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The Clever Hans (CH) effect is a historical analogy of a horse solving mathematical
problems based on some cues, representing a critical failure in artificial intelligence
(Al) systems, where models achieve higher performance by utilizing spurious
correlations and artifacts presented in the datasets rather than relying on causal
relationships or task-related features. This effect or phenomenon is prevalent across
multiple domains of Al such as computer vision, natural language processing,
medical imaging, and reinforcement learning. This review examines the Clever
Hans effect, the conceptual foundation of spurious correlations, and current
evaluation methods that obscure such behavior. We further survey state-of-the-art
detection and mitigation strategies, focusing on both model-centric and data-
centric techniques. Building on these insights, we propose a roadmap for robust Al
development, which includes standard benchmarking, causal integration, human-
in-the-loop auditing, and transparent policy frameworks. This study underscores
that addressing the Clever Hans effect is not only necessary for technical robustness
but also for the ethical and responsible deployment of Al systems in real-world,
high-stakes environments.

KEYWORDS

Clever Hans effect, spurious correlation, shortcut learning, model robustness,
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1 Introduction

The evolution of artificial intelligence (AI) has been marked by a series of transformations
that have shaped both technological advancement and its applications in society. In its initial
stage, Al relied on symbolic learning and rule-based methods for mundane tasks such as spam
detection, recommendation systems, classification, and advertising. As the field has progressed,
it has evolved through multiple stages encompassing machine learning (ML), deep learning
(DL), large language models (LLMs), and advanced automation, enabling increasingly complex
applications (Bommasani et al., 2022). This reflects a clear shift from task-specific algorithms
to generalized models capable of solving cross-domain problems. As AI matured, its utility
significantly expanded, enabling integration into domains such as finance, healthcare,
education, agriculture, and law (Rane et al., 2024). In daily life, AI performs many mundane
tasks with high reliability, such as virtual assistants, SIRI and Alexa, which utilize natural
language processing for understanding speech in a real-time environment (Hassija et al.,
2023). Al demonstrates significant capabilities through both supervised and unsupervised
learning paradigms. In supervised ML, models perform precise predictive tasks, such as
disease prediction, financial forecasting, and weather prediction, by learning from labeled data,
which provides context for the data points (LeCun et al., 2015). In contrast, unsupervised
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learning tries to find hidden patterns and structures without using
labels in data, which is important for tasks such as anomaly detection
and clustering across cross-domain problems. AI-powered systems for
facial recognition in traffic cameras, recommendation systems on
social media platforms, fraud detection in online banking, and threat
assessment in networking devices are prime examples that illustrate
the development of Al over time (Mikhaylov et al., 2018). Healthcare
has been transformed by AlI-driven assisted diagnostics, personalized
care, patient monitoring, and clinical decision support systems,
significantly improving the speed, accuracy, and efficiency of patient
care (Topol, 2019; Singh et al.,, 2025; Pathak et al., 2023; Pathak et
al., 2024).

Despite remarkable advances, AI models remain vulnerable to
systematic biases arising from both the architecture of the model and
the distribution of data. A well-known issue is data bias, which
happens when training data reflect imbalanced, incomplete, or
non-representative instances of the real-world population (Mehrabi
et al., 2021). Such biases manifest during the training phase of the
model, often leading models to rely on unintended spurious
correlations or features—statistical associations that do not reflect
meaningful or causal relationships (Geirhos et al., 2020). For example,
vision models trained on ImageNet may learn background textures
correlated with object classes rather than the objects themselves.
Similarly, models trained on medical images have been shown to rely
on confounding factors such as scanner type, hospital or facility
identifiers, machine-specific characteristics, or embedded imaging
artifacts, instead of the true clinical features that the models are
intended to learn. These scenarios degrade model performance when
deployed in real-world settings across different institutions (Zech et
al.,, 2018). Convolutional Neural Networks have been shown to rely on
the presence of rulers or variations in skin tone when predicting
cancer, rather than focusing on the morphological features of the
lesion itself (Winkler et al., 2019).

Data biases are not limited to image processing; in natural
language processing, models often rely on unintended syntactic
patterns, question templates, or lexical cues while ignoring the
semantic understanding of the text (Delaney et al., 2023). In a similar
vein, large language models (LLMs) display shortcut behavior by
mimicking prompt formats and token distributions, which can lead to
misleading outputs or hallucinated responses when these patterns
change (Lin et al., 2022).

These biases are also present in speech and sensor-based domains,
where Al models are often latched onto the frequency signatures of
the microphone, the acoustics of the surroundings, or the metadata of
the device that are unintentionally related to the target label, making
them highly vulnerable to environmental changes (Martin and
Wright, 2023).

In time series models, these scenarios often occur when models
trained on clinical data identify timestamps and monitor brand
identifiers as important features. These features do not reflect the
actual physiology of individuals but can still influence outcomes
(Harutyunyan et al., 2019).

This results in the degradation of AI model robustness across
domain-specific tasks, where models may show high performance
during training by relying on spurious correlations and cues but fail
under different circumstances (Maheronnaghsh and Alvanagh, 2025).

Moreover, explainable AI methods such as Grad-CAM, SHAP,
and LIME often fail to reveal the true behaviors of models trained on
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spurious features. This highlights a phenomenon known as the Clever
Hans (CH) effect, where an Al model appears intelligent but relies on
unintended features or misleading cues (Lapuschkin et al., 2019).

Several factors are responsible for the emergence of the CH effect in
Al systems: (1) Data artifacts and embedded biases, which often serve
as shortcuts for models, allowing them to achieve unusually high
performance during training. Examples include scanner-specific
information and metadata in medical imaging, background details in
image datasets, or emoji frequency patterns that can mislead models in
sentiment analysis (Zech et al., 2018). (2) Absence of causal supervision,
which causes models to overfit using superficial correlations instead of
learning task-relevant and invariant features (Sagawa et al., 2019). (3)
Imbalanced or non-representative datasets, which introduce hidden
confounders, such as socio-economic proxies or demographic
imbalances, shifting the attention of the model toward spurious cues.
(4) Insufficient evaluation pipelines, which generally rely on
independent and identically distributed splits that preserve the same
biases across training and testing sets, thereby masking shortcut reliance.
(5) Lack of robust interpretability tools, which makes it difficult to detect
when a model is utilizing non-causal cues; explainable Al methods often
produce plausible but misleading attributions (Lapuschkin et al., 2019).
Furthermore, factors such as reward hacking in reinforcement learning,
dataset leakage, and the absence of out-of-distribution validation are
also reasons for the emergence of the CH effect in modern AI models.

As Al systems are now an integral part of our daily life, spanning
healthcare, finance, autonomous systems, and decision-making, there
is a growing need for assurance that models are not only high-
performing but also robust, generalizable, and interpretable. This is
often overlooked during standard training and evaluation, resulting
in models that perform well under controlled benchmarks but fail
during deployment when distribution shifts occur in real-world
scenarios. Such a nature of models allows them to appear intelligent
while relying on unintended non-semantic or non-causal signals,
raising concerns about their reliability, trustworthiness, and fairness.
Given these scenarios, there is an urgent need to understand how
shortcut learning emerges, how it can be detected and diagnosed, and
what mitigation strategies are more effective when dealing with it.

In this review, we provide a comprehensive survey of AI model
vulnerabilities arising from the Clever Hans effect—also referred to as
spurious correlations and shortcut learning. We critically examine the
behavioral effects across domains, such as natural language processing,
medical imaging, computer vision, and speech processing, where they
undermine model generalization and robustness. Furthermore, we
identify and evaluate the most effective detection and mitigation
methods developed in recent years, categorizing them into model-
centric and data-centric approaches. Finally, we present a synthesis of
empirical findings, benchmark tools, and algorithmic approaches—
such as invariant risk minimization (IRM), counterfactual data
augmentation, and slice-aware evaluation—that can guide the
development of more interpretable, transparent, and reliable AI
models for high-stakes real-world environments.

2 Conceptual foundations of the
Clever Hans effect

The Clever Hans effect, presented in Figure 1, takes its name from
a horse in early 20th-century Germany that appeared to solve
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arithmetic tasks. Upon further investigation, psychologist Oskar
Pfungst found that Hans was not solving actual problems
mathematically but was instead responding to subtle, unintentional
cues from his handler, such as changes in expression and posture,
during public demonstrations (Pfungst, 2025). This historical incident
serves as a strong analogy in AI, where models appear to perform
complex tasks but actually exploit irrelevant or unintended signals
present in the data (Lapuschkin et al., 2019). The term is used to warn
against interpreting high-performing models as showing genuine
understanding or reasoning. The analogy is apt because, like the horse,
Al systems lack self-awareness and cannot separate causally relevant
features from spurious ones without human interventions and
validation (Madsen et al., 2022). Therefore, the Clever Hans effect has
become a diagnostic metaphor in research on model explainability,
robustness, and trustworthy AI (Hooker et al., 2019).

The Clever Hans effect in Al can be formalized using the concept
of spurious correlations and shortcut learning in supervised
learning models.

Suppose a model fy (x) is trained to approximate a target
y=f (x) using empirical risk minimization:

6= argming E(x,y)NDW [ﬁ(fe (x),y)].

However, if the training distribution Dy, contains spurious
features z — x that correlate with y, the model may minimize the loss
by learning:

10.3389/frai.2025.1692454

Where, g is the function of spuriously correlated variables rather
than the true causal features.
Formally if,

P(}’lxcasual) * P(ylz)~

But IP’( y|z) ~ IP’( ylx) on Drygiy, than fy exhibits the shortcut
behavior relying on z rather then causal feature set x4;,547-

This phenomenon leads to distributional vulnerability, where
under a shifted distribution Dr,gsuch that P ( y|z) no longer holds and
the performance of the model deteriorates.

Generalization Gap = Lyest — Lryain > 0.

3 Manifestation of the Clever Hans
effect

The manifestation of the Clever Hans effect is summarized in
Table 1, highlighting its pervasiveness across both core and emerging
Al application domains. In each diverse domain, models have been
shown to exploit unintentional spurious features. For example,
computer vision models exploit background textures, medical imaging
models are influenced by hospital identifiers and scanner properties,
large language models pick up on prompt patterns, and IoT systems
exploit sensor-specific noise. These results show that while models
may achieve high performance on benchmark datasets, they often fail
to generalize under domain shifts or adapt to new test environments
or adversarial conditions. The problem affects not only natural

‘ Class 1 | ‘ Class 2 ‘ |Decision Boundary

Shift in Decision Boundary due to data shift

Data Shift

)

Data Points

CH Effect Inherited on
Training and Testing Phase

| | Exhibiting CH Effect on Prediction Task

Artificial Intelligent Model Pipeline

FIGURE 1
A classical example of the Clever Hans effect.
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TABLE 1 A systematic mapping of shortcut learning behaviors and the Clever Hans effect across diverse artificial intelligence domains: evidence of
spurious correlations, generalization failures, and contextual biases in model predictions.

Al domain

Subdomain/task

Spurious feature/

shortcut

Observed problem

References

Computer vision

Image classification

Background, texture,

watermark

Misclassification based on

background or visual noise

Geirhos et al. (2020)

Object detection

Contextual features (sky,

road)

Detection triggered by scenery

rather than object shape

Jamali et al. (2025)

Medical imaging

Chest X-ray classification

Hospital ID, scanner artifacts

Model overfits to source

institution features

Ong Ly et al. (2024)

Skin lesion analysis

Ruler, skin tone, lighting

Decision influenced by the
presence of measurement tools

or skin type

Nauta et al. (2022)

Natural language processing

Sentiment analysis

Emojis, punctuation

Ignores sentence meaning;

overweights superficial symbols

Vosoughi et al. (2024)

Question answering/VQA

Syntactic priors, question

templates

Answers guessed from question
form without visual/text

grounding

Vosoughi et al. (2024)

Large language models

Factual QA/prompt completion

Prompt structure, token

frequency

Hallucinated completions; high

confidence in false answers

Peters and Chin-Yee (2025)

Speech and audio

ASR/command recognition

Background noise, mic

frequency response

Fails with new devices or

ambient sound patterns

Oglic et al. (2022)

Speaker identification

Recording channel,

Learns mic characteristics

Lietal. (2025)

environmental noise

rather than vocal identity

Autonomous systems Robot navigation

simulator

Floor texture, lighting from

Model fails in real-world Muratore et al. (2022)

deployment

Time series/IoT Human activity recognition

Device ID, sampling rate

Poor transfer across hardware Yamane et al. (2025)

or settings

Vital sign monitoring

Patient location, time-of-day

Predictions tied to routine or Harutyunyan et al. (2019)

room location instead of vitals

Cybersecurity Intrusion detection

IP rarity, uncommon ports

Novel but benign traffic flagged = Sommer and Paxson (2010)

as malicious

Finance/risk analysis Algorithmic trading

Timestamp, cyclical effects

Overfits to calendar patterns or Khandani et al. (2010)

market hours

language processing, medical imaging, and textual analysis but also
extends to safety-critical systems, cybersecurity, and finance. The
recurring nature of the problem across domains emphasizes that it is
not domain-specific, but a fundamental issue inherent to how Al
systems are trained, evaluated, and deployed.

4 Detection and mitigation strategies
for the Clever Hans effect

4.1 Detection—data-centric

4.1.1 Subgroup/slice performance analysis

The model’s performance on each data subgroup was analyzed
and compared to its overall performance to identify discrepancies.
These discrepancies across different data slices help identify specific
subgroups in which the model fails, indicating the presence of
spurious correlations, bias, or the Clever Hans effect. The study
provided evidence of shortcut learning in chest X-ray and
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dermatology tasks and proposed a reduced attribute encoding
pipeline as a core component of fairness evaluation. The findings
demonstrate performance disparities in medical imaging models
arising from shortcut artifacts (Brown et al., 2023).

4.1.2 Confounder correlation checks

Non-causal confounders are variables that influence both input
features and target labels. This association creates a spurious
relationship between them, and models may learn shortcuts. The
confounder correlation method detects and mitigates these
non-causal artifacts using a statistical association pipeline (Qu et
al.,, 2024).

4.1.3 OOD test or sanity test

Out-of-distribution (OOD) testing evaluates the model’s behavior
during the testing phase on data that are out-of-distribution relative
to training data. This ensures that the model generalizes well to unseen
data; failure to do so may indicate the presence of spurious correlations
or shortcut learning. In contrast, sanity tests assess logical correctness,
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verify input preprocessing, and detect unreasonable predictions and
errors (Mahmood et al., 2021).

4.2 Detection—model-centric

4.2.1 Attribution/saliency maps

Deep learning models are mostly black boxes in nature, and
interpreting the learned representations of intermediate layers can
reveal the model’s reliance on irrelevant features or confounding
regions. Attribution/saliency maps are post-hoc methods that assign
importance scores to each input for a particular output class and
visually highlight the input regions that contribute most to the model’s
prediction (Bassi et al., 2024).

4.2.2 Occlusion/ablation sensitivity maps

An effective model-centric detection strategy systematically
interrogates the trained network by ablating small patches of data. The
behavioral change is measured and visualized as a heatmap, where
highlighted regions indicate areas crucial for predictions.

The article shows the resiliency of various emerging transformer
architectures when evaluated against the spurious correlation on three
benchmark datasets, highlighting the role of the self-attention
mechanism through extensive ablation studies in spuriously correlated
environments (Arias-Londofio and Godino-Llorente, 2024).

4.2.3 Spectral relevance analysis

By clustering multiple local heatmaps, spectral relevance analysis
(SpRAy) reveals global patterns and identifies shortcut cues. The study
further discusses the quantification of Clever Hans traits by SpRAy
and the mitigation of a model’s Clever Hans behavior (termed
Un-Hans models) through a post-hoc approach called Class Artifact
Compensation (ClArC). The Clever Hans effect goes undetected by
standard validation methods (Bender et al., 2023; Kauffmann et
al., 2025).

4.3 Mitigation—data-centric

4.3.1 Counterfactual and contrastive testing

These methods are hypothetical tools for causal-style reasoning,
in which one or a few causal factors are altered while holding
everything else constant, to observe whether the model output changes
or preserves the predicted class. They detect shortcuts or Clever Hans
features by searching the closest counterfactuals that cause different
predictions. This strategy has been applied across various domains to
expose or fix spurious correlations and biases. For example, MRI
classifiers trained on brain images, in which 3D conditional generative
models are used to generate brain demographic counterfactuals to
mitigate the impact of demographic imbalances and shortcuts.
Aligning with both data-centric and model-centric strategies, training
classifiers on plausible counterfactual explanations—a perturbation
technique that does not alter the underlying data distribution—has
been shown to improve robustness (Pombo et al., 2023).

4.3.2 Data pruning and bias correction

Sample-level or feature-level pruning of redundant, noisy, or
irrelevant data, as well as features that contribute to biases in model
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learning, helps ensure fair generalization. Data-level resampling,
reweighting, and data distribution modification are employed to
mitigate contextual, statistical, or demographic biases. These
approaches often incorporate implicit data pruning through
preprocessing steps, such as outlier removal and noise reduction
(Arias-Londofio and Godino-Llorente, 2024).

4.4 Mitigation—model-centric

4.4.1 Explainability-guided mitigation

The post-hoc analysis is used to examine a model’s reliance on
data, architectural components, or input regions, thereby explaining
which aspects the model uses to generalize its predictions. Such
analyses provide insights into the black-box nature of deep neural
networks. This diagnostic process helps identify and mitigate
spurious associations and shortcut learning by enabling targeted
corrective actions. In particular, methods such as Layer-wise
Relevance Propagation (LRP), DeepLIFT, and Bayesian CNNs have
been used to reveal model attention to non-lung regions, thereby
highlighting the Clever Hans effect. By masking these non-lung
regions using domain expertise, improved COVID-19 detection from
chest X-ray images has been achieved (Arias-Londofio and Godino-
Llorente, 2024).

4.4.2 Feature disentanglement and representation
learning

Data may contain artifacts, such as watermarks and text tags, that
become entangled with causally relevant features, leading to the
Clever Hans effect. Feature disentanglement aims to capture the
variation of independent, semantically meaningful factors in the data
within latent dimensions and to improve performance. A study
showed the presence of erroneous features in medical data, including
MRI and chest radiographs (CXRs), where models exhibited improved
generalization on filtered pulmonary features and pre-processed MRI
scans (Trivedi et al., 2022) (Table 2).

5 Discussion

The Clever Hans Effect, a prominent manifestation of shortcut
learning, is increasingly recognized as a pervasive issue
compromising the reliability and robustness of supervised machine
learning models. Recent literature (2020-2025) emphasizes
sophisticated detection and mitigation strategies, which can be
systematically ~categorized into data-centric and model-
centric methodologies.

Among data-centric detection methods, counterfactual and
contrastive testing have emerged as intuitive strategies for
identifying spurious correlations. This approach involves creating
modified inputs by occluding irrelevant features or altering
specific contextual aspects, such as backgrounds in image
classification tasks or syntactic variations in text inputs (Pombo
et al., 2023). Its strengths lie in its simplicity of implementation
and the intuitive interpretation of results, providing direct
evidence of a model’s reliance on superficial features. However,
these methods

counterfactual

require manual generation of realistic

examples, making them labor-intensive,
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TABLE 2 Summary of detection and mitigation strategies for shortcut learning and the Clever Hans effect in Al models.

Detection

Method

Technique

Strengths

Limitations

10.3389/frai.2025.1692454

Representative

studies (2020-2025)

Data-centric

Subgroup/slice

performance analysis

OOD groups;
demographic strata;

bias-based slices

Detects hidden bias;
highlights classification

performance gaps

Requires labeled
subgroups; performs best

with large sample sizes

Brown et al. (2023)

Confounder correlation

checks

Feature-label correlation

statistical analysis

Detects a priori spurious

signals

Correlation does not imply
causation; may overlook

complex relationships

Qu et al. (2024)

OOD test or sanity test

Behavioral testing; OOD

generalization

Probes invariances;

model-agnostic; scalable

Requires clearly specified

test cases; black-box nature

Mahmood et al. (2021)

Model-centric

Attribution/saliency maps

Grad-CAM; SHAP;
LIME; LRP

Provides visual insight;

model-agnostic

Sensitive to
hyperparameters;
inaccurate attribute

methods

Bassi et al. (2024)

Occlusion/ablation

sensitivity maps

Class artifact
compensation; Grad-

CAM; perturbing inputs

Pinpoints critical regions

High computational cost;
occlusion may introduce

artifacts

Arias-Londofo and Godino-

Llorente (2024)

Spectral Relevance

Analysis (SpRAy)

Combines LRP with
spectral clustering;
visualization techniques

t-SNE, PCA

Systematic detection
method; identifies
subpopulations of

decisions

Requires large training
data; computational

overhead

Bender et al. (2023)

Unsupervised explainable

diagnostics

Latent clustering;
unsupervised heatmaps;
BiLRP; relevance
clustering; multiple

anomaly models

Generalizable across
domains; Early detection;

label-independent

Lacks validation; high false
positive rates; scalability
issues; does not attribute

causality

Kauffmann et al. (2025)

Mitigation

Data-centric

Counterfactual and

contrastive testing

Generating artificial data;

contrastive learning

Identifies model

behavior; robust

High computational cost;
requires a well-defined
feature space; requires
supervision for realistic
counterfactuals; may

overlook hidden shortcuts

Pombo et al. (2023)

Data pruning and bias

correction

Removing artifacts;

reducing bias in training

Addresses bias in the
training dataset;

generalized models

May alter datasets’
properties; requires domain

knowledge

Arias-Londofo and Godino-

Llorente (2024)

Model-centric

Explainability-guided

mitigation

LIME; SHAP

Provides transparency
into model decision-

making; model-agnostic

Computationally expensive;
explanation methods may

lack granularity

Kauffmann et al. (2025)

Feature disentanglement
and representation

learning

Feature decoupling

More general and robust
model; enhances model

interpretability

Complex disentangling
process; may not work with
high-dimensional or noisy

datasets

Trivedi et al. (2022)

potentially limiting scalability,
hidden shortcuts.
Subgroup or slice performance analysis complements this

and overlooking subtler  Nonetheless, subgroup methods are limited by the need for adequately
labeled subgroups and sufficient sample sizes, potentially restricting
applicability in real-world settings with incomplete metadata or
approach by explicitly evaluating model performance on defined  smaller datasets.
subsets, such as demographic strata, institutional grouping, or out-of- Confounder correlation checks further enrich data-centric
distribution segments. This strategy reveals hidden performance  detection through statistical analyses of feature-label associations.
disparities and biases, reflecting a model’s reliance on spurious  These methods systematically detect a priori signals indicative of

correlations present in training data (Wallis and Buvat, 2022).  spurious correlations, providing preliminary diagnostic insights.
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However, correlation analysis inherently lacks causal grounding and
may not adequately address more intricate, non-linear interactions
between features and labels, thus limiting their standalone efficacy.

Model-centric detection methods, such as attribution and saliency
maps—including Grad-CAM, SHAP, and LIME—provide visual
insights into the decision-making processes of black-box models by
highlighting influential input regions (Anders et al., 2022). Despite
their intuitive appeal, these attribution methods often exhibit sensitivity
to hyperparameters and may provide misleading or imprecise feature
importance maps, potentially masking true shortcut behaviors.

Furthermore, occlusion and ablation sensitivity analyses systematically
perturb input data to reveal the critical regions underpinning model
predictions, thereby highlighting the precise reliance of models on certain
input aspects (Anders et al., 2022). However, these approaches incur
considerable computational overhead and risk introducing artifacts due
to artificial perturbations, limiting their broader applicability.

For mitigation, data-centric methods, such as counterfactual data
generation and contrastive learning, augment datasets with
systematically altered examples, intentionally breaking spurious
correlations (Qu et al., 2024). Despite their effectiveness, these
methods require substantial computational resources and explicitly
defined feature spaces, making widespread deployment challenging.

Model-centric mitigation approaches employ explainability-
guided training strategies, incorporating interpretability methods such
as LIME and SHAP into the training process to actively discourage
shortcut usage by promoting transparency in decision-making
(Kauffmann et al., 2025). Although effective in enhancing model
interpretability, these methods can be computationally expensive and
may lack the granularity required for fine-tuned adjustments.

These comprehensive detection and mitigation approaches,
grounded in recent technical developments, highlight the need for
integrative, hybrid strategies that combine intuitive diagnostic tools,
careful data management, and algorithmic robustness to effectively
counter the pervasive Clever Hans effect in modern Al systems.

6 Roadmap for robust Al development

To address the pervasive challenge of the Clever Hans effect and
shortcut learning, we present a roadmap for developing Al systems that
are robust, generalizable, and trustworthy. In the first step, standardized
benchmarking protocols should be established to assess model
performance across multiple parameters, including generalization,
reliability, and robustness. These standard benchmarks should be
designed to expose potential shortcuts during the initial training of the
model, providing an accurate assessment of performance when
deployed in real-world and out-of-distribution (OOD) situations
(Hendrycks et al., 2021). By focusing on these benchmarked parameters,
we ensure that Al models are trustworthy and can adjust to new patterns
in unseen data while avoiding overfitting to spurious attributes. In the
second step, causal integration plays a crucial role in model design. AI
systems should function based on causal relationships rather than
spurious attributes that are frequently present in training data.
Approaches such as IRM can help enforce causal relationships across
different types of datasets (Scholkopf et al., 2021). By incorporating
causal reasoning into the training process of the model, we can prevent
models from exploiting superficial attributes and make sure that they
learn true, meaningful patterns that generalize well across different
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scenarios. In the third step, incorporating human-in-the-loop auditing
frameworks is essential for ensuring ongoing monitoring during model
training and deployment. These frameworks enable domain experts to
interfere and provide real-time feedback on decisions taken by the
model, ensuring that the model is not utilizing irrelevant or harmful
shortcuts. Human intervention and oversight are critical for maintaining
the model’s alignment with real-world goals and ethical standards,
particularly in sensitive areas such as healthcare, finance, and forecasting
(Amershi et al,, 2019). In the fourth step, transparent policy frameworks
are essential for documenting the process of decision-making of Al
systems. These frameworks encourage accountability and enable
organizations to interpret and justify the behavior of Al systems in
decision-making. Ongoing model evaluation and active learning
mechanisms should be incorporated rigorously to ensure that models
remain adaptable to data shifts. These approaches should be updated to
monitor performance in real-world settings, ensuring that models
remain free from shortcut training and stay focused on their
respective tasks.

7 Conclusion

The Clever Hans effect remains a critical challenge in the
development of robust, reliable, and generalizable Al systems. This
phenomenon is evident across computer vision, natural language
processing, and medical applications, where models often exploit
spurious features that correlate with the output during training and
lack a causal relationship. These behaviors may perform well on
in-house data but often fail to bridge the gaps when the model
encounters real-world variations and distribution shifts in data. Our
review distinguishes between data-centric and model-centric
paradigms in terms of detection and mitigation strategies. Detection
strategies, such as counterfactual testing and slice-based performance,
offer different ways to reveal spurious correlations. Each approach
offers distinct strengths, ranging from intuition-based visual
diagnostics to statistical robustness. Mitigation strategies, including
data pruning and Grad-CAM-based feature disentanglement, help
guide models toward robust, intended representations. However, these
approaches often require manual intervention, extensive domain
knowledge, and focused infrastructure.

While previous research provides valuable insights, current
methods remain inconsistent, often tailored to specific datasets, and
lack rigorous cross-domain validation. A critical challenge is the
absence of unified structural benchmarks and automated pipelines
capable of detecting shortcut learning throughout both training and
deployment. Future research should focus on principled causal
representation learning, adaptive monitoring frameworks, and
consistent robustness assessments that stress-test sensitivity to
non-salient features. Combining these breakthroughs with ethical
and regulatory frameworks will be crucial for developing Al systems
that remain reliable, transparent, and trustworthy in real-world, high-
stakes environments.
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