sibling.

Words marked as the ground truth for feature attributions are written in bold and color-coded depending on the grammatical gender.

DS and DA. For a given sentence x ∈ D, we approximately
measure the bias induced by grammatical gender when considering
the co-occurrence between the sentence’s gender terms and the
remaining words. First, we define a set of grammatical gender terms
A := {“she′′, “her′′, “he′′, “they′′, ...} and second, a word vocabulary
without grammatical gender terms V := W \ A, where the
vocabulary W contains all words available in a corpus of D; then,
the co-occurrence metric C is defined as follows:

C(D) =
∑

x∈D

∑

w∈V

∑

a∈A

1x(a, w). (1)

Furthermore, we consider the decomposition D = DM ∪ DF ∪
DNB with male DM , female DF and non-binary DNB sentences,
respectively. Then we define the bias, exemplarily for DF , according
to the co-occurrence metric C as

biasC(DF) = C(DF)
C(DF) + C(DM) + C(DNB)

. (2)

A perfect balance is achieved for biasC(DF) = 1/3, indicating
that the dataset is evenly distributed among men, women, and non-
binary individuals. Deviations from this value indicate the presence
of biases: values closer to 0 suggest a male or non-binary bias, while
those approaching 1 indicate a female bias.

3.3 Explanation benchmarking

The alteration of sentences induces discriminative features by
construction, and their uniqueness automatically renders them the
only viable ground truth feature attributions, defining two different
gender classification tasks represented by the two datasets DS and
DA. By extension, every word that is not grammatically gender-
related, and therefore not altered, becomes a non-discriminative
feature. We train machine learning models on these tasks and apply
post-hoc feature attribution methods to the trained models to obtain

explanations expressing the importance of features according to
each XAI method’s intrinsic criteria. When evaluating the XAI
methods, ground truth feature attributions are adduced to measure
if their output highlights the correct features. An overview is shown
in Figure 1.

3.3.1 Ground truth feature attributions
We consider a supervised learning task, where a model f :Rd →

R learns a function between an input x(i) ∈ Rd and a target y(i) ∈
{−1, 1}, based on training data D = {(x(i), y(i))}N

i=1. Here, x(i) and
y(i) are realizations of the random variables X = (X1, X2, ..., Xd)�

and Y , with joint probability density function pX,Y (x, y), and [d] :=
{1, ..., d} is the set of feature indices for a vector-wise feature
representation (Xi|i ∈ [d]). We formally cast the problem of
finding an explanation or important features as a decision problem
([d], F, f ) where F ⊆ [d] is the set of important features. Moreover,
an explanation or saliency map s :Rd → Rd should assign a
numerical value reflecting the significance of each feature. Then we
are interested in finding a test h :Rd → {0, 1}d, which one can use
to define the set of important features F := {j | hj(x) = 1, for j ∈
[d]}. For the concrete definition of the test and the resulting set of
important features, we adopt the approach of Wilming et al. (2022)
and Wilming et al. (2023) and give the following definition.

Definition 3.1 (Statistical Association Property (SAP)). Given the
supervised learning task from above, we say that an XAI method
has the Statistical Association Property (SAP) if for any feature Xj
with non-zero (or, significantly larger than zero) importance, there
also exists a statistical dependency between Xj and the target Y , i.e.,
Xj ⊥	⊥ Y .

This definition is based on the discussion that most feature
attribution methods implicitly or explicitly assume that such a
statistical association exists (Wilming et al., 2022). Now, defining
a test via hj(x) = 1 if Xj ⊥	⊥ Y and hj(x) = 0 otherwise, we
can summarize the set of potentially important features via their
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univariate statistical dependence with the target F = {j | Xj
⊥	⊥ Y , for j ∈ [d]}. Thus, each sentence of the GECO corpus
and its corresponding token sequence x(i) has a matching ground
truth map h(x(i)) ∈ {0, 1}d, representing corresponding important
tokens.

3.3.2 Feature attribution methods
Here, we focus on post-hoc attribution methods, which can be

broadly divided into gradient-based methods and local sampling
or surrogate approaches. Generally, these methods produce an
explanation s :Rd → Rd, which is a mapping that depends
on the model f and an instance x∗ to be explained. Gradient-
based methods locally approximate a differentiable model f
around a given input sequence x∗. From this class, we consider
Saliency (Simonyan et al., 2013), InputXGradient (Shrikumar et al.,
2017), DeepLift (Shrikumar et al., 2017), Guided Backpropagation
(Springenberg et al., 2015), and Integrated Gradients (Sundararajan
et al., 2017). Surrogate models, on the other hand, sample around
the input x∗ and use a model’s output f (x) to train a simple, usually
linear, model and interpret f through this local approximation. In
this work, we consider the surrogate methods LIME (Ribeiro et al.,
2016) and Kernel SHAP (Lundberg and Lee, 2017). Additionally,
our study includes Gradient SHAP (Lundberg and Lee, 2017), an
approximation of the Shapley value sampling method.

We also consider two baselines. Firstly, we set the explanation
for a particular input sequence x∗ to uniformly distributed noise
s(x∗) ∼ U(0, 1)d. This serves as a null model corresponding
to the hypothesis that the XAI method has no knowledge of
the informative features h(x∗). Secondly, we employ the Pattern
approach (Haufe et al., 2014; Wilming et al., 2022). We apply a
variant of it by employing the covariance between input features
and target sj(x∗) =Cov(x∗j , y). We call this the Pattern Variant, for
which we utilized the tf-idf (Sparck Jones, 1972) representation of
each input sequence x(i). Clearly, the explanation s is independent
of both the model f and an instance x∗; therefore, it yields the same
feature attributions for all input sequences.

We apply these XAI methods to all fine-tuning variants of the
BERT model and compute explanations on all test data sentences
using the default parameters of each method. For all XAI methods
except LIME, we use their Captum (Kokhlikyan et al., 2020)
implementation. For LIME, we use the author’s original code.5

3.3.3 Explanation performance quantification
For a given instance x∗ ∈ Dtest we aim to quantitatively

assess the correctness of its explanation s(x∗). The corresponding
ground truth h(x∗) defines a set of potentially important tokens
based on alteration of words; however, a model f might only use
a subset of such tokens for its predictions. Hence, an explanation
method that only highlights a subset of tokens that correspond to
ground truth, compared to all tokens of the ground truth, must
be considered equally correct. Expressed in information retrieval
terms, we are interested in mitigating the impact of false negatives
and emphasizing the impact of false positives on explanation
performance. False negatives occur when a token flagged as part

5 https://github.com/marcotcr/lime

of the ground truth receives a low importance score, and false
positives occur when a feature flagged as not part of the ground
truth receives a high importance score. The Mass Accuracy metric
(MA) (Arras et al., 2022; Clark et al., 2024) provides such properties
and is defined as

MA
(
h(x∗), s(x∗)

) =
d∑

j=1

sj(x∗)hj(x∗). (3)

Here the feature attributions s are normalized, such that∑d
j sj = 1 and s(x∗) ∈ [0, 1]d. The score MA

(
h(x∗), s(x∗)

) = 1
shows a perfect explanation, marking only ground truth tokens as
important. For instance, a sentence with only two ground truth
tokens h(x∗) = (1, 1, 0, 0)�, where the attribution for only one
ground truth token is high, say s(x∗) = (0.9, 0, 0, 0.1), the MA
metric still produces a high score of MA

(
h(x∗), s(x∗)

) = 0.9,
de-emphasizing false negatives. With respect to false positives,
high attributions to non-ground-truth tokens do not directly
contribute to the MA, yet, through the normalization of s, all other
tokens get assigned a relatively low (non-zero) importance, leading
to an overall low MA score, effectively penalizing false-positive
attributions.

Note, feature attributions s are calculated at the sub-word
level. To align them with word-level ground truth, we normalize
attribution scores across a sentence and then aggregate sub-word
contributions back to the word level. For example, the word
“benchmark” may be split into “bench” and “mark” by the BERT
tokenizer, with attributions sbench and smark, which are combined to
sbenchmark = sbench + smark.

3.3.4 Explanation bias quantification
The change in mass accuracy MA serves two purposes: (i) It

assesses the correctness of XAI methods’ output with respect to
the ground truth, and (ii) with deviations from the ground truth,
depending on which layer is fine-tuned or retrained, we can define a
notion of what we call explanation bias. Explanation bias is defined
via the relative mass accuracy (RMA)

RMAbaseline :=
MA

MAbaseline
, (4)

where the deviation of explanation performance with regard to a
baseline model is quantified, a zero-shot BERT model is used in this
work (see next Section 3.3.5).

3.3.5 Classifiers
In our analysis, we focus on the popular BERT model (Devlin

et al., 2019), though one can expand this work using other
common language models such as RoBERTa (Liu et al., 2019),
XLNet (Yang et al., 2019), or GPT models (Radford et al., 2018,
2019). For all experiments, we use the pre-trained uncased BERT
model (Devlin et al., 2019).6 To investigate the impact that fine-
tuning or retraining of different parts of BERT’s architecture

6 Hosted by Hugging Face: https://huggingface.co/google-bert/bert-

base-uncased.
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can have on explanation performance, we consider four different
training paradigms: (i) We roughly split BERT’s architecture into
three parts: Embedding, Attention, and Classification. The standard
approach to adopting BERT for a new downstream task is to train
the last classification layer, which we refer to as Classification,
while fixing the weights for all remaining parts of the model,
specifically Embedding and Attention. We thereby only train a
newly initialized classification layer and refer to the resulting
model as BERT-C. (ii) We additionally train the embedding
layer from scratch, resulting in a model called BERT-CE. (iii) In
the third model, BERT-CEf, the embeddings are fine-tuned as
opposed to newly initialized. In training paradigm (iv), we fine-
tune the Embedding and Attention parts of BERT’s architecture,
resulting in model BERT-CEfAf. Moreover, a zero-shot model
BERT-ZS, which experienced no gradient updates, was applied.
Lastly, a vanilla one-layer attention model, OLA-CEA, comprising
a lower-dimensional embedding layer, one attention layer, and a
classification layer, was trained from scratch only on the GECO
dataset. Therefore, without pre-training on external corpora, it
represents the simplest attention-based model free from residual
biases, providing a clean reference point against which more
complex, pre-trained models like BERT can be compared. All
models achieve an accuracy above or close to 80% on the test set.
Previous works on classification problems involving BERT suggest
that accuracy results ranging from 60 to 90% are standard (Gao
et al., 2019; Zheng and Yang, 2019; Yu and Jiang, 2019). Therefore,
we consider our results as evidence that the model has successfully
generalized to the given downstream task. Table 3 summarizes
model performance with average accuracy and standard deviation
over five models trained with different seeds. More details are given
in Supplementary material 1.2.1 and experiments’ configuration
file.7

4 Experiments and results

Our bias analysis on GECO shows that there is no gender
bias present in the DA dataset with biasC(DF

A) = biasC(DM
A ) =

biasC(DNB
A ) ≈ 0.33. For dataset DS we achieve the scores

biasC(DNB
S ) ≈ 0.3, biasC(DM

S ) ≈ 0.36, and biasC(DF
S ) ≈ 0.33. The

small difference from a perfect score can be attributed to labeling
errors but is also expected for the dataset DS due to its construction,
as we only change the human subject of the sentence; other gender
terms, referring to other protagonists in the sentence, are kept
unchanged.

Using the unbiased dataset GECO, we conduct experiments to
study the influence of biased models on explanation performance.
After fine-tuning and re-training the models (see Table 3), we
apply feature attribution methods. Figure 2 shows the explanation
performance of sample-based attribution maps s(x∗) produced by
the selected feature attribution and baseline methods.

In the following, we present the results toward the research
questions RQ1 and RQ2. Firstly, we present the results for
explanation performance, addressing questions about the data-
centric correctness of the analyzed feature attribution methods.

7 https://osf.io/74j9s/files/p23yh?view_only=8f80e68d2bba42258da325

fa47b9010f

Secondly, we present bias-related results, focusing on how the
correctness of feature attribution indicates biases in language
models.

Regarding RQ1: We observe a general difference in MA
between datasets DA and DS. While for the majority of attribution
methods, the performance for experiments on dataset DS stays
at a level lower than 0.25, experiments on dataset DA are
often able to offset these results into levels above 0.25 (see
Figure 2b). However, dataset DS has fewer altered gender words,
thus fewer discriminative tokens, leading to an overall degradation
of classification accuracy across all models (see Table 3), which
also impacts explanation performance. For all BERT models and
both datasets, Integrated Gradients consistently outperforms other
methods compared to the uniform random baseline. Though,
LIME and Gradient SHAP, are highest-performing methods as well,
compared to the Pattern Variant baseline, and with respect to the
data-centric SAP criterion (see Definition 3.1).

Comparing the OLA-CEA model to all BERT models, we
observe a stark contrast in explanation performance. Recall that the
OLA-CEA model was purely trained from scratch on the gender-
controlled dataset GECO; hence, it does not suffer from any gender
bias. The mass accuracy for the OLA-CEA model is similar between
the two datasets, with higher variance for the dataset DS. In addition
to relatively well-performing methods such as Integrated Gradients,
LIME, and Gradient SHAP, the MA of InputXGradient comes very
close to the Pattern Variant baseline, making it the best-performing
method.

Although no explanation method achieves the correctness
score of Pattern Variant, fine-tuning a biased embedding layer
for a downstream task has a high impact on the output for
some methods. The Pattern Variant is a model-independent global
explanation method that relies solely on the intrinsic structure
of the data itself. It performs optimally when the feature and
target relation is governed by a linear relationship, which is
mainly the case for GECO. This can be seen in Figure 4
of the Supplementary material, where we visualize the Pearson
correlation of the term frequency–inverse document frequency (tf-
idf) (Sparck Jones, 1972) representation of words and the target,
clearly showing how we infuse dependency through the word
alteration procedure.

Exemplarily, Figure 6 in the Supplementary material highlights
a sentence labeled as “female,” which is shown together with
its word-based feature attributions as bar plots for each fine-
tuning stage. We observe high variability in token attribution
between differently fine-tuned BERT models, and the pronoun
“she” receives relatively high importance compared to other words.
However, not all XAI methods agree on the importance of the token
“she”; for example, for model BERT-CE InputXGradient attributes
high importance to it, yet for model BERT-CEfAf, it attributes
rather high importance to the word “Bella.”

Regarding RQ2: In Figure 2a we can observe a consistent
pattern with respect to the fine-tuning stages across both data
scenarios DS and DA in terms of RMABERT-ZS performance.
Here, BERT-ZS is utilized as a baseline model, as it represents
the “untouched” pre-trained model without gradient updates.
Using it as a baseline allows us to quantify how the performance
of feature attribution correctness evolves as models become
increasingly specialized in the gender-classification task.
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TABLE 3 Overview of BERT transfer learning paradigms and the performance of the resulting models on the test datasets Dtest
A and Dtest

S .

Models Embedding Attention Classification Acc. (%) Dtest
A Acc. (%) Dtest

S

BERT-ZS Fix Fix Fix 65.2 ± 0.0 56.6 ± 0.0

BERT-C Fix Fix Re-trained 98.7 ± 0.1 90.2 ± 0.4

BERT-CE Re-trained Fix Re-trained 99.8 ± 0.1 96.6 ± 0.2

BERT-CEf Fine-tuned Fix Re-trained 99.8 ± 0.1 97.4 ± 0.3

BERT-CEfAf Fine-tuned Fine-tuned Re-trained 99.7 ± 0.1 98.8 ± 0.2

OLA-CEA Re-trained Re-trained Re-trained 99.5 ± 0.2 85.1 ± 14.6

Specifically, it highlights how fine-tuned models focus more
on the discriminatory tokens compared to the zero-shot model,
thereby providing a relative quantification of residual biases.
For the scenario DA, it is clear that the models BERT-CE and
BERT-CEf, where the embedding layer was trained or fine-tuned,
respectively, outperform BERT-C and BERT-CEfAf (see also
Figure 2b). This shows that the embeddings encode numerous
bias information and, indeed, influence data-centric explanation
performance.

5 Discussion

With GECO and GECOBench, we propose an open framework
for benchmarking the correctness of feature attributions of pre-
trained language models as well as aspects of fairness. Our initial
results demonstrate (a) differences in explanation performance
between feature attribution methods, (b) a general dependency of
explanation performance on the amount of re-training/fine-tuning
of BERT models, and (c) residual gender biases as contributors to
sub-par explanation performance.

More generally, the proposed gender classification problem is
a simplification that does not reflect the complexity and diversity
of gender identification in our world today; however, by providing
non-binary gendered sentences, we attempt to counteract historical
gender norms and provide a more inclusive basis for gender-
bias research. We view the gender classification task as a minimal
proxy for the gender bias issue, modeling all necessary properties
to analyze bias propagation into feature attribution methods. We
also view predicting a sentence’s gender as an auxiliary task,
which we consider more of an academic problem that naturally
arises from how we construct sentences but has, as we see it, no
immediate application or societal impact. While GECO provides
a controlled environment to study how gender bias influences
feature attributions, we acknowledge that our design inevitably
oversimplifies gender by restricting it to pronoun alterations
(e.g., he/she/they). This simplification risks reinforcing notions
of gender that fail to represent the full spectrum of identities.
In addition, gender-controlled datasets such as GECO could be
misused, for example, to build or evaluate models explicitly
aimed at gender classification rather than for bias analysis. To
mitigate this risk, we emphasize that GECO is intended solely
for studying the correctness assessment of feature attribution
methods under controlled bias conditions, not for downstream

applications involving sensitive demographic prediction. We view
GECO as a first step toward systematic evaluation of bias in
feature attributions, with the expectation that future work will
extend its coverage to more diverse text sources, richer notions of
gender, and broader fairness concepts. While direct extrapolation
to more complex applications is challenging, our results indicate
that feature attributions are indeed affected by gender bias. This
motivates caution in downstream tasks, such as sentiment analysis
or toxic language detection, where attribution methods might
incorrectly highlight some gender-related tokens due to bias
rather than semantic relevance. For example, this renders model
debugging tasks challenging, as developers and researchers cannot
distinguish between feature attributions that suggest “flaws” in the
model, arising from genuine model bias or from other artifacts of
the data.

When it comes to data selection, we are convinced that if
biased models are applied to semantically gender-neutral sentences,
no reliance on words representing classical gender roles can be
expected; thus, the potential impact of biases on feature attributions
cannot be measured. Thus, the sentences selected to create GECO
were intentionally taken from Wikipedia articles outlining the
storylines of classic novels, as they were likely to employ historical
gender norms. These are, indeed, prerequisites for assessing the
behavior of XAI methods’ output applied to language models
experiencing various levels of biases.

By creating grammatical female, male, and non-binary versions
of a particular sentence based on pronouns, we are aiming to break
such historical gender associations with respect to the classification
task represented by the datasets DS and DA. Single sentences may
still entail historical gender associations, which can be utilized by
biased machine learning models. However, the classification task
arising from GECO is gender-balanced, and models specialized
in that task, through successive fine-tuning and retraining of an
increasing number of layers, learn not to rely on such historical
gender associations, as altered pronouns are, by construction, the
only words associated with the prediction target. It can then be
shown that models basing their decisions on words other than
the words altered by us have learned stereotypical associations.
For example, consider the sentence “She prepares dinner in the
kitchen while he is outside fixing the car.” This sentence illustrates
“traditional” gender roles, where the woman is associated with
domestic tasks and the man with mechanical or manual labor,
reinforcing stereotypes. By altering the pronouns to use only
“she” or “he” pronouns, we break these stereotypical gender roles.
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FIGURE 2

Explanation performance of different post-hoc XAI methods applied to language models that were adapted from BERT using five different transfer
learning schemes. XAI evaluations were conducted on classified sentences in two gender classification tasks, represented by datasets DS and DA. The
baseline performance for uniformly drawn random feature attributions is denoted by Uniform Random. Pattern Variant denotes a model- and
pretraining-agnostic global explanation method. In (a), the relative change in explanation performance with respect to a zero-shot BERT model
shows consistent changes for models with fine-tuned embeddings. In (b), fine-tuning or retraining of the embedding layers of BERT leads to
consistent improvements in explanation correctness even when model performance is held constant for all models. Applying XAI methods to the
OLA model leads to overall higher explanation performance, with InputXGradient becoming on par with Pattern Variant.

However, only partially in this instance will one part of the
sentence always reflect traditional gender roles, e.g., “She prepares
dinner in the kitchen... .” Nevertheless, for the classification task

represented by the datasets DS and DA, only the altered words
represent a relationship with the prediction target. Biased language
models might then leverage words like “kitchen” or “car” for their
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decision, and unbiased models must only rely on altered words, and
historical gender norms embedded in sentences become irrelevant.
In future research, co-reference resolution could be an immediate
extension of GECO because it takes the same gender-manipulated
sentences and asks the model not just to classify gender per sentence
but to resolve references consistently across discourse, thereby
testing explanation correctness under contextual and bias-sensitive
conditions.

In terms of data-centric correctness assessments of feature
attribution methods, Pattern Variant indeed offers strong
theoretical justification for detecting important features according
to statistical associations (Haufe et al., 2014), establishing a solid
baseline for the upper bound of explanation performance in
our benchmark. Compared to the random baseline, we observe
two further high-performing attribution methods in the transfer
learning regime [in terms of SAP (see Definition 3.1)]: Integrated
Gradients and Gradient SHAP. Nevertheless, these methods still
do not achieve the same level of accuracy as Pattern Variant.
The reasons can be two-fold: (i) As shown by Clark et al.
(2024) and Wilming et al. (2023), feature attribution methods
consistently attribute importance to suppressor variables, features
not statistically associated with the target but utilized by machine
learning models to increase accuracy. And (ii), model bias impacts
feature attributions. We show that the gender bias in BERT leads to
residual asymmetries in feature attributions and forms a consistent
pattern of deviation in correctness, depending on which layer of
BERT was fine-tuned or re-trained, while still achieving equivalent
classification accuracy. As a result, updating embedding layers
has the strongest impact on feature attributions. These findings
indicate that embeddings contain significant bias affecting feature
attribution methods, and that the proposed data-centric notion of
correctness of feature importance is indicative of model bias.

While this is, to the best of our knowledge, the first XAI
benchmark addressing a well-defined notion of data-centric
correctness of feature importance in the NLP domain, we do not
consider it an exhaustive evaluation of feature attribution methods
but rather a first step toward this. A possible limitation of our
approach is that the criterion of univariate statistical association
used here to define important features or tokens does not account
for nonlinear feature interactions that are prevalent in many
real-world applications. However, for analyzing the fundamental
behaviors of feature attribution methods, this characteristic allows
for straightforward evaluation strategies, permitting us to embed
these statistical properties into the proposed corpus and establish a
ground truth of word relevance. Designing metrics for evaluating
explanation performance, particularly for measuring correctness, is
another area that warrants further research.

6 Conclusion

We have introduced GECO—a novel gender-controlled ground
truth text dataset designed for the development and evaluation
of feature attribution methods—and GECOBench—a quantitative
benchmarking framework to perform objective assessments of
explanation performance for language models. We demonstrated
the use of GECO and GECOBench by applying them to the
pre-trained language model BERT, a model known to exhibit

gender biases. With this analysis, we showed that the SAP
criterion is an effective condition to quantify the data-centric
correctness of feature attribution methods applied to the language
model BERT, and that residual biases contained in BERT affect
feature attributions and can be mitigated through fine-tuning
and retraining of different layers of BERT, positively impacting
explanation performance.
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