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Semantic communication (SemCom) has seen substantial growth in recent
years, largely due to its potential to support future intelligent industries.
This advancement hinges on the construction and synchronization of robust
semantic knowledge bases (SKBs) across multiple endpoints, which can be
achieved through large language models (LLMs). However, existing methods
for constructing and synchronizing LLM-based SKBs often face numerous
security threats, such as privacy leakage and poisoning attacks, particularly when
federated fine-tuning is employed to update LLM knowledge bases. To address
these challenges, we propose a novel Secure Federated Fine-Tuning (SecFFT)
scheme for synchronizing LLM-based SKBs in semantic communication. First,
we incorporate homomorphic encryption into SecFFT to ensure the secure
synchronization of model parameters. Second, to enhance the trustworthiness
of participants against poisoning attacks, we introduce a residual-based access
control mechanism, where only participants with low residuals are authenticated
to participate in updating the knowledge base. This mechanism is combined with
a hash-based message authentication code. Third, we design a self-adaptive
local updating strategy to minimize the impact of poisoned model parameters
on benign participants, which is crucial for strengthening the robustness of
LLM-based knowledge bases against poisoning attacks. Extensive experiments,
conducted using four different datasets from the GLUE benchmark, demonstrate
that SecFFT can securely synchronize distributed LLM-based SKBs while
maintaining high accuracy (98.4% of the performance of the original federated
LoRA), with an acceptable additional cost.

KEYWORDS

semantic communication, large language model, semantic knowledge bases,
homomorphic encryption, federated fine-tuning

1 Introduction

Semantic communication (SemCom) is anticipated to become a pivotal paradigm in
6G networks, owing to its efficient information transmission, adaptability, and capacity to
support complex application scenarios (Yang et al., 2024). At its core, SemCom focuses
on extracting the “meaning” of the message sent from the source, and “translating” this
semantic content at the destination based on a shared semantic knowledge base (SKB)
between the sender and receiver, thereby reducing the volume of data transmitted. The
universal framework of SemCom is depicted in Figure 1. In the SemCom architecture,
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FIGURE 1

The universal framework of SemCom and its security threats. Therein, the knowledge base synchronization stage is exposed to privacy leakage and
poisoning attacks.

the semantic encoder on the sender’s side, guided by its local
SKB, extracts semantics that convey background knowledge and
context-relevant information from the raw text. Upon receiving the
transmitted semantics through the wireless channel, the receiver
employs a semantic decoder, also directed by its local SKB, to
reconstruct the original text. SKB, serving as a representation of the
knowledge space across multiple endpoints in SemCom, is a crucial
solution for the generic extraction and recognition of semantic
elements. Knowledge management in SemCom encompasses the
creation, sharing, and updating of SKBs (Liang et al., 2024).
Knowledge synchronization, primarily signifying the SKB updating
procedure, is employed to align the SKBs of the semantic encoder
and decoder, reducing the semantic gap between local SKBs and
preventing miscommunication between nodes. This process is vital
for strengthening semantic alignment between local SKBs and
establishing a unified global SKB.

The large language model (LLM) has demonstrated remarkable
compatibility with semantic communication (SemCom) systems
for text transmission. Transformer-based LLMs are extensively
utilized within the SemCom architecture (Guo et al., 2023;
Jiang et al., 2023, 2024; Zhao et al., 2024), owing to their
capacity to capture contextual relationships through the attention
mechanism. Given that the parameter space of LLMs effectively
captures conceptual relationships and factual knowledge, LLMs
often serve as a semantic knowledge base (SKB). They are
distributed to each client to extract semantics and reconstruct data

(Lu et al., 2024). However, current methodologies fail to address
security threats associated with the use of federated fine-tuning
to synchronize LLM-based knowledge bases. Two primary threats
emerge: (1) attacks during the SKB synchronization stage, and
(2) attacks during the semantic encoding/decoding stage. In the
latter stage, adversaries may execute adversarial attacks, model
inversion attacks, and membership inference attacks on the LLM-
driven semantic encoder/decoder. During the SKB synchronization
phase, two primary threats are considered: privacy leakage
and poisoning attacks. Privacy leakage refers to attacks where
adversaries eavesdrop on the communication channel between the
server and clients, gaining access to sensitive information such
as updated model weights. Poisoning attacks involve adversaries
surreptitiously modifying training samples or deliberately altering
local model weights (Li et al., 2022).

In our approach, we integrate the LLM as a unified
semantic processor, performing operations such as semantic
encoding, decoding, and knowledge retrieval. Specifically, we
leverage the LLM inference process for semantic encoding and
decoding. To enhance the adaptability of the LLM to multi-
round communication scenarios and optimize performance for
specific semantic encoding/decoding tasks, LLM-based SKBs
should undergo fine-tuning, rather than relying solely on the
foundation model. However, the semantic gap between LLM-based
SKBs can introduce ambiguity in the communication process.
To mitigate this, we propose a secure federated fine-tuning
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framework designed to synchronize the knowledge space of
distributed clients.

As depicted in Figure 1, we highlight the potential security
threats associated with the synchronization of LLM-based SKBs
in SemCom. Inquisitive adversaries can uncover local knowledge
from leaked weight updates using the deep leakage gradient (DLG)
(Zhu et al., 2019). Moreover, malicious actors can exploit system
vulnerabilities to launch poisoning attacks, thereby disrupting
the synchronization process and exacerbating the semantic gap
between the local SKBs of different clients, ultimately leading to
semantic errors within the SemCom framework. In this paper,
we introduce a novel Secure Federated Fine-Tuning (SecFFT)
scheme designed to synchronize LLM-based SKBs in SemCom.
SecFFT enhances SemCom’s resilience against attacks targeting the
SKB synchronization phase. We summarize our key contributions
as follows:

• We present the SecFFT scheme, a novel secure federated
fine-tuning approach to synchronize LLM-based semantic
knowledge bases in semantic communication systems.
SecFFT incorporates three primary security mechanisms: (1)
semantic-based homomorphic encryption, (2) residual-based
access control, and (3) a self-adaptive updating strategy.
Through SecFFT, both privacy leakage and poisoning attacks
are mitigated with minimal additional cost.

• The semantic-based homomorphic encryption mechanism
selectively encrypts high-level LLM parameters containing
significant semantic content, leaving low-level parameters
unencrypted. This enhances confidentiality during
the knowledge base synchronization phase, focusing
encryption on the parameters crucial for the model’s
semantic comprehension.

• In contrast to existing random participant selection methods
in SKB synchronization, we introduce a residual-based
access control mechanism with a hash-message-code-
based authorization and authentication pipeline. This
mechanism selectively authorizes nodes with low residuals to
participate in the SKB synchronization process. Additionally,
we propose a self-adaptive local updating strategy that
prevents local models from being tainted by poisoned
model parameters.

• We conduct extensive experiments to evaluate the
performance of SecFFT, along with a comprehensive
security analysis, demonstrating its superiority over
existing methods.

The remainder of the paper is organized as follows. Section
2 reviews existing methods for LLM-based SKB synchronization,
explores parameter-efficient federated fine-tuning approaches,
and discusses the associated threats and defenses. Section 3
introduces the fundamental concepts and definitions necessary
for constructing the SecFFT scheme. Section 4 provides an
overview of SecFFT and details its three components designed
to address the two primary threats encountered during the
SKB synchronization phase. Section 5 presents the experimental
setup and evaluation results. Finally, Section 7 concludes
the paper.

2 Related work

2.1 Toward LLM-based semantic
knowledge bases

With the widespread adoption and versatility of generative
artificial intelligence (GAI), the field of semantic knowledge base
(SKB) synchronization has increasingly focused on large language
model (LLM)-enabled approaches. The authors in Guo et al. (2023)
proposed a semantic importance-aware communication scheme
based on pre-trained language models to enhance energy efficiency.
In Jiang et al. (2023), a multimodal semantic communication
framework was introduced, alongside the construction of a
personalized SKB based on LLM, enabling users to create
and maintain personalized semantic extraction and recovery,
effectively addressing semantic ambiguity. In Jiang et al. (2024),
an LLM-based semantic communication framework was developed
with an attention-based semantic integration mechanism that
automatically assigns weights to semantic segments. Additionally,
an adaptive semantic compression encoding method was proposed
to eliminate redundant information within semantic features,
thereby reducing communication overhead. While most existing
GAI-based methods demonstrate impressive performance, they fail
to adequately address security and privacy concerns. In contrast,
as demonstrated in Table 1, our approach successfully establishes
a secure SKB synchronization scheme and safeguards against
potential security and privacy threats.

2.2 Parameter-efficient federated
fine-tuning

Federated learning (FL) holds significant promise for the
development of privacy-preserving large language models (LLMs),
where distributed clients fine-tune or employ prompt engineering
to train specific model parameters locally, and then aggregate them
into a global LLM (Chen et al., 2023). To address challenges such
as high communication costs between clients and servers, as well
as the substantial computational load of local LLMs (Zhang et al.,
2023), parameter-efficient fine-tuning (PEFT) was introduced.

TABLE 1 Summaries of differences between existing GAI-enabled
knowledge base synchronization methods and ours.

Properties SIAC
(Guo
et al.,
2023)

LAM-
SMC
(Jiang
et al.,
2023)

LAM-SC
(Jiang
et al.,
2024)

SecFFT
(ours)

Base model BERT GPT-4 SAM RoBERTa

Tuning
method

× Prompt
tuning

× FFA-LoRA

Knowledge
update

× × × �

Privacy
defenses

× × × �

× represents lack of the property while � represents the opposite.
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PEFT fine-tunes only a small set of lightweight parameters or
a fraction of the total parameters for specific tasks, while most
of the pre-trained model parameters remain frozen during the
training process. This approach makes it feasible to apply FL
to LLMs, reducing communication and computational burdens
while maintaining the federated LLM’s performance. Zhang et al.
(2023) conducted experimental investigations into various PEFT
methods, including adapter tuning (Houlsby et al., 2019), prefix
tuning (Li and Liang, 2021), LoRA (Hu et al., 2021), and BitFit
(Zaken et al., 2021) within an FL setting. They found that
PEFT significantly reduced communication overhead and local
storage costs, while still delivering acceptable federated LLM
performance. Among these, LoRA stands out as the most efficient
and promising PEFT method and has been further refined and
adapted for federated LLM applications. The authors of Bai et al.
(2024) introduced FlexLoRA, a LoRA-based method that adjusts
ranks according to local client resources, enhancing the resulting
model’s generalization ability. Additionally, Babakniya et al. (2023)
proposed SLoRA, a method that modifies the initialization of
matrices to bridge the performance gap between PEFT and full
fine-tuning. Our proposed scheme, SecFFT, builds upon FFA-LoRA
(Sun et al., 2024), which fixes the initially nonzero matrix $A$
and only trains the initially zero matrix $B$, further reducing the
number of trainable parameters.

2.3 Threats and defenses in federated large
model

A federated large model is vulnerable to various security
and privacy threats during both the training and inference
stages, which correspond to the synchronization stage and the
semantic encoding/decoding stage in LLM-enabled semantic
communication, respectively. Our primary focus is on addressing
the potential threats at the knowledge base synchronization stage,
particularly privacy leakage and poisoning attacks. One significant
form of privacy leakage is the Deep Leakage Gradient (DLG)
attack (Zhu et al., 2019), which can reconstruct sensitive personal
information from gradient updates (Khowaja et al., 2024) sent
to the server. Additionally, a novel inference attack assumes the
presence of a dishonest server, which can exploit flaws in the
transformer architecture (Fowl et al., 2022) to extract private data
from the client. Three widely researched defense mechanisms
for mitigating privacy leakage include differential privacy (Wei
et al., 2020), secure multi-party computation (Damgård et al.,
2009), and homomorphic encryption (Rivest et al., 1978). Secure
multi-party computation allows multiple parties to collaboratively
compute a function without revealing private data, simulating
the role of a trusted third party. Differential privacy (DP)
(Wei et al., 2020) is typically implemented by applying random
noise to gradient updates before they are uploaded to the
server. While DP is effective in traditional FL settings, its
performance degrades in federated LLMs due to the massive
model parameters, as the noise added to the gradients rapidly
becomes overwhelming. Homomorphic encryption (HE) enables
computations to be performed on encrypted data, preserving

privacy during the process. HE has been effectively applied in
traditional FL settings as a defense mechanism for neural networks.
For instance, the authors in Wang et al. (2023) proposed a
privacy-preserving method using the Paillier algorithm, a classic
homomorphic encryption scheme, within the FL process for a
lightweight model, MobileNetV2. Similarly, Wibawa et al. (2022)
employed the BFV scheme, another homomorphic encryption
method, to safeguard federated training against privacy leakage.
Given this context, we concentrate on homomorphic encryption
and aim to enhance its applicability for federated LLMs, ensuring
that it preserves the privacy of the LLM-driven knowledge base
synchronization system.

Federated LLM is also exposed to poisoning attacks during
the training stage. The authors in Li et al. (2024) proposed Fed-
EBD, a new backdoor attack strategy for federated LLM, which
implants a backdoor through a complex public dataset without
eliminating the need for compromising any client or engaging long-
term involvement in the training process. They further designed an
attack (Li et al., 2023) without demanding the attacker to breach
any client, which is proven to be effective in the realistic federated
LLM environment. The authors in Wu et al. (2024) also proposed a
novel backdoor attack for federated LLM. For research on defense
methods against poisoning attacks in the scenario of federated LLM
over the training stage, the authors in Zhou et al. (2024) proposed
a pre-training strategy for foundation models through increasing
the feature distance between samples and decreasing the feature
distance between clean and poisoned samples without demanding
clients to employ additional conduct. The authors in Huang et al.
(2024) proposed a model-slicing-based secure distributed LLM
framework, which employs lightweight encryption and a split fine-
tuning scheme to secure the communication and mitigate the
additional resource cost.

The aforementioned works attempt to conduct or defend
against either privacy leakage or poisoning attacks. When it comes
to the scenario of the combination of both threats, for example,
when an attacker tries to reveal sensitive data from the poisoned
model, relevant research is still lacking. Therefore, it is worthwhile
to explore how to construct new defense mechanisms against the
combination of both security threats during the training stage of
federated LLM.

3 Preliminaries

SecFFT is built upon two core cryptographic primitives: the
Paillier algorithm and the hash-based message authentication code
(HMAC). On one hand, by leveraging the Paillier algorithm,
a homomorphic encryption scheme, model weight parameters
are encrypted during the synchronization process, allowing
SecFFT to defend against privacy leakage threats during the
SKB synchronization stage. On the other hand, HMAC, a widely
adopted industry standard, is employed for message authentication
and access control. The security of HMAC is reliant on the chosen
hash function, with its security proof grounded in assumptions that
are believed to hold in real-world scenarios.
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3.1 Paillier algorithm

The Paillier algorithm (Paillier, 1999) is a partially
homomorphic encryption scheme that provides additive
homomorphism between the plaintext and ciphertext domains.
Homomorphic encryption enables computations to be performed
directly on encrypted data, with the result being equivalent to the
corresponding operation on the plaintext. This homomorphic
property makes the Paillier algorithm particularly valuable in cloud
computing environments, where the protection of private data is
essential. The Paillier algorithm comprises three key components:
key generation, encryption, and decryption.

Key generation. Randomly select two large prime numbers p
and q, which are of equal length and satisfy

gcd(pq, (p − 1)(q − 1)) = 1, (1)

where gcd refers to the common divisor of two numbers. We can
Calculate n and λ as:

n = pq, (2)

λ = lcm(p − 1, q − 1), (3)

where lcm refers to the least common multiple. Then we randomly
select g ∈ Z

∗
N2 . Let public key pk = (n, g), private key sk = (λ).

Encryption. Randomly select r ∈ Z
∗
n, and obviously r ∈ Z

∗
n2 .

Calculate ciphertext c by:

c = gmrn mod n2, (4)

where m stands for the message to be encrypted.
Decryption. Let function L(x) = x−1

n . Calculate plaintext m by:

m = L(cλ mod n2)
L(gλ mod n2)

mod n. (5)

Homomorphism property. Paillier encryption satisfies the
homomorphism property for addition:

Enc(m1) × Enc(m2) = Enc(m1 + m2), (6)

where Enc refers to the encryption function and m1 and m2 refer
to plain texts. The homomorphism property can be extended to
scalar multiplication:

Enc(m1)k = Enc(k × m1). (7)

The homomorphic property, which preserves operations,
facilitates the aggregation of model weight updates on the server
side in the form of ciphertexts.

3.2 Hash-based message authentication
code

The Hash-based Message Authentication Code (HMAC) is a
method for constructing a message authentication code using any
cryptographically secure hash function, designed to verify message
integrity and authenticate identity. In the HMAC framework,

the sender computes the hash value of a combination of the
arbitrary-length message and a pre-shared secret key shared among
communication nodes, generating a fixed-length authentication
code that is transmitted alongside the message. Upon receiving the
message and the authentication code, the receiver performs the
same operation with the shared secret key to verify the integrity and
authenticity of the message. The calculation of HMAC involves two
successive hash function operations:

HV0 = H((K ⊕ ipad)||M), (8)

HV = H(HV0||(K ⊕ opad)), (9)

where H denotes the hash function, K represents the randomly
generated and pre-shared secret key, M is the message to
be transmitted, ipad and opad are fixed constants, and ⊕
and || indicate the operations of XOR (exclusive OR) and
concatenation, respectively.

4 Method

4.1 Overview and threat model

As depicted in Figure 2, we present an overview of SecFFT,
where a large language model (LLM) serves as a distributed
semantic knowledge base (SKB), and federated fine-tuning is
employed as the synchronization method for the SKB across
multiple clients.

Given the enormous number of parameters in LLMs, we
utilize Low-Rank Adaptation (LoRA), the most efficient parameter-
efficient fine-tuning method, to reduce both communication and
computational costs while maintaining acceptable performance.
The core idea of LoRA involves restricting the weight update in
the model using a low-rank decomposition, Wp + �W = Wp +
BA, where Wp ∈ R

d×k represents the pre-trained weight matrix,
which remains frozen during the training process. The update is
constrained by the low-rank decomposition �W = BA, where B ∈
R

d×r is initially set to zero, and A ∈ R
r×k is initialized randomly

using a Gaussian distribution. Since only the decomposed matrices
are trained, the number of parameters requiring training is
significantly reduced, particularly when r � min(d, k). More
specifically, the task-specific fine-tuning is performed over a much
smaller set of parameters � where � � �0, with �0 representing
the pre-trained model weights. The task of finding �� involves
optimizing over � (Hu et al., 2021):

max
�

∑

(x,y)∈Z

|y|∑

t=1
log(p�0+��(yt|x, y<t)), (10)

where �� = ��(�), Z = {(xi, yi)}i=1,...,N represents the
training dataset of context-target pairs, and both xi and yi are
sequences of tokens. Here, p�(y|x) = p�0+��(y|x) is the pre-
trained autoregressive language model parameterized by �.

The corresponding optimization objective for LoRA is to
minimize the following loss function:

L(�, A, B) = Ltask(�, W + AB) + λ(||A||2F + ||B||2F), (11)
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FIGURE 2

Overview of SecFFT and the communication diagram within the network. The privacy-preserving and robust property of the model is established by
three components: semantic-based homomorphic encryption, residual-based access control mechanism, and self-adaptive updating strategy.

where Ltask is the task-specific loss function, and λ represents the
weight of the regularization term. || · ||2F denotes the Frobenius
norm, used to regularize A and B in order to prevent overfitting.

Various studies are investigating more efficient and high-
performance approaches to LoRA variants. Our encryption scheme
is built upon FFA-LoRA (Sun et al., 2024). FFA-LoRA fixes
the initially nonzero matrix A, training only the initially zero
matrix B, thereby further reducing the number of trainable
parameters. The formula for FFA-LoRA is Wp + �W = Wp +
BA0, where A0 represents the frozen matrix during the training
process. Accordingly, the optimization objective is to minimize the
following loss function:

L(�, A0, B) = Ltask(�, W + A0B) + λ||B||2F . (12)

We adopt FFA-LoRA as the synchronization method,
integrating semantic-based homomorphic encryption, residual-
based access control, and a self-adaptive local updating strategy
as three defensive components to establish the privacy-preserving
and robust properties of SecFFT.

Threat model We define the attacker’s objectives and
capabilities within the threat model. First, we consider an adversary
A who can intercept the exchanged messages by eavesdropping
on the communication channel during the SKB synchronization
stage. The goal of A is to extract private data, originally contained
in the distributed clients’ datasets, from the intercepted messages.
A is assumed to have complete access to all the communication
content exchanged between the client and the server. Second, we

consider an adversary B who manipulates a client to upload a
malicious model weight, aiming to disrupt the knowledge base
synchronization process. The objective of B is to degrade the
performance of the global knowledge base, increase the semantic
gap between clients’ knowledge bases, and ultimately interfere with
the communication process. Since B primarily conducts poisoning
attacks, he does not have full control over the client, meaning he
cannot access the secret keys stored within the client. Furthermore,
we assume that the system model is secure against all potential
attacks other than privacy leakage and poisoning attacks, with key
distribution conducted before the synchronization process under
perfectly secure conditions.

4.2 Semantic-based homomorphic
encryption

As described in Section 4.1, we fine-tune only the initially zero
matrix B to minimize the number of trainable parameters, thereby
reducing computational costs. To safeguard against potential
privacy leakage and enhance privacy preservation in SecFFT, we
apply homomorphic encryption to the LoRA matrix B, specifically
focusing on the high-level parameters in the last attention layer.
While the model contains numerous parameters, we prioritize
those that capture abstract semantic information, as they are critical
to the model’s overall task performance. In contrast, lower-level
parameters mainly capture local features and detailed linguistic
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Key management center:
Input: Paillier algorithm, client set

C = {c1,c2, · · · ,ck},
1: pk,sk ← Generate_Paillier_keypair;
2: Send sk to every single authenticated client ci;
3: Broadcast pk;

Client:
Input: Paillier algorithm, weight update Bi from LoRA
1: Initialize receiving (pk,sk) from KMC and storing

them;
2: for training round t = 0,1, · · · ,epochs do
3: Chighi ← Enc(Bhighi ,pk);
4: if receiving message (HVi,C

high
a ,Blowa ) from the

server and message authenticated successfully
then

5: Bhigha ← Dec(Chigha ,sk);
6: Ba ← (Bhigha ,Blowa )
7: Proceed self-adaptation update:
8: ρBra,Bri

← Cov(Bra,Bri)
σ(Bra)σ(Bri)

;
9: Self-adaptation coefficient

α ← max{0, ρBra,Bri
};

10: Proceed parameter updating phase
Br+1 = αBra + (1− α)Bri;

11: end if
12: end for

Server:
1: for training round t = 0,1, · · · ,epochs do
2: if receiving messages (HVi,C

high
i ,Blowi ) from m

clients C′ ⊂ C and messages authenticated
successfully then

3: Chigha = (Chigh1 ◦ · · · ◦ Chighi · · · ◦ Chighm )
1
m ;

4: Blowa = 1
m(

∑m
i=1 Blowi );

5: Send (Chigha ,Blowa ) to every client ci ∈ C
after access control mechanism;

6: end if
7: end for

Algorithm 1. Semantic-based homomorphic encryption.

structures (Clark et al., 2019; Peters et al., 2018). Therefore, we
apply homomorphic encryption only to the high-level parameters
in the last attention layer, reducing computational costs while
ensuring enhanced privacy protection. Specifically, for a large
language model (LLM) with parameters � = {θ1, θ2, . . . , θN},
the high-level parameters (Bhigh) derived from the last attention
layer’s LoRA matrix are encrypted, ensuring privacy during the
synchronization process.

Formally, as depicted in Algorithm 1, the key management
center generates a pair of public and private keys (pk, sk) for a
homomorphic encryption scheme and distributes the private key
solely to the respective clients. This ensures the correctness of
homomorphic aggregation, as clients must share the private key.
After the local fine-tuning phase, the high-level weight update
matrix Bhigh

i of client i is homomorphically encrypted using
the public key pk: Chigh

i = Enc(Bhigh
i , pk). On the server side,

upon successful message authentication, the encrypted weight

Key management center:
Input: client set C = {c1,c2, · · · ,ck}
1: Randomly generate secret keys ki for each client

ci ∈ C;
2: Distribute ki to the server and every

corresponding client ci;

Client:
Input: HMAC algorithm, encrypted high-layer weight

update Chighi , unencrypted low-layer weight update
Blowi

1: Initialize receive secret key ki from KMC and
store it;

2: for training round t = 0,1, · · · ,epochs do
3: HVi = HMAC(ki,C

high
i ,Blowi );

4: Send (HVi,C
high
i ,Blowi ) to the server;

5: if receiving message (HVi,C
high
a ,Blowa ) from the

server then
6: HV′i = HMAC(ki,C

high
a ,Blowa );

7: if HV′i == HVi then
8: Proceed homomorphic decryption in

Section 4.2;
9: else
10: Discard the message;
11: end if
12: end if
13: end for

Algorithm 2. HMAC-based access control on client side.

parameters are permitted to enter the secure aggregation phase:

Chigh
a = (Cω1

1 ◦ · · · ◦ Cωi
i · · · ◦ Cωm

m )
1∑m

i=1 ωi , (13)

where ◦ and power represent the multiplication of corresponding
elements of matrices, ωi is the weight of client i, and m stands for
the number of clients. For the remaining unencrypted low-layer
weight parameters, we use FedAvg to aggregate:

Blow
a =

∑m
i=1 ωiBi∑m

i=1 ωi
. (14)

After finishing secure aggregation, the server distributes the
aggregated matrix to each client. The clients then decrypt the high-
level averaged matrix using the private key, Bhigh

a = Dec(Chigh
a , sk),

and update all averaged parameters in their local knowledge
base once the message has been authenticated. The semantic-
based homomorphic encryption safeguards against privacy leakage
within the synchronization system, as potential adversaries find
it extremely difficult to extract meaningful information from
the crucial high-level parameters in their encrypted form, thus
ensuring the privacy-preserving integrity of SecFFT.

4.3 Residual-based access control

After receiving messages from clients, as illustrated in
Algorithm 2, we implement HMAC-based access control, which
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Key management center:
Input: client set C = {c1,c2, · · · ,ck}
1: Randomly generate secret keys ki for each client

ci ∈ C;
2: Distribute ki to the server and every

corresponding client ci;

Server:
Input: HMAC algorithm, encrypted high-layer weight

update Chigha , unencrypted low-layer weight update
Blowa , a list of clients Corder

1: Initialize receive secret keys ki from KMC and
form a client-key mapping;

2: for training round t = 0,1, · · · ,epochs do
3: while not timeout do
4: if receiving message (HVi,C

high
i ,Blowi ) from

some client ci ∈ C then
5: HV′i = HMAC(ki,C

high
i ,Blowi );

6: if HV′i == HVi then
7: Insert client ci in Corder;
8: Extract unencrypted low-layer

matrix Blowi ;
9: else
10: Discard the message;
11: end if
12: end if
13: end while
14: Bm ← MED(· · · ,Blowj , · · ·);
15: for ci ∈ Corder do
16: Bei ← Bm − Blowi ;
17: Calculate the Frobenius norm ||Bei||2F ← Bei;
18: end for
19: Sort Corder from smallest to largest based on

||Bei||2F;
20: Select the first N clients in Corder for

aggregation phase;
21: if aggregation phase finished then
22: for each client ci ∈ C do
23: HVi = HMAC(ki,C

high
a ,Blowa );

24: Send (HVi,C
high
a ,Blowa ) to client ci;

25: end for
26: end if
27: end for

Algorithm 3. Residuals-based access control on server side.

is applied throughout the synchronization process to strengthen
the privacy-preserving properties. Since HMAC requires a secret
key, the key management center generates unique secret keys ki for
each client i and distributes them to the respective clients and the
server prior to the synchronization process. The hash value (HV)
of each message to be exchanged is computed using the HMAC
algorithm and appended to the message. Furthermore, when a
message, along with its HV, is received by a client or the server, the
HV of the message is recalculated and compared with the attached
HV. If the message is authenticated successfully, it proceeds to the
residual-based access control process.

In the event that an authorized client is compromised
and executes poisoning attacks on behalf of the adversary,

we implement additional access control mechanisms based on
residuals to enhance the robustness of SecFFT as depicted in
Algorithm 3. Specifically, on the server side, we compute the
median matrix Bm of the unencrypted low-layer matrices from all
the authenticated model weights by:

Bm = MED(Blow
1 , · · · , Blow

i , · · · ), (15)

where MED refers to the operation of computing the median
value at each position across the matrices, and Blow

i represents the
unencrypted low-layer parameters from client i. Next, we calculate
the residual matrix for each client as Be

i = Bm − Blow
i and compute

its Frobenius norm ||Be
i ||2F . An ordered list of authenticated clients

is then created based on the Frobenius norm of the residual
matrices ||Be

i ||2F , and for the current communication round, the top
k clients in the list are selected for the aggregation phase, where k is
determined based on the server’s computational resources.

4.4 Self-adaptive updating strategy

In SecFFT, we implement a self-adaptive updating strategy
as an integral part of the training process for the local SKB,
further mitigating potential threats. Specifically, this approach is
applied on the client side. Once the message from the server is
authenticated and the weight parameters are decrypted, clients
update the averaged matrix using the following formulas, rather
than directly updating the local weight matrix:

Br+1 = αBr
a + (1 − α)Br , (16)

where Br represents the resulting weight matrix from the r-th
local training round, Br+1 denotes the initial weight matrix for
the r + 1-th local training round, and Br

a represents the global
averaged weight matrix for the r-th training round. Additionally,
α = max{0, ρBi

a ,Bi }, where

ρBr
a ,Br = Cov(Br

a, Br)
σ (Br

a)σ (Br)
(17)

represents the Pearson correlation coefficient between Br and Br
a.

This strategy aims to adapt the weight matrix update process in
the local SKB based on the relevance between Br and Br

a. In other
words, the higher the correlation between the two matrices, the
greater the contribution of the aggregated matrix to the updated
matrix. Conversely, when the relevance is low, the resulting weight
matrix incorporates fewer components of Br

a and more components
of Br , or even entirely consists of Br .

The self-adaptive updating strategy helps mitigate poisoning
attacks and strengthens the robustness of SecFFT from the
perspective of the local client. For instance, if a client is
compromised by an adversary, the attacker may conduct poisoning
attacks or other malicious activities by uploading a poisoned model
weight matrix to the server (since the homomorphic encryption key
is public in the communication channel), thereby contaminating
the final aggregated model weight. The poisoned matrix is expected
to exhibit minimal relevance to the locally trained weight matrix,
and we can neutralize the malicious impact of such poisoning
attacks by reducing the contribution of the averaged matrix.
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4.5 Security analysis

We provide a comprehensive security analysis of SecFFT from
five key aspects:
Preserving local data privacy: The knowledge synchronization
method ensures that distributed local data remains private
throughout the synchronization process, preventing raw data from
being exposed in a malicious network environment.
Chosen-plaintext attack (CPA) security of paillier: Clients within
the network are unable to access parameters updated by other
clients due to the HMAC-based access control mechanism, while
the server can only receive the parameters in ciphertext form and
is unable to decrypt them. Furthermore, the Paillier encryption
algorithm satisfies CPA security (Li and Micciancio, 2021; Damgård
et al., 2010), which is based on the semantic security of public-
key cryptography and the assumption that clients and servers
do not collude. This ensures that even if an attacker intercepts
the encrypted parameters, they cannot derive the corresponding
plaintext. Additionally, the security of HMAC relies on the security
of the employed hash function and the strength of the shared
secret key (Beringer et al., 2015). Thus, we ensure the security of
the HMAC-based component in SecFFT by utilizing a secure hash
function and generating sufficiently long secret keys.
Noise-free encryption: Homomorphic encryption does not
introduce noise during the encryption/decryption process,
ensuring that there is no loss in learning accuracy (Zhang et al.,
2020).
Semantic-aware encryption: While we encrypt only a portion of
the parameters due to computational constraints, we believe that
the privacy-preserving property is still upheld. The parameters
chosen for encryption, specifically those in the last attention layer,
focus on semantic information and are more crucial for the
semantic knowledge base, given their role in feature extraction and
recovery within semantic communication.
Robustness property: The HMAC-based access control
mechanism is applied throughout the synchronization process,
enhancing the robustness of SecFFT. Moreover, SecFFT aligns
with the assumption that the system is vulnerable, thereby
challenging users and devices (Bandara et al., 2022). This implies
that even if a potential adversary breaches the network, SecFFT
prevents them from gaining default access privileges to other
devices or applications within the network (Samaniego and
Deters, 2018). By utilizing the residual-based access control
mechanism and self-adaptive updating strategy, SecFFT limits
the influence of any authenticated client on other clients, even
if compromised.

In summary, SecFFT establishes a privacy-preserving and
robust architecture.

5 Experiments

In this section, we present extensive experiments to evaluate
SecFFT, which include a performance comparison (Section 5.2),
a comprehensive ablation study (Section 5.3), and additional
discussion (Section 6). All experiments are conducted using
RoBerta-base (Liu et al., 2019), a widely used and robust model

known for its versatility, as demonstrated in Pan et al. (2024) and
Sun et al. (2020).

5.1 Experimental setup

5.1.1 Dataset and non-IID partition
Our experiments utilize four datasets–RTE, MRPC, SST-2, and

QNLI–taken from the GLUE benchmark (Wang et al., 2018), a
standard framework for evaluating natural language tasks due to
its diversity and complexity. The data distribution and evaluation
metrics for these datasets are detailed in Table 2. For the non-IID
partition, we follow the setup described in Lin et al. (2021), using
the Dirichlet distribution to determine class priors for partitioning
the datasets. Specifically, we sample the datasets by D ∼ D(α),
and distribute the partitioned dataset Dk to the k-th client, where
α represents the degree of non-IIDness.

5.1.2 Implementation details
We integrate LoRA adapters into every attention layer of the

RoBerta-base model to ensure its satisfactory performance. Given
the substantial number of parameters that need to be updated,
we apply homomorphic encryption only to the LoRA parameters
in the final attention layer. FedAvg (McMahan et al., 2016) is
used as the aggregation method for the unencrypted parameters,
performing average addition during the aggregation process. For
encrypted parameters, we leverage the homomorphism property
and use modular multiplication as described in Equation (13) to
align with FedAvg in the ciphertext domain. Furthermore, the
implementation of LoRA and FFA-LoRA is based on OpenDelta
(Hu et al., 2023), a plug-and-play framework designed for
parameter-efficient fine-tuning.

5.2 Performance comparison

We compare the performance of SecFFT with original
FedLoRA and FFA-LoRA on RTE, MRPC, SST-2, and QNLI. To
ensure a fair comparison, we maintain the following settings: a
local batch size of B = 32, a learning rate of η = 2e − 5,
10 total communication rounds, 100 clients (which can serve as
both transmitters and receivers in the semantic communication
framework), and a LoRA adapter decomposition rank of r = 8. To
achieve optimal performance for each dataset, we empirically set
the local training epochs to 80 for RTE, 30 for MRPC, 60 for SST-2,

TABLE 2 Dataset descriptions and statistics.

Datasets # Train
(N)

# Dev. (N) # Test (N) Metrics

RTE 2,241 249 277 Accuracy

MRPC 3,301 367 408 F1 score

SST-2 66,675 674 872 Accuracy

QNLI 103,695 1,048 5,463 Accuracy
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TABLE 3 Comparisons of the state-of-the-art methods for bit accuracy w.r.t various distortion types.

Dataset RTE SST-2 MRPC QNLI Avg. Rel.

α 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 0.1 / / / /

FedLoRA 47.3 60.6 57.0 50.9 92.9 92.7 81.2 85.8 88.4 83.8 88.7 90.0 76.6 100%

FFA-LoRA 47.3 50.5 56.7 66.9 91.7 91.7 81.2 81.2 81.5 74.4 86.7 87.7 74.8 97.7%

SecFFT 47.3 61.0 50.9 66.8 91.6 91.7 81.2 81.4 81.7 77.4 86.5 87.7 75.4 98.4%

We show the results on 32-bit watermarking messages. The bold results in this table are the average of the above four datasets. Rel. denotes the percentage of FFA-LoRA and SecFFT in terms of
performance relative to FedLoRA.

and 25 for QNLI. Additionally, since data heterogeneity is a critical
factor in federated fine-tuning, we also assess the performance of
SecFFT across different non-IID partitioned datasets in this section,
choosing the non-IID degree α from {0.1, 1.0, 10.0}. Regarding
homomorphic encryption, since most parameters in the LoRA-B
matrix have relatively small magnitudes and the Paillier algorithm
is designed for integers, we scale the parameters up by multiplying
by 1,000 before encryption and scale them down after decryption.

Table 3 presents a performance comparison between SecFFT,
FedLoRA, and FFA-LoRA across four datasets with varying
non-IID degrees. From the table, we observe that while the
performance of SecFFT slightly lags behind the original FedLoRA,
the performance gap remains acceptable. For instance, in QNLI,
SecFFT’s performance decreases by only 2.5% compared to
FedLoRA, and by 0.3% compared to FFA-LoRA. Additionally,
across all four tasks, SecFFT achieves 98.4% of the performance of
FedLoRA. Notably, in RTE, SecFFT outperforms FedLoRA slightly.
This discrepancy could be attributed to the fact that homomorphic
encryption may alter the lower digits after the decimal point in
the parameters, even after performing the scaling operation, which
affects model accuracy. Additionally, all tuning methods tend to be
more unstable on smaller datasets (Zhang et al., 2023; Chen et al.,
2022). Excluding the RTE results, SecFFT still maintains 97.0% of
the performance of FedLoRA and 99.9% of the performance of FFA-
LoRA. It is important to highlight that SecFFT achieves competitive
performance compared to FFA-LoRA, outperforming it on two out
of four datasets. The above analysis is based on results obtained
when α = 1.0.

Regarding the impact of data heterogeneity, a smaller α

corresponds to a sharper non-IID distribution among clients. We
observe that greater data heterogeneity leads to a decrease in
SecFFT’s performance. Specifically, when α decreases from 1.0 to
0.1 on relatively large datasets like SST-2 and QNLI, performance
significantly deteriorates. This suggests that PEFT methods are
more vulnerable to data heterogeneity and that handling complex
data heterogeneity with fewer trainable parameters is challenging.
Conversely, the performance results for α = 1.0 and α = 10.0 show
minimal difference, indicating that the data heterogeneity between
these two parameter settings does not have a significant impact. The
effect of data heterogeneity on SecFFT is also illustrated in Table 3.

Furthermore, we evaluate additional costs induced
by the privacy-preserving measurements in SecFFT from
several aspects:

• Execution time. Homomorphic encryption, which plays a
critical role in defending against privacy leakage risks in
SecFFT, requires extensive modulo power operations that

consume considerable time due to their inherent complexity.
As a result, the overall execution time of SecFFT for 10
training rounds is significantly higher compared to FFA-LoRA
and federated LoRA, as illustrated in Figure 3. However, we
consider the increased execution time acceptable for two
reasons. First, in semantic communication, SecFFT, which
synchronizes the knowledge base across multiple endpoints
in the network, is demand-driven and does not occur as
frequently as the semantic encoding/decoding process. Thus,
the impact of SecFFT on execution time is manageable
within the broader context of the semantic communication
procedure. Second, the performance and privacy security
benefits provided by SecFFT, even at the cost of additional
execution time, enhance the capabilities and efficiencies
of the semantic encoder/decoder, improving the overall
communication process. Therefore, we regard the additional
execution time cost in SecFFT as acceptable within the entire
semantic communication framework.

• Memory overhead. Since the local training process, encryption
process, and decryption process are executed serially and
locally across all the clients, the demand for memory resources
of local clients hardly grows from FFA-LoRA with no privacy-
preserving measurements. Besides, when it comes to larger
network environments, the increase in the number of clients
does not directly affect the local memory overhead for every
single client. Therefore, the privacy-preserving components in
SecFFT cause few increment of memory overhead.

• Synchronization cost. Since homomorphic encryption
lengthens the ciphertext in bits compared to the plaintext,
the number of data bytes to be exchanged is increased.
Therefore, SecFFT has an additional synchronization cost
than FFA-LoRA.

In summary, the results show that SecFFT maintains
satisfactory performance (98.4% of the original FedLoRA) while
introducing only acceptable additional costs. At the same time,
it enhances privacy-preserving and robust properties to defend
against various security threats. SecFFT effectively strikes a
balanced trade-off between performance, additional costs, and
privacy guarantees in practical applications.

5.3 Ablation study

5.3.1 Impact of LoRA rank
The influence of LoRA rank on performance, excluding privacy

measures, has been examined, with the conclusion that increasing
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FIGURE 3

Execution time in seconds of SecFFT compared with federated
LoRA and FFA-LoRA.

rank does not necessarily enhance the information extracted from
gradients (Sun et al., 2024). Further investigation is required to
determine whether this conclusion remains valid when privacy
measures are applied. Consequently, we assess the impact of LoRA
rank on both performance and synchronization cost in SecFFT,
selecting decomposition ranks from {2, 4, 8} while keeping all other
parameters consistent across datasets.

The performance results are presented in Table 4 and Figure 4.
It is evident that increasing the LoRA rank has a minimal impact
on the performance of SecFFT with privacy-preserving measures
across all datasets. Specifically, increasing the LoRA rank, which
corresponds to a higher number of trainable parameters, does not
necessarily improve performance. Therefore, the conclusion that
LoRA rank has a negligible effect on the information extracted from
gradients holds true in SecFFT with privacy measures.

Additionally, we examine the synchronization cost for different
LoRA ranks. As illustrated in Figure 5, the synchronization costs
follow the order: “rank = 2” < “rank = 4” < “rank = 8”
across all datasets. Notably, the synchronization cost exhibits a
near-linear relationship with the LoRA rank. This is logical, as
only the unfrozen parameters are exchanged, and the number
of unfrozen parameters in our experimental setup is directly
proportional to the LoRA rank. Hence, it is clear that increasing
the LoRA rank leads to a corresponding rise in synchronization
cost. In summary, while LoRA rank has little effect on the
performance of SecFFT with privacy-preserving measures, it
significantly influences synchronization cost.

5.3.2 Impact of training epoch and batch size
We also investigate the influence of local training epochs and

batch size on the performance of SecFFT without encryption.
Specifically, we explore the impact of training epochs by selecting
values from {25, 30, 60, 80}, while maintaining a batch size of 32
across all four datasets. For batch size, we consider values from

TABLE 4 Main task accuracy (%) with different LoRA rank.

Rank RTE MRPC SST-2 QNLI Avg.

2 52.7 81.2 90.3 81.8 76.5

4 51.3 81.2 92.0 84.5 77.3

8 61.0 81.4 91.6 86.5 80.1

The bold values are the best results among different LoRA rank over four datasets and their
average.

{8, 16, 32}, setting the local training epoch to 80 for RTE, 30 for
MRPC, 60 for SST-2, and 25 for QNLI.

The performance results of SecFFT with varying training
epochs are presented in Table 5 and Figure 4. We observe that
the optimal training epoch for each of the four datasets differs,
largely aligning with the epoch settings in Section 5.2. However, this
trend does not hold for RTE and MRPC. We hypothesize that this
discrepancy is due to the relatively small size of the RTE and MRPC
datasets, where increasing the number of training epochs can lead
to overfitting, thus degrading performance.

The performance results of SecFFT with different batch sizes are
shown in Table 6 and Figure 5. It is evident that, for most datasets, a
larger batch size improves SecFFT’s model performance. However,
only two out of the four datasets fully conform to this observation.
For SST-2, the performance difference between a batch size of 8 and
32 is negligible enough to be considered acceptable. For MRPC, we
infer that this inconsistency may be due to the inherent instability
of tuning methods on smaller datasets, as highlighted in previous
studies (Zhang et al., 2023; Chen et al., 2022).

6 Discussion

The versatility and efficiency of federated large models have
led to their adoption in various scenarios beyond semantic
communication, such as context information sharing. Since
federated large model-based methods in these applications are also
employed for the extraction, recovery, and exchange of semantic
data, we believe that SecFFT can be seamlessly integrated into these
methods without significant degradation in performance.
Furthermore, SecFFT incorporates privacy-enhancing
measures, strengthening its ability to defend against potential
adversaries and attacks, thereby ensuring enhanced security in
these settings.

7 Conclusion

This paper introduces SecFFT, a privacy-preserving and
robust knowledge base synchronization scheme for LLM-
enabled Semantic Communication (SemCom), designed to
address potential security threats during the knowledge base
synchronization stage. We leverage federated LLMs as the
distributed knowledge base in SemCom and employ federated
fine-tuning as the synchronization method. To establish a
privacy-preserving architecture, we incorporate semantic-based
homomorphic encryption into SecFFT to secure communication
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FIGURE 4

Main task accuracy (%) of SecFFT with different settings including degree of non-IID, LoRA rank, local training epoch, and batch size under different
datasets.

FIGURE 5

Synchronization cost of SecFFT with different LoRA rank under
different datasets.

between the server and clients. Additionally, we propose a
residual-based access control mechanism and a self-adaptive
local updating strategy to further enhance the robustness of

TABLE 5 Main task accuracy (%) with different training epoch.

Epoch RTE MRPC SST-2 QNLI Avg.

25 52.7 81.2 90.5 87.7 78.0

30 52.7 81.2 91.7 86.8 78.1

60 51.3 81.2 91.7 86.8 77.8

80 50.5 81.7 91.5 86.8 77.6

The bold values are the best results among different training epoch over four datasets and
their average.

TABLE 6 Main task accuracy (%) with different batch size.

Rank RTE MRPC SST-2 QNLI Avg.

8 47.3 83.5 92.1 87.0 77.5

16 48.0 81.7 91.4 86.7 77.0

32 50.5 81.2 91.7 87.7 77.8

The bold values are the best results among different batch size over four datasets and their
average.

SecFFT. Extensive experiments were conducted to evaluate
SecFFT’s performance, with numerical results demonstrating
that SecFFT maintains acceptable performance compared
to methods lacking privacy-preserving measures, while
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achieving semantic security. Although the additional cost is
acceptable, further improvements in efficiency remain a focus for
future research.
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