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Bone fractures are among the most prominent injuries in the modern world that 
affect all ages and races. Traditional treatment involves radiographic imaging that 
relies heavily on radiologists manually analyzing images. There have been efforts 
to develop computer-aided diagnosis tools that employ artificial intelligence 
and deep learning approaches. Existing literature focuses on developing tools 
that only detect and classify bone fractures, rather than addressing the broader 
issue of bone fracture management. However, evidence of scholarly works that 
include treatment recommendations is still lacking. Furthermore, deep learning-
based object detectors that achieve state-of-the-art results are computationally 
expensive and considered as black-box solutions. Developing countries, such 
as Sub-Saharan Africa, face a shortage of radiologists and orthopedists. For this 
reason, this paper proposes a methodological approach that uses a more efficient 
object detection model to diagnose long bone fractures and provide prescription 
recommendations. An enhanced anchoring process, known as adaptive anchoring, 
is proposed to improve the performance of the Regional Proposal Network and 
the object detection model. A Faster R-CNN model with ResNet-50/101 and 
ResNext-50/101 backbones was used to develop an object detection model that 
uses X-ray images as input. To understand and interpret the model’s decision, a 
Gradient-based Class Activation Mapping method was used to assess the model’s 
learnability. The results indicate that the proposed adaptive anchoring approach can 
improve computational efficiency, reducing training time by up to 29% compared 
to the traditional approach. Model accuracy during training and validation ranged 
between 94% and 98%. Overall, adaptive anchoring performed better when applied 
with the ResNet-101 backbone, yielding an Average Precision of 92.73%, an F1 
score of 96.01%, a precision of 96.80%, and a recall of 95.23%. The study provides 
valuable insights into the use of computationally efficient deep learning models 
for medical recommendation systems. Future studies should develop models to 
diagnose fractures using input images from various modalities and to provide 
prescription recommendations.
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1 Introduction

Bones constitute part of the skeletal system, protect internal 
organs, and facilitate movements in vertebrate animals. However, 
human bones are prone to fractures from automobile accidents and 
falls. The World Health Organization (WHO) estimates the loss of 
1.19 million lives, between 20 and 50 million non-fatal injuries, 
costing 3% of gross domestic product yearly, due to road traffic crashes 
(WHO, 2023). Common fracture patterns that medical professionals 
are likely to encounter in their daily work include transverse, oblique, 
spiral, comminuted, greenstick, and impacted fractures, as shown in 
Figure 1. Fibula/tibia (leg) and femur (thigh) fractures are the most 
common fractures in Africa, classified by fracture location (Pouramin 
et al., 2019).

While traditional fracture treatment relies heavily on 
radiographic imaging, this approach has limitations. Despite its 
remarkable capabilities, the human eye often struggles to detect 
minor fractures (Yadav and Rathor, 2020). Furthermore, doctors 
who frequently deal with emergencies can be hindered by fatigue 
(Tanzi et al., 2020). These limitations underscore the pressing need 
for more advanced tools, such as computer-aided diagnosis (CAD), 
in the treatment of fractures. Applying CAD tools powered by deep 
learning models has significantly enhanced the performance of 
radiographic diagnosis (Lindsey et al., 2018). Applying deep 
learning approaches has yielded state-of-the-art performance 
results in fracture diagnosis (Ma and Luo, 2021). These 
advancements hold immense promise for the future of healthcare. 
The success of deep learning in diagnosis led to the introduction of 
recommendation systems to enhance personalized healthcare 
(Lichtner et al., 2023; Nayak et al., 2023; Wang and Qian, 2021). 
Developing countries, such as those in SSA, face a shortage of 
radiologists (Laage Gaupp et al., 2019) and orthopedists (Wilhelm 
et al., 2017). Applying deep learning models to fracture diagnosis—
including prescribing recommendations—may significantly 
enhance healthcare delivery in resource-limited environments. 
However, deep learning models that guarantee state-of-the-art 
performance results are known to be computationally expensive 
(Thompson et al., 2023). There have been efforts to make deep 
learning models smaller, faster, and much better than traditional 
ones (Menghani, 2023). Furthermore, deep learning models are 
known to lack transparency and explainability in their predictions. 

This has become a significant concern for practitioners when they 
cannot tell how models make predictions and the key features that 
lead to a specific decision.

This paper proposes an enhanced multi-class object detection 
model with adaptive anchoring for fracture diagnosis, with 
prescription recommendations as a second opinion to radiologists 
and surgeons. Radiologists labeled the collected X-ray images, and 
orthopedists suggested prescription recommendations. The 
Regional Proposal Network (RPN) was modified to guide the 
anchoring process and avoid searching areas where fractures are 
unlikely to be located. This study selects the standard surgical 
methods based on three assumptions to implement 
recommendations. First, patients are skeletally mature, and X-ray 
images of only adult patients are included. Second, the distal 
neurovascular status is intact, allowing for limb salvage. Third, 
fractures are classified as open or closed, from Gustilo-Anderson I 
to IIIA. Impacted fractures are typically treated with 
immobilization, such as casting or splinting. Other standard 
surgical methods are intramedullary nailing (Shen and Tejwani, 
2024) and plate osteosynthesis (Hansmann, 1886). Fracture 
patterns and surgeon preferences are often applied to select the 
optimal treatment of bone fractures (Hurley et al., 2023). To 
address explainable artificial intelligence (XAI), a Gradient-based 
Class Activation Mapping (Grad-CAM) method was used to 
examine how the model makes predictions from input images. The 
main contributions of this paper can be summarized in four 
aspects:

	•	 The demographic of bone fractures to characterize the 
distribution in developing countries is documented.

	•	 A modified anchoring process, called adaptive anchoring, to 
improve the RPN and performance of the object detection model 
is proposed.

	•	 An enhanced multi-class object detector using bounding box 
regression is trained for fracture diagnosis with prescription 
recommendations.

	•	 The Grad-CAM method is applied to explain how the model 
makes predictions from the given input images.

The remaining part of the paper is organized as follows: Section 2 
presents the materials and methods used in this study. Section 3 

FIGURE 1

Common fracture patterns.
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presents the results of this study’s discussions. Section 4 provides a 
conclusion and recommends future research.

2 Materials and methods

2.1 Ethics statement

This study was approved by the ethics committee governed by 
three institutions: The Centre for Education Development in Health 
(CEDA), Kibong’oto Infectious Diseases Hospital (KIDH), and the 
Nelson Mandela African Institution of Science and Technology 
(NM-AIST), letter No: KNCHREC/00068/11/2022 issued January 
18th, 2023. Multi-view X-ray images were collected from the 
Kilimanjaro Christian Medical Centre (KCMC) in Kilimanjaro and 
the Muhimbili Orthopedic Institute (MOI) in Dar es Salaam, 
Tanzania.

2.2 Data collection

Digital Imaging and Communication in Medicine (DICOM) 
format was used to store captured X-ray images. Images were 
stored together with the patient’s medical records in the health 
information system. An Open Health Imaging Foundation (OHIF) 
web platform was used to extract and convert DICOM images. 
The photos were saved in JPEG and PNG formats, with randomly 
generated file names for de-identification. A separate index file 
was created to map images and their corresponding labels. Bone 
fracture labeling was conducted on long bones, including the 
radius, ulna, femur, and tibia, to annotate the presence and 
anatomical locations of fractures. Five board-certified senior 
radiologists independently reviewed images for fracture 
classification. The standard radiological criteria for fracture 
diagnosis, including assessment of cortical disruption and 
displacement, were applied during labeling. To assess inter-rater 
reliability, Cohen’s Kappa coefficient was calculated and found to 
be 0.85, indicating strong agreement. An orthopedic surgeon 

lastly reviewed the images and included the treatment 
recommendations.

2.3 Dataset

The Robo flow online tool was used to draw bounding boxes on 
X-ray images and generate Tensor Flow Object Detection format files 
to train an object detection model. A total of 4,014 images of long 
bones, comprising 864 forearms (ulna and radius), 414 upper arms 
(humerus), 1,530 legs (fibula and tibia), and 1,206 thighs (femur), 
were collected between October 2022 and September 2023. The 
dataset was split into three non-overlapping image sets with a ratio of 
60:20:20 for training, validation, and testing, as recommended for 
studies involving deep learning models (Muraina, 2021). Stratified 
10-fold cross-validation was used to address class imbalance and 
ensure robust results. Figure 2 summarizes the training pipeline of an 
object detector.

Data augmentation techniques were applied during 
preprocessing to improve model generalization. Variations of the 
same image were created through geometric transformations and 
colour transformations. Geometric transformations include 
rotation, random cropping (80%), scaling, and horizontal flipping 
(p = 0.5). Colour transformations include brightness, contrast, 
and saturation adjustments within ±20%. These data 
augmentation techniques simulate real-world variations, thereby 
enhancing the model’s robustness. Augmentation was confined 
to the training split in each fold, with no leakage across folds. 
Table 1 summarizes the dataset and augmentation ranges for each 
class, grouped according to the corresponding bone fracture 
treatment.

The classes pose a severe imbalance challenge, especially given 
that class I accounts for around 13% of the total dataset. Per-class 
support and cost-sensitive strategy were used to rebalance the 
outcomes of model decisions. Underrepresented classes were 
penalised more heavily than overrepresented classes. Table 2 
summarizes the class support and weights used during sampling to 
handle class imbalances.

FIGURE 2

Training pipeline of the multi-class object detector.
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2.4 Treatment recommendations

Throughout the study, standard surgical methods were applied to 
implement the recommendations. However, in some cases, fracture 
management may vary depending on resource availability and the 
surgeon’s preference. Table 3 summarizes standard surgical methods 
applied to implement treatment recommendations for bone fractures.

We implemented a hierarchical rule-based classifier to map 
fractures into four treatment-strategy categories (casting, ORIF-FAD, 
ORIF-IMN, and ORIF-Plate). The model uses structured descriptors 
derived from imaging annotations—including fracture location, 
pattern complexity, displacement, comminution, and morphological 
stability tags—to evaluate eligibility for each treatment class. Each 
class is associated with an inclusion–exclusion rule set derived from 
established orthopedic taxonomies. These rules do not produce 
clinical recommendations but serve as deterministic criteria for 
benchmarking automated labeling and evaluating model consistency 
relative to expert-assigned categories.

2.5 Model selection

An object detection model for fracture diagnosis was implemented 
using a deep convolutional neural network as the backbone network. 
ResNet (He et al., 2016) was implemented as the backbone, as it is 
among the prominent models for fracture detection (Meena and Roy, 
2022). An object detector containing the Faster R-CNN model with a 
ResNet backbone for feature extraction guarantees a better 
performance (Tahir et al., 2021).

2.6 Adaptive anchoring

This paper proposes an adaptive anchoring Faster R-CNN for 
bone fracture diagnosis. After scrutinizing X-ray images containing 
long bone fractures, it is revealed that the Region of Interest (ROI) is 
often positioned relatively close to the center of the image. The 
number of anchors is significantly reduced by focusing on a small 

area. Therefore, the overall efficiency of the anchoring process can be 
improved.

Input images are loaded, and features are extracted using a backbone 
network. The image features output from the backbone network are 
considered inputs for the RPN network. Conventionally, RPN scans the 
input image and generates anchors across the image. This paper 
introduces adaptive anchoring to guide the anchoring process and avoid 
areas where fractures are unlikely to occur. Given the nature of X-ray 
images containing long-bone fractures, the fractured regions can be 
located within an area after omitting a portion on either side of the 
image, as well as at the top and bottom. Figure 3 illustrates the possible 
location of fractured regions after dividing an image into nine sectors.

Given an image centered at ( ),x y  with height h and width w, by 
avoiding 33% of the width on either side and 16.5% on the top and 
bottom, the area for RPN to scan can be guided within the four 
coordinates beginning with the top-left corner by considering the 
following Equations 1–4.

	 ( )= − +0.17 , 0.34A x w y h 	 (1)

	 ( )= + +0.17 , 0.34B x w y h 	 (2)

	 ( )= + −0.17 , 0.34C x w y h 	 (3)

	 ( )= − −0.17 , 0.34D x w y h 	 (4)

Algorithm 1 summarizes the entire adaptive anchoring process. The 
input images are in grayscale and have low brightness, which hinders 
feature extraction. The signal-to-noise ratio and detection features can 
be improved by applying brightness normalization to the images. This 
approach has been used in similar studies that apply object detection for 
bone fracture diagnosis (Wang and Huang, 2022). Figure 4 provides the 
functional structure of the proposed object detection model.

Equation 5 was used to implement brightness normalization. The 
scaling factor is given as K , where r  represents the value of a pixel in a 
particular image, minr  is the minimum pixel value, and maxr  is the 

TABLE 1  Dataset distribution and augmentation range for each class.

Class Recommendations Total Testing Training Augmented

I ORIF FAD 522 104 314 1,620

II ORIF IMN 1,004 201 602 3,020

II ORIF plate 1,485 297 891 4,400

IV Casting 1,004 201 602 4,000

TABLE 2  Class support and class weight to address the imbalance 
challenge.

Class Recommendations Class 
support

Class 
weight

I ORIF FAD 314 1.76

II ORIF IMN 602 0.92

II ORIF plate 891 0.62

IV Casting 602 0.92

TABLE 3  Surgical methods for treatment recommendations.

Fracture location

Skeletal part Proximal 
third

Mid- 
third

Distal 
third

Femur (thigh) ORIF FAD ORIF IMN ORIF plate

Fibula and Tibia (leg) ORIF plate ORIF IMN ORIF plate

Humerus (upper arm) ORIF plate ORIF IMN ORIF plate

Urna and radius (forearm) ORIF plate ORIF plate ORIF plate

Any impacted fracture Casting Casting Casting
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maximum pixel value. Pixel values are normalized within the range of [0, 
1] with a scaling factor K  applied to enhance brightness (setting K  > 1) 
or reduce brightness (setting K  < 1), otherwise set to 1 in deal cases.

	

−
= ∗

−
min

max min

r rS K
r r 	

(5)

2.7 Evaluation metrics

The Average Precision (AP) and F1 score were used as evaluation 
criteria in this study, along with accuracy, precision, and recall. These 
metrics are commonly used in similar studies involving object 
detection models.

2.8 Implementation details

Python was used to code the experiments in this study, utilizing 
Jupyter notebooks within a TensorFlow framework. Training and 
testing of the object detection models were conducted on a personal 

computer. The PC features a 1 TB hard disk, 16GB of RAM, and an 
Intel Core i7 processor. NVIDIA GeForce GTX 1650 Ti 
GPU-accelerated graphics with Max-Q design. The operating system 
was a 64-bit version of Windows 11 Pro, version 23H2.

The classification and bounding-box regression losses were 
combined to form a multi-task loss function. The model’s training 
parameters were updated using an SGD optimizer configured with a 
weight decay of 0.0001 and a momentum of 0.9. The learning rate was 
set to 0.001 and scheduled with weight decay, which reduces the rate 
by 0.1 after every 10 iterations.

2.9 Explainable artificial intelligence

Grad-CAM was integrated into the object detector to visualize how 
regions of the input image contributed to the predictions made. Initially, 
the model performed a forward pass, and the last convolutional layer 
produced feature maps and generated predictions. Then, the gradient of 
the class score was computed with respect to feature maps. Afterward, 
the global average of the gradients was used to calculate the weight of 
each channel in the feature map by using Equation 6.

FIGURE 3

Location of fractured regions.

ALGORITHM 1

Adaptive anchoring to guide RPN.
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∂
∝ =
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c k

i ji j

y
Z A 	

(6)

Where cy  represents the score for the class C , ,
k
i jA  signifies the 

activation at the location ( ),i j  for channel k, and Z  is the normalization 
factor. Computed weights were used to combine weighted feature 
maps and generate a Grad-CAM heatmap using Equation 7.

	

 
=  ∝  

 
∑_ k k

c
k

Grad CAM ReLU A
	

(7)

Generated heatmaps were resized to match the input images’ sizes, 
and each map was overlaid on the original image to produce the visual 
representation. The visual representation shows which regions of the 
input image the model focused on during fracture detection.

3 Results and discussions

3.1 Comparative analysis of recent 
literature

The literature shows efforts to improve fracture diagnosis using AI 
and ML tools. Initially, classical machine-learning approaches were 
applied to detect and classify fractures (Johari and Singh, 2018; Myint 
et al., 2018). Later, deep learning achieved cutting-edge results and 
was expected to surpass human capabilities in radiographic imaging 
(Ma and Luo, 2021). Afterward, researchers sought to improve the 
efficiency and performance of fracture-diagnosis models.

Different techniques have been applied to improve efficiency, for 
instance, an anchor-based model (Qi et al., 2020), a crack-sensitive 
model (Ma and Luo, 2021), a feature ambiguity model (Wu et al., 2021), 
automated preprocessing (Wang and Huang, 2022), and a two-stage 
model (Yang et al., 2022). Other techniques focus on improving 
performance and efficiency, such as ensemble-based neural networks 
(Ghosh et al., 2021), and a guided anchoring model (Xue et al., 2021). 

Researchers applied pre-trained deep learning models, fitted to smaller 
datasets, to identify fractured radiographs from non-fractured ones 
(Nikhil et al., 2023; Kandel et al., 2020). This paper contributes to the 
existing literature by proposing an alternative approach that aims to 
improve the efficiency and performance of models. By modifying the 
conventional anchoring process and adapting it to the task at hand, 
detection models can be made more efficient. Avoid searching for objects 
that are never located, which saves computational power and improves 
overall performance. Furthermore, the paper provides fracture 
demographics classified by age, fracture location, and mechanism of 
injury. This broadens understanding of the problem and offers valuable 
insights into targeted measures to either eliminate or reduce it in 
developing countries. Table 4 summarizes the main contribution of this 
paper relative to existing literature.

FIGURE 4

Functional structure.

TABLE 4  Comparative assessment of existing literature and main 
contributions.

References Approach Main contribution

Qi et al. (2020) Anchor-based model Improved performance

Ghosh et al. (2021) Ensemble neural 

networks

Improved performance, 

efficiency

Xue et al. (2021) Guided anchoring Improved performance, 

efficiency

Ma and Luo (2021) Two-stage crack-sensitive Improved performance

Wu et al. (2021) Feature ambiguity 

preprocessor

Improved performance

Wang and Huang 

(2022)

Attention mechanism Improved performance

Yang et al. (2022) Cascade models Improved performance

Nikhil et al. (2023); 

Kandel et al. (2020)

Transfer learning Improved performance, 

efficiency

Proposed approach Multi-class model with 

adaptive anchoring

Improved performance, 

efficiency, prescription 

recommendations, and bone 

fracture demographics.

https://doi.org/10.3389/frai.2025.1692894
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Migayo et al.� 10.3389/frai.2025.1692894

Frontiers in Artificial Intelligence 07 frontiersin.org

3.2 Bone fracture trends and distribution

Table 5 presents an overview of fracture distribution disaggregated 
by gender and age. Out of 1,410 patients, 63% were males, with the 
majority of fractures occurring between the ages of 25 and 54. The 
fewest cases were observed among female patients aged 18 to 24.

Table 6 presents the distribution of fractures by fracture location. 
Leg-dominated long bone fractures account for 36.2% of the entire 
distribution. Most fractures occurred between the ages of 25 and 44, 
accounting for 52.3% of leg fractures, indicating that youths are more 
affected by leg fractures, while elders are more affected by femur 
fractures.

The mechanism of injury, as presented in Table 7, is primarily 
RTI, which accounts for 48.7% of the total cases, with the majority 
of these cases reported among individuals aged 25–54. This 
indicates that the working-age population suffers the most from 
RTIs. On the other hand, falls are the leading cause of injury 
among older people, and the risk increases with age. The youth 
suffer the least from falls, with the fewest cases among those aged 
18 to 24. The following section presents the empirical results of 
performance evaluations of the proposed multi-class object 
detection model.

This study discovered that male patients are significantly more 
affected by fractures than their female counterparts. A possible 

explanation is that in developing countries like Sub-Saharan Africa, 
males are more likely to engage in high-risk outdoor activities. Most 
fractures in males occur in patients between the ages of 25 and 54 and 
decrease significantly with age. Fractures in female patients do not 
vary considerably with age but do increase slightly with age. One 
interesting finding is that the distribution of fractures is comparable 
between male and female patients in old age. Several factors could 
explain this observation. First, high-risk outdoor activities in males 
tend to decrease with age. Second, in old age, falls are the primary 
contributor to injuries, affecting both males and females equally. 
Third, both males and females are affected by osteoporosis, which 
increases skeletal fragility and the risk of fractures.

Other studies have similarly identified the dominance of males 
in fracture patients (Chen et al., 2024). However, in some regions 
with different socioeconomic conditions, the number of female 
patients is significantly higher than that of males (Bergh et al., 
2021). This discrepancy could be attributed to regional 
socioeconomic status, which determines the nature and type of 
functions performed by males and females in their communities. 
Results from this study indicate that the leading cause of long bone 
fractures that affect the working-age population is road traffic 
injuries. The working-age group tends to suffer most from RTI 
because of involvement in high-risk outdoor activities. RTI poses a 
severe economic threat in lower socioeconomic countries like those 

TABLE 5  Fracture distribution disaggregated by gender.

Fracture demographics Age (in years) Total

18–24 25–34 34–44 45–54 55–64 ≥ 65

Gender Female 63 78 99 104 94 84 522

Male 98 266 213 133 98 80 888

Total 161 344 312 237 192 164 1,410

TABLE 6  Fracture site distribution categorized by age.

Fracture location Age (in years) Total

18–24 25–34 34–44 45–54 55–64 ≥ 65

Femur Female 21 20 23 29 30 33 156

Male 30 67 49 36 32 32 246

Total 51 87 72 65 62 65 405

Leg Female 15 32 40 42 26 20 175

Male 39 109 86 54 28 19 335

Total 54 141 126 96 54 39 510

Forearm Female 13 16 19 18 22 19 107

Male 21 54 41 23 24 18 181

Total 34 70 60 41 46 37 288

Upper arm Female 14 7 10 11 11 9 62

Male 8 22 20 14 12 8 84

Total 22 29 30 25 23 17 146

Multiple Female 0 3 7 4 5 3 22

Male 0 14 17 6 2 3 42

Total 0 17 24 10 7 6 64

Total 161 344 312 237 192 164 1,410
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in Sub-Saharan Africa, affecting individuals, families, and nations 
at large. The WHO estimates a 3% loss of gross domestic product in 
most countries due to road traffic crashes (WHO, 2023).

3.3 Training and inference time of 
enhanced object detector

The effectiveness of the proposed adaptive anchoring approach 
was evaluated for each image by comparing the training and 
prediction times. Results were benchmarked against the standard 
Faster R-CNN model with ResNet-50/101 and ResNext-50/101 
backbone networks. The Faster R-CNN training time ranged from 
50 to 70 h, and the inference time per test image was 110–196 
milliseconds on the GPU and 280–590 milliseconds on the 
CPU. The proposed Faster R-CNN with adaptive anchoring 
achieved training times of 40–50 h, and inference time per test 
image ranged from 105 to 192 milliseconds on the GPU and 283 to 
496 milliseconds on the CPU. This result implies that the proposed 
approach can improve training time by up to 29%. Table 8 
summarizes the training and inference times of the models using 
four backbones.

3.4 Performance evaluation

The proposed approach was applied to train a model, achieving 
an accuracy of 94% to 98%. The model’s learning ability was notably 
good as the loss index converged with increasing training iterations. 
The loss index plateaued at 0.25. The box regression loss was 0.12, and 
the class accuracy was 0.96. The results of the proposed adaptive 
anchoring approach were benchmarked with a standard Faster 
R-CNN model. Table 9 presents the average performance results of the 
proposed approach after fine-tuning the detection models across the 
10 data splits. Overall, better performance was observed when 
adaptive anchoring was applied with a ResNet-101 backbone, yielding 
an AP of 92.73%, an F-1 score of 96.01%, a precision of 96.80%, and a 
recall of 95.23%.

The results in this sub-section suggest that the RPN in object 
detection models can be adapted to improve performance on a specific 

task. Training time and overall performance significantly improve by 
avoiding searching areas where objects are never in the images. The 
performance was further assessed stratified by site where images were 
acquired. AP and F-1 scores are reported as means and bootstrapped 
with 95% confidence intervals (CIs). Results indicate minor variations in 
F-1, ranging from 0.2% to 0.8%, with data from Muhimbili National 
Hospital on the positive side. The AP ranged from 0.2% to 0.9% across 
data from the two cohorts. The results indicate that the proposed model 
can be deployed in regional hospitals while maintaining the desired 

TABLE 7  Mechanism of injury disaggregated by age.

Mechanism of injury Age (in years) Total

18–24 25–34 34–44 45–54 55–64 ≥ 65

Bad fall Female 25 25 32 43 43 43 211

Male 39 74 62 54 44 41 314

Total 64 99 100 97 87 84 531

RTI Female 28 48 63 51 31 20 241

Male 43 162 125 65 32 19 446

Total 71 210 188 116 63 39 687

Others* Female 10 5 4 10 20 21 70

Male 16 30 20 14 22 20 122

Total 26 35 24 24 42 41 192

Total 161 344 312 237 192 164 1,410

* Including animal attacks, bicycle, lifting, intentional, or other.

TABLE 8  Training time and inference time of object detection models.

Network Backbone Training 
time

Inference 
time (GPU, 

CPU)

Faster R-CNN

ResNet-50 52 Hrs (110, 280) ms

ResNet-101 63 Hrs (170, 490) ms

ResNext-50 61 Hrs (125, 305) ms

ResNext-101 69 Hrs (196, 504) ms

Faster R-CNN 

with adaptive 

anchoring

ResNet-50 40 Hrs (105, 283) ms

ResNet-101 45 Hrs (164, 488) ms

ResNext-50 42 Hrs (127, 297) ms

ResNext-101 50 Hrs (192, 496) ms

TABLE 9  Average performance results of object detection models.

Network Backbone Precision Recall F-1 AP

Faster 

R-CNN

ResNet-50 0.8713 0.8550 0.8631 0.8656

ResNet-101 0.8888 0.8912 0.8900 0.8499

ResNext-50 0.8823 0.8348 0.8579 0.8774

ResNext-101 0.9020 0.8591 0.8800 0.8433

Faster 

R-CNN with 

adaptive 

anchoring

ResNet-50 0.9599 0.9356 0.9476 0.8997

ResNet-101 0.9680 0.9523 0.9601 0.9273

ResNext-50 0.9482 0.9038 0.9255 0.8814

ResNext-101 0.9713 0.9330 0.9517 0.8984
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output level. Table 10 presents performance results stratified by the site 
of acquisition.

Afterward, a Faster R-CNN model with a ResNet-101 backbone 
was applied to assess the model’s ability in recommending 
prescriptions. Unseen data were organized into four classes 
corresponding to each prescription recommendation. On average, 
precision was 86.37%, recall was 84.86%, and average precision was 
85.19%. These performance results are desirable for a well-trained 
object detection model applied to detect bone fractures. Table 11 
summarizes the model’s average performance in prescribing 
recommendations.

As shown in the table, the performance of Class I 
recommendations was not particularly impressive, with an average 
precision of 72.64%. This can be explained by the limited number of 
data instances resulting in ORIF FAD, where cases accounted for 
approximately 13% of the total. Class II accounted for 25%, Class III 
for 37%, and Class IV for 25% of the total. This implies that the more 
training data and representative data are available, the better the 
overall model’s performance.

The Precision Recall (PR) for both standard Faster R-CNN and 
Faster R-CNN with adaptive anchoring is given in Figure 5. The 
proposed adaptive anchoring approach attained an area under the 
curve (AUC) of 93%, surpassing the standard R-CNN by 10%. 
Figure 6 shows the AP for both standard and adaptive anchoring of 
Faster R-CNN at multiple intersection-over-union (IoU) thresholds. 
Both models achieved comparable performance on the test set when 
the threshold was lenient. When the threshold is strict (@0.75), the 
standard R-CNN achieved an AUC of 79%, which is lower than the 
91% achieved with adaptive anchoring. With a more stringent 
threshold (@0.90), the standard R-CNN attained an AUC of 69%. 
This implies that the proposed adaptive anchoring approach 
outperforms standard anchoring, even as thresholds become 
increasingly stringent.

The proposed adaptive anchoring method reduces the total 
number of anchors per input image from 160,000 to 53,000 (67% 
reduction), resulting in a 29% reduction in training time. These 
results indicate that standard R-CNN with conventional anchor 
configurations is redundant. The adaptive anchoring approach 
achieves high performance with significantly fewer anchors, 
thereby reducing computational cost. Table 12 summarizes anchor 
density for each FPN layer for both standard Faster R-CNN and 
adaptive anchoring Faster R-CNN.

3.5 Deployment and latency

The developed model was embedded in a web-based system 
prototype and deployed on a server with an Intel Core i7-8565U (8 
cores @ 1.99 GHz), 128 MB UHD Graphics, 8 GB RAM, and a 477 GB 

TABLE 10  Average performance stratified by acquisition site.

Network Backbone Muhimbili KCMC

F-1 (95% CI) AP F-1 AP

Faster R-CNN

ResNet-50 85.7 (81.4–90.1) 85.6 (79.8–91.2) 85.2 (80.8–89.4) 85.3 (78.9–90.7)

ResNet-101 88.7 (83.6–91.4) 85.1 (78.7–90.6) 87.9 (82.6–90.8) 84.9 (82.9–89.8)

ResNext-50 86.1 (83.4–90.7) 88.4 (83.9–92.3) 86.2 (82.9–91.0) 89.3 (83.1–91.7)

ResNext-101 87.9 (82.6–91.7) 84.8 (77.6–89.8) 86.7 (81.9–90.8) 84.2 (78.1–90.2)

Faster R-CNN with adaptive 

anchoring

ResNet-50 95.1 (90.3–97.8) 89.2 (85.6–93.4) 94.6 (89.9–96.8) 89.9 (84.7–94.1)

ResNet-101 96.4 (91.5–98.9) 93.1 (88.9–98.4) 96.1 (91.2–99.1) 92.8 (88.6–97.8)

ResNext-50 91.8 (88.2–95.7) 88.2 (83.5–92.5) 91.6 (87.9–94.6) 87.9 (82.8–91.7)

ResNext-101 95.6 (91.2–96.8) 89.7 (86.4–94.1) 94.9 (90.6–97.2) 89.2 (84.7–93.8)

TABLE 11  Average performance results of the model’s ability to recommend prescriptions.

Class Recommendations Precision Recall F-1 AP

I ORIF FAD 0.7492 0.7168 0.7326 0.7264

II ORIF IMN 0.8946 0.8892 0.8918 0.8904

II ORIF Plate 0.9224 0.9088 0.9155 0.9044

IV Casting 0.8889 0.8799 0.8843 0.8864

Average 0.8637 0.8486 0.8561 0.8519

FIGURE 5

PR curve for standard R-CNN (blue) and adaptive (red).
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FIGURE 6

AP at multiple IoU thresholds for standard Faster R-CNN (a) and adaptive anchoring of Faster R-CNN (b).

TABLE 12  A summary of anchor density reduction.

FPN 
level

Standard 
anchoring

Adaptive 
anchoring

Reduction

P2 40,000 13,200 −40%

P3 10,000 3,300 −67%

P4 2,500 850 −66%

P5 625 200 −68%

P6 169 52 −62%

Positions 53,294 17,602 −70%

Anchor 

density

159,882 52,806 −67%

TABLE 13  End-to-end latency from PACS to decision.

Metric Value (in seconds)

Average latency 203

Median (P50) 207

P90 277

P95 293

P99 299

TABLE 14  Minimum hardware requirements for acceptable performance.

Resource 
tier

CPU RAM Storage Achieved 
latency

Recommended 4 cores 

@ ≥ 2.0 GHz

8 GB SSD 300 s

Minimum 2 cores 

@ ≥ 1.8 GHz

4 GB SSD 390 s

Below 

minimum

2 cores @ < 1 GHz 2GB HDD > 600 s

SSD, running Windows 11 Pro v23H2. The connection between the 
client node and the server node occurred over a 100 Mbps 
LAN. Measurements of latency reflect single-user end-to-end latency 
unless otherwise stated. Table 13 summarizes the end-to-end web 
request latencies between a client and server. Results include aggregated 
latency values and distribution percentiles, including preprocessing 
from the picture archiving and communication system (PACS) to the 
model decision.

The minimum hardware requirements were determined by 
progressively reducing resources until the system exceeded the 
expected latency threshold of 420 s. A quad-core Intel i5 laptop CPU 
with 8 GB of RAM is sufficient to host the prototype, achieving a 
median latency of 300 s. Table 14 summarizes the minimum hardware 
requirements.

The proposed system achieves a reasonably low end-to-end 
latency (median: 207 s, P95: 293 s) when deployed on an 8-core Intel 
server with 8 GB of RAM. Even under reduced configurations (quad-
core CPU, 4 GB RAM), the prototype remains functional, with a 
median latency of 300 s, making it ideal for practical deployment on 
low-cost hardware. However, the full implementation of the proposed 
system prototype is sought to be a module accessed through the 
existing EMR system in local hospitals.

3.6 Interpreting model decisions

Images of four classes of long bones were used to examine how the 
model makes predictions and which features it learns from input images. 
Results indicate that the trained model uses features such as edges, 
curvatures, discontinuities, and anomalies to align bone parts. These 
features help the model make predictions and reach a specific decision. 
Figure 7 shows the visualization of detected objects using the Grad-CAM 
method. The first row contains the original input images fed into the 
model, and the second row includes the Grad-CAM visualizations.

Figure 7a represents how the model used features from the input 
image of a leg and successfully identified the fractured area. Figure 7b 
indicates which part of the input image of a thigh the model used to 
extract features and make a prediction. Figure 7c is the visualization 
of the upper arm, and Figure 7d is the visualization of the lower arm. 
Taken together, these visualizations indicate the model uses relevant 
features from input images to make predictions. This clearly shows 
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how the model makes predictions and uses similar features to make 
decisions like specialized medical practitioners.

In addition to Grad-CAM visualizations, quantitative sanity 
checks were conducted by randomizing labels and input images. The 
aim was to determine whether the model’s performance stemmed 
from learning true image-label associations rather than spurious 
correlations or memorization. Ground truth labels were randomly 
permuted, and images were replaced with noise-based proxies, and 
the model was retrained. The model trained on this corrupted dataset 
showed a near-chance performance. The resulting performance 
collapse confirms that the model does not rely on unintended shortcut 
features leaking into the labels. Figure 8 shows a PR curve of both 
standard Faster R-CNN and adaptive anchoring R-CNN recorded 
after randomization of labels and input images.

3.7 Fracture diagnosis with prescription 
recommendations

The rapid pace of progress has primarily influenced radiographic 
imaging in machine learning and deep learning. Over the last decade, 
the literature has witnessed an increasing number of studies applying 
deep learning to medical imaging. This application is crucial in 
enhancing the diagnosis process through medical imaging and 
mitigating the limitations of traditional approaches that rely solely on 
human interpretation. Developing countries, such as those in SSA, 
face enormous challenges in medical imaging. For example, Tanzania 
has 60 registered radiologists serving a population of approximately 
60 million (Laage Gaupp et al., 2019). Although special programs have 
been established to train future radiologists (Iyawe et al., 2021). The 
shortage remains evident, particularly as the population continues to 
grow. Applying deep learning in medical imaging is essential and may 
serve as an additional intervention strategy.

There is a shortage of orthopedic surgeons in most developing 
countries in SSA, although limited evidence exists to quantify the 
exact gap. In Malawi, non-physician clinicians have been providing 
orthopedic care due to the shortage of orthopedists, and results 
indicate that task-shifting can be safe (Wilhelm et al., 2017). Deep 
learning models that assist in fracture diagnosis and provide 
prescription recommendations can significantly aid in resource-
limited conditions, such as the SSA. Recommendation systems in the 
healthcare industry are gaining popularity as technology advances, 
aiming to enhance personalized healthcare. A guideline-driven 
decision support system to support family healthcare, utilizing 
semantic technology and open data analysis, has been introduced 
(Wang and Qian, 2021). An evidence-based clinical guideline system 
and monitored adherence to COVID-19 treatment recommendations 
have been implemented (Lichtner et al., 2023). An intelligent system 
that predicts a disease and recommends drugs by utilizing machine 

FIGURE 7

Model visualization using the Grad-CAM method for input images of (a) leg, (b) thigh, (c) upper arm, ad (d) lower arm.

FIGURE 8

PR curve for standard R-CNN (blue) and adaptive (red) after 
randomization test.
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learning algorithms is proposed (Nayak et al., 2023). It is crucial to 
continue advancing deep learning models to reach their full potential, 
especially in medical applications such as diagnosis and treatment.

4 Conclusion

This study aimed to develop an efficient multi-class object 
detection model for bone fracture diagnosis that incorporates 
prescription recommendations. The research has also shown that the 
model’s efficiency and performance can be improved by modifying 
the anchoring process to search for areas where objects are likely to 
be located. Experiments have confirmed that applying adaptive 
anchoring in the process may reduce training time by up to 29%. This 
approach will help expand our understanding of how to continually 
improve object detection efficiency and performance. The study 
primarily confirmed that the object detection model can be utilized 
for bone fracture diagnosis and to suggest a corresponding 
prescription. Another important practical implication is that the 
study has identified the group most prone to bone fractures, the 
mechanisms of injury, and the locations of fractures, disaggregated 
by patient age. This provides valuable insight for law enforcement 
organizations in addressing the causes of bone fractures and for 
medical practitioners in treating them. The focus of this study was 
confined to long bones; notwithstanding this limitation, it offers 
valuable insights into the use of deep learning models as 
recommendation systems in medical applications.
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