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The Clever Hans (CH) effect is a historical analogy of a horse solving mathematical 
problems based on some cues, representing a critical failure in artificial intelligence 
(AI) systems, where models achieve higher performance by utilizing spurious 
correlations and artifacts presented in the datasets rather than relying on causal 
relationships or task-related features. This effect or phenomenon is prevalent across 
multiple domains of AI such as computer vision, natural language processing, 
medical imaging, and reinforcement learning. This review examines the Clever 
Hans effect, the conceptual foundation of spurious correlations, and current 
evaluation methods that obscure such behavior. We further survey state-of-the-art 
detection and mitigation strategies, focusing on both model-centric and data-
centric techniques. Building on these insights, we propose a roadmap for robust AI 
development, which includes standard benchmarking, causal integration, human-
in-the-loop auditing, and transparent policy frameworks. This study underscores 
that addressing the Clever Hans effect is not only necessary for technical robustness 
but also for the ethical and responsible deployment of AI systems in real-world, 
high-stakes environments.
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1 Introduction

The evolution of artificial intelligence (AI) has been marked by a series of transformations 
that have shaped both technological advancement and its applications in society. In its initial 
stage, AI relied on symbolic learning and rule-based methods for mundane tasks such as spam 
detection, recommendation systems, classification, and advertising. As the field has progressed, 
it has evolved through multiple stages encompassing machine learning (ML), deep learning 
(DL), large language models (LLMs), and advanced automation, enabling increasingly complex 
applications (Bommasani et al., 2022). This reflects a clear shift from task-specific algorithms 
to generalized models capable of solving cross-domain problems. As AI matured, its utility 
significantly expanded, enabling integration into domains such as finance, healthcare, 
education, agriculture, and law (Rane et al., 2024). In daily life, AI performs many mundane 
tasks with high reliability, such as virtual assistants, SIRI and Alexa, which utilize natural 
language processing for understanding speech in a real-time environment (Hassija et al., 
2023). AI demonstrates significant capabilities through both supervised and unsupervised 
learning paradigms. In supervised ML, models perform precise predictive tasks, such as 
disease prediction, financial forecasting, and weather prediction, by learning from labeled data, 
which provides context for the data points (LeCun et al., 2015). In contrast, unsupervised 
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learning tries to find hidden patterns and structures without using 
labels in data, which is important for tasks such as anomaly detection 
and clustering across cross-domain problems. AI-powered systems for 
facial recognition in traffic cameras, recommendation systems on 
social media platforms, fraud detection in online banking, and threat 
assessment in networking devices are prime examples that illustrate 
the development of AI over time (Mikhaylov et al., 2018). Healthcare 
has been transformed by AI-driven assisted diagnostics, personalized 
care, patient monitoring, and clinical decision support systems, 
significantly improving the speed, accuracy, and efficiency of patient 
care (Topol, 2019; Singh et al., 2025; Pathak et al., 2023; Pathak et 
al., 2024).

Despite remarkable advances, AI models remain vulnerable to 
systematic biases arising from both the architecture of the model and 
the distribution of data. A well-known issue is data bias, which 
happens when training data reflect imbalanced, incomplete, or 
non-representative instances of the real-world population (Mehrabi 
et al., 2021). Such biases manifest during the training phase of the 
model, often leading models to rely on unintended spurious 
correlations or features—statistical associations that do not reflect 
meaningful or causal relationships (Geirhos et al., 2020). For example, 
vision models trained on ImageNet may learn background textures 
correlated with object classes rather than the objects themselves. 
Similarly, models trained on medical images have been shown to rely 
on confounding factors such as scanner type, hospital or facility 
identifiers, machine-specific characteristics, or embedded imaging 
artifacts, instead of the true clinical features that the models are 
intended to learn. These scenarios degrade model performance when 
deployed in real-world settings across different institutions (Zech et 
al., 2018). Convolutional Neural Networks have been shown to rely on 
the presence of rulers or variations in skin tone when predicting 
cancer, rather than focusing on the morphological features of the 
lesion itself (Winkler et al., 2019).

Data biases are not limited to image processing; in natural 
language processing, models often rely on unintended syntactic 
patterns, question templates, or lexical cues while ignoring the 
semantic understanding of the text (Delaney et al., 2023). In a similar 
vein, large language models (LLMs) display shortcut behavior by 
mimicking prompt formats and token distributions, which can lead to 
misleading outputs or hallucinated responses when these patterns 
change (Lin et al., 2022).

These biases are also present in speech and sensor-based domains, 
where AI models are often latched onto the frequency signatures of 
the microphone, the acoustics of the surroundings, or the metadata of 
the device that are unintentionally related to the target label, making 
them highly vulnerable to environmental changes (Martin and 
Wright, 2023).

In time series models, these scenarios often occur when models 
trained on clinical data identify timestamps and monitor brand 
identifiers as important features. These features do not reflect the 
actual physiology of individuals but can still influence outcomes 
(Harutyunyan et al., 2019).

This results in the degradation of AI model robustness across 
domain-specific tasks, where models may show high performance 
during training by relying on spurious correlations and cues but fail 
under different circumstances (Maheronnaghsh and Alvanagh, 2025).

Moreover, explainable AI methods such as Grad-CAM, SHAP, 
and LIME often fail to reveal the true behaviors of models trained on 

spurious features. This highlights a phenomenon known as the Clever 
Hans (CH) effect, where an AI model appears intelligent but relies on 
unintended features or misleading cues (Lapuschkin et al., 2019).

Several factors are responsible for the emergence of the CH effect in 
AI systems: (1) Data artifacts and embedded biases, which often serve 
as shortcuts for models, allowing them to achieve unusually high 
performance during training. Examples include scanner-specific 
information and metadata in medical imaging, background details in 
image datasets, or emoji frequency patterns that can mislead models in 
sentiment analysis (Zech et al., 2018). (2) Absence of causal supervision, 
which causes models to overfit using superficial correlations instead of 
learning task-relevant and invariant features (Sagawa et al., 2019). (3) 
Imbalanced or non-representative datasets, which introduce hidden 
confounders, such as socio-economic proxies or demographic 
imbalances, shifting the attention of the model toward spurious cues. 
(4) Insufficient evaluation pipelines, which generally rely on 
independent and identically distributed splits that preserve the same 
biases across training and testing sets, thereby masking shortcut reliance. 
(5) Lack of robust interpretability tools, which makes it difficult to detect 
when a model is utilizing non-causal cues; explainable AI methods often 
produce plausible but misleading attributions (Lapuschkin et al., 2019). 
Furthermore, factors such as reward hacking in reinforcement learning, 
dataset leakage, and the absence of out-of-distribution validation are 
also reasons for the emergence of the CH effect in modern AI models.

As AI systems are now an integral part of our daily life, spanning 
healthcare, finance, autonomous systems, and decision-making, there 
is a growing need for assurance that models are not only high-
performing but also robust, generalizable, and interpretable. This is 
often overlooked during standard training and evaluation, resulting 
in models that perform well under controlled benchmarks but fail 
during deployment when distribution shifts occur in real-world 
scenarios. Such a nature of models allows them to appear intelligent 
while relying on unintended non-semantic or non-causal signals, 
raising concerns about their reliability, trustworthiness, and fairness. 
Given these scenarios, there is an urgent need to understand how 
shortcut learning emerges, how it can be detected and diagnosed, and 
what mitigation strategies are more effective when dealing with it.

In this review, we provide a comprehensive survey of AI model 
vulnerabilities arising from the Clever Hans effect—also referred to as 
spurious correlations and shortcut learning. We critically examine the 
behavioral effects across domains, such as natural language processing, 
medical imaging, computer vision, and speech processing, where they 
undermine model generalization and robustness. Furthermore, we 
identify and evaluate the most effective detection and mitigation 
methods developed in recent years, categorizing them into model-
centric and data-centric approaches. Finally, we present a synthesis of 
empirical findings, benchmark tools, and algorithmic approaches—
such as invariant risk minimization (IRM), counterfactual data 
augmentation, and slice-aware evaluation—that can guide the 
development of more interpretable, transparent, and reliable AI 
models for high-stakes real-world environments.

2 Conceptual foundations of the 
Clever Hans effect

The Clever Hans effect, presented in Figure 1, takes its name from 
a horse in early 20th-century Germany that appeared to solve 
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arithmetic tasks. Upon further investigation, psychologist Oskar 
Pfungst found that Hans was not solving actual problems 
mathematically but was instead responding to subtle, unintentional 
cues from his handler, such as changes in expression and posture, 
during public demonstrations (Pfungst, 2025). This historical incident 
serves as a strong analogy in AI, where models appear to perform 
complex tasks but actually exploit irrelevant or unintended signals 
present in the data (Lapuschkin et al., 2019). The term is used to warn 
against interpreting high-performing models as showing genuine 
understanding or reasoning. The analogy is apt because, like the horse, 
AI systems lack self-awareness and cannot separate causally relevant 
features from spurious ones without human interventions and 
validation (Madsen et al., 2022). Therefore, the Clever Hans effect has 
become a diagnostic metaphor in research on model explainability, 
robustness, and trustworthy AI (Hooker et al., 2019).

The Clever Hans effect in AI can be formalized using the concept 
of spurious correlations and shortcut learning in supervised 
learning models.

Suppose a model ( )θf x  is trained to approximate a target 
( )=y f x  using empirical risk minimization:

	 ( ) ( )( )θ θθ  =  , ~argmin , .ˆ
Trainx y f x y  

However, if the training distribution Train  contains spurious 
features ⊂z x that correlate with y, the model may minimize the loss 
by learning:

	 ( ) ( )θ = .f x g z

Where, g  is the function of spuriously correlated variables rather 
than the true causal features.

Formally if,

	 ( ) ( )≠| | .casualy x y z 

But ( ) ( )≈| |y z y x   on Train  than θf  exhibits the shortcut 
behavior relying on z rather then causal feature set causalx .

This phenomenon leads to distributional vulnerability, where 
under a shifted distribution Test such that ( )|y z  no longer holds and 
the performance of the model deteriorates.

	 Test TrainGeneralization Gap 0.= −  

3 Manifestation of the Clever Hans 
effect

The manifestation of the Clever Hans effect is summarized in 
Table 1, highlighting its pervasiveness across both core and emerging 
AI application domains. In each diverse domain, models have been 
shown to exploit unintentional spurious features. For example, 
computer vision models exploit background textures, medical imaging 
models are influenced by hospital identifiers and scanner properties, 
large language models pick up on prompt patterns, and IoT systems 
exploit sensor-specific noise. These results show that while models 
may achieve high performance on benchmark datasets, they often fail 
to generalize under domain shifts or adapt to new test environments 
or adversarial conditions. The problem affects not only natural 

FIGURE 1

A classical example of the Clever Hans effect.
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language processing, medical imaging, and textual analysis but also 
extends to safety-critical systems, cybersecurity, and finance. The 
recurring nature of the problem across domains emphasizes that it is 
not domain-specific, but a fundamental issue inherent to how AI 
systems are trained, evaluated, and deployed.

4 Detection and mitigation strategies 
for the Clever Hans effect

4.1 Detection—data-centric

4.1.1 Subgroup/slice performance analysis
The model’s performance on each data subgroup was analyzed 

and compared to its overall performance to identify discrepancies. 
These discrepancies across different data slices help identify specific 
subgroups in which the model fails, indicating the presence of 
spurious correlations, bias, or the Clever Hans effect. The study 
provided evidence of shortcut learning in chest X-ray and 

dermatology tasks and proposed a reduced attribute encoding 
pipeline as a core component of fairness evaluation. The findings 
demonstrate performance disparities in medical imaging models 
arising from shortcut artifacts (Brown et al., 2023).

4.1.2 Confounder correlation checks
Non-causal confounders are variables that influence both input 

features and target labels. This association creates a spurious 
relationship between them, and models may learn shortcuts. The 
confounder correlation method detects and mitigates these 
non-causal artifacts using a statistical association pipeline (Qu et 
al., 2024).

4.1.3 OOD test or sanity test
Out-of-distribution (OOD) testing evaluates the model’s behavior 

during the testing phase on data that are out-of-distribution relative 
to training data. This ensures that the model generalizes well to unseen 
data; failure to do so may indicate the presence of spurious correlations 
or shortcut learning. In contrast, sanity tests assess logical correctness, 

TABLE 1  A systematic mapping of shortcut learning behaviors and the Clever Hans effect across diverse artificial intelligence domains: evidence of 
spurious correlations, generalization failures, and contextual biases in model predictions.

AI domain Subdomain/task Spurious feature/
shortcut

Observed problem References

Computer vision Image classification Background, texture, 

watermark

Misclassification based on 

background or visual noise

Geirhos et al. (2020)

Object detection Contextual features (sky, 

road)

Detection triggered by scenery 

rather than object shape

Jamali et al. (2025)

Medical imaging Chest X-ray classification Hospital ID, scanner artifacts Model overfits to source 

institution features

Ong Ly et al. (2024)

Skin lesion analysis Ruler, skin tone, lighting Decision influenced by the 

presence of measurement tools 

or skin type

Nauta et al. (2022)

Natural language processing Sentiment analysis Emojis, punctuation Ignores sentence meaning; 

overweights superficial symbols

Vosoughi et al. (2024)

Question answering/VQA Syntactic priors, question 

templates

Answers guessed from question 

form without visual/text 

grounding

Vosoughi et al. (2024)

Large language models Factual QA/prompt completion Prompt structure, token 

frequency

Hallucinated completions; high 

confidence in false answers

Peters and Chin-Yee (2025)

Speech and audio ASR/command recognition Background noise, mic 

frequency response

Fails with new devices or 

ambient sound patterns

Oglic et al. (2022)

Speaker identification Recording channel, 

environmental noise

Learns mic characteristics 

rather than vocal identity

Li et al. (2025)

Autonomous systems Robot navigation Floor texture, lighting from 

simulator

Model fails in real-world 

deployment

Muratore et al. (2022)

Time series/IoT Human activity recognition Device ID, sampling rate Poor transfer across hardware 

or settings

Yamane et al. (2025)

Vital sign monitoring Patient location, time-of-day Predictions tied to routine or 

room location instead of vitals

Harutyunyan et al. (2019)

Cybersecurity Intrusion detection IP rarity, uncommon ports Novel but benign traffic flagged 

as malicious

Sommer and Paxson (2010)

Finance/risk analysis Algorithmic trading Timestamp, cyclical effects Overfits to calendar patterns or 

market hours

Khandani et al. (2010)
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verify input preprocessing, and detect unreasonable predictions and 
errors (Mahmood et al., 2021).

4.2 Detection—model-centric

4.2.1 Attribution/saliency maps
Deep learning models are mostly black boxes in nature, and 

interpreting the learned representations of intermediate layers can 
reveal the model’s reliance on irrelevant features or confounding 
regions. Attribution/saliency maps are post-hoc methods that assign 
importance scores to each input for a particular output class and 
visually highlight the input regions that contribute most to the model’s 
prediction (Bassi et al., 2024).

4.2.2 Occlusion/ablation sensitivity maps
An effective model-centric detection strategy systematically 

interrogates the trained network by ablating small patches of data. The 
behavioral change is measured and visualized as a heatmap, where 
highlighted regions indicate areas crucial for predictions.

The article shows the resiliency of various emerging transformer 
architectures when evaluated against the spurious correlation on three 
benchmark datasets, highlighting the role of the self-attention 
mechanism through extensive ablation studies in spuriously correlated 
environments (Arias-Londoño and Godino-Llorente, 2024).

4.2.3 Spectral relevance analysis
By clustering multiple local heatmaps, spectral relevance analysis 

(SpRAy) reveals global patterns and identifies shortcut cues. The study 
further discusses the quantification of Clever Hans traits by SpRAy 
and the mitigation of a model’s Clever Hans behavior (termed 
Un-Hans models) through a post-hoc approach called Class Artifact 
Compensation (ClArC). The Clever Hans effect goes undetected by 
standard validation methods (Bender et al., 2023; Kauffmann et 
al., 2025).

4.3 Mitigation—data-centric

4.3.1 Counterfactual and contrastive testing
These methods are hypothetical tools for causal-style reasoning, 

in which one or a few causal factors are altered while holding 
everything else constant, to observe whether the model output changes 
or preserves the predicted class. They detect shortcuts or Clever Hans 
features by searching the closest counterfactuals that cause different 
predictions. This strategy has been applied across various domains to 
expose or fix spurious correlations and biases. For example, MRI 
classifiers trained on brain images, in which 3D conditional generative 
models are used to generate brain demographic counterfactuals to 
mitigate the impact of demographic imbalances and shortcuts. 
Aligning with both data-centric and model-centric strategies, training 
classifiers on plausible counterfactual explanations—a perturbation 
technique that does not alter the underlying data distribution—has 
been shown to improve robustness (Pombo et al., 2023).

4.3.2 Data pruning and bias correction
Sample-level or feature-level pruning of redundant, noisy, or 

irrelevant data, as well as features that contribute to biases in model 

learning, helps ensure fair generalization. Data-level resampling, 
reweighting, and data distribution modification are employed to 
mitigate contextual, statistical, or demographic biases. These 
approaches often incorporate implicit data pruning through 
preprocessing steps, such as outlier removal and noise reduction 
(Arias-Londoño and Godino-Llorente, 2024).

4.4 Mitigation—model-centric

4.4.1 Explainability-guided mitigation
The post-hoc analysis is used to examine a model’s reliance on 

data, architectural components, or input regions, thereby explaining 
which aspects the model uses to generalize its predictions. Such 
analyses provide insights into the black-box nature of deep neural 
networks. This diagnostic process helps identify and mitigate 
spurious associations and shortcut learning by enabling targeted 
corrective actions. In particular, methods such as Layer-wise 
Relevance Propagation (LRP), DeepLIFT, and Bayesian CNNs have 
been used to reveal model attention to non-lung regions, thereby 
highlighting the Clever Hans effect. By masking these non-lung 
regions using domain expertise, improved COVID-19 detection from 
chest X-ray images has been achieved (Arias-Londoño and Godino-
Llorente, 2024).

4.4.2 Feature disentanglement and representation 
learning

Data may contain artifacts, such as watermarks and text tags, that 
become entangled with causally relevant features, leading to the 
Clever Hans effect. Feature disentanglement aims to capture the 
variation of independent, semantically meaningful factors in the data 
within latent dimensions and to improve performance. A study 
showed the presence of erroneous features in medical data, including 
MRI and chest radiographs (CXRs), where models exhibited improved 
generalization on filtered pulmonary features and pre-processed MRI 
scans (Trivedi et al., 2022) (Table 2).

5 Discussion

The Clever Hans Effect, a prominent manifestation of shortcut 
learning, is increasingly recognized as a pervasive issue 
compromising the reliability and robustness of supervised machine 
learning models. Recent literature (2020–2025) emphasizes 
sophisticated detection and mitigation strategies, which can be 
systematically categorized into data-centric and model-
centric methodologies.

Among data-centric detection methods, counterfactual and 
contrastive testing have emerged as intuitive strategies for 
identifying spurious correlations. This approach involves creating 
modified inputs by occluding irrelevant features or altering 
specific contextual aspects, such as backgrounds in image 
classification tasks or syntactic variations in text inputs (Pombo 
et al., 2023). Its strengths lie in its simplicity of implementation 
and the intuitive interpretation of results, providing direct 
evidence of a model’s reliance on superficial features. However, 
these methods require manual generation of realistic 
counterfactual examples, making them labor-intensive, 
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potentially limiting scalability, and overlooking subtler 
hidden shortcuts.

Subgroup or slice performance analysis complements this 
approach by explicitly evaluating model performance on defined 
subsets, such as demographic strata, institutional grouping, or out-of-
distribution segments. This strategy reveals hidden performance 
disparities and biases, reflecting a model’s reliance on spurious 
correlations present in training data (Wallis and Buvat, 2022). 

Nonetheless, subgroup methods are limited by the need for adequately 
labeled subgroups and sufficient sample sizes, potentially restricting 
applicability in real-world settings with incomplete metadata or 
smaller datasets.

Confounder correlation checks further enrich data-centric 
detection through statistical analyses of feature–label associations. 
These methods systematically detect a priori signals indicative of 
spurious correlations, providing preliminary diagnostic insights. 

TABLE 2  Summary of detection and mitigation strategies for shortcut learning and the Clever Hans effect in AI models.

Type Method Technique Strengths Limitations Representative 
studies (2020–2025)

Detection

Data-centric Subgroup/slice 

performance analysis

OOD groups; 

demographic strata; 

bias-based slices

Detects hidden bias; 

highlights classification 

performance gaps

Requires labeled 

subgroups; performs best 

with large sample sizes

Brown et al. (2023)

Confounder correlation 

checks

Feature–label correlation 

statistical analysis

Detects a priori spurious 

signals

Correlation does not imply 

causation; may overlook 

complex relationships

Qu et al. (2024)

OOD test or sanity test Behavioral testing; OOD 

generalization

Probes invariances; 

model-agnostic; scalable

Requires clearly specified 

test cases; black-box nature

Mahmood et al. (2021)

Model-centric Attribution/saliency maps Grad-CAM; SHAP; 

LIME; LRP

Provides visual insight; 

model-agnostic

Sensitive to 

hyperparameters; 

inaccurate attribute 

methods

Bassi et al. (2024)

Occlusion/ablation 

sensitivity maps

Class artifact 

compensation; Grad-

CAM; perturbing inputs

Pinpoints critical regions High computational cost; 

occlusion may introduce 

artifacts

Arias-Londoño and Godino-

Llorente (2024)

Spectral Relevance 

Analysis (SpRAy)

Combines LRP with 

spectral clustering; 

visualization techniques 

t-SNE, PCA

Systematic detection 

method; identifies 

subpopulations of 

decisions

Requires large training 

data; computational 

overhead

Bender et al. (2023)

Unsupervised explainable 

diagnostics

Latent clustering; 

unsupervised heatmaps; 

BiLRP; relevance 

clustering; multiple 

anomaly models

Generalizable across 

domains; Early detection; 

label-independent

Lacks validation; high false 

positive rates; scalability 

issues; does not attribute 

causality

Kauffmann et al. (2025)

Mitigation

Data-centric Counterfactual and 

contrastive testing

Generating artificial data; 

contrastive learning

Identifies model 

behavior; robust

High computational cost; 

requires a well-defined 

feature space; requires 

supervision for realistic 

counterfactuals; may 

overlook hidden shortcuts

Pombo et al. (2023)

Data pruning and bias 

correction

Removing artifacts; 

reducing bias in training

Addresses bias in the 

training dataset; 

generalized models

May alter datasets’ 

properties; requires domain 

knowledge

Arias-Londoño and Godino-

Llorente (2024)

Model-centric Explainability-guided 

mitigation

LIME; SHAP Provides transparency 

into model decision-

making; model-agnostic

Computationally expensive; 

explanation methods may 

lack granularity

Kauffmann et al. (2025)

Feature disentanglement 

and representation 

learning

Feature decoupling More general and robust 

model; enhances model 

interpretability

Complex disentangling 

process; may not work with 

high-dimensional or noisy 

datasets

Trivedi et al. (2022)

https://doi.org/10.3389/frai.2025.1692454
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Pathak et al.� 10.3389/frai.2025.1692454

Frontiers in Artificial Intelligence 07 frontiersin.org

However, correlation analysis inherently lacks causal grounding and 
may not adequately address more intricate, non-linear interactions 
between features and labels, thus limiting their standalone efficacy.

Model-centric detection methods, such as attribution and saliency 
maps—including Grad-CAM, SHAP, and LIME—provide visual 
insights into the decision-making processes of black-box models by 
highlighting influential input regions (Anders et al., 2022). Despite 
their intuitive appeal, these attribution methods often exhibit sensitivity 
to hyperparameters and may provide misleading or imprecise feature 
importance maps, potentially masking true shortcut behaviors.

Furthermore, occlusion and ablation sensitivity analyses systematically 
perturb input data to reveal the critical regions underpinning model 
predictions, thereby highlighting the precise reliance of models on certain 
input aspects (Anders et al., 2022). However, these approaches incur 
considerable computational overhead and risk introducing artifacts due 
to artificial perturbations, limiting their broader applicability.

For mitigation, data-centric methods, such as counterfactual data 
generation and contrastive learning, augment datasets with 
systematically altered examples, intentionally breaking spurious 
correlations (Qu et al., 2024). Despite their effectiveness, these 
methods require substantial computational resources and explicitly 
defined feature spaces, making widespread deployment challenging.

Model-centric mitigation approaches employ explainability-
guided training strategies, incorporating interpretability methods such 
as LIME and SHAP into the training process to actively discourage 
shortcut usage by promoting transparency in decision-making 
(Kauffmann et al., 2025). Although effective in enhancing model 
interpretability, these methods can be computationally expensive and 
may lack the granularity required for fine-tuned adjustments.

These comprehensive detection and mitigation approaches, 
grounded in recent technical developments, highlight the need for 
integrative, hybrid strategies that combine intuitive diagnostic tools, 
careful data management, and algorithmic robustness to effectively 
counter the pervasive Clever Hans effect in modern AI systems.

6 Roadmap for robust AI development

To address the pervasive challenge of the Clever Hans effect and 
shortcut learning, we present a roadmap for developing AI systems that 
are robust, generalizable, and trustworthy. In the first step, standardized 
benchmarking protocols should be established to assess model 
performance across multiple parameters, including generalization, 
reliability, and robustness. These standard benchmarks should be 
designed to expose potential shortcuts during the initial training of the 
model, providing an accurate assessment of performance when 
deployed in real-world and out-of-distribution (OOD) situations 
(Hendrycks et al., 2021). By focusing on these benchmarked parameters, 
we ensure that AI models are trustworthy and can adjust to new patterns 
in unseen data while avoiding overfitting to spurious attributes. In the 
second step, causal integration plays a crucial role in model design. AI 
systems should function based on causal relationships rather than 
spurious attributes that are frequently present in training data. 
Approaches such as IRM can help enforce causal relationships across 
different types of datasets (Schölkopf et al., 2021). By incorporating 
causal reasoning into the training process of the model, we can prevent 
models from exploiting superficial attributes and make sure that they 
learn true, meaningful patterns that generalize well across different 

scenarios. In the third step, incorporating human-in-the-loop auditing 
frameworks is essential for ensuring ongoing monitoring during model 
training and deployment. These frameworks enable domain experts to 
interfere and provide real-time feedback on decisions taken by the 
model, ensuring that the model is not utilizing irrelevant or harmful 
shortcuts. Human intervention and oversight are critical for maintaining 
the model’s alignment with real-world goals and ethical standards, 
particularly in sensitive areas such as healthcare, finance, and forecasting 
(Amershi et al., 2019). In the fourth step, transparent policy frameworks 
are essential for documenting the process of decision-making of AI 
systems. These frameworks encourage accountability and enable 
organizations to interpret and justify the behavior of AI systems in 
decision-making. Ongoing model evaluation and active learning 
mechanisms should be incorporated rigorously to ensure that models 
remain adaptable to data shifts. These approaches should be updated to 
monitor performance in real-world settings, ensuring that models 
remain free from shortcut training and stay focused on their 
respective tasks.

7 Conclusion

The Clever Hans effect remains a critical challenge in the 
development of robust, reliable, and generalizable AI systems. This 
phenomenon is evident across computer vision, natural language 
processing, and medical applications, where models often exploit 
spurious features that correlate with the output during training and 
lack a causal relationship. These behaviors may perform well on 
in-house data but often fail to bridge the gaps when the model 
encounters real-world variations and distribution shifts in data. Our 
review distinguishes between data-centric and model-centric 
paradigms in terms of detection and mitigation strategies. Detection 
strategies, such as counterfactual testing and slice-based performance, 
offer different ways to reveal spurious correlations. Each approach 
offers distinct strengths, ranging from intuition-based visual 
diagnostics to statistical robustness. Mitigation strategies, including 
data pruning and Grad-CAM-based feature disentanglement, help 
guide models toward robust, intended representations. However, these 
approaches often require manual intervention, extensive domain 
knowledge, and focused infrastructure.

While previous research provides valuable insights, current 
methods remain inconsistent, often tailored to specific datasets, and 
lack rigorous cross-domain validation. A critical challenge is the 
absence of unified structural benchmarks and automated pipelines 
capable of detecting shortcut learning throughout both training and 
deployment. Future research should focus on principled causal 
representation learning, adaptive monitoring frameworks, and 
consistent robustness assessments that stress-test sensitivity to 
non-salient features. Combining these breakthroughs with ethical 
and regulatory frameworks will be crucial for developing AI systems 
that remain reliable, transparent, and trustworthy in real-world, high-
stakes environments.
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