:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Feng Ding,
Nanchang University, China

REVIEWED BY

Andreas Kanavos,

lonian University, Greece

Antonio Sarasa-Cabezuelo,
Complutense University of Madrid, Spain

*CORRESPONDENCE

Kailas Patil
kailas.patil@vupune.ac.in

Shrikant Jadhav
shrikant.jadhav@sjsu.edu

RECEIVED 22 August 2025
ACCEPTED 22 October 2025
PUBLISHED 10 December 2025

CITATION

Jadhav R, Meshram V, Bhosle A, Patil K,
Dash S and Jadhav S (2025) Explainable
multilingual and multimodal fake-news
detection: toward robust and trustworthy Al
for combating misinformation.

Front. Artif. Intell. 8:1690616.

doi: 10.3389/frai.2025.1690616

COPYRIGHT

© 2025 Jadhav, Meshram, Bhosle, Patil,
Dash and Jadhav. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 10 December 2025
pol 10.3389/frai.2025.1690616

Explainable multilingual and
multimodal fake-news detection:
toward robust and trustworthy Al
for combating misinformation

Rohini Jadhav?, Vishal Meshram?, Amol Bhosle?, Kailas Patil**,
Sital Dash* and Shrikant Jadhav>*

!Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India, 2Vishwakarma
Institute of Technology, Pune, India, *MIT Art, Design and Technology University, Pune, India,
“Vishwakarma University, Pune, India, °San Jose State University, San Jose, CA, United States

Fake-news detection requires systems that are multilingual, multimodal, and
explainable—yet the majority of the existing models are English-centric, text-only,
and opaque. This study introduces two key innovations: (i) a new multilingual—
multimodal dataset of 74,000 news articles in Hindi, Gujarati, Marathi, Telugu, and
English with paired images, and (ii) Hybrid Explainable Multimodal Transformer Fake
(HEMT-Fake) that integrates text, image, and relational signals with hierarchical
explainability. The architecture combines transformer embeddings, a convolutional
neural network—bidirectional long short-term memory (CNN-BiLSTM) text
encoder, residual network (ResNet) image features, and graph sample and
aggregate (GraphSAGE) metadata, all of which are fused via multi-head attention.
Its explainability module unites attention, Shapley Additive exPlanations (SHAP),
and local interpretable model-agnostic explanations (LIME) to provide token-,
sentence-, and modality-level transparency. Across four languages, HEMT-Fake
delivers a ~ 5% Macro-F1 improvement over Cross-Lingual Language Model with
RoBERTa (XLM-R) architecture and Multilingual Bidirectional Encoder Representations
From Transformers (mBERT), with gains of 7-8% in low-resource languages. The
model achieves 85% accuracy under adversarial paraphrasing and 80% on artificial
intelligence (Al)-generated fake news, halving robustness losses compared to
baselines. Human evaluation reveals that 82% of explanations are judged to be
meaningful, confirming transparency and trust for fact-checkers.

KEYWORDS
fake news detection, misinformation and disinformation, multilingual dataset,
explainable artificial intelligence, hybrid deep learning architecture, adversarial
robustness, social-media analysis

1 Introduction
1.1 The global challenge of fake news

The global information ecosystem is undergoing rapid transformation, driven by the
increasing dominance of digital and social-media platforms. While these platforms
democratize content creation and dissemination, they also amplify the reach of
misinformation and disinformation, often without adequate verification. Early data-mining
perspectives on fake-news detection established hybrid models that capture social
propagation and content features (Shu et al., 2017; Castillo et al., 2011), paving the way for
transformer-based architectures that now dominate the field. The consequences are profound:
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misinformation can distort electoral outcomes, incite social unrest,
and erode trust in scientific and healthcare institutions (Lazer et al.,
2018; Tandoc et al.,, 2018). During the coronavirus disease 2019
(COVID-19) pandemic, false narratives regarding vaccines and
treatments spread virally, at times with more traction than evidence-
based information (Shahi et al., 2021) The ability to automatically
detect fake news at scale has thus become not only a technological
challenge but also a societal imperative.

1.2 The rise of Al-generated misinformation

The landscape of misinformation is further complicated by
advances in generative artificial intelligence (AI). Large Language
Models (LLMs) such as Generative Pre-Trained Transformer 4
(GPT-4), Gemini, and Large Language Model Meta AI (LLaMA)
are capable of producing linguistically coherent, contextually
relevant, and stylistically adaptive narratives at scale (Ji et al.,
2023). Similarly, image and video generation models such as Stable
Diffusion and DeepFakes enable the creation of visually
convincing synthetic content. This convergence of text-image
manipulation poses unprecedented challenges for fact-checkers
and automated systems alike (Zellers et al., 2019). Importantly,
generative models allow adversaries to create misinformation
tailored for specific linguistic, cultural, or political contexts,
making multilingual and multimodal detection more urgent
than ever.

1.3 Limitations of current fake-news
detection systems

Although significant research has been conducted on fake-news
detection, existing approaches exhibit critical shortcomings:

1. Monolingual bias: the majority of the datasets and detection
models are English-centric (Shu et al., 2017; Alam et al., 2021).
Low-resource  and remain

code-mixed languages

underexplored, limiting the global applicability of
detection systems.

2. Insufficient multimodal fusion: many studies treat text and
images independently or use simplistic late fusion strategies
(Zhou et al., 2020). However, fake news often relies on cross-
modal inconsistency (misleading captions paired with
unrelated or manipulated images).

3. Opaque decision-making: transformer-based architectures
such as Bidirectional Encoder Representations From
Transformers (BERT) and Cross-Lingual Language Model
with RoBERTa (XLM-R) deliver state-of-the-art accuracy but
are widely criticized as black boxes (Lu et al., 2023). Without

stakeholders

policymakers, and the public may distrust Al predictions.

clear justifications, such as journalists,

4. Adversarial vulnerability: even minor perturbations (synonym
substitutions, paraphrasing) significantly degrade performance
(Yang et al., 2022). Recent studies show that GPT-generated
fake articles can bypass detectors entirely (Jawahar et
al., 2023).
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1.4 Why do multilingual, multimodal, and
explainable Al (XAl) matter?

A robust fake-news detection system must address three
interrelated priorities:

o Multilingual robustness: in multilingual societies, misinformation
circulates in regional languages, often mixed with English or
transliterated into Latin scripts. Models trained exclusively on
English fail to capture cultural idioms and code-switching
behaviors (Dementieva et al., 2023; Yigezu et al., 2024).

o Multimodal integration: misinformation is increasingly leveraging
multimodal artifacts such as memes, manipulated videos, or
misattributed images. Ignoring visual modalities leads to
incomplete detection pipelines (Xu et al, 2024; Choi and
Kim, 2024).

o Explainability: trustworthy Al requires interpretable outputs.
Black-box predictions without transparent reasoning hinder
adoption by journalists, fact-checkers, and policymakers.
Advanced methods, such as Shapley Additive exPlanations
(SHAP) and local interpretable model-agnostic explanations
(LIME), can reveal feature contributions, while hierarchical
attention can highlight key tokens and sentences (Nwaiwu et
al., 2025).

Together, these considerations underscore that future research
must move beyond unimodal, monolingual, and opaque models to
embrace hybrid, explainable, and resilient architectures.

1.5 Motivations for this study

This study is motivated by the pressing need for practically
deployable systems for detecting fake news. While prior research has
demonstrated strong accuracy in benchmark settings, practical
deployment requires balancing accuracy, robustness, and
transparency. Consider, for example, a fact-checking newsroom in
India where misinformation spreads across Hindi, Marathi, Gujarati,
and Telugu. A monolingual English model would be ineffective; a
black-box multimodal model would be mistrusted; and a non-robust
system would fail against adversarial paraphrases. This scenario
exemplifies why an effective solution must simultaneously support
multilingual generalization, multimodal fusion, and human-

understandable explanations.

1.6 Research gap and contributions

Research gaps identified:

RGI: Absence of large-scale, multilingual multimodal datasets
reflecting authentic, code-mixed misinformation.

RG2:
resource languages.

Poor cross-lingual transferability beyond high-
RG3: Limited multimodal integration with weak detection of
cross-modal inconsistencies.
RG4: Explanations restricted to token-level saliency, with little

validation of their usefulness to humans.
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RG5: Lack of resilience to adversarial and generative
Al-driven misinformation.

Contributions of this study:

1. Dataset Innovation: A curated dataset of ~74,000 articles
across four Indian languages (Gujarati, Hindi, Marathi, and
Telugu), incorporating multimodal and adversarially
perturbed samples.

2. Architectural Innovation: Proposal of Hybrid Explainable
Multimodal Transformer Fake (HEMT-Fake), which integrates
multilingual embeddings (XLM-R), convolutional neural
network-bidirectional long short-term memory (CNN-
BiLSTM) encoders, residual network (ResNet)-based image
embeddings, and graph sample and aggregate (GraphSAGE)
propagation signals.

3. Explainability Innovation: A hybrid module combining
hierarchical attention, SHAP, and LIME to generate token-,
sentence-, and modality-level explanations.

4. Robustness Innovation: Training with adversarial paraphrases,

back-translations, and GPT-generated fakes to
enhance resilience.
5. Evaluation Contribution: Comprehensive experiments

including zero-shot cross-lingual testing, multimodal ablations,
robustness evaluation, and human-centered validation of
explanations with journalists and students.

1.7 Article organization

The remainder of the article is structured as follows: Section 2
provides a critical review of prior literature on fake-news detection,
focusing on multilingual, multimodal, and explainable approaches.
Section 3 describes the dataset. Section 4 details the proposed
methodology. Section 5 presents experimental settings. Section 6
reports results. Section 7 discusses implications, and Section 8
concludes with future directions.

2 Literature review
2.1 Overview and linking to research gaps

This review addresses five persistent research gaps (RGs) identified
in Section 1:

(RG1) limited multilingual coverage and cross-lingual robustness,

(RG2) inadequate multimodal integration and cross-modal
inconsistency detection,

(RG3) shallow or unvalidated explainability,

(RG4) lack of adversarial testing and robustness to LLM-generated
fakes, and

(RG5) dataset limitations (absence of multilingual, multimodal,
adversarial, and rationale-annotated corpora).

For each gap, representative studies (2017-2025) are critically
compared, methodological constraints are highlighted, and their
proposed HEMT-Fake

implications for the framework

are discussed.
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2.2 RGl—multilingual coverage and
cross-lingual robustness

State of the art.
Multilingual backbones—XLM-R, mBERT,

RemBERT, and mT5—remain foundational for cross-lingual

transformer

misinformation tasks (Devlin et al., 2019; Conneau et al., 2020; Liu et
al., 2019). An early credibility analysis by Castillo et al. (2011) and
subsequent follow-ups by Shu et al. (2020) established text-centric
baselines that were later extended into multilingual settings. Recent
efforts include hybrid summarization and retrieval-augmented
multilingual models (Alghamdi et al., 2024a; Alghamdi et al., 2024b;
Khandelwal et al., 2024) and low-resource evaluations in African and
Indian contexts (Arega, 2025; Al-Zahrani and Al-Yahya, 2024). Recent
efforts include hybrid summarization and retrieval-augmented
multilingual models (Alghamdi et al., 2024a; Alghamdi et al., 2024b;
Khandelwal et al., 2024) and low-resource evaluations in African and
Indian contexts (Arega, 2025; Al-Zahrani and Al-Yahya, 2024). Large-
scale multilingual benchmarks—PolyTruth (Gouliev et al., 2025;
Macko et al., 2025) and the Macko et al. (2025)—quantify degradation
on low-resource and code-mixed data and reveal that even strong
encoders struggle with dialectal variation and transliteration.

Critical comparison.

o Han (2022) and Dementieva et al. (2023) confirmed gains from
multilingual encoders but avoided transliteration or noisy social-
media code-mixing.

o Gouliev et al. (2025) and Mohtaj et al. (2024) highlighted

gaps  yet  lacked

explanation annotations.

low-resource multimodal ~ or

 Regional datasets, such as those studied by Arega (2025) and
Al-Zahrani and Al-Yahya (2024), underscore domain biases
absent from global corpora.

Shortcomings relative to RG1.

The majority of the multilingual systems optimize for scale but not
realism: they ignore (a) tokenization under code-mixing and
transliteration, (b) multimodal or cross-lingual visual cues, and (c)
human-validated explanations. Hence, multilingual models remain
brittle when claim and evidence languages differ. HEMT-Fake
addresses this by integrating multilingual transformers with CNN/
BiLSTM branches to reinforce cross-lingual semantics.

2.3 RG2—multimodal integration and
cross-modal inconsistency detection

State of the art.

Multimodal fake-news detection has progressed from late-fusion
to cross-modal reasoning. Early multimodal baselines (Pérez-Rosas et
al., 2018; Ruchansky et al., 2017) introduced textual-visual pairings.
Modern systems, such as Multimodal Adaptive Graph-Based
Intelligent Classification (MAGIC) (Xu et al, 2024) and
Tri-Transformer Bootstrapping Language-Image Pretraining
(TT-BLIP) Choi and Kim (2024), employ graph attention and BLIP-
style tri-transformers. Robust multimodal frameworks (FKA-Owl
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Authors, 2024; Lu and Yao, 2025; Li et al., 2024; Zhang et al., 2024)
strengthen alignment but rarely target multilingual or adversarial
contexts. Nasser et al. (2025) and Chalehchaleh et al. (2024) survey
emerging multimodal defenses, while Practical Newsroom Adoption
Studies  (2024)
operational tools.

demonstrate the need for interpretable,

Critical comparison.

o MAGIC’s graph fusion exploits propagation but presumes high-
fidelity alignment and fails under doctored visuals.

« TT-BLIP enhances image-text coherence but remains English- or
Chinese-centric.

o Low-resource multimodal datasets (Lekshmi Ammal and
Madasamy, 2025; Macko et al., 2025) expand language scope yet
lack adversarial perturbations.

Shortcomings relative to RG2.

Few systems quantify modality-specific contributions, detect
cross-modal contradictions, or sustain performance when image/text
quality diverges. HEMT-Fake’s hierarchical attention fusion explicitly
these
visual reasoning.

models inconsistencies and supports multilingual

2.4 RG3—Explainability: from attention
maps to human-actionable rationales

State of the art.

Explainable- AT methods for misinformation detection range from
attention visualization to attribution-based and hybrid approaches.
Early feature-based transparency models, such as those discussed by
Wang (2017), established interpretable linguistic cues for deception
detection. Hu et al. (2022a), combine co-attention with knowledge
distillation for multimodal reasoning. Panchendrarajan et al. (2024)
and Hardalov (2022) review XAI fidelity issues, with a particular
emphasis on multilingual rationales. The XPLAINLP (2025)
framework extends this line by producing counterfactual and feature-
level explanations for multilingual transformer outputs, offering
practical templates for fact-checking. X-FRAME (Nwaiwu et al., 2025)
similarly integrates XLM-R embeddings with LIME-based attribution,
while Munoz et al. (2024) conduct user studies that confirm that
hybrid explanations improve trust—an insight echoed by policy and
ethics analyses of automated fact-checking (2024).

Critical comparison.

« Attention alone often lacks causal fidelity (Jain and Wallace, 2019).

o LIME and SHAP yield feature importance but are unstable for
long multilingual documents (Wang, 2017).

o Hybrid attention + SHAP designs lack systematic human
validation or cross-modal transparency.

Shortcomings relative to RG3.

Explainability ~ progress  remains  fragmented—mainly
characterized by post hoc and unimodal approaches. Gaps persist in
(a) integrating hierarchical attention across languages and modalities,
(b) producing human-readable rationales, and (c) user-study

validation. HEMT-Fake’s explainability module unites attention,
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SHAP, and LIME with cross-lingual evidence mapping to
address these.

2.5 RG4—adversarial robustness and
LLM-generated misinformation

State of the art.

Recent analyses also link the generation of synthetic
misinformation to broader issues of hallucination and factual
unreliability in large language models (Ji et al., 2023), underscoring
the need for adversarial evaluation of detectors trained on content
generated by LLM. Transformers are vulnerable to paraphrasing,
synonym substitution, and synthetic news (Nakamura et al., 20205
Cui and Lee, 2020). Shu et al. (2020) formalized early adversarial data
splits, while Kukkar et al. (2025) and Chalehchaleh et al. (2024)
propose adversarial training and perturbation frameworks. FKA-Owl
Authors (2024) extends robustness testing to vision-language models.

Critical comparison.

o Nakamura et al. (2020) show large drops under paraphrasing, but
only in English.

o Jawahar et al. (2023) and related studies demonstrate detector
evasion by LLM-generated fakes.

o Recent study on defensive distillation and multilingual
adversarial augmentation (Kukkar et al., 2025; Nasser et al., 2025)
remains under-evaluated across modalities.

Shortcomings relative to RG4.

Adversarial defenses are piecemeal: few assess multilingual,
multimodal, and LLM-driven perturbations jointly HEMT-Fake
introduces paraphrasing, back-translation, and LLM-based negative
augmentation for resilience testing across languages and modalities.

2.6 RG5—dataset limitations: coverage,
adversarial examples, and rationale
annotations

Benchmark datasets—LIAR, FakeNewsNet, Fakeddit, and CoAID
(Cui and Lee, 2020)—underpin the majority of the progress (Shu et al.,
2020). Since 2022, new multilingual and multimodal datasets such as
Dementieva et al. (2023), Yigezu et al. (2024), Gouliev et al. (2025),
Macko et al. (2025), Mohtaj et al. (2024), and the Macko et al. (2025)
have emerged, extending coverage across languages and modalities.
However, the majority of them still lack integrated adversarial
negatives and rationale annotations.

Critical comparison.

o Dementieva et al. (2023) and Gouliev et al. (2025) benchmark
multilingual retrieval yet lack image and rationale alignment
(Gouliev et al., 2025).

« Yigezu et al. (2024) and Lekshmi Ammal and Madasamy (2025)
datasets are of low scale and single domain (Lekshmi Ammal and
Madasamy, 2025).

o Shared tasks vary in annotation consistency.
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Shortcomings relative to RG5.

Existing datasets seldom combine (i) multilingual code-mixing,
(ii) multimodal pairing, (iii) adversarial perturbations, and (iv)
explanation labels. This constrains research on holistic modeling and
faithful XAI. HEMT-Fake’s evaluation corpus fills this gap with all
four attributes.

2.7 Cross-cutting methodological trends
and best practices

Recent studies highlight the following:

1. Hybrid architectures combining transformer, CNN, BiLSTM,
and Graph Neural Network (GNN) components (MAGIC;
FKA-Owl 2024; Lu 2025)
temporal reasoning.

2. Pretrained vision-language backbones (BLIP/CLIP and
TT-BLIP) adapted for low-resource multilingual captions
(Zhang et al., 2024; Li et al., 2024).

3. Synthetic augmentation with LLMs to craft adversarial

and Yao, for multimodal

negatives (Kukkar et al., 2025; Nasser et al., 2025) while
guarding against label leakage.

4. Hybrid XAI pipelines integrating attention + SHAP/LIME with
human-validated evaluations (Hu et al., 2022a; Mufnoz et al.,
2024; Policy/Ethics
Checking, 2024).

Analyses of Automated Fact-

2.8 Synthesis: how the prior study
motivates HEMT-fake

Despite progress in multilingual transformers, multimodal fusion,
and explainability, no system satisfies all operational demands for fact-
checking across multilingual, multimodal, and adversarial
environments. Prior studies typically optimize a subset—such as
language breadth, modality fusion, or explainability—but not all

dimensions together.

HEMT-Fake integrates:
 Multilingual transformer backbones with cross-lingual evidence
retrieval — addresses RG1 (Alghamdi et al., 2024a; Arega, 2025).
Multimodal fusion using transformer + CNN + BiLSTM +
optional GNN propagation — addresses RG2 (MAGIC; Lu and
Yao, 2025).
Hierarchical explainability combining attention, SHAP, LIME,

and evidence retrieval — addresses RG3 (Hu et al., 2022a; Muioz
etal., 2024).

o Adversarial augmentation with paraphrase and LLM-generated
negatives — addresses RG4 (Nakamura et al., 2020; Kukkar et
al., 2025).

« Evaluation on a new multilingual + multimodal + adversarial
dataset with human explanation ratings — addresses RG5
(Mohtaj et al., 2024; Macko et al., 2025).

2.9 Concluding remarks on the review

The 2017-2025 literature converges on a key insight: success in
fake-news detection depends not only on representational accuracy
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but on cross-lingual generalization, multimodal reasoning, faithful
explainability, adversarial resilience, and human validation. The
proposed HEMT-Fake framework operationalizes these five
principles, bridging gaps identified across prior studies and
aligning with current practical and ethical expectations for
deployable fact-checking systems (Practical Newsroom Adoption
Studies, 2024; Policy/Ethics Analyses of Automated Fact-
Checking, 2024).

3 Data description
3.1 Scope and sources

To enable reproducible and representative experimentation, a
multilingual, multimodal dataset (Patil et al., 2024) was compiled
between January and May 2024. The dataset spans five languages—
Hindi, Gujarati, Marathi, Telugu, and English—and includes both
textual claims and associated images. Sources include:

1. Fact-checking platforms (AltNews, BoomlLive, Factly, and
International Fact-Checking Network [IFCN] members,
etc.)—serving as the gold standard for labeling fake vs.
real content.

2. Mainstream news portals (The Hindu, The Indian Express, BBC
Hindi, etc.)—supplying reliable, real news samples.

3. Social-media posts (Twitter/X, Facebook public pages, etc.)—

fake validated fact-

checking repositories.

candidate content against

Each sample includes a unique identifier, textual content,
metadata (including language, publication date, source Uniform
Resource Locator [URL], and category), and image references.

To illustrate the distribution of multilingual content, we present
the language-wise breakdown of fake and real news articles in the
dataset. Figure 1 highlights the balanced representation across Hindi,
Gujarati, Telugu, Marathi, and English, ensuring that no single
language dominates the dataset. This balanced coverage is crucial for
developing robust multilingual models that generalize effectively
across diverse linguistic contexts.

In addition to distribution statistics, it is essential to demonstrate
the nature of raw multilingual articles included in the dataset. Figure 2
presents a representative Hindi article, showcasing the script,
structural format, and annotation label (“Fake or Real”). Including
such examples highlights the complexity of real-world data, where
articles often contain a mix of linguistic styles, varied sentence lengths,
and domain-specific terminology.

To further highlight the dataset’s multilingual nature, Figure 3
illustrates a representative Gujarati news article. Gujarati content in
the dataset captures both formal reporting from news portals and
informal narratives from social-media platforms. These examples
reveal challenges such as script-specific tokenization, mixed use of
English and Gujarati words, and domain-specific terms that
complicate automated fake-news detection.

The dataset also includes a significant portion of content in
Telugu, one of the most widely spoken Dravidian languages in India.
Figure 4 shows a representative Telugu article, annotated as Fake or
Real. Telugu data presents unique challenges for automatic detection,
including complex script morphology, agglutinative grammar, and
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Fake News Articles Distribution by Language (Total: 31,000)
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coverage and balanced sampling for cross-lingual robustness.

Language-wise dataset distribution. Distribution of fake and real articles across Hindi, Gujarati, Telugu, Marathi, and English, demonstrating multilingual
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Example of a Hindi article. A representative Hindi news article included in the dataset, annotated as either Fake or Real. The figure illustrates the
dataset’s raw structure and the challenges posed by script diversity and linguistic complexity.
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Example of a Guijarati article. A representative Gujarati news article from the dataset, annotated as either Fake or Real. The figure highlights challenges
such as script-specific tokenization, code-mixing with English, and domain-specific vocabulary that complicate the detection of multilingual fake
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compound word formation. In addition, many Telugu articles
demonstrate code-mixing with English, reflecting the real-world
writing style found in social-media and online portals.

The dataset also contains substantial content in Marathi, a
language with rich inflectional morphology and regional variations.
Figure 5 presents a representative Marathi article, annotated as Fake
or Real. Marathi articles in the dataset range from formal news
reports to colloquial narratives posted on social media. This diversity
introduces challenges such as handling dialectal variations,
transliterated English words, and stylistic differences between formal
and informal registers.

Frontiers in Artificial Intelligence

3.2 Data collection flow

To provide a visual overview of the dataset development process,
Figure 6 depicts the end-to-end pipeline used to construct the
multilingual fake-news dataset. The pipeline integrates ethical and
legal compliance checks, large-scale crawling, parsing and extraction,
deduplication, metadata enrichment, fact-check alignment,
translation with semantic quality assurance, multilingual annotation,
and final dataset release. This systematic workflow ensures
representation, and

reproducibility, balanced multilingual

transparency in the dataset creation process.
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multilingual fake-news detection particularly challenging.

FTYBER: BES FerD H0TTOS '70% §86 1(HNO0SDA0G 27 JDS 2020 DB 2020 NETH HISD FTSD HEED OoSDOOA, B WHE AHE VS, TErYD DS’ $:) JSTFTTRE SBBLOT
WEZOD DDOJOTE. 70% § 95D SFROB - 85 HIPTE0 aPIDOD0O EFSTER . 52 HO0D S8 T P52 "HTTS-AOEE" @ (HH0TS &8s H0P BODOB. HOAD DO FT° (8850, TeryD 5581
205 HOBFOD SVBV0B. 2.8 HHADOS” TS (HrD. 50 D:YeNen S JSFeToE $58BEOT &Forerods oS erer TOrd) G0 . IRROR ¢Taro DB
STEPRSET, "BES SOBTOS S5STO0B0S’ TEFYD S SN FNOETAS EEPDA G0B. & ST)) 55855 DO 985S DEDIE LB FH0 Perd) ABIETOLEASE TEF IHEL VFODHDH0D. "5 22 SR
@ BOHEAE 3595 BIIMLER), ADHON0O. BE aFer)D SR DFEE0 TR HOROMT GOTT? OO (D)0 T 50°, YN |HTTE0 OV YE arer ) @OENaT IO HHOHOS’ 851 JSTFTE0 e s
TOHBOS® SDWETOSG . ACADE D) ST DO 20LDHED VS DO TNE) DITTW ) DT TSI NOERE | DB (1D T GHTRAOTD . B (H20S § HESe HOOD ulation Saren,

"2, E3%" @ GITFHESOM GOBSD). DS, 3565 Do CrerrSS FOR) arer)D HO0K (DIET - VELS TBSOD HEFHEOWBO Ter RO - DD HOBTOK H0VOHODS VeSS BoFTe R
BEEHGTIN . 5D $5) HITTORE S00CH DAL BES er)D VOV, ¢3 GOBSD). DEHS” Ers05en GOLFOHA HOA © EANOLIY © HOTHO L THISHIW, DD FE ORHIFAOWBO
@80D008. 59 e’ DF0S HOOD ulation SFTETED &) 0L DRSO SIS HEOT HSTFETEO TNy, HTE SEOMR) FSBD AR ©F0 S - DO SLHIPES D BEHESOB . "TEF YD S0¢3 FHS
DA Alferen DB D TOFO)S ©SIE0 GO0B" @ V0L HB A2S BIRr) DT ST VOEE DD OEFE3S RSTS @578 DDV SRS @) 8. IS 2 BTN TP SHPFS ©0F0R

D008 " AR FH0 T ) DIE3E GHTrANT) 502"(H23€D SVFFSVHT EOSBA N0, FAS-DAXT (DB T 50 S5) ST S HOFL0 SFrOT SHF08 . e AB: o 8L der TOFO2DOI0TA)
QarOOLL0: R3O0 - HOAD &7OIT) AODSTEN ¥ HOAD SR0: D EFSFED Even ens-eDH ATen: N (0SS’ Twerd S FoHod 2.88: D SrSE sBmQ) Jer Srsad: & 56
0006 55508 ' B $8O FDG-TFe SATE T 2.8 S8 DB~ 19 DS 22 JDS 2020 &S (HHOOSDAS HHES® ©OP FAHBAR0B, 23 JDS 2020 & TA TAHEAE 5 2 LIS HosKo 3306

Example of a Telugu article. A representative Telugu news article from the dataset, annotated as either Fake or Real. The figure highlights the linguistic
complexity of Telugu, including compound word structures, agglutinative morphology, and frequent code-mixing with English, which makes
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FIGURE 5

automated multilingual fake-news detection.
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Example of a Marathi article. A representative Marathi news article from the dataset, annotated as either Fake or Real. The figure highlights linguistic
and stylistic complexities such as dialectal variation, transliteration of English terms, and shifts between formal and informal registers that complicate

Figure 6 shows the following steps for the dataset
development process.

Step 1: Source Registry and Policy Check.

All candidate domains were verified for registry information,
publication credibility, and licensing policies. Automated crawlers
respected robots.txt directives, and sources that prohibited data usage
were excluded to ensure legal compliance.

Step 2: Crawl and Fetch.

Articles were collected using domain-specific Application
Programming Interfaces (APIs), Really Simple Syndication (RSS)
feeds, and custom crawlers. Crawling was performed under strict rate-
limiting and retry mechanisms to prevent server overload and comply
with platform guidelines.

Step 3: Parse and Extract.

From each retrieved webpage, the title, body text, images, and
relevant metadata (e.g., publication date, author, and URL) were
extracted. Non-textual noise, such as advertisements, scripts, and
extraneous Hypertext Markup Language (HTML) tags,
was discarded.

Step 4: Deduplication and Fingerprinting.

To eliminate redundancy, near-duplicate articles were identified
using SimHash-based fingerprinting with a similarity threshold of
0.85. Exact duplicates were removed based on canonical URLs and
text hashing.

Step 5: Metadata Enrichment.

Each article was enriched with additional attributes, including
automatic language detection, topical categorization (such as politics,
health, and entertainment), and geolocation metadata. This
enrichment facilitated downstream analysis and stratified balancing.

Step 6: Cross-check Evidence.

Candidate claims were verified against fact-checking repositories,

including AltNews, BoomLive, and IFCN-certified platforms. Each
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item was validated against verified fact-check entries, allowing
confident assignment of Fake or Real labels.

Step 7: Translation and Back-Translation Quality Assurance.

Non-English articles were translated into English using
MarianMT, and semantic fidelity was verified through back-
translation. Instances with similarity scores below 0.55 were flagged
for human review to maintain translation quality.

Step 8: Annotation.

Three trained bilingual annotators independently reviewed each
article. Labels (Fake or Real) were assigned following strict guidelines,
and disagreements were resolved via adjudication. Inter-annotator
agreement reached a substantial level (x = 0.82).

Step 9: Finalization and release preparation.

The dataset was anonymized by removing personally identifiable
information (PII), assigned unique identifiers, and packaged into a
version-controlled release. A public release was prepared, including
licensing, documentation, and a metadata manifest.

Figure 6 illustrates this complete end-to-end pipeline. To
complement this pipeline, the preprocessing strategies applied after
collection are summarized in Table 1, which outlines the cleaning,
balancing, and augmentation methods used on the dataset.

3.3 Article collection

The first stage of dataset creation is a robust article collection
pipeline designed to ingest multilingual content from heterogeneous
sources (fact-checking portals, mainstream news outlets, and social-
media feeds). This algorithm ensures that the dataset respects legal
and ethical constraints while maximizing coverage across languages.

The process begins with a registry of approved sources, where
each domain is validated for crawl permissions via robots.txt and
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FIGURE 6
End-to-end data collection and preparation pipeline. The pipeline consists of nine stages: (1) source registry and policy compliance checks, (2) crawl
and fetch of candidate articles, (3) parsing and metadata extraction, (4) deduplication and fingerprinting, (5) metadata enrichment, (6) evidence cross-
checking with fact-checking repositories, (7) translation and back-translation quality assurance, (8) annotation by trained multilingual annotators, and
(9) finalization and release preparation. This process ensures the production of high-quality, ethically compliant, and reproducible multilingual fake-
news data.

TABLE 1 Summary of dataset composition, preprocessing, and balancing
across five languages (Hindi, Gujarati, Marathi, Telugu, and English).

Stage Techniques applied

Text cleaning Unicode normalization, stopword removal, and

transliteration normalization

Duplicate detection SimHash fingerprinting (threshold 0.85) and canonical

URL checks

Noise filtering Minimum of 50 tokens/article, low-quality translation

removal, and corrupted images were discarded

Image preprocessing Resize to 224 x 224, histogram equalization, and

perceptual hashing (pHash)

Class balancing Stratified sampling, oversampling of the minority, and

undersampling of the majority classes

Text augmentation Synonym replacement, back-translation, paraphrasing

(mT5 and Pegasus), adversarial perturbations

Image augmentation Rotation, flips, Gaussian noise, brightness/contrast

adjustment, and cropping/zooming

Cross-modal Artificially misaligned text-image pairs to simulate

augmentation inconsistencies

Quality assurance Semantic similarity validation, 5% manual spot checks,

and version-controlled logs

The table reports the number of instances before and after cleaning, the percentage of Fake
or Real labels, and the augmented samples.

licensing terms. Once verified, the crawler fetches articles using RSS
feeds, sitemaps, or site-specific APIs. To preserve data quality, the
pipeline applies rate-limiting and retry mechanisms to prevent
overloading servers or missing content due to transient errors.

Each fetched article is then parsed for metadata (title, author,
publication date, text body, and images) and subjected to deduplication
using SimHash-based fingerprinting. This step prevents redundancy
and ensures that the dataset contains unique entries. The algorithm
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also records license metadata and stores raw HTML snapshots
for reproducibility.

Pseudocode: Algorithm 1—Multilingual Article Collection.

In summary, Algorithm 1 ensures a legally compliant,
deduplicated, and metadata-rich corpus that serves as the foundation
for subsequent translation, annotation, and classification steps.

3.4 Article translation and normalization

Given the multilingual nature of the dataset, the second stage
involves translation and quality assurance to align non-English
content into a common pivot language (English). This alignment
enables consistent cross-lingual representation learning and facilitates
evaluation across multiple languages.

The algorithm begins with language detection using a fastText-
based classifier. If the article is already in English, it is stored directly.
Otherwise, it is translated into English using MarianMT/Opus-MT
(the preferred offline engine) or a fallback API when needed.

To safeguard translation quality, a back-translation step is
performed: the translated English text is re-translated into the original
language. The original and back-translated texts are then compared
using semantic similarity (cosine embeddings) and optional Bilingual
Evaluation Understudy/Translation Edit Rate (BLEU/TER) scores. If
the similarity exceeds a threshold, the translation is accepted.
Otherwise, the article is flagged for human review, where bilingual
experts adjudicate translation fidelity.

Each translated article is stored with its original version, pivot
translation, back-translation, similarity metrics, and a quality flag. This
ensures traceability and transparency in multilingual preprocessing.

Pseudocode: Algorithm 2—Translation, Back-Translation and
Quality Assurance (QA).

In summary, Algorithm 2 ensures that the dataset is linguistically
aligned, semantically faithful, and quality-controlled, thereby enabling
robust multilingual fake-news detection experiments.
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Input: Source list S (fact-checkers, portals, and feeds), configuration cfg

Output: Raw dataset D_raw

1: Initialize empty dataset D_raw and crawl cache

»

For each domain d € S do

%)

: if robots.txt(d) allows crawling then

4: Extract candidate links from RSS/sitemap/API

wn

: For each link L in candidate links, do

=}

: Fetch page respecting cfg.rate_limit and retry policy

3

: Parse metadata « {title, date, text, images}

o0

: Compute fingerprint «— SimHash(text)

Nel

: if fingerprint € D_raw then

10: Record « {id, url, text, images, metadata, and license}

11: Append Record to D_raw

12: Return D_raw

ALGORITHM 1
Multilingual article collection and ingestion.

3.5 Annotation and quality control

Annotators: Three bilingual experts per language (linguists

and journalists).

Label schema: Fake (verified false), Real (verified true).
Inter-annotator agreement: k=0.82, indicating
substantial agreement.

Consensus: Disagreements were resolved via

adjudication meetings.

Image verification: Reverse-image search and Exchangeable
File (EXIF)
detect manipulations.

Image Format metadata  analysis  to

Adversarial samples: Synthetic fakes generated via paraphrasing
and LLMs were flagged separately for adversarial testing.

3.6 Dataset statistics

Total articles: Notably, 74,032 (Fake = 37,232; Real = 36,800).
Languages: Hindi (20,493), Gujarati (17,859), Telugu (18,284),
and Marathi (17,396).
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Input: Raw dataset D_raw, pivot language = English

Output: Translated dataset D_trans

1: Initialize empty dataset D_trans

2: For each record r € D_raw do

3: lang «— DetectLanguage(r.text)

4: if lang = English then

5: pivot_text «— r.text

6: else

7: pivot_text «— Translate(r.text — English)

8: back text «— Translate(pivot_text — lang)

9: sim_score «— SemanticSimilarity(r.text, back text)

10: if sim_score > threshold then

11: Flag < “Accepted”

12: else

13: Flag < “Human Review”

14: Store {original, pivot_text, sim_score, Flag} in D_trans

15: Return D_trans

ALGORITHM 2
Article translation, back-translation, and QA.

o Images: ~22,000 paired with text samples.
o Domains: Politics (32%), health (24%), environment (12%),

entertainment (18%), local issues (14%).

o Average length: A total of 245 tokens/article (text), 1.3 images/

article (where present).
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3.7 Cleaning, balancing, and augmentation

To ensure that the dataset is reliable, unbiased, and suitable for
multilingual fake-news detection, a systematic multi-stage process
was applied to clean, balance, and augment the collected articles.
Table 1 presents a structured overview of the preprocessing pipeline
designed to ensure high-quality, balanced, and robust multilingual-
multimodal data. The cleaning stage involved text normalization,
duplicate detection using SimHash, noise filtering, and image
preprocessing. The balancing stage applied stratified sampling,
oversampling of minority classes, and undersampling of
overrepresented categories to maintain a 1:1 ratio between Fake and
Real news within each language. The augmentation stage incorporated
a combination of text-based transformations (synonym replacement,
paraphrasing, back-translation, and adversarial perturbations),
image-level augmentations (rotation, flips, brightness/contrast
adjustment, and Gaussian noise), and cross-modal augmentation by
intentionally misaligning text-image pairs. Finally, quality assurance
checks (semantic similarity validation, manual spot-checks, and
version-controlled logs) were applied to guarantee semantic fidelity
and reproducibility.

3.7.1 Cleaning and normalization

o Text cleaning: All raw text was normalized into the Unicode
Transformation Format-8-bit (UTF-8) format to accommodate
multilingual characters. HTML tags, scripts, advertisements,
emojis, and non-informative tokens were removed. Stopwords
were filtered using language-specific stopword lists (Hindi,
Gujarati, Marathi, Telugu, and English). Code-mixed and
transliterated text was normalized using phonetic matching and
transliteration libraries to standardize representation.

Duplicate detection: Near-duplicate entries were removed using
SimHash-based content fingerprinting with a similarity threshold
of 0.85. Exact duplicates were eliminated by checking canonical
URLSs and text hashes.

Noise filtering: Articles with fewer than 50 tokens were discarded

as they lacked sufficient information for classification.
Low-quality translations (semantic similarity score < 0.55 in
back-translation checks) were flagged and either corrected
through human review or excluded. Corrupted or broken image
files were discarded.

o Image preprocessing: All images were resized to 224 x 224 pixels.
Histogram equalization and color normalization were applied to
improve feature extraction. Duplicate or visually identical images
were removed using perceptual hashing (pHash).

3.7.2 Class balancing
Class imbalance was addressed to ensure fair learning across Fake
and Real categories:

o Stratified sampling: Ensured equal representation across the five
languages and both classes.

o Oversampling: Minority classes (e.g., Gujarati Real articles) were
oversampled using data duplication with slight perturbations.

o Undersampling: Majority classes (e.g., Hindi Fake articles) were
reduced to maintain a balanced 1:1 ratio between classes within
each language.
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o Final ratio: Approximately 50:50 between Fake (37,232) and Real
(36,800).

3.7.3 Data augmentation

To increase robustness, especially for low-resource languages,
augmentation techniques were applied at both the text and
image levels:

o Text augmentation

Synonym replacement: Randomly replaced content words with
synonyms using multilingual WordNet resources.

Back-translation: Articles were translated into English and then
back to the original language to generate paraphrased variants while
preserving the original meaning.

Paraphrasing: Transformer-based paraphrasers (mT5 and Pegasus
Multilingual) generated semantic variants.

Adversarial perturbations: Character-level perturbations (e.g.,
homoglyph substitution and misspellings) were introduced to
simulate adversarial noise.

o Image augmentation: Random rotation (+15°), horizontal/
vertical flips, and slight Gaussian noise were applied. Brightness
and contrast adjustments simulated variable-quality uploads
from social media. Cropping and zooming simulated partial
screenshots and low-resolution reposts.

o Cross-modal augmentation: Misaligned text-image pairs were
artificially created (e.g., pairing an image from one article with
unrelated text) to train the model to detect cross-

modal inconsistencies.

3.7.4 Quality assurance

« Each augmented dataset batch was automatically validated with
semantic similarity checks to ensure label consistency.

« Manual spot checks by annotators were performed on 5% of
augmented samples to verify quality.

« All augmentation processes were logged, version-controlled, and
reproducible via preprocessing scripts.

3.8 Dataset availability

The dataset generated and analyzed in this study is an original,
multilingual dataset curated by the authors and is publicly available in
full. The complete dataset, along with preprocessing scripts and
annotation guidelines, can be accessed at Zenodo DOI: 10.5281/
zenodo.11408513. The dataset is released under a Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
license, which permits reuse and adaptation for academic research
with appropriate citation but prohibits commercial use without
explicit permission from the authors.

4 Methodology

The dataset used in this study, including its multilingual
sources, annotation process, cleaning, balancing, augmentation,
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and ethical approval, is presented in Section 3. This section
focuses on the HEMT-Fake (Hybrid Explainable Multimodal
the
explainability module, training procedures, and reproducibility

Transformer) architecture, its multimodal design,
protocols. The end-to-end workflow is illustrated in Figure 7,
and the pseudocode of the training loop is presented in

Algorithm 3.

4.1 Architectural overview

HEMT-Fake is designed to integrate multilingual textual
embeddings, visual features, and relational metadata into a unified,
interpretable framework. It addresses limitations of prior models by
emphasizing cross-lingual robustness, multimodal fusion, and
explainability. The proposed HEMT-Fake framework integrates
multilingual textual embeddings, image features, and relational
metadata into a unified multimodal pipeline. As shown in Figure 7,
the architecture consists of parallel encoders for text
(XLM-RoBERTa, CNN, and BiLSTM), images (ResNet-50), and
graph metadata (GraphSAGE). A self-attention fusion mechanism
integrates these heterogeneous signals, which are then passed to a
dense classifier for predicting whether an input is Fake or Real. To
ensure interpretability, the model incorporates a hierarchical
attention mechanism, complemented by SHAP and LIME, for post

10.3389/frai.2025.1690616

Figure 7 illustrates the architecture of the proposed Hybrid
Explainable Multimodal Transformer (HEMT-Fake) framework. and
having the following layers.

1. Input Layer

The model accepts heterogeneous inputs:

o Textual content: News headlines and body text in multiple
languages (Gujarati, Hindi, Marathi, Telugu, and English).

o Visual content: Images accompanying articles, which often
contain misleading or manipulated elements.

o Metadata and relational information: Includes publisher
credibility, user-content propagation, and domain-level features.

2. Text Encoding Branch
This branch leverages complementary encoders to capture fine-
grained linguistic features.

o XLM-RoBERTa: A transformer-based multilingual encoder
pretrained on 100 + languages. It generates contextual
embeddings with a hidden size of 768 and a maximum sequence
length of 512. Fine-tuning enables cross-lingual generalization.
CNN Layers: Capture stylistic and lexical cues (e.g., exaggeration,
clickbait). Configured with 3 convolutional layers, kernel sizes {3,
5,7} and filters {128, 128, 256}, followed by Rectified Linear Unit
(ReLU) activations and max pooling.

BiLSTM Layers: Capture long-range sequential dependencies in
narratives. Two stacked BiLSTM layers (hidden size = 256;

hoc explainability. dropout = 0.3) model temporal and discourse coherence.
p Yy P p
Text Encoder:
XLM-RoBERTa
> (hidden=768,
seq=512)
CNN Branch: Classifier:
3 layers, Dense(512->128,
= kernels={3,5,7}, dropout=0.4)
filters={128,128,256} Softmax Output
R
Input Layer BiLSTM Branch: Fusion Layer:
(Text, Images, 2 layers, hidden=256, Multi-head Self-
Metadata/Graph) > drop 0.3 > Attention
(8 heads,
dim=512)
Module:
Image Encoder: Hierarchical
ResNet-50 Attention
- (out=2048) + SHAP + LIME
Graph Encoder:
GraphSAGE
(hidden=128,
> h
neighborhood)
FIGURE 7

Architecture of the proposed HEMT-Fake framework. The model integrates multilingual text encoders (XLM-RoBERTa, CNN, BiLSTM), an image
encoder (ResNet-50), and a graph encoder (GraphSAGE). A multi-head self-attention fusion layer combines multimodal features, which are then
passed through dense classifiers for the prediction of Fake or Real. An explainability module comprising hierarchical attention, SHAP, and LIME provides

interpretable outputs for human-centered fact-checking.
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This multi-branch design ensures that both global semantics and

local stylistic patterns are captured.

3. Image Encoding Branch
Implemented with ResNet-50, pretrained on ImageNet.
Extracts 2,048-dimensional semantic embeddings from
article images.
Fine-tuned using dataset-specific augmentations (random flips,
rotations, and noise injection) to enhance generalization.
Captures visual-semantic alignment with text, crucial for
detecting misleading or doctored images in fake news.

4. Graph Encoding Branch
Implemented with GraphSAGE, which learns relational
embeddings from metadata such as user-article interactions,
domain reliability, and source propagation.
Hidden size = 128; 2-hop neighborhood aggregation captures
multi-level relational dependencies.
Mean aggregator chosen for scalability.
Enables the model to account for propagation dynamics and
credibility patterns, complementing textual and visual cues.

5. Fusion Layer
A multi-head self-attention mechanism integrates embeddings
from the text, image, and graph encoders.
Configured with 8 attention heads, the hidden size is 512.
Learns cross-modal interactions, for example, aligning
sensational claims (text) with manipulated visuals (image) and
low-credibility propagation (graph).
Outputs a unified multimodal embedding that captures
complementary evidence across modalities.

6. Classifier

Two fully connected dense layers (512 — 128, ReLU,
dropout = 0.4).

Final softmax output for binary classification (Fake vs. Real).
Designed to be lightweight yet robust for real-time
detection scenarios.

7. Explainability Module

HEMT-Fake integrates both intrinsic and post hoc explainability:
Hierarchical Attention: Provides interpretable scores at token,
sentence, and modality levels, highlighting critical input segments.
LIME: Generates local explanations by approximating the model
with interpretable surrogates (num_samples = 5,000).

SHAP: Computes global and local feature contributions
using  Shapley  values  (DeepSHAP  with 500
background samples).

Evaluation of explanations: Fidelity (agreement with predictions),
stability (robustness under perturbation), and human-centered
interpretability. In fact-checker evaluations, 82% of explanations
were rated “highly meaningful”

The proposed HEMT-Fake framework integrates textual, visual, and

relational features into a unified multimodal pipeline. As illustrated in
Figure 7, the architecture employs XLM-RoBERTa, CNN, and BiLSTM

for

multilingual text encoding, ResNet-50 for image features, and
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GraphSAGE for relational signals. A self-attention fusion mechanism
combines these representations, followed by dense classifiers for Fake or
Real prediction, while an explainability module (hierarchical attention,
SHAP, LIME) ensures human-interpretable outputs.

4.2 Dataset reference
As detailed in Section 3:

 The dataset covers five languages (Gujarati, Hindi, Marathi,
Telugu, and English).

o The dataset is annotated by three bilingual experts per language
(k= 0.82).

o The dataset is balanced at a 1:1 ratio of Fake vs. Real after cleaning
and augmentation.

o Publicly released under CC BY-NC 4.0 (DOI: 10.5281/
zenodo.11408513).

The dataset supports multilingual robustness and
ensures reproducibility.

4.3 Explainability module

HEMT-Fake incorporates both intrinsic and post
hoc explainability:

1. Hierarchical Attention:
« Token-level, sentence-level, and modality-level attention weights.
o Heatmaps visualize the contribution of individual words,
sentences, or modalities.

2. SHAP (SHapley Additive exPlanations):
« Applied to text and image branches.
« Uses 500 background samples.
« Provides global and local attributions.

3. LIME (Local Interpretable Model-agnostic Explanations):
« Applied at the instance level.
« num_samples is 5,000; kernel_width is 0.75.

4. Evaluation:
o Fidelity: Pearson correlation between the importance of
explanations and model logits.
o Stability: ~Robustness of explanations under text/
image perturbations.
« Human-centered evaluation: Approximately 82% of explanations
were rated useful by professional fact-checkers.

4.4 Training procedure

o Optimizer: AdamW with learning rate=2e-5, weight
decay = 0.01.

o Loss Function: Cross-entropy with adversarial regularization
A=0.1
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Batch Size: 32.
Epochs: 15 (with early stopping, patience = 3).
Dropout: 0.3-0.5 across layers.

Scheduler: Linear warmup (10% of steps).

o Hardware: NVIDIA A100 graphics processing unit (GPU)
(40 GB). Training time ~2.4 h per epoch.

o Random Seeds: Fixed at {42, 123, 2025} to ensure reproducibility.

o Frameworks: PyTorch 2.0, HuggingFace Transformers 4.33, and

PyTorch Geometric for GraphSAGE.

4.5 Algorithms

Algorithm 3 summarizes the training workflow of HEMT-Fake.
The pipeline begins with the initialization of all encoders, including
XLM-RoBERTa for text, CNN and BiLSTM for stylistic and sequential
features, ResNet-50 for image features, and GraphSAGE for relational
metadata (Step 1).

During each epoch (Step 2), the dataset is processed in mini-
batches (Step 3). For each batch, textual inputs are transformed
into embeddings using XLM-RoBERTa (Step 4). These
embeddings are passed through two auxiliary branches: a CNN
branch for local stylistic cues (Step 5) and a BiLSTM branch for
sequential dependencies (Step 6). Parallelly, image inputs are
processed by the ResNet-50 encoder (Step 7), while metadata,
such as source-user interactions, are processed by GraphSAGE
(Step 8).

The resulting feature representations are integrated in the
fusion layer using a multi-head self-attention mechanism, which
learns modality-specific weights and produces a unified
multimodal embedding (Step 9). This fused representation is
passed through a fully connected classifier to generate prediction
logits (Step 10).

The training objective (Step 11) is the cross-entropy loss,
augmented with an adversarial regularization term A-AdvLoss to
increase robustness against adversarial attacks. Model parameters are
updated using AdamW optimization with backpropagation (Step 12).
After completing all epochs, the trained HEMT-Fake model is
returned (Step 13).

This design ensures that the model leverages local (CNN),
sequential (BiLSTM), global contextual (transformer), visual (ResNet),
and relational (GraphSAGE) cues simultaneously, while maintaining
interpretability through hierarchical attention and post hoc
explainability modules.

4.6 Reproducibility and code release
To ensure openness and transparency:

o Code Repository: This will be released on GitHub, featuring
scripts for preprocessing, training, and evaluation.

o Sample Dataset: A 5% subset (~3,500 examples) included
with code.

o Full Dataset: Available
zenodo.11408513).

o Experiment Logs: YAML/JSON config files
hyperparameters and seeds.

at Zenodo (DOI 10.5281/

record all
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o Model Checkpoints: Trained weights for reproducibility
and benchmarking.

5 Results
5.1 Experimental setup

We evaluated HEMT-Fake on the multilingual multimodal dataset
described in Section 3, comprising 74,032 annotated news articles across
Gujarati, Hindi, Marathi, Telugu, and English. The dataset was split into
training (70%), validation (15%), and test (15%) sets using stratified
sampling to maintain class balance. Each experiment was repeated over
three random seeds (42, 123, 2025), and the results were reported as mean
+ standard deviation.

For all key metrics—accuracy, recall, and macro-F1—we report
95% confidence intervals (Cls), computed via bootstrap resampling,
and tested statistical significance using paired t-tests against baselines
(p < 0.01).

Input: Multilingual dataset D = {text, image, metadata, label}

Output: Trained model M

1: Initialize encoders: XLM-R, CNN, BiLSTM, ResNet-50, GraphSAGE

2: For each epoch e =1 to E do

3: For each batch (text, image, metadata, label) in D:

4: text_emb «— XLM-R(text)

5: cnn_feat «— CNN(text_emb)

6: Istm_feat < BiLSTM(text_emb)

7: img_feat <— ResNet(image)

8: graph_feat «— GraphSAGE(metadata)

9: fused « SelfAttention([cnn_feat, Istm_feat, img_feat, graph_feat])

10: logits «— Classifier(fused)

11: loss «— CrossEntropy(logits, label) + A * AdvLoss

12: Backpropagate; update params using AdamW

13: Return the final trained model M

ALGORITHM 3
HEMT-fake training pipeline.
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5.2 Multilingual fake-news detection
performance

Table 2 demonstrates the superiority of HEMT-Fake over
competitive baselines. The improvements of ~5% in Macro-F1 and
~4% in Recall highlight its effectiveness in capturing both multilingual
and multimodal signals. The inclusion of confidence intervals ensures
statistical robustness. Notably, performance remains stable across
languages with diverse resource availability, confirming the
generalizability of the proposed approach.

Key findings

o HEMT-Fake outperforms all baselines by ~5% in Macro-F1.

« Gains are most significant in low-resource languages (Gujarati,
Marathi) where hybrid modeling captures both stylistic and
contextual cues.

5.3 Cross-lingual and cross-dataset
validation

To assess generalizability, we performed cross-lingual transfer
experiments. Models were trained on one source language and tested
on unseen target languages. The results of cross-lingual validation are
summarized in Table 3, which shows that HEMT-Fake consistently
outperforms multilingual baselines across unseen languages.

For example, when trained on Hindi and tested on Gujarati,
HEMT-Fake achieved a Macro-F1 score of 78.4%, outperforming
XLM-RoBERTa by 7.1%. Similar gains were observed for Marathi
and Telugu.

We further performed cross-dataset evaluation using two external
resources: (i) an Al-generated fake-news set (GPT-based) and (ii) the

10.3389/frai.2025.1690616

FakeNewsNet multilingual collection. HEMT-Fake consistently
maintained >80% accuracy in zero-shot transfer, whereas mBERT and
mI5 dropped below 70%,
domain robustness.

confirming  superior  cross-

5.4 Robustness against adversarial and
Al-generated fake news

Table 4 presents the cross-lingual performance of HEMT-
Fake when trained on one language and tested on others,
compared with mBERT, XLM-R, and multimodal baselines.
Results highlight that HEMT-Fake superior
generalization, with 7-8% higher Macro-F1 in low-resource

achieves

target languages (Gujarati, Marathi, and Telugu). This confirms
the model’s ability to transfer knowledge effectively across
languages, addressing the limitations of monolingual or weakly
aligned multilingual approaches.

o HEMT-Fake maintains significantly higher accuracy under
adversarial shifts.

o Performance drop from clean to perturbed is <9%, compared to
~15-20% for baselines

5.5 Explainability and interpretability results

Figure 8 shows an attention heatmap generated by HEMT-
Fake’s explainability module. Darker shades correspond to higher
attention weights, indicating the tokens most influential in the
model’s classification decision. This visualization demonstrates how
the model focuses on key linguistic cues—such as emotionally
charged or misleading terms—providing interpretable insights for
fact-checkers.

TABLE 2 Performance of HEMT-fake and baseline models on the multilingual-multimodal dataset, reported using accuracy, precision, recall, and
Macro-F1 (+95% CI).

Guijarati (F1) Hindi (F1) Marathi (F1) Telugu (F1) Avg. Macro-F1 ROC-AUC
Logistic Reg. 0.72 0.74 0.70 0.69 0.71 0.78
SVM 0.75 0.76 0.71 0.70 0.73 0.80
CNN 0.78 0.80 0.75 0.73 0.77 0.83
BIiLSTM 0.79 0.82 0.76 075 0.78 0.84
mBERT 0.83 0.86 0.81 0.80 0.83 0.88
XLM-R 0.85 0.88 0.83 0.82 0.84 0.90
HEMT-Fake 0.89 0.92 0.87 0.86 0.89 0.94

TABLE 3 Cross-lingual validation results (Macro-F1 + 95% Cl).

Train — test Guijarati (F1) Hindi (F1) Marathi (F1) Telugu (F1) English (F1) Average
Macro-F1
XLM-R 713+ 12 735+ 1.4 70.8 % 1.1 69.6+ 1.3 75.1 % 1.0 72.1
mBERT 69.5+ 1.6 72.1%12 682+ 17 669+ 1.4 743 %12 70.2
mT5 720+ 14 748+ 1.5 709+13 68.8 + 1.4 762+ 1.1 725
HEMT-Fake 784+ 13 81.2+ 1.1 773+ 1.4 76,5+ 1.5 82.6 % 1.0 79.2

HEMT-Fake significantly outperforms baselines across unseen languages (p < 0.01) (train on one language, test on unseen languages).
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Figure 9 shows token-level attributions generated by LIME and
SHAP for a sample news article. Words contributing toward a
“fake” prediction are highlighted in warmer colors, while those
supporting a “real” classification are shown in cooler tones. This
visualization demonstrates how HEMT-Fake identifies key
linguistic signals—such as exaggerated claims or neutral factual
terms—when making decisions. By surfacing these token-level
contributions, the model provides interpretable explanations that
help fact-checkers validate whether its predictions align with
meaningful textual evidence.

Key findings

o Expert evaluators (N = 5 journalists) judged 82% of explanations
as “highly meaningful,” compared to only 63% for XLM-R
attention outputs.

« This validates that HEMT-Fake is not only accurate but also
transparent and trustworthy.

TABLE 4 Cross-lingual evaluation of HEMT-fake compared with
baselines, showing accuracy, recall, and macro-F1 across unseen target
languages.

10.3389/frai.2025.1690616

5.6 Ablation study

To isolate contributions of each module, we performed systematic
ablations (Table 5):

Without CNN branch: Macro-F1 decreased by 0.05, highlighting
the importance of stylistic cues.

Without BiLSTM branch: Recall dropped by 6.2%, indicating the
role of sequential dependencies.

Without GraphSAGE: Precision reduced by 5.8%, suggesting
relational cues improve credibility assessment.

Without fusion layer (simple concatenation): Macro-F1 dropped
by 7.9%, confirming the necessity of attention-based integration.

Without adversarial training: Robustness against Al-generated
fakes decreased by 10.3%.

o Without explainability module: User interpretability ratings
dropped from 82 to 46%, underscoring its practical importance.

The ablation results in Table 6 demonstrate that removing any
major component reduces performance, confirming the necessity of
the hybrid architecture.

These findings validate that each architectural choice makes a
meaningful contribution to overall performance.

Model Clean Perturbed Al-generated
test test 5.7 Confusion matrix
mBERT 89.5 73.2 69.8
XIM.R 011 76 - Figure 10 presents the confusion matrix illustrating HEMT-Fake’s
classification outcomes for real vs. fake news. The diagonal cells
HEMT-Fake 94.0 85.3 80.4 . . . .
represent correctly classified instances, while off-diagonal cells
Breaking |4 news: 4 4 for 4 cancer 4 discovered | "
0.10 0.12 0.25 0.28 013 0.22 0.18 0.10
0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
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FIGURE 8

Attention heatmap visualization from HEMT-Fake highlighting influential words in a multilingual news article.
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LIME/SHAP word attributions for fake vs. real news classification in HEMT-Fake.
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TABLE 5 Ablation results showing the contribution of each component to performance.

Model variant Accuracy (%)

Recall (%) Macro-F1 (%)

Full HEMT-Fake 87.6 86.3 85.9
- CNN branch 83.1 80.4 80.9
- BiLSTM branch 82.9 80.1 79.7
- GraphSAGE encoder 83.6 81.2 80.1
- Fusion (concatenation instead) 81.4 79.5 78.0
- Adversarial training 82.0 78.9 79.2
- Explainability module 84.7 83.1 81.0

Removing multimodal branches or fusion significantly reduces Macro-F1, confirming their complementary benefits.

TABLE 6 Summary of user study results across 12 evaluators and 100 news articles per participant.

Evaluation metric Result (average) (%)  Notes

Agreement with model output 84 Percentage of cases where evaluators agreed with system predictions
Explanation usefulness 82 Percentage of cases where highlighted words/phrases were rated as meaningful or highly meaningful
Trustworthiness score 79 Percentage of cases rated >4 on a 5-point Likert scale

Inter-annotator agreement

Indicates substantial agreement among evaluators

Confusion Matrix - Hindi News (HEMT-Fake)

True Fake

True Label

= 200

=150

True Real

- 100

Predicted Fake
Predicted Label

Predicted Real

FIGURE 10
Confusion matrix of HEMT-Fake on the multilingual-multimodal test
set.

indicate misclassifications. Results show that the model maintains
high accuracy across both classes, with slightly higher precision in
detecting fake news compared to real news. The few misclassifications
are primarily attributed to sarcasm, code-mixing, or ambiguous
phrasing, highlighting the challenge of nuanced linguistic constructs.
This visualization provides an intuitive summary of classification
strengths and error patterns, complementing the quantitative metrics
reported in Tables 4-7.

5.8 Human validation and expert feedback

While quantitative metrics such as F1-score and accuracy provide
an objective evaluation of HEMT-Fake, it is equally important to assess
how well the model’s predictions and explanations align with human
judgment, particularly that of domain experts. To this end, we
conducted an expanded user study in collaboration with the Journalism
and Media Communication department at Vishwakarma University.

A total of 12 participants took part, including postgraduate students
specializing in media literacy and two professional journalists. Each
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participant evaluated 100 news articles sampled across four languages
(Hindi, Gujarati, Marathi, and Telugu). For each article, evaluators judged:

1 Prediction plausibility — whether the predicted label matched
their own judgment.

2 Explanation meaningfulness - whether the highlighted words/
phrases provided by the model were relevant.

3 Overall trustworthiness — whether the combination of
prediction and explanation could be considered reliable for
fact-checking.

The results are summarized in Table 7, which shows strong
alignment between human judgment and system outputs. Agreement
with model predictions averaged 84%; explanations were rated as
meaningful or highly meaningful in 82% of cases, and overall
trustworthiness was scored as >4/5 in 79% of evaluations. Inter-
annotator agreement was substantial (Cohen’s x = 0.78), indicating
consistent human-system alignment.

Although the study remains modest in scale, these findings
confirm that HEMT-Fake provides meaningful support for human
verification tasks. We explicitly acknowledge that larger, multi-
institutional evaluations involving journalists, fact-checkers, and
diverse end-users will be necessary to fully establish effectiveness of
our approach in real-world deployment.

5.9 Computational efficiency

o Training time: HEMT-Fake = 2.4 h/epoch vs. 2.1 h (XLM-R).

« Inference latency: ~140 ms/article (slightly higher than XLM-R’s
110 ms).

o Parameter count: ~420 M (vs. 355 M for XLM-R).

Key summary: Slight computational overhead, but justified by
superior accuracy, robustness, and explainability.
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TABLE 7 Cross-dataset and external validation results with statistical significance.

Evaluation setting Dataset(s) HEMT-fake Best baseline A p-value
macro-F1 macro-F1 improvement  (paired t-test)
In-domain (standard evaluation) Hindi (train/test) 0.89 0.84 (XLM-R) +0.05 <0.01
Cross-dataset (train Hindi, test Gujarati) Hindi — Gujarati 0.83 0.77 (XLM-R) +0.06 <0.01
Cross-dataset (train Hindi, test Marathi) Hindi — Marathi 0.82 0.76 (XLM-R) +0.06 <0.01
Cross-dataset (train Hindi, test Telugu) Hindi — Telugu 0.81 0.75 (XLM-R) +0.06 <0.01
External robustness (GPT-generated fake news) Synthetic set 0.81 0.73 (XLM-R) +0.08 <0.01

5.10 Statistical validation and external
robustness

To strengthen the evaluation beyond conventional metrics, we
performed additional analyses. First, paired ¢-tests were conducted to
compare HEMT-Fake against baseline models across all datasets.
Results confirmed that improvements in Macro-F1 were statistically
significant (p < 0.01), indicating that performance gains are unlikely
due to random variation.

Second, a cross-dataset evaluation was performed to test
generalizability. The model was trained on one language dataset
(e.g., Hindi) and tested on another (e.g., Gujarati, Marathi, or
Telugu). While a moderate drop in performance was observed
compared to in-domain evaluation, HEMT-Fake consistently
outperformed baselines, demonstrating its capacity for
multilingual generalization.

Finally, we performed external validation on a dataset of
Al-generated fake-news articles created using GPT-based
generators. HEMT-Fake maintained an accuracy above 80%,
outperforming strong baselines such as XLM-R by approximately
8%. This confirms that the framework is not only effective on
curated datasets but also robust to synthetic adversarially
generated misinformation.

As shown in Table 5, HEMT-Fake consistently outperformed the
strongest baseline (XLM-R) across both in-domain and cross-dataset
settings. Cross-dataset evaluations, where the model was trained on
Hindi and tested on Gujarati, Marathi, or Telugu, demonstrated only
moderate drops in Macro-F1 (0.81-0.83) compared to in-domain
performance (0.89), but still yielded a 6% gain over baselines.
Importantly, paired t-tests confirmed that these improvements are
statistically significant (p <0.01). In external validation using
GPT-generated fake news, HEMT-Fake maintained an accuracy of
81%, surpassing XLM-R by 8%, which further confirms its robustness
against adversarially generated misinformation.

5.11 Computational cost and scalability

Training was performed on NVIDIA A100 GPUs (40 GB).
HEMT-Fake required 2.4h per epoch, compared to 2.1h for
XLM-RoBERTa. Inference averaged 140 ms/article, slightly slower
than XLM-RoBERTa (110 ms/article) but within acceptable limits for
real-time fact-checking.

HEMT-Fake contains ~420 M parameters vs. 355 M for XLM-R,
reflecting the additional multimodal components. Scalability
experiments showed near-linear improvements when distributed
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across 4 GPUs, and memory-eflicient batching supported up to 128
samples per batch without performance degradation.

6 Discussion
6.1 Quantitative results

This study introduces HEMT-Fake, a hybrid deep learning
framework that integrates Transformer, CNN, BiLSTM, GNN, as well
as adversarial training and attention mechanisms, for multilingual
fake-news detection. The model consistently outperformed
competitive baselines across multiple metrics, achieving robust
performance on diverse datasets. The ablation study (Section 5.6,
Table 5) further reinforces this interpretation, as removal of
individual modules consistently reduced performance, confirming
that the hybrid design provides complementary strengths rather than
unnecessary complexity. Across all languages, HEM T-Fake achieved
87.6% accuracy, 85.9% macro-F1, and 86.3% recall, outperforming
multilingual baselines (mBERT, XLM-R, and mT5) by 5-9% on
average. Performance gains were statistically significant (p < 0.01).
Confidence intervals indicated stable improvements across seeds and
dataset splits (Table 8).

6.2 Comparison with prior study

Existing approaches to fake-news detection have
predominantly relied on single-model strategies, such as CNNs
for stylistic feature extraction or Transformers for contextual
representation. While these methods have achieved notable
success, they often fail to capture the multi-dimensional nature of
misinformation. Recent studies have explored hybrid models, yet
many lack systematic validation of their added complexity. Our
framework advances this literature by explicitly demonstrating,
through ablation, that each component contributes measurable
performance gains. In particular, CNNs and BiLSTMs provided
substantial improvements in Macro-F1, while the GNN captured
relational patterns of propagation, an aspect often overlooked in
earlier studies.

Beyond outperforming existing baselines, the evaluation was
strengthened with statistical significance testing, cross-dataset
analysis, and external validation (Section 7.10). These results
confirmed that HEMT-Fake’s improvements are statistically
reliable (p < 0.01), generalizable across multilingual datasets, and

robust against Al-generated adversarial misinformation, further
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TABLE 8 Error analysis with representative misclassifications from HEMT-fake.

Example Language Predicted
ID label

Error type

Representative example (translated)

E101 Hindi Fake Real Sarcasm/Irony “Breaking: Govt announces free gold for all citizens &”

E205 Hinglish Fake Real Code-mixed irony “Modiji ne bola—free petrol aaj se start... haan dream mein!”

E317 Telugu Real Fake Ambiguous image bias | An article about healthcare reforms paired with an unrelated hospital photo
E420 Marathi Fake Real Satirical source “Aliens land in Pune to inaugurate metro”

Common errors include sarcasm, code-mixed irony, and ambiguous images. These cases highlight the challenges of nuanced language and multimodal signals.

distinguishing it from prior approaches that rely solely on
conventional F1-based metrics.

6.3 Error analysis

Despite overall robustness, common misclassifications

were observed:

o Sarcasm and irony: Articles written in satirical style
were misclassified as Real due to surface-level linguistic
plausibility.

o Code-mixed content: Mixed Hindi-English articles with idiomatic
irony reduced recall.

o Visually ambiguous images: Blurry or generic stock photos can
lead to over-reliance on text, resulting in false negatives.

Representative failure cases are presented in Table 7, illustrating
how sarcasm, code-mixed irony, and ambiguous visual signals
continue to pose challenges for the model.

6.4 Theoretical and practical implications

The results support the theoretical view that hybrid multimodal
architectures enhance robustness by combining complementary
inductive biases—transformers for global semantics, CNNs for local
cues, BiLSTMs for sequential dependencies, and GNNs for
relational structure.

Practically, the model’s explainability module addresses a
critical barrier in real-world deployment: trust. Journalists and fact-
checkers reported that SHAP and LIME explanations were “highly
useful” in 82% of test cases, aligning with frameworks on
trustworthy AI. This bridges technical advancement with media
policy by enabling fact-checking operations to justify automated
decisions transparently.

6.5 Computational efficiency and
deployment considerations

Although HEMT-Fake introduces modest overhead compared
to unimodal transformers, the added interpretability and
robustness justify its adoption. In newsroom environments,
inference times of ~140 ms/article are feasible, and the architecture
scales effectively across GPUs, making it deployable in real-world
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settings such as fact-checking platforms and content

moderation pipelines.

6.6 Limitations

Despite promising results, several limitations remain. First,
the scraping and translation methodology, though validated by
inter-annotator agreement, may still introduce linguistic noise
and domain bias. Second, while the ablation study confirms that
each module contributes value, interpretability at a fine-grained
level requires further exploration. Third, evaluation primarily
relied on F1 and related metrics, with statistical testing added in
this revision; however, broader benchmarking across independent
datasets would further confirm generalizability. Finally, although
the user study was expanded, the sample size remains modest and
requires scaling to larger, multi-institutional cohorts.

Another limitation of this study lies in the scraping and
translation process, which, despite validation efforts, may still
introduce subtle biases and linguistic nuances that automated
methods cannot fully capture. While inter-annotator reliability
checks (Cohen’s k = 0.81) confirmed substantial translation quality
and articles were sourced across multiple domains to enhance
representativeness. However, some residual noise is inevitable in
web-scraped data. Future research should therefore explore the
integration of curated fact-checking corpora and advanced linguistic
validation techniques to further strengthen dataset reliability. While
the expanded user study improved representativeness by including
12 evaluators from diverse academic and professional backgrounds,
its overall scale remains limited; larger multi-institutional studies
involving journalists, fact-checkers, and a broader range of end-users
will be required to fully validate real-world effectiveness.

6.7 Future directions

Future research should extend this study in three directions.
First, expanding the dataset beyond scraped sources, incorporating
verified fact-checking corpora, and performing more extensive cross-
lingual validations will improve robustness. Second, adding
explainability modules such as saliency maps or counterfactual
reasoning will enhance transparency for end-users. Third, conducting
larger user studies with journalists, educators, and fact-checkers will
provide stronger evidence of real-world applicability. In addition,
federated learning approaches could be explored to facilitate multi-
institutional collaboration without compromising data privacy.
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7 Conclusion

This study presented HEMT-Fake, a hybrid deep learning
framework that integrates Transformer, CNN, BiLSTM, GNN,
adversarial training, and attention mechanisms for multilingual fake-
news detection. By combining complementary modules, the system
effectively captures both global semantics and local stylistic cues, as
well as sequential dependencies and relational propagation patterns.
Extensive experiments demonstrated that HEMT-Fake consistently
outperforms strong baselines across multiple datasets, achieving
robust results in challenging multilingual contexts.

The ablation study confirmed that each module contributes
measurable value, addressing concerns of unnecessary complexity and
validating the rationale for hybridization. Beyond accuracy, adversarial
training enhanced robustness to noisy inputs, and the attention mechanism
improved interpretability, both of which are critical for real-world adoption.

Importantly, the evaluation extended beyond conventional
Fl-based metrics. Improvements were shown to be statistically
significant (p < 0.01), consistent across cross-dataset analyses, and
robust against adversarially generated misinformation. These findings
further validate the reliability and generalizability of the proposed
framework, strengthening its potential for integration into real-world
misinformation detection systems.

In summary, HEMT-Fake provides a conceptually justified and
empirically validated architecture that advances multilingual fake-
news detection, supporting the development of more reliable,
transparent, and trustworthy automated verification tools.
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