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Bone fractures are among the most prominent injuries in the modern world that
affect all ages and races. Traditional treatment involves radiographic imaging that
relies heavily on radiologists manually analyzing images. There have been efforts
to develop computer-aided diagnosis tools that employ artificial intelligence
and deep learning approaches. Existing literature focuses on developing tools
that only detect and classify bone fractures, rather than addressing the broader
issue of bone fracture management. However, evidence of scholarly works that
include treatment recommendations is still lacking. Furthermore, deep learning-
based object detectors that achieve state-of-the-art results are computationally
expensive and considered as black-box solutions. Developing countries, such
as Sub-Saharan Africa, face a shortage of radiologists and orthopedists. For this
reason, this paper proposes a methodological approach that uses a more efficient
object detection model to diagnose long bone fractures and provide prescription
recommendations. An enhanced anchoring process, known as adaptive anchoring,
is proposed to improve the performance of the Regional Proposal Network and
the object detection model. A Faster R-CNN model with ResNet-50/101 and
ResNext-50/101 backbones was used to develop an object detection model that
uses X-ray images as input. To understand and interpret the model’s decision, a
Gradient-based Class Activation Mapping method was used to assess the model's
learnability. The results indicate that the proposed adaptive anchoring approach can
improve computational efficiency, reducing training time by up to 29% compared
to the traditional approach. Model accuracy during training and validation ranged
between 94% and 987%. Overall, adaptive anchoring performed better when applied
with the ResNet-101 backbone, yielding an Average Precision of 92.73%, an F1
score of 96.01%, a precision of 96.80%, and a recall of 95.23%. The study provides
valuable insights into the use of computationally efficient deep learning models
for medical recommendation systems. Future studies should develop models to
diagnose fractures using input images from various modalities and to provide
prescription recommendations.
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1 Introduction

Bones constitute part of the skeletal system, protect internal
organs, and facilitate movements in vertebrate animals. However,
human bones are prone to fractures from automobile accidents and
falls. The World Health Organization (WHO) estimates the loss of
1.19 million lives, between 20 and 50 million non-fatal injuries,
costing 3% of gross domestic product yearly, due to road traffic crashes
(WHO, 2023). Common fracture patterns that medical professionals
are likely to encounter in their daily work include transverse, oblique,
spiral, comminuted, greenstick, and impacted fractures, as shown in
Figure 1. Fibula/tibia (leg) and femur (thigh) fractures are the most
common fractures in Africa, classified by fracture location (Pouramin
etal., 2019).

While traditional fracture treatment relies heavily on
radiographic imaging, this approach has limitations. Despite its
remarkable capabilities, the human eye often struggles to detect
minor fractures (Yadav and Rathor, 2020). Furthermore, doctors
who frequently deal with emergencies can be hindered by fatigue
(Tanzi et al., 2020). These limitations underscore the pressing need
for more advanced tools, such as computer-aided diagnosis (CAD),
in the treatment of fractures. Applying CAD tools powered by deep
learning models has significantly enhanced the performance of
radiographic diagnosis (Lindsey et al., 2018). Applying deep
learning approaches has yielded state-of-the-art performance
results in fracture diagnosis (Ma and Luo, 2021). These
advancements hold immense promise for the future of healthcare.
The success of deep learning in diagnosis led to the introduction of
recommendation systems to enhance personalized healthcare
(Lichtner et al., 2023; Nayak et al., 2023; Wang and Qian, 2021).
Developing countries, such as those in SSA, face a shortage of
radiologists (Laage Gaupp et al., 2019) and orthopedists (Wilhelm
etal., 2017). Applying deep learning models to fracture diagnosis—
including prescribing recommendations—may significantly
enhance healthcare delivery in resource-limited environments.
However, deep learning models that guarantee state-of-the-art
performance results are known to be computationally expensive
(Thompson et al., 2023). There have been efforts to make deep
learning models smaller, faster, and much better than traditional
ones (Menghani, 2023). Furthermore, deep learning models are

known to lack transparency and explainability in their predictions.

10.3389/frai.2025.1692894

This has become a significant concern for practitioners when they
cannot tell how models make predictions and the key features that
lead to a specific decision.

This paper proposes an enhanced multi-class object detection
model with adaptive anchoring for fracture diagnosis, with
prescription recommendations as a second opinion to radiologists
and surgeons. Radiologists labeled the collected X-ray images, and
orthopedists suggested prescription recommendations. The
Regional Proposal Network (RPN) was modified to guide the
anchoring process and avoid searching areas where fractures are
unlikely to be located. This study selects the standard surgical
methods based three
recommendations. First, patients are skeletally mature, and X-ray

on assumptions to implement
images of only adult patients are included. Second, the distal
neurovascular status is intact, allowing for limb salvage. Third,
fractures are classified as open or closed, from Gustilo-Anderson I
IIIA.

immobilization, such as casting or splinting. Other standard

to Impacted fractures are typically treated with
surgical methods are intramedullary nailing (Shen and Tejwani,
2024) and plate osteosynthesis (Hansmann, 1886). Fracture
patterns and surgeon preferences are often applied to select the
optimal treatment of bone fractures (Hurley et al., 2023). To
address explainable artificial intelligence (XAI), a Gradient-based
Class Activation Mapping (Grad-CAM) method was used to
examine how the model makes predictions from input images. The
main contributions of this paper can be summarized in four

aspects:

o The demographic of bone fractures to characterize the
distribution in developing countries is documented.

« A modified anchoring process, called adaptive anchoring, to
improve the RPN and performance of the object detection model
is proposed.

o An enhanced multi-class object detector using bounding box
regression is trained for fracture diagnosis with prescription
recommendations.

o The Grad-CAM method is applied to explain how the model
makes predictions from the given input images.

The remaining part of the paper is organized as follows: Section 2
presents the materials and methods used in this study. Section 3

Transverse

Comminuted Impacted

FIGURE 1

Common fracture patterns.
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presents the results of this study’s discussions. Section 4 provides a
conclusion and recommends future research.

2 Materials and methods

2.1 Ethics statement

This study was approved by the ethics committee governed by
three institutions: The Centre for Education Development in Health
(CEDA), Kibongoto Infectious Diseases Hospital (KIDH), and the
Nelson Mandela African Institution of Science and Technology
(NM-AIST), letter No: KNCHREC/00068/11/2022 issued January
18th, 2023. Multi-view X-ray images were collected from the
Kilimanjaro Christian Medical Centre (KCMC) in Kilimanjaro and
the Muhimbili Orthopedic Institute (MOI) in Dar es Salaam,
Tanzania.

2.2 Data collection

Digital Imaging and Communication in Medicine (DICOM)
format was used to store captured X-ray images. Images were
stored together with the patient’s medical records in the health
information system. An Open Health Imaging Foundation (OHIF)
web platform was used to extract and convert DICOM images.
The photos were saved in JPEG and PNG formats, with randomly
generated file names for de-identification. A separate index file
was created to map images and their corresponding labels. Bone
fracture labeling was conducted on long bones, including the
radius, ulna, femur, and tibia, to annotate the presence and
anatomical locations of fractures. Five board-certified senior
radiologists independently reviewed images for fracture
classification. The standard radiological criteria for fracture
diagnosis, including assessment of cortical disruption and
displacement, were applied during labeling. To assess inter-rater
reliability, Cohen’s Kappa coefficient was calculated and found to

be 0.85, indicating strong agreement. An orthopedic surgeon
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lastly reviewed the images and included the treatment
recommendations.

2.3 Dataset

The Robo flow online tool was used to draw bounding boxes on
X-ray images and generate Tensor Flow Object Detection format files
to train an object detection model. A total of 4,014 images of long
bones, comprising 864 forearms (ulna and radius), 414 upper arms
(humerus), 1,530 legs (fibula and tibia), and 1,206 thighs (femur),
were collected between October 2022 and September 2023. The
dataset was split into three non-overlapping image sets with a ratio of
60:20:20 for training, validation, and testing, as recommended for
studies involving deep learning models (Muraina, 2021). Stratified
10-fold cross-validation was used to address class imbalance and
ensure robust results. Figure 2 summarizes the training pipeline of an
object detector.

Data augmentation techniques were applied during
preprocessing to improve model generalization. Variations of the
same image were created through geometric transformations and
colour transformations. Geometric transformations include
rotation, random cropping (80%), scaling, and horizontal flipping
(p = 0.5). Colour transformations include brightness, contrast,
within  #20%. These data

augmentation techniques simulate real-world variations, thereby

and saturation adjustments
enhancing the model’s robustness. Augmentation was confined
to the training split in each fold, with no leakage across folds.
Table 1 summarizes the dataset and augmentation ranges for each
class, grouped according to the corresponding bone fracture
treatment.

The classes pose a severe imbalance challenge, especially given
that class I accounts for around 13% of the total dataset. Per-class
support and cost-sensitive strategy were used to rebalance the
outcomes of model decisions. Underrepresented classes were
penalised more heavily than overrepresented classes. Table 2
summarizes the class support and weights used during sampling to
handle class imbalances.

Validation

P

Overall Dataset
4014 images

Preprocessing

FIGURE 2
Training pipeline of the multi-class object detector.

e

20% W
“O‘OE% Testing

Trained
v Model
- S:j Deployable
-  Model
New
7’\ I® j:‘ Cases
=11 Automated
=_ Diagnosis
Report

Frontiers in Artificial Intelligence 03

frontiersin.org


https://doi.org/10.3389/frai.2025.1692894
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Migayo et al.

TABLE 1 Dataset distribution and augmentation range for each class.

10.3389/frai.2025.1692894

Recommendations Testing Training Augmented
I ORIF FAD 522 104 314 1,620
11 ORIF IMN 1,004 201 602 3,020
1 ORIF plate 1,485 297 891 4,400
v Casting 1,004 201 602 4,000

TABLE 2 Class support and class weight to address the imbalance
challenge.

Class Recommendations Class Class
support weight

I ORIF FAD 314 1.76

i ORIF IMN 602 0.92

1I ORIF plate 891 0.62

v Casting 602 0.92

2.4 Treatment recommendations

Throughout the study, standard surgical methods were applied to
implement the recommendations. However, in some cases, fracture
management may vary depending on resource availability and the
surgeon’s preference. Table 3 summarizes standard surgical methods
applied to implement treatment recommendations for bone fractures.

We implemented a hierarchical rule-based classifier to map
fractures into four treatment-strategy categories (casting, ORIF-FAD,
ORIF-IMN, and ORIF-Plate). The model uses structured descriptors
derived from imaging annotations—including fracture location,
pattern complexity, displacement, comminution, and morphological
stability tags—to evaluate eligibility for each treatment class. Each
class is associated with an inclusion-exclusion rule set derived from
established orthopedic taxonomies. These rules do not produce
clinical recommendations but serve as deterministic criteria for
benchmarking automated labeling and evaluating model consistency
relative to expert-assigned categories.

2.5 Model selection

An object detection model for fracture diagnosis was implemented
using a deep convolutional neural network as the backbone network.
ResNet (He et al., 2016) was implemented as the backbone, as it is
among the prominent models for fracture detection (Meena and Roy,
2022). An object detector containing the Faster R-CNN model with a
ResNet backbone for feature extraction guarantees a better
performance (Tahir et al., 2021).

2.6 Adaptive anchoring

This paper proposes an adaptive anchoring Faster R-CNN for
bone fracture diagnosis. After scrutinizing X-ray images containing
long bone fractures, it is revealed that the Region of Interest (ROI) is
often positioned relatively close to the center of the image. The
number of anchors is significantly reduced by focusing on a small

Frontiers in Artificial Intelligence

TABLE 3 Surgical methods for treatment recommendations.

Fracture location

Skeletal part Proximal Mid- Distal
third third third
Femur (thigh) ORIF FAD ORIF IMN ORIF plate
Fibula and Tibia (leg) ORIF plate ORIF IMN ORIF plate
Humerus (upper arm) ORIF plate ORIF IMN ORIF plate
Urna and radius (forearm) ORIF plate ORIF plate ORIF plate
Any impacted fracture Casting Casting Casting

area. Therefore, the overall efficiency of the anchoring process can be
improved.

Input images are loaded, and features are extracted using a backbone
network. The image features output from the backbone network are
considered inputs for the RPN network. Conventionally, RPN scans the
input image and generates anchors across the image. This paper
introduces adaptive anchoring to guide the anchoring process and avoid
areas where fractures are unlikely to occur. Given the nature of X-ray
images containing long-bone fractures, the fractured regions can be
located within an area after omitting a portion on either side of the
image, as well as at the top and bottom. Figure 3 illustrates the possible
location of fractured regions after dividing an image into nine sectors.

Given an image centered at (x,y) with height 4 and width w, by
avoiding 33% of the width on either side and 16.5% on the top and
bottom, the area for RPN to scan can be guided within the four
coordinates beginning with the top-left corner by considering the
following Equations 1-4.

A=(x-0.17w,y +0.34h) 1)
B=(x+0.17w,y+0.34h) )
C=(x+0.17w,y—0.34h) (3)
D=(x—0.17w,y—0.34h) (4)

Algorithm 1 summarizes the entire adaptive anchoring process. The
input images are in grayscale and have low brightness, which hinders
feature extraction. The signal-to-noise ratio and detection features can
be improved by applying brightness normalization to the images. This
approach has been used in similar studies that apply object detection for
bone fracture diagnosis (Wang and Huang, 2022). Figure 4 provides the
functional structure of the proposed object detection model.

Equation 5 was used to implement brightness normalization. The
scaling factor is given as K, where r represents the value of a pixel in a
particular image, #in is the minimum pixel value, and r, is the

frontiersin.org
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Upper arm Lower arm

FIGURE 3
Location of fractured regions.

Input: image containing a long bone
Output: candidate region for RPN
Method: proposed algorithm:
1: Compute center (x,y), height h, and width w
2: Compute new coordinates

y1 < iy h)

Y2 < ()

X1 < fa(x,w)

X < falx,w)
3: Normalize brightness on images
4: Give coordinates of the candidate region

(e, ¥1), (2, y1), (2, ¥2), (1, ¥2) < F(f1 far f3 fa)

ALGORITHM 1
Adaptive anchoring to guide RPN

maximum pixel value. Pixel values are normalized within the range of [0,
1] with a scaling factor K applied to enhance brightness (setting K > 1)
or reduce brightness (setting K < 1), otherwise set to 1 in deal cases.

S:K*& (5)

"max ~ "min
2.7 Evaluation metrics
The Average Precision (AP) and F1 score were used as evaluation
criteria in this study, along with accuracy, precision, and recall. These

metrics are commonly used in similar studies involving object
detection models.

2.8 Implementation details
Python was used to code the experiments in this study, utilizing

Jupyter notebooks within a TensorFlow framework. Training and
testing of the object detection models were conducted on a personal

Frontiers in Artificial Intelligence

computer. The PC features a 1 TB hard disk, 16GB of RAM, and an
Intel Core i7 processor. NVIDIA GeForce GTX 1650 Ti
GPU-accelerated graphics with Max-Q design. The operating system
was a 64-bit version of Windows 11 Pro, version 23H2.

The classification and bounding-box regression losses were
combined to form a multi-task loss function. The model’s training
parameters were updated using an SGD optimizer configured with a
weight decay of 0.0001 and a momentum of 0.9. The learning rate was
set to 0.001 and scheduled with weight decay, which reduces the rate
by 0.1 after every 10 iterations.

2.9 Explainable artificial intelligence

Grad-CAM was integrated into the object detector to visualize how
regions of the input image contributed to the predictions made. Initially,
the model performed a forward pass, and the last convolutional layer
produced feature maps and generated predictions. Then, the gradient of
the class score was computed with respect to feature maps. Afterward,
the global average of the gradients was used to calculate the weight of
each channel in the feature map by using Equation 6.

frontiersin.org
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Classification
Backbone
ResNet
B Box
Input Image
FIGURE 4
Functional structure.
[t 5yc TABLE 4 Comparative assessment of existing literature and main
XCe= 7 Z X (6)  contributions.
i,j aAi’j

Where y, represents the score for the class C, A,If ; signifies the
activation at the location (i 5 j) for channel k, and Z is the normalization
factor. Computed weights were used to combine weighted feature
maps and generate a Grad-CAM heatmap using Equation 7.

Grad_CAM =ReLU| Y ot AF ?)
k

Generated heatmaps were resized to match the input images’ sizes,
and each map was overlaid on the original image to produce the visual
representation. The visual representation shows which regions of the
input image the model focused on during fracture detection.

3 Results and discussions

3.1 Comparative analysis of recent
literature

The literature shows efforts to improve fracture diagnosis using Al
and ML tools. Initially, classical machine-learning approaches were
applied to detect and classify fractures (Johari and Singh, 2018; Myint
et al,, 2018). Later, deep learning achieved cutting-edge results and
was expected to surpass human capabilities in radiographic imaging
(Ma and Luo, 2021). Afterward, researchers sought to improve the
efficiency and performance of fracture-diagnosis models.

Different techniques have been applied to improve efficiency, for
instance, an anchor-based model (Qi et al., 2020), a crack-sensitive
model (Ma and Luo, 2021), a feature ambiguity model (Wu et al,, 2021),
automated preprocessing (Wang and Huang, 2022), and a two-stage
model (Yang et al, 2022). Other techniques focus on improving
performance and efficiency, such as ensemble-based neural networks
(Ghosh et al., 2021), and a guided anchoring model (Xue et al., 2021).

Frontiers in Artificial Intelligence

References Approach Main contribution

Qi et al. (2020) Anchor-based model Improved performance

Ghosh et al. (2021) | Ensemble neural Improved performance,

networks efficiency

Xue et al. (2021) Guided anchoring Improved performance,
efficiency

Ma and Luo (2021) | Two-stage crack-sensitive | Improved performance

Wu et al. (2021) Feature ambiguity Improved performance

preprocessor

Wang and Huang Attention mechanism Improved performance
(2022)

Yang et al. (2022) Cascade models Improved performance

Nikhil et al. (2023);
Kandel et al. (2020)

Transfer learning Improved performance,

efficiency

Proposed approach | Multi-class model with Improved performance,

adaptive anchoring efficiency, prescription
recommendations, and bone

fracture demographics.

Researchers applied pre-trained deep learning models, fitted to smaller
datasets, to identify fractured radiographs from non-fractured ones
(Nikhil et al., 2023; Kandel et al., 2020). This paper contributes to the
existing literature by proposing an alternative approach that aims to
improve the efficiency and performance of models. By modifying the
conventional anchoring process and adapting it to the task at hand,
detection models can be made more efficient. Avoid searching for objects
that are never located, which saves computational power and improves
overall performance. Furthermore, the paper provides fracture
demographics classified by age, fracture location, and mechanism of
injury. This broadens understanding of the problem and offers valuable
insights into targeted measures to either eliminate or reduce it in
developing countries. Table 4 summarizes the main contribution of this
paper relative to existing literature.
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TABLE 5 Fracture distribution disaggregated by gender.

Fracture demographics

10.3389/frai.2025.1692894

Age (in years)

18-24 25-34 34-44 45-54
Gender Female 63 78 99 104 94 84 522
Male 98 266 213 133 98 80 888
Total 161 344 312 237 192 164 1,410

TABLE 6 Fracture site distribution categorized by age.

Fracture location

Age (in years)

25-34 34-44 45-54
Femur Female 21 20 23 29 30 33 156
Male 30 67 49 36 32 32 246
Total 51 87 72 65 62 65 405
Leg Female 15 32 40 42 26 20 175
Male 39 109 86 54 28 19 335
Total 54 141 126 96 54 39 510
Forearm Female 13 16 19 18 22 19 107
Male 21 54 41 23 24 18 181
Total 34 70 60 41 46 37 288
Upper arm Female 14 7 10 11 11 9 62
Male 8 22 20 14 12 8 84
Total 22 29 30 25 23 17 146
Multiple Female 0 3 7 4 5 3 22
Male 0 14 17 6 2 3 42
Total 0 17 24 10 7 6 64
Total 161 344 312 237 192 164 1,410

3.2 Bone fracture trends and distribution

Table 5 presents an overview of fracture distribution disaggregated
by gender and age. Out of 1,410 patients, 63% were males, with the
majority of fractures occurring between the ages of 25 and 54. The
fewest cases were observed among female patients aged 18 to 24.

Table 6 presents the distribution of fractures by fracture location.
Leg-dominated long bone fractures account for 36.2% of the entire
distribution. Most fractures occurred between the ages of 25 and 44,
accounting for 52.3% of leg fractures, indicating that youths are more
affected by leg fractures, while elders are more affected by femur
fractures.

The mechanism of injury, as presented in Table 7, is primarily
RTTI, which accounts for 48.7% of the total cases, with the majority
of these cases reported among individuals aged 25-54. This
indicates that the working-age population suffers the most from
RTIs. On the other hand, falls are the leading cause of injury
among older people, and the risk increases with age. The youth
suffer the least from falls, with the fewest cases among those aged
18 to 24. The following section presents the empirical results of
performance evaluations of the proposed multi-class object
detection model.

This study discovered that male patients are significantly more
affected by fractures than their female counterparts. A possible

Frontiers in Artificial Intelligence

07

explanation is that in developing countries like Sub-Saharan Africa,
males are more likely to engage in high-risk outdoor activities. Most
fractures in males occur in patients between the ages of 25 and 54 and
decrease significantly with age. Fractures in female patients do not
vary considerably with age but do increase slightly with age. One
interesting finding is that the distribution of fractures is comparable
between male and female patients in old age. Several factors could
explain this observation. First, high-risk outdoor activities in males
tend to decrease with age. Second, in old age, falls are the primary
contributor to injuries, affecting both males and females equally.
Third, both males and females are affected by osteoporosis, which
increases skeletal fragility and the risk of fractures.

Other studies have similarly identified the dominance of males
in fracture patients (Chen et al., 2024). However, in some regions
with different socioeconomic conditions, the number of female
patients is significantly higher than that of males (Bergh et al,,
2021). This discrepancy could be attributed to regional
socioeconomic status, which determines the nature and type of
functions performed by males and females in their communities.
Results from this study indicate that the leading cause of long bone
fractures that affect the working-age population is road traffic
injuries. The working-age group tends to suffer most from RTI
because of involvement in high-risk outdoor activities. RTT poses a
severe economic threat in lower socioeconomic countries like those

frontiersin.org


https://doi.org/10.3389/frai.2025.1692894
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Migayo et al.

TABLE 7 Mechanism of injury disaggregated by age.

Mechanism of injury

10.3389/frai.2025.1692894

Age (in years)

18-24 25-34 34-44 45-54 55-64
Bad fall Female 25 25 32 43 43 43 211
Male 39 74 62 54 44 41 314
Total 64 99 100 97 87 84 531
RTI Female 28 48 63 51 31 20 241
Male 43 162 125 65 32 19 446
Total 71 210 188 116 63 39 687
Others* Female 10 5 4 10 20 21 70
Male 16 30 20 14 22 20 122
Total 26 35 24 24 42 41 192
Total 161 344 312 237 192 164 1,410

* Including animal attacks, bicycle, lifting, intentional, or other.

in Sub-Saharan Africa, affecting individuals, families, and nations
at large. The WHO estimates a 3% loss of gross domestic product in
most countries due to road traffic crashes (WHO, 2023).

3.3 Training and inference time of
enhanced object detector

The effectiveness of the proposed adaptive anchoring approach
was evaluated for each image by comparing the training and
prediction times. Results were benchmarked against the standard
Faster R-CNN model with ResNet-50/101 and ResNext-50/101
backbone networks. The Faster R-CNN training time ranged from
50 to 70 h, and the inference time per test image was 110-196
milliseconds on the GPU and 280-590 milliseconds on the
CPU. The proposed Faster R-CNN with adaptive anchoring
achieved training times of 40-50 h, and inference time per test
image ranged from 105 to 192 milliseconds on the GPU and 283 to
496 milliseconds on the CPU. This result implies that the proposed
approach can improve training time by up to 29%. Table 8
summarizes the training and inference times of the models using
four backbones.

3.4 Performance evaluation

The proposed approach was applied to train a model, achieving
an accuracy of 94% to 98%. The model’s learning ability was notably
good as the loss index converged with increasing training iterations.
The loss index plateaued at 0.25. The box regression loss was 0.12, and
the class accuracy was 0.96. The results of the proposed adaptive
anchoring approach were benchmarked with a standard Faster
R-CNN model. Table 9 presents the average performance results of the
proposed approach after fine-tuning the detection models across the
10 data splits. Overall, better performance was observed when
adaptive anchoring was applied with a ResNet-101 backbone, yielding
an AP 0f 92.73%, an F-1 score of 96.01%, a precision of 96.80%, and a
recall of 95.23%.

The results in this sub-section suggest that the RPN in object
detection models can be adapted to improve performance on a specific
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TABLE 8 Training time and inference time of object detection models.

Inference
time (GPU,
CPU)

Network Backbone Training

time

ResNet-50 52 Hrs (110, 280) ms
ResNet-101 63 Hrs (170, 490) ms
Faster R-CNN
ResNext-50 61 Hrs (125, 305) ms
ResNext-101 69 Hrs (196, 504) ms
ResNet-50 40 Hrs (105, 283) ms
Faster R-CNN
aster ResNet-101 45 Hrs (164, 488) ms
with adaptive
X ResNext-50 42 Hrs (127,297) ms
anchoring
ResNext-101 50 Hrs (192, 496) ms

TABLE 9 Average performance results of object detection models.

Network Backbone Precision Recall F-1 AP
ResNet-50 0.8713 0.8550  0.8631 = 0.8656
Faster ResNet-101 0.8888 0.8912  0.8900 = 0.8499
R-CNN ResNext-50 0.8823 0.8348 | 0.8579  0.8774
ResNext-101 0.9020 0.8591  0.8800 = 0.8433
Faster ResNet-50 0.9599 09356 | 0.9476 = 0.8997
R-CNN with ResNet-101 0.9680 0.9523 0.9601 | 0.9273
adaptive ResNext-50 0.9482 09038 | 0.9255 = 0.8814
anchoring ResNext-101 0.9713 09330 | 09517 0.8984

task. Training time and overall performance significantly improve by
avoiding searching areas where objects are never in the images. The
performance was further assessed stratified by site where images were
acquired. AP and F-1 scores are reported as means and bootstrapped
with 95% confidence intervals (CIs). Results indicate minor variations in
F-1, ranging from 0.2% to 0.8%, with data from Muhimbili National
Hospital on the positive side. The AP ranged from 0.2% to 0.9% across
data from the two cohorts. The results indicate that the proposed model
can be deployed in regional hospitals while maintaining the desired

frontiersin.org


https://doi.org/10.3389/frai.2025.1692894
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Migayo et al. 10.3389/frai.2025.1692894

TABLE 10 Average performance stratified by acquisition site.

Network Backbone Muhimbili

F-1(95% Cl)

ResNet-50 85.7 (81.4-90.1) 85.6 (79.8-91.2) 85.2 (80.8-89.4) 85.3(78.9-90.7)

ResNet-101 88.7 (83.6-91.4) 85.1 (78.7-90.6) 87.9 (82.6-90.8) 84.9 (82.9-89.8)
Faster R-CNN

ResNext-50 86.1 (83.4-90.7) 88.4 (83.9-92.3) 86.2 (82.9-91.0) 89.3 (83.1-91.7)

ResNext-101 87.9 (82.6-91.7) 84.8 (77.6-89.8) 86.7 (81.9-90.8) 84.2(78.1-90.2)

ResNet-50 95.1 (90.3-97.8) 89.2 (85.6-93.4) 94.6 (89.9-96.8) 89.9 (84.7-94.1)
Faster R-CNN with adaptive ResNet-101 96.4 (91.5-98.9) 93.1 (88.9-98.4) 96.1 (91.2-99.1) 92.8 (88.6-97.8)
anchoring ResNext-50 91.8 (88.2-95.7) 88.2 (83.5-92.5) 91.6 (87.9-94.6) 87.9 (82.8-91.7)

ResNext-101 89.2 (84.7-93.8)

95.6 (91.2-96.8) 89.7 (86.4-94.1) 94.9 (90.6-97.2)

TABLE 11 Average performance results of the model'’s ability to recommend prescriptions.

Class Recommendations Precision Recall F-1 AP
I ORIF FAD 0.7492 0.7168 0.7326 0.7264
i} ORIF IMN 0.8946 0.8892 0.8918 0.8904
i ORIF Plate 0.9224 0.9088 0.9155 0.9044
v Casting 0.8889 0.8799 0.8843 0.8864
Average 0.8637 0.8486 0.8561 0.8519

output level. Table 10 presents performance results stratified by the site
of acquisition.

Afterward, a Faster R-CNN model with a ResNet-101 backbone
was applied to assess the models ability in recommending
prescriptions. Unseen data were organized into four classes
corresponding to each prescription recommendation. On average,
precision was 86.37%, recall was 84.86%, and average precision was
85.19%. These performance results are desirable for a well-trained
object detection model applied to detect bone fractures. Table 11
summarizes the models average performance in prescribing
recommendations.

As shown in the table, the performance of Class I
recommendations was not particularly impressive, with an average
precision of 72.64%. This can be explained by the limited number of
data instances resulting in ORIF FAD, where cases accounted for
approximately 13% of the total. Class II accounted for 25%, Class III
for 37%, and Class IV for 25% of the total. This implies that the more
training data and representative data are available, the better the
overall model’s performance.

The Precision Recall (PR) for both standard Faster R-CNN and
Faster R-CNN with adaptive anchoring is given in Figure 5. The
proposed adaptive anchoring approach attained an area under the
curve (AUC) of 93%, surpassing the standard R-CNN by 10%.
Figure 6 shows the AP for both standard and adaptive anchoring of
Faster R-CNN at multiple intersection-over-union (IoU) thresholds.
Both models achieved comparable performance on the test set when
the threshold was lenient. When the threshold is strict (@0.75), the
standard R-CNN achieved an AUC of 79%, which is lower than the
91% achieved with adaptive anchoring. With a more stringent
threshold (@0.90), the standard R-CNN attained an AUC of 69%.
This implies that the proposed adaptive anchoring approach
outperforms standard anchoring, even as thresholds become
increasingly stringent.
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FIGURE 5
PR curve for standard R-CNN (blue) and adaptive (red).

The proposed adaptive anchoring method reduces the total
number of anchors per input image from 160,000 to 53,000 (67%
reduction), resulting in a 29% reduction in training time. These
results indicate that standard R-CNN with conventional anchor
configurations is redundant. The adaptive anchoring approach
achieves high performance with significantly fewer anchors,
thereby reducing computational cost. Table 12 summarizes anchor
density for each FPN layer for both standard Faster R-CNN and
adaptive anchoring Faster R-CNN.

3.5 Deployment and latency
The developed model was embedded in a web-based system

prototype and deployed on a server with an Intel Core i7-8565U (8
cores @ 1.99 GHz), 128 MB UHD Graphics, 8 GB RAM, and a 477 GB
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FIGURE 6

AP at multiple loU thresholds for standard Faster R-CNN (a) and adaptive anchoring of Faster R-CNN (b).
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TABLE 12 A summary of anchor density reduction.

TABLE 14 Minimum hardware requirements for acceptable performance.

Resource CPU RAM | Storage Achieved

tier latency

Recommended 4 cores 8 GB SSD 300s
@>2.0GHz

Minimum 2 cores 4 GB SSD 390s
@>18GHz

Below 2 cores @ < 1 GHz 2GB HDD > 600 s

minimum

FPN Standard Adaptive Reduction
level anchoring anchoring

P2 40,000 13,200 —40%

P3 10,000 3,300 —67%

P4 2,500 850 —66%

P5 625 200 —68%

P6 169 52 —62%
Positions 53,294 17,602 —70%
Anchor 159,882 52,806 —67%
density

TABLE 13 End-to-end latency from PACS to decision.

Metric Value (in seconds)

Average latency 203
Median (P50) 207
P90 277
P95 293
P99 299

SSD, running Windows 11 Pro v23H2. The connection between the
client node and the server node occurred over a 100 Mbps
LAN. Measurements of latency reflect single-user end-to-end latency
unless otherwise stated. Table 13 summarizes the end-to-end web
request latencies between a client and server. Results include aggregated
latency values and distribution percentiles, including preprocessing
from the picture archiving and communication system (PACS) to the
model decision.

The minimum hardware requirements were determined by
progressively reducing resources until the system exceeded the
expected latency threshold of 420 s. A quad-core Intel i5 laptop CPU
with 8 GB of RAM is sufficient to host the prototype, achieving a
median latency of 300 s. Table 14 summarizes the minimum hardware
requirements.
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The proposed system achieves a reasonably low end-to-end
latency (median: 207 s, P95: 293 s) when deployed on an 8-core Intel
server with 8 GB of RAM. Even under reduced configurations (quad-
core CPU, 4 GB RAM), the prototype remains functional, with a
median latency of 300 s, making it ideal for practical deployment on
low-cost hardware. However, the full implementation of the proposed
system prototype is sought to be a module accessed through the
existing EMR system in local hospitals.

3.6 Interpreting model decisions

Images of four classes of long bones were used to examine how the
model makes predictions and which features it learns from input images.
Results indicate that the trained model uses features such as edges,
curvatures, discontinuities, and anomalies to align bone parts. These
features help the model make predictions and reach a specific decision.
Figure 7 shows the visualization of detected objects using the Grad-CAM
method. The first row contains the original input images fed into the
model, and the second row includes the Grad-CAM visualizations.

Figure 7a represents how the model used features from the input
image of a leg and successfully identified the fractured area. Figure 7b
indicates which part of the input image of a thigh the model used to
extract features and make a prediction. Figure 7c¢ is the visualization
of the upper arm, and Figure 7d is the visualization of the lower arm.
Taken together, these visualizations indicate the model uses relevant
features from input images to make predictions. This clearly shows
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FIGURE 7

Model visualization using the Grad-CAM method for input images of (a) leg, (b) thigh, (c) upper arm, ad (d) lower arm.

how the model makes predictions and uses similar features to make
decisions like specialized medical practitioners.

In addition to Grad-CAM visualizations, quantitative sanity
checks were conducted by randomizing labels and input images. The
aim was to determine whether the model’s performance stemmed
from learning true image-label associations rather than spurious
correlations or memorization. Ground truth labels were randomly
permuted, and images were replaced with noise-based proxies, and
the model was retrained. The model trained on this corrupted dataset
showed a near-chance performance. The resulting performance
collapse confirms that the model does not rely on unintended shortcut
features leaking into the labels. Figure 8 shows a PR curve of both
standard Faster R-CNN and adaptive anchoring R-CNN recorded
after randomization of labels and input images.

3.7 Fracture diagnosis with prescription
recommendations

The rapid pace of progress has primarily influenced radiographic
imaging in machine learning and deep learning. Over the last decade,
the literature has witnessed an increasing number of studies applying
deep learning to medical imaging. This application is crucial in
enhancing the diagnosis process through medical imaging and
mitigating the limitations of traditional approaches that rely solely on
human interpretation. Developing countries, such as those in SSA,
face enormous challenges in medical imaging. For example, Tanzania
has 60 registered radiologists serving a population of approximately
60 million (Laage Gaupp et al., 2019). Although special programs have
been established to train future radiologists (Iyawe et al., 2021). The
shortage remains evident, particularly as the population continues to
grow. Applying deep learning in medical imaging is essential and may
serve as an additional intervention strategy.
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FIGURE 8
PR curve for standard R-CNN (blue) and adaptive (red) after
randomization test.

There is a shortage of orthopedic surgeons in most developing
countries in SSA, although limited evidence exists to quantify the
exact gap. In Malawi, non-physician clinicians have been providing
orthopedic care due to the shortage of orthopedists, and results
indicate that task-shifting can be safe (Wilhelm et al., 2017). Deep
learning models that assist in fracture diagnosis and provide
prescription recommendations can significantly aid in resource-
limited conditions, such as the SSA. Recommendation systems in the
healthcare industry are gaining popularity as technology advances,
aiming to enhance personalized healthcare. A guideline-driven
decision support system to support family healthcare, utilizing
semantic technology and open data analysis, has been introduced
(Wang and Qian, 2021). An evidence-based clinical guideline system
and monitored adherence to COVID-19 treatment recommendations
have been implemented (Lichtner et al., 2023). An intelligent system
that predicts a disease and recommends drugs by utilizing machine
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learning algorithms is proposed (Nayak et al., 2023). It is crucial to
continue advancing deep learning models to reach their full potential,
especially in medical applications such as diagnosis and treatment.

4 Conclusion

This study aimed to develop an efficient multi-class object
detection model for bone fracture diagnosis that incorporates
prescription recommendations. The research has also shown that the
model’s efficiency and performance can be improved by modifying
the anchoring process to search for areas where objects are likely to
be located. Experiments have confirmed that applying adaptive
anchoring in the process may reduce training time by up to 29%. This
approach will help expand our understanding of how to continually
improve object detection efficiency and performance. The study
primarily confirmed that the object detection model can be utilized
for bone fracture diagnosis and to suggest a corresponding
prescription. Another important practical implication is that the
study has identified the group most prone to bone fractures, the
mechanisms of injury, and the locations of fractures, disaggregated
by patient age. This provides valuable insight for law enforcement
organizations in addressing the causes of bone fractures and for
medical practitioners in treating them. The focus of this study was
confined to long bones; notwithstanding this limitation, it offers
valuable insights into the use of deep learning models as
recommendation systems in medical applications.
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