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Fake-news detection requires systems that are multilingual, multimodal, and 
explainable—yet the majority of the existing models are English-centric, text-only, 
and opaque. This study introduces two key innovations: (i) a new multilingual–
multimodal dataset of 74,000 news articles in Hindi, Gujarati, Marathi, Telugu, and 
English with paired images, and (ii) Hybrid Explainable Multimodal Transformer Fake 
(HEMT-Fake) that integrates text, image, and relational signals with hierarchical 
explainability. The architecture combines transformer embeddings, a convolutional 
neural network–bidirectional long short-term memory (CNN–BiLSTM) text 
encoder, residual network (ResNet) image features, and graph sample and 
aggregate (GraphSAGE) metadata, all of which are fused via multi-head attention. 
Its explainability module unites attention, Shapley Additive exPlanations (SHAP), 
and local interpretable model-agnostic explanations (LIME) to provide token-, 
sentence-, and modality-level transparency. Across four languages, HEMT-Fake 
delivers a ~ 5% Macro-F1 improvement over Cross-Lingual Language Model with 
RoBERTa (XLM-R) architecture and Multilingual Bidirectional Encoder Representations 
From Transformers (mBERT), with gains of 7–8% in low-resource languages. The 
model achieves 85% accuracy under adversarial paraphrasing and 80% on artificial 
intelligence (AI)-generated fake news, halving robustness losses compared to 
baselines. Human evaluation reveals that 82% of explanations are judged to be 
meaningful, confirming transparency and trust for fact-checkers.
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1 Introduction

1.1 The global challenge of fake news

The global information ecosystem is undergoing rapid transformation, driven by the 
increasing dominance of digital and social-media platforms. While these platforms 
democratize content creation and dissemination, they also amplify the reach of 
misinformation and disinformation, often without adequate verification. Early data-mining 
perspectives on fake-news detection established hybrid models that capture social 
propagation and content features (Shu et al., 2017; Castillo et al., 2011), paving the way for 
transformer-based architectures that now dominate the field. The consequences are profound: 
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misinformation can distort electoral outcomes, incite social unrest, 
and erode trust in scientific and healthcare institutions (Lazer et al., 
2018; Tandoc et al., 2018). During the coronavirus disease 2019 
(COVID-19) pandemic, false narratives regarding vaccines and 
treatments spread virally, at times with more traction than evidence-
based information (Shahi et al., 2021) The ability to automatically 
detect fake news at scale has thus become not only a technological 
challenge but also a societal imperative.

1.2 The rise of AI-generated misinformation

The landscape of misinformation is further complicated by 
advances in generative artificial intelligence (AI). Large Language 
Models (LLMs) such as Generative Pre-Trained Transformer 4 
(GPT-4), Gemini, and Large Language Model Meta AI (LLaMA) 
are capable of producing linguistically coherent, contextually 
relevant, and stylistically adaptive narratives at scale (Ji et al., 
2023). Similarly, image and video generation models such as Stable 
Diffusion and DeepFakes enable the creation of visually 
convincing synthetic content. This convergence of text–image 
manipulation poses unprecedented challenges for fact-checkers 
and automated systems alike (Zellers et al., 2019). Importantly, 
generative models allow adversaries to create misinformation 
tailored for specific linguistic, cultural, or political contexts, 
making multilingual and multimodal detection more urgent 
than ever.

1.3 Limitations of current fake-news 
detection systems

Although significant research has been conducted on fake-news 
detection, existing approaches exhibit critical shortcomings:

	 1.	 Monolingual bias: the majority of the datasets and detection 
models are English-centric (Shu et al., 2017; Alam et al., 2021). 
Low-resource and code-mixed languages remain 
underexplored, limiting the global applicability of 
detection systems.

	 2.	 Insufficient multimodal fusion: many studies treat text and 
images independently or use simplistic late fusion strategies 
(Zhou et al., 2020). However, fake news often relies on cross-
modal inconsistency (misleading captions paired with 
unrelated or manipulated images).

	 3.	 Opaque decision-making: transformer-based architectures 
such as Bidirectional Encoder Representations From 
Transformers (BERT) and Cross-Lingual Language Model 
with RoBERTa (XLM-R) deliver state-of-the-art accuracy but 
are widely criticized as black boxes (Lu et al., 2023). Without 
clear justifications, stakeholders such as journalists, 
policymakers, and the public may distrust AI predictions.

	 4.	 Adversarial vulnerability: even minor perturbations (synonym 
substitutions, paraphrasing) significantly degrade performance 
(Yang et al., 2022). Recent studies show that GPT-generated 
fake articles can bypass detectors entirely (Jawahar et 
al., 2023).

1.4 Why do multilingual, multimodal, and 
explainable AI (XAI) matter?

A robust fake-news detection system must address three 
interrelated priorities:

	•	 Multilingual robustness: in multilingual societies, misinformation 
circulates in regional languages, often mixed with English or 
transliterated into Latin scripts. Models trained exclusively on 
English fail to capture cultural idioms and code-switching 
behaviors (Dementieva et al., 2023; Yigezu et al., 2024).

	•	 Multimodal integration: misinformation is increasingly leveraging 
multimodal artifacts such as memes, manipulated videos, or 
misattributed images. Ignoring visual modalities leads to 
incomplete detection pipelines (Xu et al., 2024; Choi and 
Kim, 2024).

	•	 Explainability: trustworthy AI requires interpretable outputs. 
Black-box predictions without transparent reasoning hinder 
adoption by journalists, fact-checkers, and policymakers. 
Advanced methods, such as Shapley Additive exPlanations 
(SHAP) and local interpretable model-agnostic explanations 
(LIME), can reveal feature contributions, while hierarchical 
attention can highlight key tokens and sentences (Nwaiwu et 
al., 2025).

Together, these considerations underscore that future research 
must move beyond unimodal, monolingual, and opaque models to 
embrace hybrid, explainable, and resilient architectures.

1.5 Motivations for this study

This study is motivated by the pressing need for practically 
deployable systems for detecting fake news. While prior research has 
demonstrated strong accuracy in benchmark settings, practical 
deployment requires balancing accuracy, robustness, and 
transparency. Consider, for example, a fact-checking newsroom in 
India where misinformation spreads across Hindi, Marathi, Gujarati, 
and Telugu. A monolingual English model would be ineffective; a 
black-box multimodal model would be mistrusted; and a non-robust 
system would fail against adversarial paraphrases. This scenario 
exemplifies why an effective solution must simultaneously support 
multilingual generalization, multimodal fusion, and human-
understandable explanations.

1.6 Research gap and contributions

Research gaps identified:
RG1: Absence of large-scale, multilingual multimodal datasets 

reflecting authentic, code-mixed misinformation.
RG2: Poor cross-lingual transferability beyond high-

resource languages.
RG3: Limited multimodal integration with weak detection of 

cross-modal inconsistencies.
RG4: Explanations restricted to token-level saliency, with little 

validation of their usefulness to humans.
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RG5: Lack of resilience to adversarial and generative 
AI-driven misinformation.

Contributions of this study:
	 1.	 Dataset Innovation: A curated dataset of ~74,000 articles 

across four Indian languages (Gujarati, Hindi, Marathi, and 
Telugu), incorporating multimodal and adversarially 
perturbed samples.

	 2.	 Architectural Innovation: Proposal of Hybrid Explainable 
Multimodal Transformer Fake (HEMT-Fake), which integrates 
multilingual embeddings (XLM-R), convolutional neural 
network–bidirectional long short-term memory (CNN–
BiLSTM) encoders, residual network (ResNet)-based image 
embeddings, and graph sample and aggregate (GraphSAGE) 
propagation signals.

	 3.	 Explainability Innovation: A hybrid module combining 
hierarchical attention, SHAP, and LIME to generate token-, 
sentence-, and modality-level explanations.

	 4.	 Robustness Innovation: Training with adversarial paraphrases, 
back-translations, and GPT-generated fakes to 
enhance resilience.

	 5.	 Evaluation Contribution: Comprehensive experiments 
including zero-shot cross-lingual testing, multimodal ablations, 
robustness evaluation, and human-centered validation of 
explanations with journalists and students.

1.7 Article organization

The remainder of the article is structured as follows: Section 2 
provides a critical review of prior literature on fake-news detection, 
focusing on multilingual, multimodal, and explainable approaches. 
Section 3 describes the dataset. Section 4 details the proposed 
methodology. Section 5 presents experimental settings. Section 6 
reports results. Section 7 discusses implications, and Section 8 
concludes with future directions.

2 Literature review

2.1 Overview and linking to research gaps

This review addresses five persistent research gaps (RGs) identified 
in Section 1:

(RG1) limited multilingual coverage and cross-lingual robustness,
(RG2) inadequate multimodal integration and cross-modal 

inconsistency detection,
(RG3) shallow or unvalidated explainability,
(RG4) lack of adversarial testing and robustness to LLM-generated 

fakes, and
(RG5) dataset limitations (absence of multilingual, multimodal, 

adversarial, and rationale-annotated corpora).
For each gap, representative studies (2017–2025) are critically 

compared, methodological constraints are highlighted, and their 
implications for the proposed HEMT-Fake framework 
are discussed.

2.2 RG1—multilingual coverage and 
cross-lingual robustness

State of the art.
Multilingual transformer backbones—XLM-R, mBERT, 

RemBERT, and mT5—remain foundational for cross-lingual 
misinformation tasks (Devlin et al., 2019; Conneau et al., 2020; Liu et 
al., 2019). An early credibility analysis by Castillo et al. (2011) and 
subsequent follow-ups by Shu et al. (2020) established text-centric 
baselines that were later extended into multilingual settings. Recent 
efforts include hybrid summarization and retrieval-augmented 
multilingual models (Alghamdi et al., 2024a; Alghamdi et al., 2024b; 
Khandelwal et al., 2024) and low-resource evaluations in African and 
Indian contexts (Arega, 2025; Al-Zahrani and Al-Yahya, 2024). Recent 
efforts include hybrid summarization and retrieval-augmented 
multilingual models (Alghamdi et al., 2024a; Alghamdi et al., 2024b; 
Khandelwal et al., 2024) and low-resource evaluations in African and 
Indian contexts (Arega, 2025; Al-Zahrani and Al-Yahya, 2024). Large-
scale multilingual benchmarks—PolyTruth (Gouliev et al., 2025; 
Macko et al., 2025) and the Macko et al. (2025)—quantify degradation 
on low-resource and code-mixed data and reveal that even strong 
encoders struggle with dialectal variation and transliteration.

Critical comparison.
	•	 Han (2022) and Dementieva et al. (2023) confirmed gains from 

multilingual encoders but avoided transliteration or noisy social-
media code-mixing.

	•	 Gouliev et  al. (2025) and Mohtaj et al. (2024) highlighted 
low-resource gaps yet lacked multimodal or 
explanation annotations.

	•	 Regional datasets, such as those studied by Arega (2025) and 
Al-Zahrani and Al-Yahya (2024), underscore domain biases 
absent from global corpora.

Shortcomings relative to RG1.
The majority of the multilingual systems optimize for scale but not 

realism: they ignore (a) tokenization under code-mixing and 
transliteration, (b) multimodal or cross-lingual visual cues, and (c) 
human-validated explanations. Hence, multilingual models remain 
brittle when claim and evidence languages differ. HEMT-Fake 
addresses this by integrating multilingual transformers with CNN/
BiLSTM branches to reinforce cross-lingual semantics.

2.3 RG2—multimodal integration and 
cross-modal inconsistency detection

State of the art.
Multimodal fake-news detection has progressed from late-fusion 

to cross-modal reasoning. Early multimodal baselines (Pérez-Rosas et 
al., 2018; Ruchansky et al., 2017) introduced textual–visual pairings. 
Modern systems, such as Multimodal Adaptive Graph-Based 
Intelligent Classification (MAGIC) (Xu et al., 2024) and 
Tri-Transformer Bootstrapping Language–Image Pretraining 
(TT-BLIP) Choi and Kim (2024), employ graph attention and BLIP-
style tri-transformers. Robust multimodal frameworks (FKA-Owl 
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Authors, 2024; Lu and Yao, 2025; Li et al., 2024; Zhang et al., 2024) 
strengthen alignment but rarely target multilingual or adversarial 
contexts. Nasser et al. (2025) and Chalehchaleh et al. (2024) survey 
emerging multimodal defenses, while Practical Newsroom Adoption 
Studies (2024) demonstrate the need for interpretable, 
operational tools.

Critical comparison.
	•	 MAGIC’s graph fusion exploits propagation but presumes high-

fidelity alignment and fails under doctored visuals.
	•	 TT-BLIP enhances image–text coherence but remains English- or 

Chinese-centric.
	•	 Low-resource multimodal datasets (Lekshmi Ammal and 

Madasamy, 2025; Macko et al., 2025) expand language scope yet 
lack adversarial perturbations.

Shortcomings relative to RG2.
Few systems quantify modality-specific contributions, detect 

cross-modal contradictions, or sustain performance when image/text 
quality diverges. HEMT-Fake’s hierarchical attention fusion explicitly 
models these inconsistencies and supports multilingual 
visual reasoning.

2.4 RG3—Explainability: from attention 
maps to human-actionable rationales

State of the art.
Explainable-AI methods for misinformation detection range from 

attention visualization to attribution-based and hybrid approaches. 
Early feature-based transparency models, such as those discussed by 
Wang (2017), established interpretable linguistic cues for deception 
detection. Hu et al. (2022a), combine co-attention with knowledge 
distillation for multimodal reasoning. Panchendrarajan et al. (2024) 
and Hardalov (2022) review XAI fidelity issues, with a particular 
emphasis on multilingual rationales. The XPLAINLP (2025) 
framework extends this line by producing counterfactual and feature-
level explanations for multilingual transformer outputs, offering 
practical templates for fact-checking. X-FRAME (Nwaiwu et al., 2025) 
similarly integrates XLM-R embeddings with LIME-based attribution, 
while Muñoz et al. (2024) conduct user studies that confirm that 
hybrid explanations improve trust—an insight echoed by policy and 
ethics analyses of automated fact-checking (2024).

Critical comparison.
	•	 Attention alone often lacks causal fidelity (Jain and Wallace, 2019).
	•	 LIME and SHAP yield feature importance but are unstable for 

long multilingual documents (Wang, 2017).
	•	 Hybrid attention + SHAP designs lack systematic human 

validation or cross-modal transparency.

Shortcomings relative to RG3.
Explainability progress remains fragmented—mainly 

characterized by post hoc and unimodal approaches. Gaps persist in 
(a) integrating hierarchical attention across languages and modalities, 
(b) producing human-readable rationales, and (c) user–study 
validation. HEMT-Fake’s explainability module unites attention, 

SHAP, and LIME with cross-lingual evidence mapping to 
address these.

2.5 RG4—adversarial robustness and 
LLM-generated misinformation

State of the art.
Recent analyses also link the generation of synthetic 

misinformation to broader issues of hallucination and factual 
unreliability in large language models (Ji et al., 2023), underscoring 
the need for adversarial evaluation of detectors trained on content 
generated by LLM. Transformers are vulnerable to paraphrasing, 
synonym substitution, and synthetic news (Nakamura et al., 2020; 
Cui and Lee, 2020). Shu et al. (2020) formalized early adversarial data 
splits, while Kukkar et al. (2025) and Chalehchaleh et al. (2024) 
propose adversarial training and perturbation frameworks. FKA-Owl 
Authors (2024) extends robustness testing to vision–language models.

Critical comparison.
	•	 Nakamura et al. (2020) show large drops under paraphrasing, but 

only in English.
	•	 Jawahar et al. (2023) and related studies demonstrate detector 

evasion by LLM-generated fakes.
	•	 Recent study on defensive distillation and multilingual 

adversarial augmentation (Kukkar et al., 2025; Nasser et al., 2025) 
remains under-evaluated across modalities.

Shortcomings relative to RG4.
Adversarial defenses are piecemeal: few assess multilingual, 

multimodal, and LLM-driven perturbations jointly. HEMT-Fake 
introduces paraphrasing, back-translation, and LLM-based negative 
augmentation for resilience testing across languages and modalities.

2.6 RG5—dataset limitations: coverage, 
adversarial examples, and rationale 
annotations

Benchmark datasets—LIAR, FakeNewsNet, Fakeddit, and CoAID 
(Cui and Lee, 2020)—underpin the majority of the progress (Shu et al., 
2020). Since 2022, new multilingual and multimodal datasets such as 
Dementieva et al. (2023), Yigezu et al. (2024), Gouliev et al. (2025), 
Macko et al. (2025), Mohtaj et al. (2024), and the Macko et al. (2025) 
have emerged, extending coverage across languages and modalities. 
However, the majority of them still lack integrated adversarial 
negatives and rationale annotations.

Critical comparison.
	•	 Dementieva et al. (2023) and Gouliev et al. (2025) benchmark 

multilingual retrieval yet lack image and rationale alignment 
(Gouliev et al., 2025).

	•	 Yigezu et al. (2024) and Lekshmi Ammal and Madasamy (2025) 
datasets are of low scale and single domain (Lekshmi Ammal and 
Madasamy, 2025).

	•	 Shared tasks vary in annotation consistency.
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Shortcomings relative to RG5.
Existing datasets seldom combine (i) multilingual code-mixing, 

(ii) multimodal pairing, (iii) adversarial perturbations, and (iv) 
explanation labels. This constrains research on holistic modeling and 
faithful XAI. HEMT-Fake’s evaluation corpus fills this gap with all 
four attributes.

2.7 Cross-cutting methodological trends 
and best practices

Recent studies highlight the following:
	 1.	 Hybrid architectures combining transformer, CNN, BiLSTM, 

and Graph Neural Network (GNN) components (MAGIC; 
FKA-Owl 2024; Lu and Yao, 2025) for multimodal 
temporal reasoning.

	 2.	 Pretrained vision–language backbones (BLIP/CLIP and 
TT-BLIP) adapted for low-resource multilingual captions 
(Zhang et al., 2024; Li et al., 2024).

	 3.	 Synthetic augmentation with LLMs to craft adversarial 
negatives (Kukkar et al., 2025; Nasser et  al., 2025) while 
guarding against label leakage.

	 4.	 Hybrid XAI pipelines integrating attention + SHAP/LIME with 
human-validated evaluations (Hu et al., 2022a; Muñoz et al., 
2024; Policy/Ethics Analyses of Automated Fact-
Checking, 2024).

2.8 Synthesis: how the prior study 
motivates HEMT-fake

Despite progress in multilingual transformers, multimodal fusion, 
and explainability, no system satisfies all operational demands for fact-
checking across multilingual, multimodal, and adversarial 
environments. Prior studies typically optimize a subset—such as 
language breadth, modality fusion, or explainability—but not all 
dimensions together.

HEMT-Fake integrates:
	•	 Multilingual transformer backbones with cross-lingual evidence 

retrieval → addresses RG1 (Alghamdi et al., 2024a; Arega, 2025).
	•	 Multimodal fusion using transformer + CNN + BiLSTM + 

optional GNN propagation → addresses RG2 (MAGIC; Lu and 
Yao, 2025).

	•	 Hierarchical explainability combining attention, SHAP, LIME, 
and evidence retrieval → addresses RG3 (Hu et al., 2022a; Muñoz 
et al., 2024).

	•	 Adversarial augmentation with paraphrase and LLM-generated 
negatives → addresses RG4 (Nakamura et al., 2020; Kukkar et 
al., 2025).

	•	 Evaluation on a new multilingual + multimodal + adversarial 
dataset with human explanation ratings → addresses RG5 
(Mohtaj et al., 2024; Macko et al., 2025).

2.9 Concluding remarks on the review

The 2017–2025 literature converges on a key insight: success in 
fake-news detection depends not only on representational accuracy 

but on cross-lingual generalization, multimodal reasoning, faithful 
explainability, adversarial resilience, and human validation. The 
proposed HEMT-Fake framework operationalizes these five 
principles, bridging gaps identified across prior studies and 
aligning with current practical and ethical expectations for 
deployable fact-checking systems (Practical Newsroom Adoption 
Studies, 2024; Policy/Ethics Analyses of Automated Fact-
Checking, 2024).

3 Data description

3.1 Scope and sources

To enable reproducible and representative experimentation, a 
multilingual, multimodal dataset (Patil et al., 2024) was compiled 
between January and May 2024. The dataset spans five languages—
Hindi, Gujarati, Marathi, Telugu, and English—and includes both 
textual claims and associated images. Sources include:

	 1.	 Fact-checking platforms (AltNews, BoomLive, Factly, and 
International Fact-Checking Network [IFCN] members, 
etc.)—serving as the gold standard for labeling fake vs. 
real content.

	 2.	 Mainstream news portals (The Hindu, The Indian Express, BBC 
Hindi, etc.)—supplying reliable, real news samples.

	 3.	 Social-media posts (Twitter/X, Facebook public pages, etc.)—
candidate fake content validated against fact-
checking repositories.

Each sample includes a unique identifier, textual content, 
metadata (including language, publication date, source Uniform 
Resource Locator [URL], and category), and image references.

To illustrate the distribution of multilingual content, we present 
the language-wise breakdown of fake and real news articles in the 
dataset. Figure 1 highlights the balanced representation across Hindi, 
Gujarati, Telugu, Marathi, and English, ensuring that no single 
language dominates the dataset. This balanced coverage is crucial for 
developing robust multilingual models that generalize effectively 
across diverse linguistic contexts.

In addition to distribution statistics, it is essential to demonstrate 
the nature of raw multilingual articles included in the dataset. Figure 2 
presents a representative Hindi article, showcasing the script, 
structural format, and annotation label (“Fake or Real”). Including 
such examples highlights the complexity of real-world data, where 
articles often contain a mix of linguistic styles, varied sentence lengths, 
and domain-specific terminology.

To further highlight the dataset’s multilingual nature, Figure 3 
illustrates a representative Gujarati news article. Gujarati content in 
the dataset captures both formal reporting from news portals and 
informal narratives from social-media platforms. These examples 
reveal challenges such as script-specific tokenization, mixed use of 
English and Gujarati words, and domain-specific terms that 
complicate automated fake-news detection.

The dataset also includes a significant portion of content in 
Telugu, one of the most widely spoken Dravidian languages in India. 
Figure 4 shows a representative Telugu article, annotated as Fake or 
Real. Telugu data presents unique challenges for automatic detection, 
including complex script morphology, agglutinative grammar, and 
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compound word formation. In addition, many Telugu articles 
demonstrate code-mixing with English, reflecting the real-world 
writing style found in social-media and online portals.

The dataset also contains substantial content in Marathi, a 
language with rich inflectional morphology and regional variations. 
Figure 5 presents a representative Marathi article, annotated as Fake 
or Real. Marathi articles in the dataset range from formal news 
reports to colloquial narratives posted on social media. This diversity 
introduces challenges such as handling dialectal variations, 
transliterated English words, and stylistic differences between formal 
and informal registers.

3.2 Data collection flow

To provide a visual overview of the dataset development process, 
Figure 6 depicts the end-to-end pipeline used to construct the 
multilingual fake-news dataset. The pipeline integrates ethical and 
legal compliance checks, large-scale crawling, parsing and extraction, 
deduplication, metadata enrichment, fact-check alignment, 
translation with semantic quality assurance, multilingual annotation, 
and final dataset release. This systematic workflow ensures 
reproducibility, balanced multilingual representation, and 
transparency in the dataset creation process.

FIGURE 1

Language-wise dataset distribution. Distribution of fake and real articles across Hindi, Gujarati, Telugu, Marathi, and English, demonstrating multilingual 
coverage and balanced sampling for cross-lingual robustness.

FIGURE 2

Example of a Hindi article. A representative Hindi news article included in the dataset, annotated as either Fake or Real. The figure illustrates the 
dataset’s raw structure and the challenges posed by script diversity and linguistic complexity.

FIGURE 3

Example of a Gujarati article. A representative Gujarati news article from the dataset, annotated as either Fake or Real. The figure highlights challenges 
such as script-specific tokenization, code-mixing with English, and domain-specific vocabulary that complicate the detection of multilingual fake 
news.
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Figure 6 shows the following steps for the dataset 
development process.

Step 1: Source Registry and Policy Check.
All candidate domains were verified for registry information, 

publication credibility, and licensing policies. Automated crawlers 
respected robots.txt directives, and sources that prohibited data usage 
were excluded to ensure legal compliance.

Step 2: Crawl and Fetch.
Articles were collected using domain-specific Application 

Programming Interfaces (APIs), Really Simple Syndication (RSS) 
feeds, and custom crawlers. Crawling was performed under strict rate-
limiting and retry mechanisms to prevent server overload and comply 
with platform guidelines.

Step 3: Parse and Extract.
From each retrieved webpage, the title, body text, images, and 

relevant metadata (e.g., publication date, author, and URL) were 
extracted. Non-textual noise, such as advertisements, scripts, and 
extraneous Hypertext Markup Language (HTML) tags, 
was discarded.

Step 4: Deduplication and Fingerprinting.
To eliminate redundancy, near-duplicate articles were identified 

using SimHash-based fingerprinting with a similarity threshold of 
0.85. Exact duplicates were removed based on canonical URLs and 
text hashing.

Step 5: Metadata Enrichment.
Each article was enriched with additional attributes, including 

automatic language detection, topical categorization (such as politics, 
health, and entertainment), and geolocation metadata. This 
enrichment facilitated downstream analysis and stratified balancing.

Step 6: Cross-check Evidence.
Candidate claims were verified against fact-checking repositories, 

including AltNews, BoomLive, and IFCN-certified platforms. Each 

item was validated against verified fact-check entries, allowing 
confident assignment of Fake or Real labels.

Step 7: Translation and Back-Translation Quality Assurance.
Non-English articles were translated into English using 

MarianMT, and semantic fidelity was verified through back-
translation. Instances with similarity scores below 0.55 were flagged 
for human review to maintain translation quality.

Step 8: Annotation.
Three trained bilingual annotators independently reviewed each 

article. Labels (Fake or Real) were assigned following strict guidelines, 
and disagreements were resolved via adjudication. Inter-annotator 
agreement reached a substantial level (κ = 0.82).

Step 9: Finalization and release preparation.
The dataset was anonymized by removing personally identifiable 

information (PII), assigned unique identifiers, and packaged into a 
version-controlled release. A public release was prepared, including 
licensing, documentation, and a metadata manifest.

Figure 6 illustrates this complete end-to-end pipeline. To 
complement this pipeline, the preprocessing strategies applied after 
collection are summarized in Table 1, which outlines the cleaning, 
balancing, and augmentation methods used on the dataset.

3.3 Article collection

The first stage of dataset creation is a robust article collection 
pipeline designed to ingest multilingual content from heterogeneous 
sources (fact-checking portals, mainstream news outlets, and social-
media feeds). This algorithm ensures that the dataset respects legal 
and ethical constraints while maximizing coverage across languages.

The process begins with a registry of approved sources, where 
each domain is validated for crawl permissions via robots.txt and 

FIGURE 5

Example of a Marathi article. A representative Marathi news article from the dataset, annotated as either Fake or Real. The figure highlights linguistic 
and stylistic complexities such as dialectal variation, transliteration of English terms, and shifts between formal and informal registers that complicate 
automated multilingual fake-news detection.

FIGURE 4

Example of a Telugu article. A representative Telugu news article from the dataset, annotated as either Fake or Real. The figure highlights the linguistic 
complexity of Telugu, including compound word structures, agglutinative morphology, and frequent code-mixing with English, which makes 
multilingual fake-news detection particularly challenging.
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licensing terms. Once verified, the crawler fetches articles using RSS 
feeds, sitemaps, or site-specific APIs. To preserve data quality, the 
pipeline applies rate-limiting and retry mechanisms to prevent 
overloading servers or missing content due to transient errors.

Each fetched article is then parsed for metadata (title, author, 
publication date, text body, and images) and subjected to deduplication 
using SimHash-based fingerprinting. This step prevents redundancy 
and ensures that the dataset contains unique entries. The algorithm 

also records license metadata and stores raw HTML snapshots 
for reproducibility.

Pseudocode: Algorithm 1—Multilingual Article Collection.
In summary, Algorithm 1 ensures a legally compliant, 

deduplicated, and metadata-rich corpus that serves as the foundation 
for subsequent translation, annotation, and classification steps.

3.4 Article translation and normalization

Given the multilingual nature of the dataset, the second stage 
involves translation and quality assurance to align non-English 
content into a common pivot language (English). This alignment 
enables consistent cross-lingual representation learning and facilitates 
evaluation across multiple languages.

The algorithm begins with language detection using a fastText-
based classifier. If the article is already in English, it is stored directly. 
Otherwise, it is translated into English using MarianMT/Opus-MT 
(the preferred offline engine) or a fallback API when needed.

To safeguard translation quality, a back-translation step is 
performed: the translated English text is re-translated into the original 
language. The original and back-translated texts are then compared 
using semantic similarity (cosine embeddings) and optional Bilingual 
Evaluation Understudy/Translation Edit Rate (BLEU/TER) scores. If 
the similarity exceeds a threshold, the translation is accepted. 
Otherwise, the article is flagged for human review, where bilingual 
experts adjudicate translation fidelity.

Each translated article is stored with its original version, pivot 
translation, back-translation, similarity metrics, and a quality flag. This 
ensures traceability and transparency in multilingual preprocessing.

Pseudocode: Algorithm 2—Translation, Back-Translation and 
Quality Assurance (QA).

In summary, Algorithm 2 ensures that the dataset is linguistically 
aligned, semantically faithful, and quality-controlled, thereby enabling 
robust multilingual fake-news detection experiments.

FIGURE 6

End-to-end data collection and preparation pipeline. The pipeline consists of nine stages: (1) source registry and policy compliance checks, (2) crawl 
and fetch of candidate articles, (3) parsing and metadata extraction, (4) deduplication and fingerprinting, (5) metadata enrichment, (6) evidence cross-
checking with fact-checking repositories, (7) translation and back-translation quality assurance, (8) annotation by trained multilingual annotators, and 
(9) finalization and release preparation. This process ensures the production of high-quality, ethically compliant, and reproducible multilingual fake-
news data.

TABLE 1  Summary of dataset composition, preprocessing, and balancing 
across five languages (Hindi, Gujarati, Marathi, Telugu, and English).

Stage Techniques applied

Text cleaning Unicode normalization, stopword removal, and 

transliteration normalization

Duplicate detection SimHash fingerprinting (threshold 0.85) and canonical 

URL checks

Noise filtering Minimum of 50 tokens/article, low-quality translation 

removal, and corrupted images were discarded

Image preprocessing Resize to 224 × 224, histogram equalization, and 

perceptual hashing (pHash)

Class balancing Stratified sampling, oversampling of the minority, and 

undersampling of the majority classes

Text augmentation Synonym replacement, back-translation, paraphrasing 

(mT5 and Pegasus), adversarial perturbations

Image augmentation Rotation, flips, Gaussian noise, brightness/contrast 

adjustment, and cropping/zooming

Cross-modal 

augmentation

Artificially misaligned text–image pairs to simulate 

inconsistencies

Quality assurance Semantic similarity validation, 5% manual spot checks, 

and version-controlled logs

The table reports the number of instances before and after cleaning, the percentage of Fake 
or Real labels, and the augmented samples.
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3.5 Annotation and quality control

	•	 Annotators: Three bilingual experts per language (linguists 
and journalists).

	•	 Label schema: Fake (verified false), Real (verified true).
	•	 Inter-annotator agreement: κ = 0.82, indicating 

substantial agreement.
	•	 Consensus: Disagreements were resolved via 

adjudication meetings.
	•	 Image verification: Reverse-image search and Exchangeable 

Image File Format (EXIF) metadata analysis to 
detect manipulations.

	•	 Adversarial samples: Synthetic fakes generated via paraphrasing 
and LLMs were flagged separately for adversarial testing.

3.6 Dataset statistics

	•	 Total articles: Notably, 74,032 (Fake = 37,232; Real = 36,800).
	•	 Languages: Hindi (20,493), Gujarati (17,859), Telugu (18,284), 

and Marathi (17,396).

	•	 Images: ~22,000 paired with text samples.
	•	 Domains: Politics (32%), health (24%), environment (12%), 

entertainment (18%), local issues (14%).
	•	 Average length: A total of 245 tokens/article (text), 1.3 images/

article (where present).

Input: Source list S (fact-checkers, portals, and feeds), configuration cfg

Output: Raw dataset D_raw

1: Initialize empty dataset D_raw and crawl_cache

2: For each domain d S do

3: if robots.txt(d) allows crawling then

4: Extract candidate links from RSS/sitemap/API

5: For each link L in candidate links, do

6: Fetch page respecting cfg.rate_limit and retry_policy

imHash(text)

9: if fingerprint D_raw then

11: Append Record to D_raw

12: Return D_raw 

ALGORITHM 1

Multilingual article collection and ingestion.

Input: Raw dataset D_raw, pivot language = English

Output: Translated dataset D_trans

1: Initialize empty dataset D_trans

2: For each record r D_raw do

4: if lang = English then

6: else

 

 

 

12: else 

 

 

15: Return D_trans 

ALGORITHM 2

Article translation, back-translation, and QA.
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3.7 Cleaning, balancing, and augmentation

To ensure that the dataset is reliable, unbiased, and suitable for 
multilingual fake-news detection, a systematic multi-stage process 
was applied to clean, balance, and augment the collected articles. 
Table 1 presents a structured overview of the preprocessing pipeline 
designed to ensure high-quality, balanced, and robust multilingual–
multimodal data. The cleaning stage involved text normalization, 
duplicate detection using SimHash, noise filtering, and image 
preprocessing. The balancing stage applied stratified sampling, 
oversampling of minority classes, and undersampling of 
overrepresented categories to maintain a 1:1 ratio between Fake and 
Real news within each language. The augmentation stage incorporated 
a combination of text-based transformations (synonym replacement, 
paraphrasing, back-translation, and adversarial perturbations), 
image-level augmentations (rotation, flips, brightness/contrast 
adjustment, and Gaussian noise), and cross-modal augmentation by 
intentionally misaligning text–image pairs. Finally, quality assurance 
checks (semantic similarity validation, manual spot-checks, and 
version-controlled logs) were applied to guarantee semantic fidelity 
and reproducibility.

3.7.1 Cleaning and normalization

	•	 Text cleaning: All raw text was normalized into the Unicode 
Transformation Format-8-bit (UTF-8) format to accommodate 
multilingual characters. HTML tags, scripts, advertisements, 
emojis, and non-informative tokens were removed. Stopwords 
were filtered using language-specific stopword lists (Hindi, 
Gujarati, Marathi, Telugu, and English). Code-mixed and 
transliterated text was normalized using phonetic matching and 
transliteration libraries to standardize representation.

	•	 Duplicate detection: Near-duplicate entries were removed using 
SimHash-based content fingerprinting with a similarity threshold 
of 0.85. Exact duplicates were eliminated by checking canonical 
URLs and text hashes.

	•	 Noise filtering: Articles with fewer than 50 tokens were discarded 
as they lacked sufficient information for classification. 
Low-quality translations (semantic similarity score < 0.55 in 
back-translation checks) were flagged and either corrected 
through human review or excluded. Corrupted or broken image 
files were discarded.

	•	 Image preprocessing: All images were resized to 224 × 224 pixels. 
Histogram equalization and color normalization were applied to 
improve feature extraction. Duplicate or visually identical images 
were removed using perceptual hashing (pHash).

3.7.2 Class balancing
Class imbalance was addressed to ensure fair learning across Fake 

and Real categories:

	•	 Stratified sampling: Ensured equal representation across the five 
languages and both classes.

	•	 Oversampling: Minority classes (e.g., Gujarati Real articles) were 
oversampled using data duplication with slight perturbations.

	•	 Undersampling: Majority classes (e.g., Hindi Fake articles) were 
reduced to maintain a balanced 1:1 ratio between classes within 
each language.

	•	 Final ratio: Approximately 50:50 between Fake (37,232) and Real 
(36,800).

3.7.3 Data augmentation
To increase robustness, especially for low-resource languages, 

augmentation techniques were applied at both the text and 
image levels:

	•	 Text augmentation

Synonym replacement: Randomly replaced content words with 
synonyms using multilingual WordNet resources.

Back-translation: Articles were translated into English and then 
back to the original language to generate paraphrased variants while 
preserving the original meaning.

Paraphrasing: Transformer-based paraphrasers (mT5 and Pegasus 
Multilingual) generated semantic variants.

Adversarial perturbations: Character-level perturbations (e.g., 
homoglyph substitution and misspellings) were introduced to 
simulate adversarial noise.

	•	 Image augmentation: Random rotation (±15°), horizontal/
vertical flips, and slight Gaussian noise were applied. Brightness 
and contrast adjustments simulated variable-quality uploads 
from social media. Cropping and zooming simulated partial 
screenshots and low-resolution reposts.

	•	 Cross-modal augmentation: Misaligned text–image pairs were 
artificially created (e.g., pairing an image from one article with 
unrelated text) to train the model to detect cross-
modal inconsistencies.

3.7.4 Quality assurance

	•	 Each augmented dataset batch was automatically validated with 
semantic similarity checks to ensure label consistency.

	•	 Manual spot checks by annotators were performed on 5% of 
augmented samples to verify quality.

	•	 All augmentation processes were logged, version-controlled, and 
reproducible via preprocessing scripts.

3.8 Dataset availability

The dataset generated and analyzed in this study is an original, 
multilingual dataset curated by the authors and is publicly available in 
full. The complete dataset, along with preprocessing scripts and 
annotation guidelines, can be accessed at Zenodo DOI: 10.5281/
zenodo.11408513. The dataset is released under a Creative Commons 
Attribution–NonCommercial 4.0 International (CC BY-NC 4.0) 
license, which permits reuse and adaptation for academic research 
with appropriate citation but prohibits commercial use without 
explicit permission from the authors.

4 Methodology

The dataset used in this study, including its multilingual 
sources, annotation process, cleaning, balancing, augmentation, 
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and ethical approval, is presented in Section 3. This section 
focuses on the HEMT-Fake (Hybrid Explainable Multimodal 
Transformer) architecture, its multimodal design, the 
explainability module, training procedures, and reproducibility 
protocols. The end-to-end workflow is illustrated in Figure 7, 
and the pseudocode of the training loop is presented in 
Algorithm 3.

4.1 Architectural overview

HEMT-Fake is designed to integrate multilingual textual 
embeddings, visual features, and relational metadata into a unified, 
interpretable framework. It addresses limitations of prior models by 
emphasizing cross-lingual robustness, multimodal fusion, and 
explainability. The proposed HEMT-Fake framework integrates 
multilingual textual embeddings, image features, and relational 
metadata into a unified multimodal pipeline. As shown in Figure 7, 
the architecture consists of parallel encoders for text 
(XLM-RoBERTa, CNN, and BiLSTM), images (ResNet-50), and 
graph metadata (GraphSAGE). A self-attention fusion mechanism 
integrates these heterogeneous signals, which are then passed to a 
dense classifier for predicting whether an input is Fake or Real. To 
ensure interpretability, the model incorporates a hierarchical 
attention mechanism, complemented by SHAP and LIME, for post 
hoc explainability.

Figure 7 illustrates the architecture of the proposed Hybrid 
Explainable Multimodal Transformer (HEMT-Fake) framework. and 
having the following layers.

1. Input Layer
The model accepts heterogeneous inputs:

	•	 Textual content: News headlines and body text in multiple 
languages (Gujarati, Hindi, Marathi, Telugu, and English).

	•	 Visual content: Images accompanying articles, which often 
contain misleading or manipulated elements.

	•	 Metadata and relational information: Includes publisher 
credibility, user–content propagation, and domain-level features.

2. Text Encoding Branch
This branch leverages complementary encoders to capture fine-

grained linguistic features.
	•	 XLM-RoBERTa: A transformer-based multilingual encoder 

pretrained on 100 + languages. It generates contextual 
embeddings with a hidden size of 768 and a maximum sequence 
length of 512. Fine-tuning enables cross-lingual generalization.

	•	 CNN Layers: Capture stylistic and lexical cues (e.g., exaggeration, 
clickbait). Configured with 3 convolutional layers, kernel sizes {3, 
5, 7} and filters {128, 128, 256}, followed by Rectified Linear Unit 
(ReLU) activations and max pooling.

	•	 BiLSTM Layers: Capture long-range sequential dependencies in 
narratives. Two stacked BiLSTM layers (hidden size = 256; 
dropout = 0.3) model temporal and discourse coherence.

FIGURE 7

Architecture of the proposed HEMT-Fake framework. The model integrates multilingual text encoders (XLM-RoBERTa, CNN, BiLSTM), an image 
encoder (ResNet-50), and a graph encoder (GraphSAGE). A multi-head self-attention fusion layer combines multimodal features, which are then 
passed through dense classifiers for the prediction of Fake or Real. An explainability module comprising hierarchical attention, SHAP, and LIME provides 
interpretable outputs for human-centered fact-checking.
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This multi-branch design ensures that both global semantics and 
local stylistic patterns are captured.

3. Image Encoding Branch
	•	 Implemented with ResNet-50, pretrained on ImageNet.
	•	 Extracts 2,048-dimensional semantic embeddings from 

article images.
	•	 Fine-tuned using dataset-specific augmentations (random flips, 

rotations, and noise injection) to enhance generalization.
	•	 Captures visual-semantic alignment with text, crucial for 

detecting misleading or doctored images in fake news.

4. Graph Encoding Branch
	•	 Implemented with GraphSAGE, which learns relational 

embeddings from metadata such as user–article interactions, 
domain reliability, and source propagation.

	•	 Hidden size = 128; 2-hop neighborhood aggregation captures 
multi-level relational dependencies.

	•	 Mean aggregator chosen for scalability.
	•	 Enables the model to account for propagation dynamics and 

credibility patterns, complementing textual and visual cues.

5. Fusion Layer
	•	 A multi-head self-attention mechanism integrates embeddings 

from the text, image, and graph encoders.
	•	 Configured with 8 attention heads, the hidden size is 512.
	•	 Learns cross-modal interactions, for example, aligning 

sensational claims (text) with manipulated visuals (image) and 
low-credibility propagation (graph).

	•	 Outputs a unified multimodal embedding that captures 
complementary evidence across modalities.

6. Classifier
	•	 Two fully connected dense layers (512 → 128, ReLU, 

dropout = 0.4).
	•	 Final softmax output for binary classification (Fake vs. Real).
	•	 Designed to be lightweight yet robust for real-time 

detection scenarios.

7. Explainability Module
	•	 HEMT-Fake integrates both intrinsic and post hoc explainability:
	•	 Hierarchical Attention: Provides interpretable scores at token, 

sentence, and modality levels, highlighting critical input segments.
	•	 LIME: Generates local explanations by approximating the model 

with interpretable surrogates (num_samples = 5,000).
	•	 SHAP: Computes global and local feature contributions 

using Shapley values (DeepSHAP with 500 
background samples).

	•	 Evaluation of explanations: Fidelity (agreement with predictions), 
stability (robustness under perturbation), and human-centered 
interpretability. In fact-checker evaluations, 82% of explanations 
were rated “highly meaningful.”

The proposed HEMT-Fake framework integrates textual, visual, and 
relational features into a unified multimodal pipeline. As illustrated in 
Figure 7, the architecture employs XLM-RoBERTa, CNN, and BiLSTM 
for multilingual text encoding, ResNet-50 for image features, and 

GraphSAGE for relational signals. A self-attention fusion mechanism 
combines these representations, followed by dense classifiers for Fake or 
Real prediction, while an explainability module (hierarchical attention, 
SHAP, LIME) ensures human-interpretable outputs.

4.2 Dataset reference

As detailed in Section 3:

	•	 The dataset covers five languages (Gujarati, Hindi, Marathi, 
Telugu, and English).

	•	 The dataset is annotated by three bilingual experts per language 
(κ = 0.82).

	•	 The dataset is balanced at a 1:1 ratio of Fake vs. Real after cleaning 
and augmentation.

	•	 Publicly released under CC BY-NC 4.0 (DOI: 10.5281/
zenodo.11408513).

The dataset supports multilingual robustness and 
ensures reproducibility.

4.3 Explainability module

HEMT-Fake incorporates both intrinsic and post 
hoc explainability:

1.  Hierarchical Attention:
	•	 Token-level, sentence-level, and modality-level attention weights.
	•	 Heatmaps visualize the contribution of individual words, 

sentences, or modalities.

	 2.	 SHAP (SHapley Additive exPlanations):
	•	 Applied to text and image branches.
	•	 Uses 500 background samples.
	•	 Provides global and local attributions.

	 3.	 LIME (Local Interpretable Model-agnostic Explanations):
	•	 Applied at the instance level.
	•	 num_samples is 5,000; kernel_width is 0.75.

	 4.	 Evaluation:
	•	 Fidelity: Pearson correlation between the importance of 

explanations and model logits.
	•	 Stability: Robustness of explanations under text/

image perturbations.
	•	 Human-centered evaluation: Approximately 82% of explanations 

were rated useful by professional fact-checkers.

4.4 Training procedure

	•	 Optimizer: AdamW with learning rate = 2e-5, weight 
decay = 0.01.

	•	 Loss Function: Cross-entropy with adversarial regularization 
λ = 0.1.
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	•	 Batch Size: 32.
	•	 Epochs: 15 (with early stopping, patience = 3).
	•	 Dropout: 0.3–0.5 across layers.
	•	 Scheduler: Linear warmup (10% of steps).
	•	 Hardware: NVIDIA A100 graphics processing unit (GPU) 

(40 GB). Training time ~2.4 h per epoch.
	•	 Random Seeds: Fixed at {42, 123, 2025} to ensure reproducibility.
	•	 Frameworks: PyTorch 2.0, HuggingFace Transformers 4.33, and 

PyTorch Geometric for GraphSAGE.

4.5 Algorithms

Algorithm 3 summarizes the training workflow of HEMT-Fake. 
The pipeline begins with the initialization of all encoders, including 
XLM-RoBERTa for text, CNN and BiLSTM for stylistic and sequential 
features, ResNet-50 for image features, and GraphSAGE for relational 
metadata (Step 1).

During each epoch (Step 2), the dataset is processed in mini-
batches (Step 3). For each batch, textual inputs are transformed 
into embeddings using XLM-RoBERTa (Step 4). These 
embeddings are passed through two auxiliary branches: a CNN 
branch for local stylistic cues (Step 5) and a BiLSTM branch for 
sequential dependencies (Step 6). Parallelly, image inputs are 
processed by the ResNet-50 encoder (Step 7), while metadata, 
such as source–user interactions, are processed by GraphSAGE 
(Step 8).

The resulting feature representations are integrated in the 
fusion layer using a multi-head self-attention mechanism, which 
learns modality-specific weights and produces a unified 
multimodal embedding (Step 9). This fused representation is 
passed through a fully connected classifier to generate prediction 
logits (Step 10).

The training objective (Step 11) is the cross-entropy loss, 
augmented with an adversarial regularization term λ·AdvLoss to 
increase robustness against adversarial attacks. Model parameters are 
updated using AdamW optimization with backpropagation (Step 12). 
After completing all epochs, the trained HEMT-Fake model is 
returned (Step 13).

This design ensures that the model leverages local (CNN), 
sequential (BiLSTM), global contextual (transformer), visual (ResNet), 
and relational (GraphSAGE) cues simultaneously, while maintaining 
interpretability through hierarchical attention and post hoc 
explainability modules.

4.6 Reproducibility and code release

To ensure openness and transparency:

	•	 Code Repository: This will be released on GitHub, featuring 
scripts for preprocessing, training, and evaluation.

	•	 Sample Dataset: A 5% subset (~3,500 examples) included 
with code.

	•	 Full Dataset: Available at Zenodo (DOI: 10.5281/
zenodo.11408513).

	•	 Experiment Logs: YAML/JSON config files record all 
hyperparameters and seeds.

	•	 Model Checkpoints: Trained weights for reproducibility 
and benchmarking.

5 Results

5.1 Experimental setup

We evaluated HEMT-Fake on the multilingual multimodal dataset 
described in Section 3, comprising 74,032 annotated news articles across 
Gujarati, Hindi, Marathi, Telugu, and English. The dataset was split into 
training (70%), validation (15%), and test (15%) sets using stratified 
sampling to maintain class balance. Each experiment was repeated over 
three random seeds (42, 123, 2025), and the results were reported as mean 
± standard deviation.

For all key metrics—accuracy, recall, and macro-F1—we report 
95% confidence intervals (CIs), computed via bootstrap resampling, 
and tested statistical significance using paired t-tests against baselines 
(p < 0.01).

Input: Multilingual dataset D =

Output: Trained model M

1: Initialize encoders: XLM-R, CNN, BiLSTM, ResNet-50, GraphSAGE

2: For each epoch e = 1 to E do

3: For each batch (text, image, metadata, label) in D:

4: text_emb XLM-R(text)

feat])

+

12: Backpropagate; update params using AdamW

13: Return the final trained model M

ALGORITHM 3

HEMT-fake training pipeline.
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5.2 Multilingual fake-news detection 
performance

Table 2 demonstrates the superiority of HEMT-Fake over 
competitive baselines. The improvements of ~5% in Macro-F1 and 
~4% in Recall highlight its effectiveness in capturing both multilingual 
and multimodal signals. The inclusion of confidence intervals ensures 
statistical robustness. Notably, performance remains stable across 
languages with diverse resource availability, confirming the 
generalizability of the proposed approach.

Key findings

	•	 HEMT-Fake outperforms all baselines by ~5% in Macro-F1.
	•	 Gains are most significant in low-resource languages (Gujarati, 

Marathi) where hybrid modeling captures both stylistic and 
contextual cues.

5.3 Cross-lingual and cross-dataset 
validation

To assess generalizability, we performed cross-lingual transfer 
experiments. Models were trained on one source language and tested 
on unseen target languages. The results of cross-lingual validation are 
summarized in Table 3, which shows that HEMT-Fake consistently 
outperforms multilingual baselines across unseen languages.

For example, when trained on Hindi and tested on Gujarati, 
HEMT-Fake achieved a Macro-F1 score of 78.4%, outperforming 
XLM-RoBERTa by 7.1%. Similar gains were observed for Marathi 
and Telugu.

We further performed cross-dataset evaluation using two external 
resources: (i) an AI-generated fake-news set (GPT-based) and (ii) the 

FakeNewsNet multilingual collection. HEMT-Fake consistently 
maintained >80% accuracy in zero-shot transfer, whereas mBERT and 
mT5 dropped below 70%, confirming superior cross-
domain robustness.

5.4 Robustness against adversarial and 
AI-generated fake news

Table 4 presents the cross-lingual performance of HEMT-
Fake when trained on one language and tested on others, 
compared with mBERT, XLM-R, and multimodal baselines. 
Results highlight that HEMT-Fake achieves superior 
generalization, with 7–8% higher Macro-F1 in low-resource 
target languages (Gujarati, Marathi, and Telugu). This confirms 
the model’s ability to transfer knowledge effectively across 
languages, addressing the limitations of monolingual or weakly 
aligned multilingual approaches.

	•	 HEMT-Fake maintains significantly higher accuracy under 
adversarial shifts.

	•	 Performance drop from clean to perturbed is <9%, compared to 
~15–20% for baselines

5.5 Explainability and interpretability results

Figure 8 shows an attention heatmap generated by HEMT-
Fake’s explainability module. Darker shades correspond to higher 
attention weights, indicating the tokens most influential in the 
model’s classification decision. This visualization demonstrates how 
the model focuses on key linguistic cues—such as emotionally 
charged or misleading terms—providing interpretable insights for 
fact-checkers.

TABLE 3  Cross-lingual validation results (Macro-F1 ± 95% CI).

Train → test Gujarati (F1) Hindi (F1) Marathi (F1) Telugu (F1) English (F1) Average 
Macro-F1

XLM-R 71.3 ± 1.2 73.5 ± 1.4 70.8 ± 1.1 69.6 ± 1.3 75.1 ± 1.0 72.1

mBERT 69.5 ± 1.6 72.1 ± 1.2 68.2 ± 1.7 66.9 ± 1.4 74.3 ± 1.2 70.2

mT5 72.0 ± 1.4 74.8 ± 1.5 70.9 ± 1.3 68.8 ± 1.4 76.2 ± 1.1 72.5

HEMT-Fake 78.4 ± 1.3 81.2 ± 1.1 77.3 ± 1.4 76.5 ± 1.5 82.6 ± 1.0 79.2

HEMT-Fake significantly outperforms baselines across unseen languages (p < 0.01) (train on one language, test on unseen languages).

TABLE 2  Performance of HEMT-fake and baseline models on the multilingual–multimodal dataset, reported using accuracy, precision, recall, and 
Macro-F1 (±95% CI).

Model Gujarati (F1) Hindi (F1) Marathi (F1) Telugu (F1) Avg. Macro-F1 ROC-AUC

Logistic Reg. 0.72 0.74 0.70 0.69 0.71 0.78

SVM 0.75 0.76 0.71 0.70 0.73 0.80

CNN 0.78 0.80 0.75 0.73 0.77 0.83

BiLSTM 0.79 0.82 0.76 0.75 0.78 0.84

mBERT 0.83 0.86 0.81 0.80 0.83 0.88

XLM-R 0.85 0.88 0.83 0.82 0.84 0.90

HEMT-Fake 0.89 0.92 0.87 0.86 0.89 0.94
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Figure 9 shows token-level attributions generated by LIME and 
SHAP for a sample news article. Words contributing toward a 
“fake” prediction are highlighted in warmer colors, while those 
supporting a “real” classification are shown in cooler tones. This 
visualization demonstrates how HEMT-Fake identifies key 
linguistic signals—such as exaggerated claims or neutral factual 
terms—when making decisions. By surfacing these token-level 
contributions, the model provides interpretable explanations that 
help fact-checkers validate whether its predictions align with 
meaningful textual evidence.

Key findings

	•	 Expert evaluators (N = 5 journalists) judged 82% of explanations 
as “highly meaningful,” compared to only 63% for XLM-R 
attention outputs.

	•	 This validates that HEMT-Fake is not only accurate but also 
transparent and trustworthy.

5.6 Ablation study

To isolate contributions of each module, we performed systematic 
ablations (Table 5):

	•	 Without CNN branch: Macro-F1 decreased by 0.05, highlighting 
the importance of stylistic cues.

	•	 Without BiLSTM branch: Recall dropped by 6.2%, indicating the 
role of sequential dependencies.

	•	 Without GraphSAGE: Precision reduced by 5.8%, suggesting 
relational cues improve credibility assessment.

	•	 Without fusion layer (simple concatenation): Macro-F1 dropped 
by 7.9%, confirming the necessity of attention-based integration.

	•	 Without adversarial training: Robustness against AI-generated 
fakes decreased by 10.3%.

	•	 Without explainability module: User interpretability ratings 
dropped from 82 to 46%, underscoring its practical importance.

The ablation results in Table 6 demonstrate that removing any 
major component reduces performance, confirming the necessity of 
the hybrid architecture.

These findings validate that each architectural choice makes a 
meaningful contribution to overall performance.

5.7 Confusion matrix

Figure 10 presents the confusion matrix illustrating HEMT-Fake’s 
classification outcomes for real vs. fake news. The diagonal cells 
represent correctly classified instances, while off-diagonal cells 

TABLE 4  Cross-lingual evaluation of HEMT-fake compared with 
baselines, showing accuracy, recall, and macro-F1 across unseen target 
languages.

Model Clean 
test

Perturbed 
test

AI-generated

mBERT 89.5 73.2 69.8

XLM-R 91.1 77.6 72.5

HEMT-Fake 94.0 85.3 80.4

FIGURE 8

Attention heatmap visualization from HEMT-Fake highlighting influential words in a multilingual news article.

FIGURE 9

LIME/SHAP word attributions for fake vs. real news classification in HEMT-Fake.
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TABLE 5  Ablation results showing the contribution of each component to performance.

Model variant Accuracy (%) Recall (%) Macro-F1 (%)

Full HEMT-Fake 87.6 86.3 85.9

	-	 CNN branch 83.1 80.4 80.9

	-	 BiLSTM branch 82.9 80.1 79.7

	-	 GraphSAGE encoder 83.6 81.2 80.1

	-	 Fusion (concatenation instead) 81.4 79.5 78.0

	-	 Adversarial training 82.0 78.9 79.2

	-	 Explainability module 84.7 83.1 81.0

Removing multimodal branches or fusion significantly reduces Macro-F1, confirming their complementary benefits.

FIGURE 10

Confusion matrix of HEMT-Fake on the multilingual–multimodal test 
set.

indicate misclassifications. Results show that the model maintains 
high accuracy across both classes, with slightly higher precision in 
detecting fake news compared to real news. The few misclassifications 
are primarily attributed to sarcasm, code-mixing, or ambiguous 
phrasing, highlighting the challenge of nuanced linguistic constructs. 
This visualization provides an intuitive summary of classification 
strengths and error patterns, complementing the quantitative metrics 
reported in Tables 4–7.

5.8 Human validation and expert feedback

While quantitative metrics such as F1-score and accuracy provide 
an objective evaluation of HEMT-Fake, it is equally important to assess 
how well the model’s predictions and explanations align with human 
judgment, particularly that of domain experts. To this end, we 
conducted an expanded user study in collaboration with the Journalism 
and Media Communication department at Vishwakarma University.

A total of 12 participants took part, including postgraduate students 
specializing in media literacy and two professional journalists. Each 

participant evaluated 100 news articles sampled across four languages 
(Hindi, Gujarati, Marathi, and Telugu). For each article, evaluators judged:

	 1	 Prediction plausibility – whether the predicted label matched 
their own judgment.

	 2	 Explanation meaningfulness – whether the highlighted words/
phrases provided by the model were relevant.

	 3	 Overall trustworthiness  – whether the combination of 
prediction and explanation could be considered reliable for 
fact-checking.

The results are summarized in Table 7, which shows strong 
alignment between human judgment and system outputs. Agreement 
with model predictions averaged 84%; explanations were rated as 
meaningful or highly meaningful in 82% of cases, and overall 
trustworthiness was scored as ≥4/5 in 79% of evaluations. Inter-
annotator agreement was substantial (Cohen’s κ = 0.78), indicating 
consistent human–system alignment.

Although the study remains modest in scale, these findings 
confirm that HEMT-Fake provides meaningful support for human 
verification tasks. We explicitly acknowledge that larger, multi-
institutional evaluations involving journalists, fact-checkers, and 
diverse end-users will be necessary to fully establish effectiveness of 
our approach in real-world deployment.

5.9 Computational efficiency

	•	 Training time: HEMT-Fake = 2.4 h/epoch vs. 2.1 h (XLM-R).
	•	 Inference latency: ~140 ms/article (slightly higher than XLM-R’s 

110 ms).
	•	 Parameter count: ~420 M (vs. 355 M for XLM-R).

Key summary: Slight computational overhead, but justified by 
superior accuracy, robustness, and explainability.

TABLE 6  Summary of user study results across 12 evaluators and 100 news articles per participant.

Evaluation metric Result (average) (%) Notes

Agreement with model output 84 Percentage of cases where evaluators agreed with system predictions

Explanation usefulness 82 Percentage of cases where highlighted words/phrases were rated as meaningful or highly meaningful

Trustworthiness score 79 Percentage of cases rated ≥4 on a 5-point Likert scale

Inter-annotator agreement κ = 0.78 Indicates substantial agreement among evaluators
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5.10 Statistical validation and external 
robustness

To strengthen the evaluation beyond conventional metrics, we 
performed additional analyses. First, paired t-tests were conducted to 
compare HEMT-Fake against baseline models across all datasets. 
Results confirmed that improvements in Macro-F1 were statistically 
significant (p < 0.01), indicating that performance gains are unlikely 
due to random variation.

Second, a cross-dataset evaluation was performed to test 
generalizability. The model was trained on one language dataset 
(e.g., Hindi) and tested on another (e.g., Gujarati, Marathi, or 
Telugu). While a moderate drop in performance was observed 
compared to in-domain evaluation, HEMT-Fake consistently 
outperformed baselines, demonstrating its capacity for 
multilingual generalization.

Finally, we performed external validation on a dataset of 
AI-generated fake-news articles created using GPT-based 
generators. HEMT-Fake maintained an accuracy above 80%, 
outperforming strong baselines such as XLM-R by approximately 
8%. This confirms that the framework is not only effective on 
curated datasets but also robust to synthetic adversarially 
generated misinformation.

As shown in Table 5, HEMT-Fake consistently outperformed the 
strongest baseline (XLM-R) across both in-domain and cross-dataset 
settings. Cross-dataset evaluations, where the model was trained on 
Hindi and tested on Gujarati, Marathi, or Telugu, demonstrated only 
moderate drops in Macro-F1 (0.81–0.83) compared to in-domain 
performance (0.89), but still yielded a 6% gain over baselines. 
Importantly, paired t-tests confirmed that these improvements are 
statistically significant (p < 0.01). In external validation using 
GPT-generated fake news, HEMT-Fake maintained an accuracy of 
81%, surpassing XLM-R by 8%, which further confirms its robustness 
against adversarially generated misinformation.

5.11 Computational cost and scalability

Training was performed on NVIDIA A100 GPUs (40 GB). 
HEMT-Fake required 2.4 h per epoch, compared to 2.1 h for 
XLM-RoBERTa. Inference averaged 140 ms/article, slightly slower 
than XLM-RoBERTa (110 ms/article) but within acceptable limits for 
real-time fact-checking.

HEMT-Fake contains ~420 M parameters vs. 355 M for XLM-R, 
reflecting the additional multimodal components. Scalability 
experiments showed near-linear improvements when distributed 

across 4 GPUs, and memory-efficient batching supported up to 128 
samples per batch without performance degradation.

6 Discussion

6.1 Quantitative results

This study introduces HEMT-Fake, a hybrid deep learning 
framework that integrates Transformer, CNN, BiLSTM, GNN, as well 
as adversarial training and attention mechanisms, for multilingual 
fake-news detection. The model consistently outperformed 
competitive baselines across multiple metrics, achieving robust 
performance on diverse datasets. The ablation study (Section 5.6, 
Table 5) further reinforces this interpretation, as removal of 
individual modules consistently reduced performance, confirming 
that the hybrid design provides complementary strengths rather than 
unnecessary complexity. Across all languages, HEMT-Fake achieved 
87.6% accuracy, 85.9% macro-F1, and 86.3% recall, outperforming 
multilingual baselines (mBERT, XLM-R, and mT5) by 5–9% on 
average. Performance gains were statistically significant (p < 0.01). 
Confidence intervals indicated stable improvements across seeds and 
dataset splits (Table 8).

6.2 Comparison with prior study

Existing approaches to fake-news detection have 
predominantly relied on single-model strategies, such as CNNs 
for stylistic feature extraction or Transformers for contextual 
representation. While these methods have achieved notable 
success, they often fail to capture the multi-dimensional nature of 
misinformation. Recent studies have explored hybrid models, yet 
many lack systematic validation of their added complexity. Our 
framework advances this literature by explicitly demonstrating, 
through ablation, that each component contributes measurable 
performance gains. In particular, CNNs and BiLSTMs provided 
substantial improvements in Macro-F1, while the GNN captured 
relational patterns of propagation, an aspect often overlooked in 
earlier studies.

Beyond outperforming existing baselines, the evaluation was 
strengthened with statistical significance testing, cross-dataset 
analysis, and external validation (Section 7.10). These results 
confirmed that HEMT-Fake’s improvements are statistically 
reliable (p < 0.01), generalizable across multilingual datasets, and 
robust against AI-generated adversarial misinformation, further 

TABLE 7  Cross-dataset and external validation results with statistical significance.

Evaluation setting Dataset(s) HEMT-fake 
macro-F1

Best baseline 
macro-F1

Δ 
improvement

p-value 
(paired t-test)

In-domain (standard evaluation) Hindi (train/test) 0.89 0.84 (XLM-R) +0.05 <0.01

Cross-dataset (train Hindi, test Gujarati) Hindi → Gujarati 0.83 0.77 (XLM-R) +0.06 <0.01

Cross-dataset (train Hindi, test Marathi) Hindi → Marathi 0.82 0.76 (XLM-R) +0.06 <0.01

Cross-dataset (train Hindi, test Telugu) Hindi → Telugu 0.81 0.75 (XLM-R) +0.06 <0.01

External robustness (GPT-generated fake news) Synthetic set 0.81 0.73 (XLM-R) +0.08 <0.01
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distinguishing it from prior approaches that rely solely on 
conventional F1-based metrics.

6.3 Error analysis

Despite overall robustness, common misclassifications 
were observed:

	•	 Sarcasm and irony: Articles written in satirical style 
were  misclassified as Real due to surface-level  linguistic  
plausibility.

	•	 Code-mixed content: Mixed Hindi–English articles with idiomatic 
irony reduced recall.

	•	 Visually ambiguous images: Blurry or generic stock photos can 
lead to over-reliance on text, resulting in false negatives.

Representative failure cases are presented in Table 7, illustrating 
how sarcasm, code-mixed irony, and ambiguous visual signals 
continue to pose challenges for the model.

6.4 Theoretical and practical implications

The results support the theoretical view that hybrid multimodal 
architectures enhance robustness by combining complementary 
inductive biases—transformers for global semantics, CNNs for local 
cues, BiLSTMs for sequential dependencies, and GNNs for 
relational structure.

Practically, the model’s explainability module addresses a 
critical barrier in real-world deployment: trust. Journalists and fact-
checkers reported that SHAP and LIME explanations were “highly 
useful” in 82% of test cases, aligning with frameworks on 
trustworthy AI. This bridges technical advancement with media 
policy by enabling fact-checking operations to justify automated 
decisions transparently.

6.5 Computational efficiency and 
deployment considerations

Although HEMT-Fake introduces modest overhead compared 
to unimodal transformers, the added interpretability and 
robustness justify its adoption. In newsroom environments, 
inference times of ~140 ms/article are feasible, and the architecture 
scales effectively across GPUs, making it deployable in real-world 

settings such as fact-checking platforms and content 
moderation pipelines.

6.6 Limitations

Despite promising results, several limitations remain. First, 
the scraping and translation methodology, though validated by 
inter-annotator agreement, may still introduce linguistic noise 
and domain bias. Second, while the ablation study confirms that 
each module contributes value, interpretability at a fine-grained 
level requires further exploration. Third, evaluation primarily 
relied on F1 and related metrics, with statistical testing added in 
this revision; however, broader benchmarking across independent 
datasets would further confirm generalizability. Finally, although 
the user study was expanded, the sample size remains modest and 
requires scaling to larger, multi-institutional cohorts.

Another limitation of this study lies in the scraping and 
translation process, which, despite validation efforts, may still 
introduce subtle biases and linguistic nuances that automated 
methods cannot fully capture. While inter-annotator reliability 
checks (Cohen’s κ = 0.81) confirmed substantial translation quality 
and articles were sourced across multiple domains to enhance 
representativeness. However, some residual noise is inevitable in 
web-scraped data. Future research should therefore explore the 
integration of curated fact-checking corpora and advanced linguistic 
validation techniques to further strengthen dataset reliability. While 
the expanded user study improved representativeness by including 
12 evaluators from diverse academic and professional backgrounds, 
its overall scale remains limited; larger multi-institutional studies 
involving journalists, fact-checkers, and a broader range of end-users 
will be required to fully validate real-world effectiveness.

6.7 Future directions

Future research should extend this study in three directions. 
First, expanding the dataset beyond scraped sources, incorporating 
verified fact-checking corpora, and performing more extensive cross-
lingual validations will improve robustness. Second, adding 
explainability modules such as saliency maps or counterfactual 
reasoning will enhance transparency for end-users. Third, conducting 
larger user studies with journalists, educators, and fact-checkers will 
provide stronger evidence of real-world applicability. In addition, 
federated learning approaches could be explored to facilitate multi-
institutional collaboration without compromising data privacy.

TABLE 8  Error analysis with representative misclassifications from HEMT-fake.

Example 
ID

Language True 
label

Predicted 
label

Error type Representative example (translated)

E101 Hindi Fake Real Sarcasm/Irony “Breaking: Govt announces free gold for all citizens 😂”

E205 Hinglish Fake Real Code-mixed irony “Modiji ne bola—free petrol aaj se start… haan dream mein!”

E317 Telugu Real Fake Ambiguous image bias An article about healthcare reforms paired with an unrelated hospital photo

E420 Marathi Fake Real Satirical source “Aliens land in Pune to inaugurate metro”

Common errors include sarcasm, code-mixed irony, and ambiguous images. These cases highlight the challenges of nuanced language and multimodal signals.
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7 Conclusion

This study presented HEMT-Fake, a hybrid deep learning 
framework that integrates Transformer, CNN, BiLSTM, GNN, 
adversarial training, and attention mechanisms for multilingual fake-
news detection. By combining complementary modules, the system 
effectively captures both global semantics and local stylistic cues, as 
well as sequential dependencies and relational propagation patterns. 
Extensive experiments demonstrated that HEMT-Fake consistently 
outperforms strong baselines across multiple datasets, achieving 
robust results in challenging multilingual contexts.

The ablation study confirmed that each module contributes 
measurable value, addressing concerns of unnecessary complexity and 
validating the rationale for hybridization. Beyond accuracy, adversarial 
training enhanced robustness to noisy inputs, and the attention mechanism 
improved interpretability, both of which are critical for real-world adoption.

Importantly, the evaluation extended beyond conventional 
F1-based metrics. Improvements were shown to be statistically 
significant (p < 0.01), consistent across cross-dataset analyses, and 
robust against adversarially generated misinformation. These findings 
further validate the reliability and generalizability of the proposed 
framework, strengthening its potential for integration into real-world 
misinformation detection systems.

In summary, HEMT-Fake provides a conceptually justified and 
empirically validated architecture that advances multilingual fake-
news detection, supporting the development of more reliable, 
transparent, and trustworthy automated verification tools.
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