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Background: Generative artificial intelligence (AI) tools are increasingly being 
used as “ambient scribes” to generate drafts for clinical notes from patient 
encounters. Despite rapid adoption, few studies have systematically evaluated 
the quality of AI-generated documentation against physician standards using 
validated frameworks.
Objective: This study aimed to compare the quality of large language model 
(LLM)-generated clinical notes (“Ambient”) with physician-authored reference 
(“Gold”) notes across five clinical specialties using the Physician Documentation 
Quality Instrument (PDQI-9) as a validated framework to assess document 
quality.
Methods: We pooled 97 de-identified audio recordings of outpatient clinical 
encounters across general medicine, pediatrics, obstetrics/gynecology, 
orthopedics, and adult cardiology. For each encounter, clinical notes were 
generated using both LLM-optimized “Ambient” and blinded physician-drafted 
“Gold” notes, based solely on audio recording and corresponding transcripts. 
Two blinded specialty reviewers independently evaluated each note using the 
modified PDQI-9, which includes 11 criteria rated on a Likert-scale, along with 
binary hallucination detection. Interrater reliability was assessed using within-
group interrater agreement coefficient (RWG) statistics. Paired comparisons 
were performed using t-tests or Mann–Whitney tests.
Results: Paired analysis of 97 clinical encounters yielded 194 notes (2 per 
encounter) and 388 paired reviews. Overall, high interrater agreement was 
observed (RWG > 0.7), with moderate concordance noted in pediatrics and 
cardiology. Gold notes achieved higher overall quality scores (4.25/5 vs. 4.20/5, 
p = 0.04), as well as superior accuracy (p = 0.05), succinctness (p < 0.001), 
and internal consistency (p = 0.004) compared to ambient notes. In contrast, 
ambient notes scored higher in thoroughness (p < 0.001) and organization 
(p = 0.03). Hallucinations were detected in 20% of gold notes and 31% of 
ambient notes (p = 0.01). Despite these limitations, reviewers overall preferred 
ambient notes (47% vs. 39% for gold).
Conclusion: LLM-generated Ambient notes demonstrated quality comparable 
to physician-authored notes across multiple specialties. While Ambient notes 
were more thorough and better organized, they were also less succinct and 
more prone to hallucination. The PDQI-9 provides a validated, practical 
framework for evaluating AI-generated clinical documentation. This quality 
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assessment methodology can inform iterative quality optimization and support 
the standardization of ambient AI scribes in clinical practice.

KEYWORDS

large language models, artificial intelligence, medical scribe, clinical quality 
improvement, dictation accuracy

Introduction

Physicians and health systems are rapidly adopting software 
applications that employ large language models (LLMs) to support 
clinical note writing during patient encounters (Cain et al., 2025; Shah 
et al., 2025b; Stults et al., 2025). Available software functions similarly 
to medical scribes—previously shown to improve physician 
satisfaction and productivity (Gidwani et al., 2017)—but offers lower 
cost and greater scalability. In principle, scribe software is most 
beneficial when it generates a high-quality draft note, as physicians 
must still review and edit the draft before finalizing it in the medical 
record. Despite its numerous advantages, the introduction of 
LLM-generated clinical notes raises important questions about 
documentation quality, particularly given the field-specific 
requirements and expectations of medical records. Prior studies have 
established two validated instruments for evaluating physician note 
quality: PDQI-9 (Stetson et al., 2012) and Q-Note (Burke et al., 2014). 
However, these tools have not yet been systematically applied to 
LLM-generated notes or assessed through specialist review.

Ambient scribes are LLMs that passively capture and interpret 
conversations to extract meaningful, structured content, enabling 
clinicians to focus on the patient interactions. Suki is an ambient clinical 
documentation system that summarizes audio-recorded medical 
interactions into structured clinical notes. This scribing process involves 
three major steps: (1) integrating with the physician’s electronic health 
record (EHR) to retrieve information about the patient and encounter 
context, (2) transcribing the conversation between the doctor, patient, 
and any other visit participants, and (3) generating a summary of this 
information, as appropriate for the Suki user’s specialty, in the form of 
a structured clinical note. Both proprietary and fine-tuned third-party 
language models are employed to perform this functionality.

In this study, we assessed the utility of a standardized quality 
assessment tool to compare the perceived quality of LLM-generated 
“Ambient” clinical notes with notes drafted by board-certified 
specialists across five clinical domains. Notes were then evaluated by 
blinded experts within each respective field.

Methods

We retrospectively queried Suki’s production database from 
October 2024 to compile de-identified clinical encounters across five 
specialties: general medicine, pediatrics, obstetrics and gynecology, 
orthopedic surgery, and adult cardiology. Audio recordings for these 
encounters were transcribed using automated speech recognition 
(ASR) via Amazon Web Services (AWS), with medical diarization 
applied to separate speaker turns. To ensure that all audio recordings 
were fully anonymized, a team of operations specialists systematically 
reviewed both the audio recordings and their transcripts, selecting only 
the encounters that had no personal health information (PHI) capable 

of identifying patients. We  also excluded encounters with audio 
duration shorter than 1 min, recordings with very poor audio quality 
that prevented the ability to produce a transcript, and encounters 
conducted in a non-English language. Of 930 visits screened, 126 met 
the eligibility criteria. From these, the first 20 qualifying encounters per 
specialty were randomly selected, reserving the remaining visits as 
back-ups. The software then provided the visit transcript, along with 
limited information about the patient and clinician, to an LLM to 
create an “Ambient” note for each encounter. In obstetrics and 
gynecology (OB/Gyn), three visits were subsequently excluded because 
patient audio was not recorded during telehealth visits.

Note reviewers

To provide reference documentation for each encounter, physician 
specialists were recruited from each medical field to draft notes, 
termed “Gold notes.” The Gold note author had access to the same 
inputs as the LLM, including the audio recording and transcript. No 
Gold note authors were directly involved in the index patient 
encounter to ensure that both the Gold and Ambient notes were 
generated from identical source material.

Quality assessments

Two board-certified clinicians were recruited to evaluate the 
Ambient and Gold notes. As with the Gold note authors, the evaluators 
represented the relevant medical specialties and included board-
certified physicians, fellows, residents, and non-physician advanced 
practice providers. Evaluators had access to the encounter audio, 
transcript, and patient and clinician information, but were blinded to 
the origin of the two notes—they were asked to evaluate notes written 
by “Model 1” and “Model 2.”

Evaluators rated each note using the criteria outlined in Table 1, 
based largely on the PDQI-9 instrument. PDQI-9 was selected over 
Q-Note due to its greater flexibility across diverse clinical settings. 
Notably, PDQI-9 was “not designed to assess the presence or absence 
of specific note components (e.g., “reason for admission” in an 
admission note),” ensuring broader applicability. Instead, it uses 
subjective Likert-scale ratings by physicians, similar to other 
frameworks proposed for the evaluation of LLMs in healthcare (Tam 
et al., 2024). A prior validation exercise of PDQI-9 was carried out 
using internal medicine admission notes (Stetson et al., 2012).

Quality assessment

For note quality assessment, we adopted 8 of the 9 questions 
from the original PDQI-9, excluding the “Up to date” criterion 
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owing to lack of relevance to the AI scribe context. We also added 
“Appropriateness for specialty” and “Fair” as additional criteria, 
along with a qualifier for “Accuracy” to indicate whether any 
inaccuracies were due to “Hallucination.” Each criterion was rated 
on a Likert scale from 1 to 5, where 5 = “Extremely” and 1 = “Not 
at all,” except the Hallucination criterion, which was either 
“Present” or “Absent.” Evaluators also provided their overall 
preference between the two notes by specifying “Model 1,” “Model 
2,” or “I prefer both equally.”

Statistical analysis

For all pairwise comparisons, the Shapiro–Wilk test for normality 
was performed to determine the most appropriate statistical test. All 
pairwise factors exhibiting a parametric distribution were evaluated 
using the Student’s t-test with Benjamini-Hochberg adjustment; 
otherwise, a Mann–Whitney test was used. All data are reported as 
mean ± standard deviation unless otherwise specified. Statistical 
analyses and data visualization were performed using GraphPad 
Prism version 10.4.0 for macOS (GraphPad Software, San Diego, CA) 
and R version 4.4.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Statistical significance was assigned when p < 0.05 unless 
otherwise specified. Within-group agreement was assessed using the 
RWG score, which quantifies consensus among raters by comparing 
observed variance to expected random variance, as previously 
described (James et al., 1984). Specifically, the rWG statistic is defined 
as rWG = 1 – (Sx2 / σEU2), where Sx2 is the observed variance and 
σEU2 is the expected variance under a uniform distribution.

Results

To better characterize the relative performance of our 
AI-generated medical dictation platform, termed “Ambient” notes, 
compared to those written by clinical experts, audio and transcripts 
from 97 patient visits were included in this study (Figure 1). Experts 
from five medical specialties drafted notes based on the 20 patient 
encounters (17 in OB/Gyn) within their field, termed “Gold” notes 
(Table  2). For each visit, a Gold note and an Ambient note were 

scored, each by two clinical expert evaluators, yielding a total sample 
size of 388 notes for our analysis.

Agreement between the two evaluators was uniformly high 
(RWG > 0.7) across all criteria in general medicine, OB/Gyn, and 
orthopedic notes (Table 3). In pediatrics, there was moderate interrater 
agreement (RWG 0.5–0.7) for 4 of 11 criteria, and other criteria had 
high agreement. In cardiology, there was moderate agreement for 6 of 
11 criteria, and poor interrater agreement (RWG < 0.5) for the 
Organized criterion.

Average scores across all notes and between the two evaluators 
within each specialty are listed for each of the modified PDQI-9 
criteria (Table 4). There was a statistically significant preference for 
Gold notes over Ambient notes on the Accurate (p = 0.05), Succinct 
(p < 0.001), and Internally Consistent (p = 0.004) criteria. Ambient 
notes were preferred over Gold notes on the Thorough (p < 0.001) and 
Organized (p = 0.03) criteria. For other criteria (Useful, 
Comprehensible, Synthesized, Appropriate for Specialty, and Fair), the 
differences were not statistically significant. An overall average of 
score across all of the modified PDQI items slightly favored Gold 
notes at 4.25, vs. 4.20 for Ambient notes (p = 0.04).

Regarding Hallucination, evaluators identified Hallucinations in 
both Gold and Ambient notes, with the presence of Hallucination 
identified in 20% of Gold notes, vs. 31% of Ambient notes (p = 0.01). 
The average RWG score for the binary Hallucination criterion was 
0.94, confirming high interrater agreement for this question.

Analysis of per-specialty average scores for each quality criterion 
showed that all specialties consistently viewed Ambient notes as more 
thorough, although this difference reached statistical significance only 
in cardiology and pediatrics (Figure 2). In general, specialists in OB/
Gyn and pediatrics tended to favor the Gold notes, whereas those in 
general medicine, orthopedics, and cardiology tended to favor the 
Ambient notes. The specialty preference observed in the modified 
PDQI-9 criteria aligned with the single-question response from 
evaluators regarding their overall note preferences specifically.

The Overall Note Preference question favored Ambient notes 
more often (Table 5). This preference contrasts with the average PDQI 
scores, which favored the Gold notes (4.25 vs. 4.20 for Ambient notes, 
p = 0.04). Differences in average ratings across specialties, shown in 
Figure 1, vary between different specialties and are not reflected in the 
overall averages for the combined sample.

TABLE 1  Evaluation criteria for clinical note quality.

Criterion Meaning

Accurate The note is true. It is free of incorrect information

Hallucination Are any inaccuracies due to hallucinated content? (binary)

Thorough The note is complete and documents all the issues of importance to the patient

Useful The note is extremely relevant, providing valuable information and/or analysis

Organized The note is well-formed and structured in a way that helps the reader understand the patient’s clinical course

Comprehensible The note is clear, without ambiguity or sections that are difficult to understand

Succinct The note is brief, to the point, and without redundancy

Synthesized The note reflects the author’s understanding of the patient’s status and ability to develop a plan of care

Internally consistent No part of the note ignores or contradicts any other part

Appropriate for specialty The language and content of the note are typical for this medical specialty

Fair The note does not display prejudice based on ethnicity, gender, or other aspects of the patient’s identity
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Discussion

The introduction of automated note-writing and clinical 
summary tools has the potential to streamline the administrative 
burden facing clinicians by generating clinical documents that 
accurately summarize patient encounters. Early reports suggest 
that ambient AI scribes can improve workflow efficiency and 
physician satisfaction while decreasing after-hours charting 
demands (Duggan et al., 2025; Ma et al., 2025; Shah et al., 2025b; 
Stults et  al., 2025). These results align with long-standing 
evidence that electronic health record (EHR)-related clerical load 
contributes to after-hours work and clinician burnout, 
underscoring the motivation for automation that can safely 
offload documentation tasks (Shanafelt et al., 2016; Sinsky et al., 
2016; Tai-Seale et al., 2017). Nevertheless, the accuracy and safety 
of notes generated by large language models (LLMs) remain 
currently limited by known issues, including hallucinations and 
excessive detail. Recent reviews and methodological papers 
emphasize the need for standardized validation frameworks to 
evaluate content quality and safety before widespread deployment 
(Asgari et al., 2025; Shool et al., 2025; Ergun and Sefer, 2025). 
This highlights the urgent necessity for standardized validation 
frameworks to assess clinical documentation produced by AI 

(Leung et  al., 2025). In this study, we  adopted an externally 
validated note quality instrument to assess the relative quality of 
LLM-generated ambient clinical scribes.

In our results, Ambient notes did not consistently 
underperform relative to physician-authored notes. Although 
Gold notes had a modestly higher average quality score overall 
(4.25 vs. 4.20), Ambient notes outperformed Gold notes on 
specific criteria, particularly Thoroughness and Organization, 
indicating that LLMs excel at capturing comprehensive encounter 
details. Conversely, physician notes scored higher on 
Succinctness, reflecting greater concision, and on Accuracy and 
Internal Consistency, underscoring the human advantage in 
synthesizing information while avoiding redundancy or 
contradictions. These findings align with recent evaluations of 
ambient AI documentation systems, which demonstrated 
improvements in completeness (Chong et al., 2022; Duggan et al., 
2025; Genes et  al., 2025), but highlighted challenges with 
accuracy and verbosity (Burke et al., 2014; Cain et al., 2025; Shah 
et  al., 2025a; Wang et  al., 2025). Recognizing these trade-offs 
underscores current implementation strategies, where ambient 
AI can reduce drafting time yet still necessitate clinician review 
to ensure clarity and precision (Duggan et al., 2025; Shah et al., 
2025a, 2025b).

By implementing a peer-review process of comparing Ambient 
and Gold clinical notes, we have established a reproducible method 
for understanding note quality and identifying areas for improvement. 
The finding that Gold notes did not consistently perform better than 
Ambient notes was unexpected. Although Gold notes scored slightly 
higher on global average scores, Ambient notes outperformed the 
human-authored notes on certain criteria, such as Thoroughness, 
indicating Ambient notes captured more details of the discussion. 
Conversely, Gold notes were rated higher for Succinctness, reflecting 
the tendency of the LLM to be more verbose. Further qualitative 
research is required to better understand physicians’ preferences 
regarding the balance between Thoroughness and Succinctness.

FIGURE 1

Graphical summary of cloud-based (Ambient) quality assessment relative to field expert (Gold) clinical documentation. Clinical encounters were audio-
recorded and anonymized prior to distribution for a paired clinical summary via Suki-based AI and a board-certified physician. The clinical encounter 
notes were then assessed for quality using the modified PDQI-9 metric.

TABLE 2  Number of visits and evaluations by specialty.

Specialty Visits Evaluations

General medicine 20 40

OB/gyn 17 34

Ortho 20 40

Peds 20 40

Cardio 20 40

Total 97 194
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Strengths of this study include adopting a previously validated 
instrument, the PDQI-9 (Stetson et al., 2012), which applies well 
to this generative AI use case with few modifications, similar to 
approaches in other contexts (Stetson et al., 2008; Walker et al., 
2017; Lyons et al., 2024). By applying blinded, specialty-matched 
reviewers and reporting interrater agreement with rWG, 
we provide a reproducible process for comparative assessment of 
AI-generated and clinician notes. By analyzing interrater 
agreement for both the externally validated PDQI criteria and the 
three criteria that were added, we provide a reproducible process 
for comparative assessment of AI-generated and clinician notes. 
We did find a lower level of agreement between our cardiology 
evaluators, and on further exploration, we found that one of the 
cardiology evaluators was a “hard grader”—their scores were 
consistently lower than the other evaluators’ scores. In the context 
of our comparison between Gold and Ambient notes, which used 
the average of the two evaluators’ scores to compare note quality, 
the “hard grader” issue is not a limitation. However, it limits the 
ability to compare scores across specialties. In the future, 
mitigations such as evaluator training or score normalization can 
be explored. Nevertheless, the rWG-type agreement indices and 
multiple-comparison controls remain appropriate for Likert-scale 
rater data and multi-endpoint analyses, respectively (Benjamini 
et al., 2001; Cohen et al., 2001).

This study has several important limitations that warrant 
future studies to address them. Each specialty relied on a single 
“Gold” note author, which raises the possibility that observed 
differences reflect variation in individual documentation quality 
rather than inherent differences between specialties; for this 
reason, our ability to assess within-specialty comparative quality is 
limited. This effect was particularly pronounced in OB/Gyn. 
Second, our analysis was limited to a single production LLM 
pipeline, which ensured internal validity by assessing a system in 
active clinical use, and yet this approach precludes both 
benchmarking across LLM architectures and formal ablation of 
system components. Finally, although our sample size of 97 is 
modest, future applications should include larger and T
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TABLE 4  Note quality scores for gold notes vs. ambient notes.

Criterion
5 = Extremely, 
1 = Not at all

Gold 
note

Ambient 
note

Difference P-value

Accurate 4.13 3.98 −0.15 0.05

Thorough 3.80 4.22 0.43 <0.001

Useful 4.03 4.05 0.02 0.80

Organized 4.01 4.19 0.18 0.03

Comprehensible 4.19 4.26 0.06 0.38

Succinct 4.40 3.72 −0.67 <0.001

Synthesized 4.22 4.09 −0.14 0.07

Internally consistent 4.47 4.31 −0.16 0.004

Appropriate for 

specialty

4.38 4.29 −0.09 0.24

Fair 4.82 4.83 0.01 0.70

Overall average 4.25 4.20 −0.05 0.04

*P-value is for a paired, two-tailed Student’s t-test for n = 194 head-to-head evaluations.
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multi-institutional studies to reflect the spectrum of clinical 
variation across clinical contexts.

Conclusion

This study has demonstrated how a previously validated 
instrument for evaluating note quality, the PDQI-9, can be used 

with minor adaptations to evaluate the quality of LLM-generated 
clinical notes. It further establishes a methodology for comparing 
the quality of physician-authored notes to LLM-authored notes via 
expert clinical review. As expected, physician-authored notes 
outperformed LLM-authored notes overall, although LLM-authored 
notes were found to be  more Thorough and Organized. More 
important than the numeric quality results for this static dataset—
comprising notes authored in October 2024 and already somewhat 

FIGURE 2

Relative evaluations for AI-generated notes across medical specialties. (A) Bar graph of AI-generated “Ambient” (Model 1) note relative to reference 
“Gold” note (Model 2) according to Likert scale, also showing (B) Thoroughness, (C) Usefulness, (D) Comprehensibility, (E) Organization, 
(F) Succinctness, (G) degree of synthesis, and (H) internal consistency. *statistical significance was assumed at p < 0.05 based on paired Student’s t-test 
(A–H) or 1-way analysis of variance (I) Bar graph illustrating evaluator preference, wherein 1 = Gold note and -1 = Ambient note. Statistical significance 
was based on student’s t-test at p < 0.01, **p < 0.01, ***p < 0.001, p < 0.0001.
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outdated due to rapid advancements in LLM technology—is the 
establishment of a methodology that developers can leverage to 
identify opportunities for improving the quality of LLM-generated 
clinical notes.
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