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ADP-Net: a hierarchical
attention-diffusion-prediction
framework for human trajectory
prediction

Zhenggui Zhang, Shanlin Xiao* and Zhiyi Yu

School of Microelectronics Science and Technology, Sun Yat-sen University, Guangzhou, China

Accurate prediction of human crowd behavior presents a significant challenge
with critical implications for autonomous systems. The core difficulty lies in
developing a comprehensive computational framework capable of effectively
modeling the spatial-temporal dynamics through three essential components:
feature extraction, attention propagation, and predictive modeling. Current
spatial-temporal graph convolutional networks (STGCNs), which typically
employ single-hop neighborhood message passing with optional self-attention
mechanisms, exhibit three fundamental limitations: restricted receptive
fields due to being confined to limited propagation steps, poor topological
extensibility, and structural inconsistencies between network components that
collectively lead to suboptimal performance. To address these challenges, we
establish the theoretical connection between graph convolutional networks
and personalized propagation neural architectures, thereby proposing attention
diffusion-prediction network (ADP-Net). This novel framework integrates
three key innovations: (1) Consistent graph convolution layers with immediate
attention mechanisms; (2) Multi-scale attention diffusion layers implementing
graph diffusion convolution (GDC); and (3) Adaptive temporal convolution
modules handling multi-timescale variations. The architecture employs
polynomial approximation for GCN operations and implements an approximate
personalized propagation scheme for GDC, enabling efficient multi-hop
interaction modeling while maintaining structural consistency across spatial and
temporal domains. Comprehensive experiments on standardized benchmarks
(ETH/UCY and Stanford Drone Dataset) show cutting-edge results, with
enhancements of 4% for the average displacement error (ADE) and 26% for the
final displacement error (FDE) metrics when contrasted with prior approaches.
This advancement provides a robust theoretical framework and practical
implementation for crowd behavior modeling in autonomous systems.

KEYWORDS

representation learning, graph diffusion convolution, trajectory prediction, graph neural
networks, spatio-temporal relational modeling, multi-hop, Personalized PageRank

1 Introduction

Accurate modeling of pedestrian crowd dynamics underpins socially intelligent
navigation systems (Yang et al., 2024; Pellegrini et al., 2009). Existing approaches capture
local interactions adequately but lack the mechanisms to incorporate long-range social
dependencies, leading to suboptimal predictions in dense pedestrian scenarios where
distant influences significantly affect trajectory formation.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1690704
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1690704&domain=pdf&date_stamp=2025-11-27
mailto:xiaoshlin@mail.sysu.edu.cn
https://doi.org/10.3389/frai.2025.1690704
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1690704/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhang et al. 10.3389/frai.2025.1690704

This limitation becomes apparent in human interactive
navigation: two pedestrians walking toward each other may
maintain separate paths until one accelerates, prompting
anticipatory adjustments several meters before personal space
is breached. This behavior demonstrates humans’ innate ability
to process non-local spatial dependencies, which current
computational models cannot fully replicate for two reasons:

1. Existing methods have been constrained to local interactions,
inherently limiting perceptual range.

2. Current architectures cannot effectively encode higher-order
interactions (such as multi-hop influence propagation) into
scalable embedding (Wu et al., 2023), nor achieve spectrally
consistent adjacency-attention mappings. In simpler terms,
most existing models struggle to look beyond immediate
neighbors to capture more complex, multi-step relationships
in a network, and they also find it hard to keep the
learned attention patterns aligned with the network’s true
structural patterns.

Consequently, predictions lack anticipatory intelligence
observed in real human navigation, where agents continuously
integrate contextual signals across extended receptive fields.

Current trajectory prediction approaches typically employ
recurrent neural networks (RNNs) for sequence modeling, social
pooling for interaction capture, or graph message passing
for relational reasoning (Defferrard et al., 2016; Kipf and
Welling, 2017). While graph-based deep learning offer powerful
representation learning capabilities, prevailing implementations
face three fundamental constraints:

1. Receptive field restriction: most spatial-temporal GCNs confine
message passing to direct neighbors (Gasteiger et al., 2019;
Klicpera et al., 2019a), neglecting higher-order influences.

2. Contextual scope limitation: attention mechanisms compute
weights solely over adjacent nodes (Wang et al., 2021), omitting
critical non-local cues.

3. Propagation degradation: deeper architectures induce over-
smoothing or over-squashing (Di Giovanni et al., 2023; ud din
and Qureshi, 2024), impairing multi-hop reasoning.

A promising theoretical pathway emerges from the connection
between GCNs and random walks. Standard GCNs with sufficient
propagation steps converge to root invariant distributions
(Xu et al., 2018). This property is detrimental for trajectory
forecasting, where origin-awareness is essential. The personalized
PageRank (PPR) framework (Page et al., 1999) resolves this issue
through random walks with restart probability α ∈ (0, 1]. By
probabilistically resetting walks to the root node (teleportation),
PPR preserves locality (high α) while enabling multi-hop
propagation (low α), formally establishing the foundation for our
adaptive interaction mechanism.

However, operationalizing this theory faces significant
challenges: (1) The inherent entanglement of propagation
and feature extraction in message passing complicates multi-
scale modeling; (2) Expanding neighborhood size amplifies
computational complexity while risking information dilution; (3)
Maintaining temporal consistency across spatial scales requires
careful architectural design.

To overcome these limitations, we establish a unified
framework through the asymptotic alignment of adjacency and
attention matrices under graph diffusion principles, leveraging
machine learning to design attention matrices whose spectral
properties asymptotically align with those of diffused adjacency
matrices via PageRank diffusion. This fundamental connection
integrates: (1) GCN’s capacity for localized convolution; (2) The
strength of graph diffusion convolution (GDC) for multi-hop
feature extraction, thereby enabling the simultaneous modeling
of direct neighbor interactions and non-adjacent contexts via
spectrally consistent propagation. A detailed explanation and
proof are provided in Appendix A. We introduce the attention
diffusion-prediction network (ADP-Net)—a novel framework that:
(1) Architecturally decouples feature extraction from propagation
through stage-wise processing; (2) Theoretically unifies graph
attention, diffusion mechanisms, and personalized propagation; (3)
Hierarchically cascades the integration of: (i) graph convolution
with immediate attention for local interactions; (ii) multi-scale
diffusion using graph diffusion convolution (GDC); (iii) adaptive
temporal convolution for multi-timescale variations.

As shown in Figure 1, ADP-Net’s hierarchical architecture
enables attention to critical agents across extended receptive fields
(Figure 1b), overcoming the single-hop constraint of conventional
methods (Figure 1a). This approach effectively addresses the core
challenge of jointly modeling proximate interactions and distant
contextual influences without compromising spatial or temporal
fidelity.

Rigorous evaluation and ablation studies demonstrate that
ADP-Net achieves the improvements of 4% in mean average
displacement error (ADE) and 26% in mean final displacement
error (FDE) metrics, respectively, compared against existing
methods while maintaining a favorable equilibrium of model
complexity vs. performance.

This study makes three key contributions, which can be
outlined as follows:

• This study introduces an innovative framework for
trajectory forecasting, which synergistically combines
graph convolutional networks, attention-based diffusion
processes, and personalized neural prediction propagation. By
leveraging machine learning to learn attention matrices
whose spectral properties asymptotically align with
diffused adjacency matrices via PageRank diffusion, we
establish a unified framework combining GCN’s local
convolution with GDC’s multi-hop extraction through
spectrally consistent propagation. This innovation addresses
three critical limitations in current graph convolution
approaches: (1) restricted information propagation confined
to immediate neighbors; (2) susceptibility to noise in real-
world graph structures; and (3) sensitivity to arbitrarily
defined neighborhood boundaries.

• Building upon this theoretical foundation, we develop
attention-diffusion-prediction network (ADP-Net)—an
architecturally optimized solution that sequentially combines
graph convolution operations, attention diffusion processes,
and predictive modeling. The network architecture achieves
enhanced trajectory prediction accuracy through three key
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FIGURE 1

Revised the graph schematic to more accurately represent edge semanticsAdded clear visual indicators for node self-loop connectionsEnhanced the
diagram layout for better interpretability of graph structure.

design innovations: (1) multi-scale neighborhood aggregation
via graph diffusion; (2) adaptive attention weighting for
dynamic relationship modeling; and (3) parameter-efficient
prediction modules with personalized propagation schemes.

• Extensive experimentation on popular pedestrian benchmark
datasets, namely ETH/UCY and Stanford drone dataset
(SDD) have been conducted. Quantitative results and
comparative analyses substantiate the competitive advantages
of our method against leading contemporary approaches,
particularly in forecasting accuracy and computational
efficiency.

The study is structured as follows: Section 2 systematically
reviews prior research in trajectory prediction with graph-based
methods. In Section 3, we present our theoretical analysis of
the graph diffusion-based multi-hop attention mechanism. The
proposed framework and its technical innovations are detailed
in Section 4. Section 5 provides comprehensive evaluations on
benchmark datasets with in-depth analysis of the results. Finally,
Section 6 concludes the study with key findings and future
directions.

2 Related work

Trajectory prediction requires modeling complex spatio-
temporal interactions from movement data, including: (1) agent-
specific histories, (2) social group dynamics, (3) environmental
constraints, and (4) scene semantics. Existing approaches often
fail to coherently integrate these dimensions due to their inherent
multi-scale nature.

Our work bridges this gap through a theoretical breakthrough,
demonstrating that adjacency and attention matrices achieve
asymptotic equivalence under graph diffusion. This equivalence
implies that local neighbor information (captured by adjacency)
and long-range dependencies (captured by attention diffusion)
can be represented within a single spectral propagation operator.
Consequently, multi-scale interactions—ranging from immediate
agent collisions to scene-wide flow patterns—are modeled in
a unified framework. This spectrally consistent propagation

framework forms the basis for ADP-Net, which advances trajectory
prediction by simultaneously processing two critical information
pathways: (1) Direct neighbor interactions through self-attention
mechanisms; (2) Non-adjacent contextual relationships via
diffusion-based propagation.

For example, in a crowded intersection, self-attention captures
the direct influence of a nearby pedestrian suddenly stopping,
while diffusion propagation integrates the subtle yet coordinated
motion of a group further away—such as a crowd moving toward
a crosswalk—whose influence arrives indirectly through multiple
intermediate agents. This joint processing yields responsiveness to
immediate hazards and anticipation of large-scale flow changes,
leading to more stable predictions.

Early work like social-STGCNN (Mohamed et al., 2020)
captured spatial relations through weighted adjacency matrices and
temporal dynamics via TXP-CNN. Subsequent studies enhanced
direct graph convolutions with attention mechanisms (Gasteiger
et al., 2019), while recent advances formalized multi-hop diffusion
(Klicpera et al., 2019a; Wang et al., 2021) and multi-scale learning
(Xhonneux et al., 2020) to better capture long-range dependencies.

Specifically, Graph Diffusion Convolution (GDC) (Klicpera
et al., 2019a) introduced a spectral formulation based on
personalized PageRank, allowing features to propagate over
multiple hops through a fixed diffusion kernel. This effectively
extends message passing beyond immediate neighbors while
maintaining local smoothness. However, GDC remains a linear
propagation scheme with static diffusion weights, limiting its
adaptability to dynamic, context-dependent interactions in crowd
motion. Nevertheless, many of these methods still rely primarily
on predefined neighborhood structures, which can restrict their
flexibility in modeling complex, evolving interaction patterns.

To address these limitations, subsequent research has branched
into two complementary directions: (1) Attention-augmented
graph convolutions (Velickovic et al., 2018) for capturing
local relationships; (2) Spectral multi-hop propagation (Klicpera
et al., 2019a) for modeling global contexts. In contrast, our
proposed framework integrates diffusion into a learnable attention
operator, where the diffusion kernel is adaptively modulated by
attention weights. This allows nonlinear and context-aware spectral
transformations that extend beyond GDC’s fixed filtering scheme.
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Furthermore, we establish a spectral-domain equivalence
theorem showing that the asymptotic behavior of our adaptive
diffusion-attention operator converges to that of GDC under
diffusion propagation. This result provides, for the first time, a
unified spectral interpretation linking fixed diffusion and adaptive
attention. Therefore, our framework not only generalizes GDC
conceptually but also extends it theoretically, unifying diffusion-
based global smoothing with attention-driven local adaptability
within a single spectral propagation paradigm.

While hierarchical spatio-temporal methods later refined these
approaches, they remain limited to explicit connections—failing to
emulate human cognition’s ability to integrate indirect contextual
cues. Our key theoretical breakthrough proves the asymptotic
equivalence of adjacency and attention matrices under graph
diffusion, unifying: (1) GCN’s local operations (Kipf and Welling,
2017); (2) GDC’s spectral propagation (Klicpera et al., 2019a); (3)
Polynomial-filtered convergence (Gasteiger et al., 2019).

This yields three advances: (1) A spectrally consistent
framework for direct and multi-hop interactions; (2) Motion-aware
attention capturing distant agent dynamics; (3) Stable prediction
through diffused contextual integration.

3 Multi-hop attention mechanism
with graph diffusion

We aim to understand the multi-hop attention mechanism with
graph diffusion by analyzing node influence scores. Following Xu
et al. (2018), in a k-layer GCN, the influence score between nodes
equals the expected value of a scaled, adjusted k-step random walk
from the source node. This distribution converges to a stationary
distribution π lim, obtained by solving π lim = ˆ̃Aπ lim (where ˆ̃A is
defined subsequently). Notably, this result depends solely on the
graph structure and is independent of the starting node.

To operationalize this theoretical foundation, our ADP-net
model represents agent features and relationships as dynamic
graphs. We define the graph structure as G = (V , E) containing
N vertices in V and edges E ⊆ V ×V . Every edge carries weight via
ψ : E → R, while nodes are characterized by feature matrices.

Specifically for pedestrian trajectory prediction, we represent
the dynamic environment at time t by an evolving graph Gt =
(Vt , Et). Here, Vt = {vi

t | i = 1, . . . , N} denotes the set of
pedestrians, whose nodal features are given by their locations pi

t =
(xi

t , yi
t). The edge set Et = {eij

t | i, j ∈ {1, . . . , N}} defines
interactions, where eij

t = 1 indicates the presence of a connection.
To quantify interaction strength, we assign weights aij

t via kernel
functions, forming the weighted adjacency matrix At ∈ R

N×N .
Thus, Gt is fully described by At , with Ãt = At + IN denoting the
self-loop-augmented adjacency matrix.

Building on this representation, a widely adopted message
passing scheme employs GCNs (Kipf and Welling, 2017). For two
layers:

HGCN = softmax
( ˆ̃AtReLU

( ˆ̃AtXvt W0

)
W1

)
, (1)

where ˆ̃At = D̃−1/2ÃtD̃
−1/2 is the symmetrically normalized

adjacency matrix. However, when extending GCN to capture

larger neighborhoods critical for crowd dynamics, we confront
two challenges: (1) Oversmoothing (Alon and Yahav, 2021)
from excessive averaging, diminishing local sensitivity; and (2)
Parameter inefficiency when expanding receptive fields.

These limitations motivate adopting diffusion-based influence
quantification. In graph representation learning, Personalized
PageRank (PPR) (Klicpera et al., 2019a) measures influence I(x, y)
as the (x, y)-th entry of

�ppr = α
(

In − (1 − α) ˆ̃A
)−1

,

capturing multi-hop dependencies via matrix inversion.
PPR is a special case of the graph diffusion framework,

where the propagation matrix T is typically ˆ̃A, Tk encodes k-hop
transitions, and θk controls their weights:

Z =
∞∑

k=0

θkTkX.

Here, X represents the node feature matrix, containing the
features of all nodes in the graph. Setting θPPR

k = α(1−α)k recovers
PPR, showing it as one diffusion kernel under a unified spectral
filtering view.

Our spatiotemporal model leverages this by (1) using spatial-
temporal convolutions for local motion encoding and (2) learning
attention matrices whose spectra align with diffused adjacency
matrices via PPR. This unifies GCN-style local aggregation and
GDC-style multi-hop extraction: low-order attention captures
immediate neighbors, while high-order terms follow diffusion
probabilities. The resulting spectrally consistent propagation
expands receptive fields dynamically—like adjusting a telescope—
allowing distant yet relevant agents to influence predictions without
losing local sensitivity.

4 Proposed framework

4.1 Problem formulation

Considering N pedestrians whose historical trajectories
{trn

o}N
n=1 over To timesteps, we predict future trajectories

trn
p = {pn

t }
Tpred
t=1 , where pn

t = (xn
t , yn

t ). To capture the inherent
uncertainty in human motion, each predicted position is modeled
as a bivariate Gaussian distribution:

pn
t ∼ N (μn

t , σ n
t , ρn

t ), (2)

with μn
t representing the mean value, σ n

t denoting the standard
deviations, while ρn

t indicates the correlation coefficient.
Based on this framework, our objective is to develop a

trajectory prediction model Gψ (·) that optimizes the probability
of accurately forecasting future trajectories. This is accomplished
through optimization of the negative logarithmic likelihood across
all time steps and pedestrian instances:

L(ψ) = −
N∑

n=1

Tpred∑
t=1

logP(pn
t |μ̂n

t , σ̂ n
t , ρ̂n

t ), (3)
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FIGURE 2

Updated to maintain consistency with the revised graph representation in Figure 1 Modified associated components to align with the improved visual
conventions Ensured continuity in the graphical narrative across both figures.

where ψ denotes trainable parameters. The optimized model
generates distributions that closely match ground truth trajectory
statistics.

4.2 Framework introduction

The ADP-Net framework (Figure 2) employs two
complementary spatio-temporal blocks for pedestrian trajectory
modeling: (1) a Near-vertex Spatial-temporal Block, which
combines Graph Convolutional Networks (GCNs) with temporal
convolutions to model interactions among directly connected
neighbors; and (2) a Multi-hop Spatial-temporal Block, which
applies Graph Diffusion Convolution (GDC) with temporal
convolutions to capture informative context from nodes that are
not directly connected but influence the target through multi-hop
structural relationships.

This design addresses critical limitations of existing approaches:
While stacking GNN/GAT layers enlarges receptive fields, it
induces over-smoothing/over-squashing issues (Wang et al., 2019;
Oono and Suzuki, 2020). Instead, ADP-Net adopts GDC-based
multi-hop propagation (Klicpera et al., 2019a) to efficiently
incorporate non-adjacent context without deepening the network.
The generalized graph diffusion in GDC acts as a polynomial
filter (Gasteiger et al., 2019), suppressing noise in graph edges
while capturing large-scale structural patterns. This synergistic
integration of localized attention and multi-hop diffusion is
evidenced by stable ADE/FDE metrics.

4.3 Near-neighbor attention via spectral
graph convolution

The spatial-temporal feature extraction for immediate
neighbors is implemented through spectral graph convolution.

This section details the spatial convolution component, temporal
convolution is addressed in Section 4.5.

4.3.1 Spectral graph convolution formulation
Given the time-varying adjacency matrix At ∈ R

N×N , we define
the normalized graph Laplacian:

Lt = IN − D− 1
2 AtD− 1

2 , (4)

where Dii =
∑

j Atij is the degree matrix. The spectral convolution
on node features H ∈ R

N×f follows:

� ∗ GH = U�(�)UTH, (5)

with U being eigenvectors of Lt , � the eigenvalue matrix, and � a
spectral filter.

4.3.2 Chebyshev polynomial approximation
Direct computation of Equation 5 is expensive. Following

Defferrard et al. (2016), we approximate �(�) using K-order
Chebyshev polynomials Tk:

�(�) ≈
K−1∑
k=0

θkTk(�̃), �̃ = 2�

λmax
− IN , (6)

where λmax is the largest eigenvalue of Lt . This yields:

� ∗G H ≈
K−1∑
k=0

θkTk(L̃t)H, L̃t = 2Lt

λmax
− IN . (7)

4.3.3 Linear approximation for efficient attention
For efficient attention modeling, we adopt a first-order linear

approximation (K = 1) of Equation 7 (Kipf and Welling, 2017):

� ∗G H ≈ θ0H + θ1 (Lt − IN) H. (8)

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1690704
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhang et al. 10.3389/frai.2025.1690704

Setting θ = θ0 = −θ1 and adding self-loops via Ãt = At + IN ,
we derive the practical GCN formulation:

� ∗G H = θ

(
D̃− 1

2 ÃtD̃− 1
2

)
H, (9)

where D̃ii =
∑

j Ãtij.

4.3.4 Attention layer implementation
The near-neighbor attention update at layer l is:

H(l+1)
t = σ

⎛
⎜⎝D̃− 1

2 ÃtD̃
− 1

2 H(l)
t︸ ︷︷ ︸

attention aggregation

�(l)

⎞
⎟⎠ , (10)

where �(l) ∈ R
f (l)×f (l+1) represents learnable weights;

H(l)
t ∈ R

N×f (l)
denotes input features (with H(0)

t = X); σ (·)
stands for nonlinear activation (e.g., ReLU). This implements
local aggregation through the symmetric normalized adjacency,
capturing immediate neighbor influences. Unlike the graph
attention network (GAT), which learns feature-dependent
attention coefficients via a separate attention function, our
formulation employs a topology-guided static weighting derived
from the normalized adjacency matrix Ãt . This design ensures
numerical stability and structural consistency with the diffusion-
based propagation scheme introduced in Section 4.4, while still
emphasizing local neighbor contributions in a learnable manner
through �(l).

4.4 Multi-hop attention via generalized
graph diffusion

This section focuses on the spatial diffusion component for
multi-hop neighbors, while temporal modeling will be addressed
in Section 4.5.

4.4.1 Generalized graph diffusion framework
To overcome limited receptive fields, we adopt generalized

graph diffusion (Klicpera et al., 2019a; Gasteiger et al., 2019). The
influence propagation between multi-hop nodes is formulated as:

S =
∞∑

k=0

θkTk s.t.
∞∑

k=0

θk = 1, θk > 0. (11)

The convergence is guaranteed by a transition matrix T ∈
R

N×N , while the hopping decay is regulated by θk. In the case
of undirected graphs containing self-loops, we employ symmetric
normalization to ensure stability during diffusion:

Tsym = (
wringIN +D

)−1/2(wringIN +At)(D+wringIN
)−1/2, (12)

with wring > 0. This formulation subsumes PageRank (Page et al.,
1999) and heat kernels as special cases.

4.4.2 Attention diffusion mechanism
Building on the generalized diffusion framework in

Equation 11, we design attention diffusion to capture multi-hop
dependencies:

At =
∞∑

i=0

θiTi
sym,t , (13)

where θi = α(1 − α)i (geometric decay) (Klicpera et al., 2019b).
Here α ∈ (0, 1] is the teleport probability controlling the trade-off
between locality and globality. The i-th power Ti

sym encodes i-hop
relational paths, systematically expanding the attention receptive
field.

This formulation establishes asymptotic equivalence between
attention and adjacency matrices under diffusion, creating a
unified representation that inherently balances local neighbor
influences with global crowd dynamics. The geometric
decay coefficients induce a spectral low-pass filtering effect
that amplifies coherent motion patterns while attenuating
local noise.

The feature aggregation becomes:

AttDiff(G, H(l)
t , �) = AtH

(l)
t , (14)

This differs from GCN’s localized aggregation (Sec. 4.3)
by integrating multi-scale context through diffusion, enabling
dynamic receptive field adjustment based on interaction intensity.

For detailed theoretical analysis of the asymptotic equivalence,
spectral-domain gain mechanism, and integration with
spatiotemporal correlations, we refer readers to Appendix B.

4.4.3 Multi-head diffusion architecture
Figure 3 presents a schematic diagram of the proposed Multi-

head Diffusion architecture for multi-hop attention diffusion layer.
To capture diverse relational subspaces, we extend Equation 14 to
multi-head setting:

headi = AttDiff(G, LayerNorm(H(l)
t );�i),

Ĥ
(l)
t = Concat(head1, . . . , headM)WO,

(15)

where �i parameterizes the i-th diffusion filter, and WO ∈ R
(M·f )×f

combines heads.

4.4.4 Stable deep aggregation
Following Transformer design (Vaswani et al., 2017), we add

layer normalization and residual connections:

Ĥ
(l+1)
t = LayerNorm

(
Ĥ

(l)
t + H(l)

t

)
,

H(l+1)
t = W2 · ReLU

(
W1Ĥ

(l+1)
t + b1

)
+ b2 + Ĥ

(l+1)
t ,

(16)

where b1, b2 are bias vectors. This mitigates vanishing gradients
while enabling deep feature fusion.
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FIGURE 3

Architecture of the Multi-hop Attention Diffusion Layer, consisting of attention computation, diffusion-based multi-hop propagation, layer
normalization, feed-forward layers, and dual residual connections.

4.4.5 Approximation for scalability
The exact computation of the diffusion operator At has a

complexity of O(N2) per evaluation. To improve scalability, we
adopt an iterative approximation scheme following (Klicpera et al.,
2019a):

Z(0)
t = H(l)

t ,

Z(k+1)
t = (1 − α)Tsym,tZ

(k)
t + αZ(0)

t for 0 ≤ k < K − 1,

Z(K)
t = softmax

(
(1 − α)Tsym,tZ

(K−1)
t + αZ(0)

t

)
.

(17)

This procedure yields an approximation Z(K)
t ≈ AtH

(l)
t , which

converges to the true value as K → ∞ (Patel et al., 2020). The final
softmax operation is applied to enhance the sparsity of the resulting
attention weights, thereby improving model interpretability.

4.5 Multi-scale temporal convolution for
pedestrian interactions

Building on the spatial features extracted in the previous
section, we now shift our focus to modeling temporal dependencies
through hierarchical temporal convolutions. Agent trajectories
involve complex multi-scale temporal dependencies, ranging from
quick, reactive movements that occur within sub-seconds to more
strategic navigation behaviors spanning several seconds. Temporal
Convolutional Networks (TCNs) provide an ideal framework for
such tasks, with multi-layered architectures that utilize:

1. Dilated causal convolutions, which extend the temporal
coverage while maintaining feature integrity by spacing kernels
exponentially (d = 2l);

2. Strict causality enforcement, where future-masking via
convolutional shifting ensures temporal coherence;

3. Hierarchical feature distillation, where successive layers
transform immediate motions into higher-level navigational
semantics.

4.5.1 Short-term temporal modeling
Based on the short-term TCN (three layers, kernel size

= 3) (Figure 4a), for short-term temporal dependencies within
the immediate node-attention aggregation window, we employ
a lightweight Temporal Convolutional Network (TCN) module

(Figure 4b) to model fine-grained motion dynamics. The short-
term TCN module consists of three convolutional layers with kernel
size = 3, stride = 1, and dilation rates of {1, 2}. This configuration
yields a temporal receptive field of seven frames (approximately 2.8
s at 2.5 FPS), enabling the capture of immediate motion dynamics
and short-term interaction patterns. This configuration enables
precise temporal alignment and high-resolution feature extraction
for short-term motion fluctuations without introducing redundant
parameters. Despite the fixed dilation rate, the deeper hierarchy
enables cumulative receptive-field expansion sufficient for the 12-
frame observation horizon.

4.5.2 Long-term temporal modeling
To capture comprehensive temporal dependencies across the

12-frame observation horizon, we implement a five-layer Temporal
Convolutional Network with carefully calibrated parameters:
kernel size = 3, stride = 1, and dilation rate = 1 across all
layers. This configuration yields a receptive field of 11 frames,
providing near-complete coverage of the 12-frame observation
sequence while maintaining computational efficiency. The five-
layer depth ensures sufficient feature abstraction capacity, while
the consistent kernel size and dilation rate maintain temporal
resolution integrity. This architecture effectively models both
immediate motion dynamics and extended temporal patterns,
enabling robust extraction of strategic navigation behaviors
essential for accurate 12-frame trajectory prediction. Despite
the fixed dilation rate, the deeper hierarchy enables cumulative
receptive-field expansion sufficient for the 12-frame observation
horizon. The residual refinement blocks further enhance these
temporally enriched features, ensuring coherent propagation of
interaction cues through the diffusion process, as illustrated in
Figure 4c.

4.5.3 Trajectory predictor
The refined features are passed into a novel CNN-based

predictor (TXP-CNN), which extrapolates future trajectories.
Given eight observed frames (≈ 3.2 s), the model predicts the next
12 frames, capturing the temporal continuity of pedestrian motion.
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FIGURE 4

(a) Short-term TCN (three layers, kernel size = 3); (b) Residual refinement block integrating GCN output; (c) Long-term TCN (five layers, kernel size =
3) integrating GDC-enhanced features.

4.6 Architectural advantages of ADP-Net

4.6.1 Non-local attention-diffusion mechanism
ADP-Net adopts a hierarchical Attention-Diffusion-Prediction

framework, enabling trajectory forecasts based solely on historical
observations. This framework extends the classical graph attention
mechanism [e.g., GAT’s H(l+1) = σ (AH(l)W(l))]. Unlike GAT,
which aggregates features strictly from direct neighbors via A,
ADP-Net asymptotically aligns adjacency and attention matrices
through graph diffusion, thereby unifying local convolution with
multi-hop feature extraction. The resulting A preserves parameter
efficiency while replacing σ with layer normalization and deep
aggregation, yielding higher expressive power than GAT’s ELU-
based aggregation.

4.6.2 Spatial-spectral convolution integration
ADP-Net integrates spatial and spectral graph convolutions

within a unified framework. It applies the normalized graph
Laplacian Lt for spectral convolution on Gt , and generalizes Lt
to the diffusion transformation matrix T̃symt via Graph Diffusion
Convolution (GDC). This spectrally consistent propagation
simultaneously models direct neighbor interactions and long-
range, non-adjacent contexts. Although GDC is primarily spatial-
based (Gasteiger et al., 2019), it admits a spectral interpretation,
enabling ADP-Net to capture immediate spectral-spatial features
before extracting multi-hop neighborhood information.

4.6.3 Computational efficiency and stability
ADP-Net achieves high computational efficiency while

maintaining stability. Unlike traditional spectral filtering
methods, which incur a computational complexity of O(N2),
ADP-Net leverages efficient approximation strategies to reduce
computational cost. Following Kipf and Welling (2017), the core
filtering operation exhibits a complexity of O(|E |d(l)d(l+1)), where
d(l) and d(l+1) denote the input and output feature dimensions, and
|E | is the number of edges.

For attention-based diffusion implemented via GDC (Klicpera
et al., 2019a; Wang et al., 2021), the complexity remains linear in the
number of edges, i.e., O(|E |) (Wang et al., 2021). Moreover, the use
of layer normalization in multi-head attention enhances training
stability, which is further reinforced by the stability-oriented design
of the temporal causal convolution module. Although the present
analysis focuses on theoretical complexity, the linear dependence
on |E | implies favorable scalability and practical efficiency for
large-scale graphs.

4.6.4 Modular extensibility for customization
ADP-Net is designed with modular extensibility in mind.

Multi-hop diffusion blocks can be stacked with configurable
skip connections, while standardized interfaces allow flexible
insertion of BatchNorm, Dropout, and activation layers. Default
components (e.g., the attention mechanism) can be replaced
with novel modules without disrupting the overall architecture.
This balance of flexibility and architectural consistency accelerates
experimentation and facilitates adaptation to diverse trajectory
prediction scenarios.

5 Experimental validation and findings

5.1 Experimental configuration

5.1.1 Datasets
The performance evaluation of ADP-Net employs two

benchmark datasets: the ETH/UCY collections and SDD (Stanford
Drone Dataset).
• ETH/UCY: The ETH benchmark comprises two scenes (ETH

and HOTEL), while UCY consists of three scenes (ZARA1, ZARA2,
and UNIV). Pedestrian movements were recorded at 0.4-s intervals
across an 8-s duration. During testing, the system utilizes an initial
3.2-s segment (eight frames) of visible motion paths to forecast the
subsequent 4.8-s period (12 frames).

• SDD (Robicquet et al., 2016): a widely used benchmark,
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comprises multimodal trajectory data from diverse moving agents.
This dataset records trajectories of over 11,000 pedestrian instances
across twenty aerial-view scenarios. The annotations cover mixed
traffic participants (pedestrians and vehicles) interacting in dense
urban settings. All data was collected from naturalistic outdoor
environments with complex social dynamics. Trajectories are
sampled at 2.5 frames per second. For prediction tasks, The
model needs to predict the next 12 positions based on 8 historical
positions.

5.1.2 Evaluation metrics
The experimental analysis employs a pair of quantitative

metrics to evaluate the performance of our prediction model.
• Average Displacement Error (ADE) (Pellegrini et al., 2009): The

mean spatial discrepancy measured by Euclidean distance across
the entire forecast horizon, comparing predicted paths with their
corresponding ground truth trajectories.

ADE =
∑

n∈N
∑

t∈Tpred
‖p̂n

t − pn
t ‖2

N × Tpred
(18)

• Final Displacement Error (FDE) (Alahi et al., 2016) quantifies
the spatial discrepancy by measuring the straight-line separation
(Euclidean distance) of the predicted position from the ground
truth when reaching the terminal prediction timestep.

FDE =
∑

n∈N ‖p̂n
t − pn

t ‖2

N
, t = Tpred (19)

The ADEK and FDEK represent the minimum displacement
error of K prediction results.

5.1.3 Baseline comparison: generic and
case-specific approaches

To demonstrate the effectiveness and advantages of ADP-Net,
we first compare it with baseline methods in GNN representation
learning, as well as with case-specific GNN variants that adapt
graph structures for individual scenarios. We then provide a
detailed discussion of the results.
• S-GAN (Gupta et al., 2018) adopts a recurrent sequence-

to-sequence architecture to process historical movement patterns
and predict trajectories, featuring a novel pooling mechanism for
aggregating multi-agent data.

• Sophie (Sadeghian et al., 2018) employs two complementary
information sources: historical motion data encompassing both
individual (Physical Attention) and interactive (Social Attention)
behaviors of all agents in the scenario, along with environmental
features extracted from images of the surroundings that provide
scene context.

• PECNet (Mangalam et al., 2020), formally termed Predicted
Endpoint Conditioned Network (PECNet), addresses human
motion forecasting with enhanced adaptability. It estimates far-
horizon path termination points to facilitate extended-range,
probabilistic path prediction.

• Social-STGCNN (Mohamed et al., 2020) utilizes Social-
STGCNN as an alternative to conventional feature aggregation
methods through graph-based representation of interpersonal
dynamics. The proposed framework improves trajectory
forecasting performance, demonstrating superior results compared
to existing approaches regarding accuracy, computational
efficiency, and overall system simplicity.

• LB-EBM (Pang et al., 2021) utilizes an energy-guided
probabilistic approach based on latent belief, where an objective
function is formulated in the latent space to integrate both
historical motion patterns and interpersonal dynamics, enabling
the synthesis of multimodal trajectory forecasts.

• STNet (Wen et al., 2022) employs Graph Neural Networks
(GNN), including Graph Attention Networks, combined with
a transformer architecture employing a Conditional Variational
Autoencoder (CVAE), to process social feature data derived
from historical motion patterns and destination information in
pedestrian trajectory forecasting.

• SKGACN (Lv and Yuan, 2023) utilizes a graph
attention convolutional network guided by social knowledge
(SKGACN) developed for modeling interpersonal dynamics and
spatiotemporal dependencies between pedestrian trajectories, with
optimized computational efficiency for prediction tasks.

• DTDNet (Liu S. et al., 2024) employs a hierarchical intention
reasoning framework (Dynamic Target Driven Network, DTDNet)
that processes pedestrian behaviors at varying timescales to model
movement dynamics for trajectory forecasting.

• STS LSTM (Zhang et al., 2024) proposes a transferable STS-
LSTM framework which captures pedestrian motion patterns by
leveraging multi-domain features (spatial, temporal and spectral)
for precise trajectory forecasting.

• Spatio-Temporal Adaptive Graph Pooling Network
(STAGP) (Liu Z. et al., 2024) utilizes adaptive graph pooling
for modeling dynamic interactions between individuals while
pruning unnecessary edges. The framework further incorporates
temporal feature extraction through spatio-temporal attention
mechanisms, ultimately constructing STAGP (Spatio-Temporal
Adaptive Graph Pooling Network) to forecast pedestrian
movement patterns.

• V-Social STGCNN (Chang et al., 2024) considers the visual
constraints of pedestrians during the construction of the weighted
adjacency matrix, and proposes a novel trajectory forecasting
method for pedestrians utilizing a visibility-aware spatiotemporal
graph for prediction generation.

• SEI (Jiang et al., 2025) employs Social Entropy Informer
for pedestrian trajectory prediction, which models both local and
global interactions while using information entropy to capture the
inherent randomness and uncertainty in human motion."

• RAN (Dong et al., 2025) proposes an iterative alignment
mechanism employing a cyclic feature matching approach
for comprehensive spatiotemporal synchronization of motion
representations across instantaneous states and temporal evolution
dimensions in trajectory forecasting.

• Two-Stage (Li and Zhang, 2025) employs a two-stage
prediction method that combines multi-relation graph
convolution, dynamic attention, and a global temporal aggregation
module with LSTM and direction-change detection, capturing
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TABLE 1 The ablation study of GCN & attention only and Multi-hop Attention Diffusion Layers together on ETH/UCY dataset.

Model ETH HOTEL UNIV ZARA1 ZARA2 MEAN

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Near-vertex Block 0.64 1.11 0.49 0.85 0.44 0.79 0.34 0.53 0.30 0.48 0.44 0.75

Multi-hop
Block

LN = 1,
HN = 1

0.50 0.57 0.30 0.47 0.13 0.14 0.30 0.57 0.22 0.30 0.30 0.35

LN = 1,
HN = 2

0.34 0.35 0.28 0.43 0.10 0.11 0.22 0.32 0.14 0.17 0.21 0.28

LN = 2,
HN = 1

0.41 0.57 0.28 0.43 0.11 0.12 0.36 0.54 0.19 0.25 0.27 0.38

LN = 2,
HN = 2

0.42 0.62 0.44 0.53 0.13 0.15 0.27 0.33 0.22 0.33 0.29 0.39

LN, layer number; HN, head number.

both local and global motion patterns while mitigating error
accumulation.

• LG-STSCGN (Chen Y. et al., 2025) integrates a region-
adaptive spatio-temporal graph with gate-controlled units
in the time-sequence convolution module, establishing an
extended-period gating framework for human motion forecasting
using synchronized spatio-temporal graph networks.

• DSTIGCN (Chen W. et al., 2025) constructs a graph
representation of spatial relationships and employs attention-based
weighting to dynamically model pedestrian spatial correlations at
every timestep, proposing a novel Deformable Spatial-Temporal
Interaction Graph Convolution Network (DSTIGCN) to forecast
future trajectories.

• FOV-aware (Zeng and Wang, 2025) employs a dynamic
spatio-temporal graph along with a field-of-view (FoV-aware)
masking mechanism that filters out irrelevant interactions
by adaptively considering pedestrian distances and movement
directions for prediction.

5.2 Implementation details

We developed our framework based on PyTorch (Paszke et al.,
2019), with all experiments conducted on NVIDIA’s V100 GPU. For
optimization, we employed SGD (Stochastic Gradient Descent).
Training proceeded for 250 epochs using a 128-sample batch
size, where the learning rate began at 0.01 and reduced to 0.002
following epoch 150. Ablation results in Table 1 indicate that
optimal performance is achieved with a single Multi-hop Spatio-
temporal Block layer combined with two attention heads.

5.3 Ablation study

5.3.1 Quantitative analysis of diffusion
mechanism variants

We evaluate different architectural variants of the diffusion
mechanism (varying layer numbers LN and attention heads HN)
through quantitative metrics.

To assess the effectiveness of graph diffusion, we conduct
ablation studies on the ETH/UCY datasets, comparing: (1) a

baseline using a near-vertex spatial-temporal block layer, and
(2) variants that incorporate multi-hop diffusion. As shown
in Table 1, the optimal configuration combines one near-vertex
spatial-temporal block layer with one multi-hop spatial-temporal
block layer, utilizing two attention heads. The results indicate
that incorporating multi-hop diffusion significantly improves the
model’s performance, particularly in capturing the interactions
between agents that are connected in the graph, which may
not always be spatially nearest but still provide critical network
context. Compared to the baseline using only the nearest neighbor
module (with average ADE/FDE of 0.44/0.75), incorporating a
multi-hop diffusion module with dual-head attention (HN = 2)
reduced the average ADE/FDE to 0.21/0.28, achieving relative
improvements of 52% and 62%, respectively. This strongly
validates the effectiveness of our proposed multi-hop attention
diffusion mechanism. This improvement is most noticeable
on the UNIV dataset, where agent density is higher than in
other datasets, highlighting the method’s effectiveness in densely
connected environments.

5.3.2 Qualitative comparison of module
combinations

We analyze the attention convolution module vs. its
combination with attention diffusion. Figure 5 presents this
comparison across four distinct scenarios. Each scenario includes:
dim gray dots (historical trajectories), a solid red line (ground
truth future trajectory), and 20 green lines (predicted trajectories).
The top row of each panel displays results using only the GCN
and attention block layer, while the bottom row shows results after
adding the multi-hop attention diffusion layer.

To maintain visual clarity, the figure omits complete predicted
trajectories for all agents, focusing instead on a single agent of
interest within each multi-agent scene. For non-focal agents, only
their historical and ground truth future trajectories are shown.
As evident in Figure 6, predictions incorporating the attention
diffusion layer demonstrate closer alignment with the actual
future trajectory, whereas predictions using only the GCN and
attention layer exhibit significant deviations from the agent’s true
movement trend.
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FIGURE 5

Comparison of trajectory predictions in four traffic scenarios: (a) bidirectional movement with 1-vs-3 counterflow, (b) collective right-turning with
minimal deviation, (c) parallel runners making sharp turns to avoid oncoming pairs, and (d) complex multi-agent crowd dynamics. Dark gray dots
show historical trajectories, red lines indicate ground truth, and 20 green lines denote predictions. For each scenario pair, the top row presents
GCN-attention baseline results, while the bottom row shows GCN-attention with multi-hop diffusion.
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FIGURE 6

Analysis of ADP-Net on the UNIV dataset focusing on ADE and FDE performance: (a, b) effect of hop number; (c, d) effect of teleport probability α.

5.3.3 Hyperparameter sensitivity analysis
Figure 6 presents the hyperparameter sensitivity analysis of hop

number k and teleport probability α on model performance, with
detailed results reported for the UNIV dataset. The analysis reveals
three key findings:
(1) Performance enhancement zone—Performance improves
notably when k increases from 4 to 5, provided that α ≤ 0.25.
(2) Saturation effect—Increasing k beyond 5 hops (up to 10) yields
diminishing gains, indicating an optimal receptive field around
k = 5.
(3) Parameter sensitivity—α exhibits a strict upper bound,
with values above 0.25 causing performance degradation due to
excessive localization. Based on these insights, we identify the
following optimal hyperparameter settings:
(a) Optimal hop number: k = 5, balancing multi-hop context
aggregation with computational efficiency.
(b) Teleport probability range: α ∈ (0.10, 0.25], ensuring an
effective trade-off between local and global information.

These trends reflect the balance between information
propagation depth and locality control. A moderate hop number
(k ≈ 5) expands the receptive field and enriches contextual
information without introducing excessive noise, while an α in
the range (0.10, 0.25] promotes long-range information flow while
preserving essential local structures. Larger α values bias the model
toward immediate neighbors, whereas smaller ones may introduce
irrelevant distant nodes—both degrading performance. The slight
oscillations observed as α increases arise from the local-global
trade-off: greater local emphasis can help or harm depending on
neighborhood quality, while excessive reliance on distant nodes
introduces noise and instability. The heterogeneity of the graph
amplifies these fluctuations, yet the overall trend remains a gradual
performance decline with increasing α.

Unlike methods that rely on complex convolutional networks,
ADP-Net tackles the key challenge of incorporating non-adjacent
yet contextually relevant nodes—specifically those within the
extended receptive field that influence the root node. Built on the
same spatio-temporal GCN foundation as Social-STGCNN (7.6k
parameters), our architecture enhances these techniques while
maintaining comparable parameter efficiency (8.7k parameters).
By relying solely on basic convolution operations, ADP-Net
achieves superior computational efficiency (Mohamed et al.,
2020).

To further ensure the robustness of ADP-Net under
dynamic interaction scenarios, we reconstructed an interaction-
level dataset covering various social behaviors (e.g., avoidance,
diversion, and multi-directional intersection movements).
Detailed configurations and extended results are provided
in Appendix C.

5.4 Comparison with state-of-the-art
methods

We quantitatively benchmark ADP-Net against leading
approaches, including GNN-based, transformer-based, spectral-
spatio-temporal, and other representative methods. The results on
ETH/UCY (Table 2) show that ADP-Net outperforms the strongest
GNN baseline (Two-Stage) by approximately 4% in ADE and 26%
in FDE, achieving the best mean performance in both metrics.

Key observations:
Robust local-nonlocal modeling: ADP-Net effectively captures

both short-range and multi-hop dependencies through the
synergy of adjacency-attention alignment and Graph Diffusion
Convolution, leading to consistent reductions in ADE and FDE
across all subsets. On the UNIV scene, ADP-Net achieves a 52%
reduction in ADE over the strongest competitor, demonstrating its
superior ability to handle complex multi-agent behaviors.

Narrowed ADE-FDE gap: ADP-Net achieves a significantly
smaller ADE-FDE gap compared to the baselines, demonstrating
greater stability across different datasets, especially for long-
horizon forecasting.

Scene adaptability: ADP-Net surpasses strong GNN and
transformer, and other baselines on ETH, UNIV, and ZARA2. This
success stems from its cohesive and systematic design, in contrast
to the scene-wise tailoring and fragmented modifications employed
by others, demonstrating robust generalization to diverse spatial
layouts and agent densities.

SDD results (Table 3) further validate ADP-Net’s
competitiveness. By generating 20 predictions over 12 future
steps, it matches or outperforms models like DTDNet (Liu S.
et al., 2024), PECNet (Mangalam et al., 2020), and the Latent
Energy-Based Model (Pang et al., 2021). This success is attributed
to the synergy between spectral interpretability and spatial feature
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TABLE 2 Min ADE20/min FDE20 for pedestrian trajectory forecasting (ETH-UCY benchmark).

Model GNN-basedα

approaches
ETH HOTEL UNIV ZARA1 ZARA2 MEAN

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Social-STGCNN (Mohamed
et al., 2020)

GNN 0.64 1.11 0.49 0.85 0.44 0.79 0.34 0.53 0.30 0.48 0.44 0.75

STNet (Wen et al., 2022) Transformerβ 0.33 0.47 0.16 0.25 0.32 0.55 0.23 0.41 0.18 0.34 0.24 0.41

SKGACN (Lv and Yuan, 2023) GNN 0.55 0.83 0.30 0.50 0.39 0.75 0.30 0.51 0.26 0.45 0.36 0.61

STS LSTM (Zhang et al., 2024) Spectralγ 0.45 0.81 0.20 0.28 0.30 0.56 0.24 0.47 0.37 0.70 0.31 0.56

STAGP (Liu Z. et al., 2024) GNN 0.65 1.21 0.41 0.73 0.38 0.68 0.28 0.46 0.25 0.44 0.40 0.70

V-Social-STGCNN (Chang
et al., 2024)

GNN 0.61 0.95 0.30 0.44 0.37 0.64 0.32 0.52 0.30 0.49 0.38 0.61

SEI (Jiang et al., 2025) Self-attentionδ 0.34 0.64 0.19 0.33 0.29 0.61 0.24 0.52 0.22 0.46 0.26 0.51

RAN (Dong et al., 2025) Pre-Alignedε 0.41 0.69 0.13 0.21 0.25 0.46 0.22 0.41 0.16 0.31 0.23 0.42

LG-STSCGN (Chen Y. et al.,
2025)

GNN 0.41 0.51 0.25 0.39 0.28 0.46 0.24 0.37 0.18 0.29 0.28 0.40

Two-Stage (Li and Zhang,
2025)

GNN 0.37 0.62 0.15 0.25 0.22 0.42 0.21 0.33 0.15 0.29 0.22 0.38

DSTIGCN (Chen W. et al.,
2025)

GNN 0.43 0.70 0.22 0.41 0.25 0.45 0.20 0.37 0.17 0.32 0.25 0.45

FOV-aware (Zeng and Wang,
2025)

GNN 0.61 1.02 0.35 0.49 0.40 0.71 0.31 0.52 0.27 0.44 0.38 0.63

Ours 0.34 0.35 0.28 0.43 0.10 0.11 0.22 0.32 0.14 0.17 0.21 0.28

Bold values indicate superior performance.
αGNN-based methods (including all schemes marked β –ε for comparison).
β Social transformer comparison scheme.
γ Spatial-temporal-spectral feature comparison scheme.
δSelf-attention comparison scheme.
εDomain-shift pre-alignment comparison scheme.
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TABLE 3 The minADE20/minFDE20 for trajectory forecasting (Stanford Drone Dataset).

Method

Performance S-GAN
(Gupta et al.,

2018)

Sophie
(Sadeghian
et al., 2018)

PECNet
(Mangalam
et al., 2020)

LB-EBM
(Pang et al.,

2021)

DTDNet
(Liu S. et al.,

2024)

Ours

ADE20 27.23 16.27 9.96 9.03 9.2 8.80

FDE20 41.44 29.38 15.88 15.97 15.4 13.64

Optimal performance is indicated by boldface type.

extraction, enabling effective adaptation to diverse motion patterns
and scene geometries.

6 Conclusion

In this work, we identify a fundamental limitation in graph-
based trajectory prediction: existing methods struggle to reconcile
multi-hop context capture with feature preservation. Through
spectral analysis, we prove this stems from the spectral divergence
between adjacency (local filtering) and attention (global diffusion)
operators, which forces existing approaches to choose between over
smoothing and restricted receptive fields.

First, we propose a unifying theoretical framework—by
establishing the asymptotic equivalence between adjacency
and attention matrices under diffusion—that enables spectrally
consistent propagation. This framework integrates local filtering
with global context aggregation by learning to align attention
matrices with diffused adjacency matrices via PageRank diffusion.
This learned alignment resolves the over smoothing-dilation
trade-off without requiring heuristic graph sparsification.

Second, we design an implementable architecture (ADP-Net)
that instantiates our framework through motion-conditioned
attention diffusion, which weights neighbors via adaptive
attention, and spectral filters that preserve node distinguishability
across multi-hop propagation. Comprehensive experiments on
standardized datasets (ETH/UCY, Stanford Drone Dataset) show
state-of-the-art results, with improvements of 4% in ADE and 26%
in FDE over existing methods.

Additional experiments on dynamic interaction scenarios
(Appendix C) further validate ADP-Net’s adaptability to complex,
time-varying crowd interactions.

Looking forward, we will explore dynamic graph alignment
for time-varying interactions and cross-modal diffusion to extend
spectral consistency to heterogeneous agents such as vehicles and
pedestrians.

In addition, future work will investigate robustness under
partial occlusions and abnormal motion patterns, enabling ADP-
Net to better handle challenging real-world scenarios with missing
or irregular trajectory observations.
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