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The rapid and precise identification of apple leaf diseases is crucial for minimizing
yield loss in precision agriculture. However, many existing deep learning methods
struggle to be applicable in real-world settings, are not easily interpretable,
and often lack sufficient statistical validation. To address these difficulties, we
propose our solution approach LeafSightX. This dual-backbone architecture
combines features from DenseNet201 and InceptionV3 using Multi-Head Self-
Attention (MHSA) techniques, enhancing representational capability and spatial
context reasoning. Our extensive procedure includes specialized preprocessing
and limited data augmentation, improving model resilience in many scenarios.
Furthermore, LeafSightX integrates explainable AI techniques with Grad-CAM
visualizations to improve transparency. In assessments of a five-class apple leaf
disease dataset featuring field and laboratory images, LeafSightX demonstrates
exceptional performance, attaining a test accuracy of 99.64%, an F1-score
of 0.9962, and AUC and PR-AUC scores of 1.000, far surpassing all baseline
CNNs. Cross-validated Cohen’s Kappa (mean = 0.9917, σ = 0.0020) and AUC
(mean = 0.9998) indicate a significant level of predictive consistency. Despite
its architectural complexity, the model offers real-time inference capabilities,
ensuring per-sample latency suitable for edge device deployment. Additionally,
the proposed LeafSightX framework was trained and evaluated on an additional
independent apple leaf disease dataset, achieving a test accuracy of 99.69%,
demonstrating its robustness and generalization. Our approach is a rigorously
evaluated, clear, and highly accurate system for identifying plant diseases,
providing a reproducible foundation for the actual application of AI in agriculture.
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1 Introduction

Agriculture plays a vital role in ensuring global food security
and maintaining economic stability (Aboelenin et al., 2025). Apple
(Malus domestica) is of significant commercial importance among
fruit crops due to its nutritional value and market demand.
Nonetheless, the production and quality of apples are severely
threatened by several foliar diseases, including Alternaria leaf spot,
rust, gray spot, and brown spot (Cabrefiga et al., 2023). These
diseases result in significant yield losses and directly influence fruit
appearance and quality, causing severe economic harm (Hussain,
2024; Vurro et al., 2010; Bonkra et al., 2024). Early and precise
diagnosis of apple leaf diseases is thus critical for sustainable
production and disease management (Fadia et al., 2019).

Historically, farmers and agricultural specialists have used
manual inspection to detect the disease on apple leaves (Khan
et al., 2022). This technique is based on optical observation
of leaf surfaces, during which any visible lesions, discoloration,
fungal plaques, or necrotic tissue are assessed. Despite its
simplicity and widespread use, manual diagnosis is a slow, labor-
intensive, and highly expert, experience-based method. In addition,
accuracy is often diminished by subjective judgment, fatigue,
and environmental factors such as changes in lighting. Manual
inspection is inefficient in large-scale orchards or rural settings,
where qualified experts are scarce and making timely decisions
is difficult. Figure 1 illustrates the manual examination process
performed by an agricultural expert in an orchard environment.

Due to the rapid advancement of computer vision and
deep learning, automated plant disease diagnosis has become
a compulsory thing (Shafay et al., 2025; Upadhyay et al.,
2025). VGG19, InceptionV3, DenseNet201, and Xception are
convolutional neural network architectures that have demonstrated
impressive results in image-based classification. Nevertheless,
even with these developments, the current practices continue to
encounter significant challenges. It is common in many models
to have limited generalization to actual field images that do not
match laboratory conditions. Interpretability also tends to be
lacking in most systems, and it is hard to explain why they make
the predictions they do (Doutoum and Tugrul, 2023). Moreover,
the inability to use reliable probability calibration can lead
to overconfident or underconfident decisions, thereby adversely
affecting the practice of precision agriculture. Also, Computational
cost analysis is rarely discussed in existing studies on plant disease
detection. Yet, it plays a critical role in determining the real-time
applicability and practicality of deep learning models in agricultural
environments.

To address these drawbacks, a robust, explainable deep
learning model that provides reliable diagnoses across different
cases is an immediate necessity. To meet this requirement, we
present LeafSightX, a more sophisticated system for automatically
tracing and identifying apple leaf diseases. LeafSightX combines
the backbones of DenseNet201 and InceptionV3 via a Multi-
Head Self-Attention mechanism, enabling the model to remember
both local texture features and wide contextual features. A full
preprocessing pipeline of Gaussian blur filtering, contrast-limited
adaptive histogram equalization, and intensity normalization is
used to maximize image quality and minimize environmental

variation. Also, Grad CAM visualization is added to highlight the
disease area, making models more transparent and interpretable.

The contribution of this study is summarized as:

• LeafSightX is a new deep learning framework that combines
DenseNet201 and InceptionV3 with Multi-Head Self-
Attention to capture both small details and overall patterns
for accurate apple leaf disease detection.

• A robust preprocessing pipeline using Gaussian blur, contrast
adjustment, and normalization improves image quality and
handles changes in light and environment.

• Explainable artificial intelligence using Grad-CAM highlights
the leaf regions that influence predictions, making the results
easier for experts to understand.

• Reliability and computational cost are evaluated using Brier
Score, permutation testing, bootstrap confidence intervals,
Cohen Kappa, and inference time, addressing the rare focus
on efficiency for real-time deployment.

• LeafSightX outperforms existing methods in accuracy,
reliability, and efficiency, providing more trustworthy results.

• The framework is validated on an additional dataset to
demonstrate robustness and generalization to new images and
conditions.

The recognized constraints would be mitigated by the proposed
conceptual design, which aims to provide an automated leaf
disease detection system that serves as a replicable, interpretable,
and efficient tool for precision agriculture and sustainable apple
growing worldwide.

The subsequent sections of the paper are organized as follows:
Section 2 presents a literature review on the identification of apple
leaf diseases using deep learning techniques. Section 3 describes the
proposed LeafSightX, the dataset pre-processing, and the training
environment. The experimental results and model interpretability
are explored in Section 4 with the aid of Grad-CAM visuals.
Finally, Section 5 summarizes the article and provides guidance for
further research.

2 Literature review

The precise, effective, and resilient identification of apple
leaf diseases has been a fundamental challenge in precision
agriculture, and recent advancements in deep learning have been
a significant catalyst in addressing it. A-Net, proposed by Liu
and Li (2024), was a YOLOv5-based framework that incorporated
an additional Wise-IoU loss function and RepVGG modules.
This model exhibited an exceptional detection rate, with a mean
average precision (mAP@0.5) of 92.7%. However, its adaptability
to diverse environmental conditions had not been examined. Wang
et al. (2025) presented ELM-YOLOv8n, which integrated Efficient
Multi-Scale Attention (EMA) and DESCS-DH blocks to balance
speed and accuracy while maintaining a lightweight design. It
achieved a mAP@0.5 of 96.7% and an F1-score of 94.0%, but
still faced challenges in real-time applicability and robustness
across heterogeneous datasets. Similarly, Gong and Zhang (2023)
employed GhostConv and GAM modules in a compact YOLOv8
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FIGURE 1

Manual inspection of leaves by an agricultural expert in an orchard setting. The process is time-consuming and subjective, motivating the need for
automated computer vision systems (Fu et al., 2025).

variant, attaining a mAP@0.5 of 86.9% with very few parameters;
however, concerns remained regarding the model’s generalizability
and explainability.

Similarly, Lv and Su (2024) applied transformer encoders and
CBAM in YOLOv5-CBAM-C3TR to improve feature description.
Although it achieved 92.4% accuracy, it was limited by its
inability to incorporate newer YOLO variants (YOLOv7/YOLOv8).
Scientific (2025) proposed a VGG-DAGSVM model that employed
bilateral filtering and SegNet-based segmentation. While it
achieved 96.5% classification accuracy, the robustness of its
preprocessing and segmentation methods was unsatisfactory.
Moreover, Luo (2025) introduced AppleLite-YOLOv8, which
integrated EdgeNeXt and C2f-SC modules. This system achieved
97.56% accuracy and 94.38% recall, yet struggled in complex
backgrounds and uneven lighting.

In a recent work, Rajput et al. (2024) implemented
Neutrosophic Logic with EfficientNetB0 to address uncertainty,
reporting an accuracy of 99.51%. Nevertheless, the lack of
cross-validation and interpretability reduced its reliability.
Segmentation-integrated approaches also gained traction. Parashar
and Johri (2024) achieved an accuracy of 94.76% by incorporating
Canny edge detection and watershed transformation into a
CNN framework. However, the segmentation methods were
conventional, offered no explainability, and were not validated.
Rohith et al. (2025) compared CNNs including ResNet, VGG19,
and InceptionV3. When combined with ResNet, VGG19, and
InceptionV3, the models achieved maximal validation accuracies
of 98.9%, 97.1%, and 97.4%, respectively. However, these studies
lacked robustness testing and interpretability.

In contrast, Liu et al. (2024) proposed MCDCNet, which
combined multi-scale fusion with constrained deformable
convolution to enhance geometric adaptability. It demonstrated
a detection accuracy of 66.8% and performed well at capturing
spatial deformations, but failed to stand out in identifying
overlapping lesions. Furthermore, Zhang et al. (2023) introduced
BCTNet, which incorporated a Bole Convolution Module and
bidirectional feature fusion. The model achieved 85.23% accuracy
and a real-time inference rate of 33 FPS, but its effectiveness
was limited by dataset diversity. Khan et al. (2022) proposed
a two-step lightweight classification and symptom localization
network, trained on 9,000 RGB images, achieving 88% classification
accuracy and 42% mAP. Despite its ability to operate in real time,

the dataset was limited in diversity, scalability was questionable,
and the network misclassified subtle symptoms. It achieved a recall
of 49.0% and a mean Average Precision of 34.0%. Although it
performed reasonably well in complex environments, it remained
prone to misclassifying small lesions and did not generalize across
datasets.

Despite the increasing number of studies on apple leaf disease
detection, several critical gaps persisted. First, the generalizability
of the findings was limited by the lack of replication and validation
methods, particularly cross-validation, which involves dividing
the data into training and test sets to train and test models
multiple times. Second, most studies employed segmentation and
preprocessing algorithms (steps to highlight affected leaf areas
and prepare data before analysis) that were either inadequately
optimized or simplistic, rendering them ineffective in isolating
complex or overlapping lesions (Sharma et al., 2020; Dayang and
Meli, 2021). Third, explainability, meaning the ability to interpret
how and why a model makes decisions, was often absent, which
undermined trust in model predictions. Fourth, although models
demonstrated high accuracy under controlled conditions, few
were rigorously tested across varying environmental conditions,
such as lighting, background clutter, or leaf orientation, thereby
limiting their field applicability. Moreover, computational expense,
referring to the amount of computing resources required, remained
high due to complex architectures with numerous parameters. Yet,
this issue was seldom quantified or analyzed, raising concerns
about deployment on resource-constrained devices. Finally, recent
research shows that insufficient application of statistical validation
methods, such as analysis of variance (ANOVA) and t-tests,
compromised the empirical rigor and robustness of the reported
findings (Saho, 2025).

These shortcomings underscore the need for future research to
prioritize computational efficiency, statistically rigorous validation,
advanced preprocessing, and explainability. Addressing these
gaps would improve the practical applicability, reliability, and
portability of automated apple leaf disease detection systems
in precision agriculture. This paper addressed these gaps by
introducing a comprehensive preprocessing strategy and extensive
data augmentation to improve model resilience. A novel dual-
backbone transfer learning framework, LeafSightX, was developed,
integrating MHSA operations for enhanced feature representation
and classification accuracy. The model was validated through
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FIGURE 2

Workflow diagram of proposed Apple leaf disease detection framework.

cross-validation and statistical testing to confirm the significance
of improvements. Furthermore, XAI methods were incorporated
to ensure interpretability and transparency. Finally, the practicality
and generalizability of the system were enhanced by training on
both laboratory-controlled and field-collected images under varied
environmental conditions, while substantially reducing inference
time per sample for real-time agricultural deployment.

3 Methodology

The proposed methodology for detecting apple leaf disease
employs a systematic pipeline aimed at effectively identifying and
classifying diverse apple leaf states. The framework’s workflow is
illustrated in Figure 2. The primary phases of this methodology
encompass data gathering, preprocessing and augmentation,
disease diagnosis, baseline and suggested model building, training,
and performance evaluation.

3.1 Data acquisition

This research utilizes the Apple Tree Leaf Disease dataset,
collected from Kaggle and made available by Nirmal (Kaggle, 2025).
The dataset consists of images of diseased apple leaves gathered
from four locations at China’s Northwest University of Agriculture
and Forestry Science and Technology. Images were taken with a

TABLE 1 Class distribution of the apple leaf disease dataset.

Class Number of images

Healthy leaf 409

Alternaria leaf spot 278

Rust 344

Gray spot 395

Brown spot 215

Total 1,641

Glory V10 mobile phone in diverse environmental settings, with
approximately 52% captured in a controlled laboratory and 48%
in natural growing fields. To evaluate the effectiveness of our
approach, we also use an additional dataset (Dhar, 2023).

The dataset is divided into five categories: healthy leaf,
alternaria leaf spot, rust, gray spot, and brown spot. The class
distribution is presented in Table 1, while Figure 3 shows typical
sample images from each category.

3.2 Image processing and feature
enhancement

The image quality was enhanced, and regions of the image
associated with disease were highlighted by applying a standard
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FIGURE 3

Sample images from the apple leaf disease dataset.

TABLE 2 Preprocessing operations and parameters applied to the apple
leaf images.

Operation Description Parameters

Image resizing Uniform scaling to fixed
size

224 × 224 pixels

Noise reduction Gaussian blur smoothing Kernel size: 3 × 3

Color space conversion BGR to HSV and back -

Contrast enhancement CLAHE applied on Value
channel

Clip limit: 2.0, Tile grid:
8 × 8

Normalization Scaling pixel intensities Range: [0, 1]

preprocessing pipeline before training the model (Gudge et al.,
2025). To ensure the model input was consistent, the first step
was to scale the pictures to a specific resolution. Subsequently, a
Gaussian blur filter was applied to mitigate high-frequency noise
and sensor artifacts, thereby facilitating computation and enabling
the model to focus on relevant patterns rather than noise (Gedraite
and Hadad, 2011). Also, CLAHE (Contrast Limited Adaptive
Histogram Equalization) was applied to the V channel of the HSV
color space (Pizer et al., 1990). The step will help with changes
in lighting and improve local contrast, making it easier to find
illness spots and lesions in images shot under diverse lighting and
weather conditions. Finally, the pixel intensities were normalized
to a comparable range. Collectively, these preprocessing steps
stabilized and optimized the training process, allowing the neural
network to learn more effectively and generalize better to
heterogeneous data. Overall, such comprehensive preprocessing
enhances the reliability and accuracy of the disease classification
model. Table 2 summarizes the key preprocessing steps along with
their corresponding parameters.

While, Figure 4 shows example images at various stages of the
preprocessing pipeline, illustrating the effects of each operation.

3.3 Data augmentation

To enhance the dataset’s diversity and improve the model’s
generalization, data augmentation was implemented during
preprocessing of Such augmentations reproduce various real-
life variations, including orientational, scale, and light variations

(Mikolajczyk and Grochowski, 2018; Kumar et al., 2024). Random
horizontal flipping helps the model learn to be invariant to leaf
orientation. Random rotation enables the capture of leaves at
different angles in an image. Random zoom changes the camera’s
distance, and brightness adjustment adjusts the illumination.
Collectively, such transformations make the data sets more variable,
thereby contributing to a model that is more robust to varying
input states. The augmentation techniques and the parameters are
summarized in Table 3.

This augmentation multiplied the size of the dataset five
times the initial reading of five samples, each containing one
original image and four variants of augmentation. As a result, the
augmented image counts per class are shown in Table 4.

3.4 Dataset splitting

The augmented data set was divided into training, validation,
and testing sets with ratios of 80%, 10%, and 10%, respectively.
This division is typically applied to ensure that the model used
has sufficient data to learn from during training, and that there
is enough data to verify model execution and ultimately test it
(Mamun et al., 2025). The division was conducted on a class basis to
ensure proportional representation in all subsets. Table 5 contains
the summary of the split number of images per class.

3.5 Baseline models

This study utilizes five state-of-the-art convolutional
neural networks, namely DenseNet201, InceptionV3, VGG19,
NASNetMobile, and Xception, as the baseline to investigate the
classification of diseases in apple leaves. All the models used were
optimized to include an MHSA mechanism with four attention
heads, which better represent their features and capture long-range
dependencies.

3.5.1 Densenet201-MHSA
The DenseNet201 architecture comprises 201 layers of batch

normalization and 201 layers of activation, inserted between 200
convolutional (Conv2D) layers, enabling the extraction and reuse
of features through dense block-wise connectivity. They are then
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FIGURE 4

Representative images from the preprocessing pipeline: original, Gaussian blurred, CLAHE-enhanced, and normalized images from left to right.
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TABLE 3 Data augmentation techniques and parameters.

Augmentation
type

Description Probability

Random horizontal flip Flips the image horizontally 50%

Random rotation Rotates image randomly
(–30◦ to +30◦)

70%

Random zoom Zooms image randomly
(80%–120% of original size)

70%

Brightness adjustment Scales brightness (60%–140%
of original)

70%

TABLE 4 Number of images per class after augmentation.

Class Number of images

Healthy leaf 2,045

Alternaria leaf spot 1,390

Rust 1,720

Gray spot 1,975

Brown spot 1,075

Total 8,205

TABLE 5 Dataset split summary (number of images per class).

Class Train Validation Test

Healthy leaf 1,636 204 205

Alternaria leaf spot 1,112 139 139

Rust 1,376 172 172

Gray spot 1,580 197 198

Brown spot 860 107 108

Total 6,564 819 822

sequentially merged by 98 concatenation layers that enable the
network to retain information across layers and integrate it. The
spatial dimensions are progressively suppressed through three
average pooling layers and one single max pooling layer. At the
same time, the feature maps are zero-padded at two pooling levels
to preserve their size. A flat layer follows the feature extraction, and
then the three dense layers perform the final classification. There
are two dropout layers to minimize overfitting, and two lambda
layers have custom tensor operations. This architecture consists
of a single input embedding layer, a mid-layer MHSA, and four-
head self-attention after the convolutional blocks to learn long-
range spatial correlations. Such an attention level is accompanied
by a one-layer normalization and an additional layer, thereby
establishing residual connections that improve learning stability
and representation. Combined, these elements allow DenseNet201-
MHSA to capture intricate patterns in the images of stable apple
leaves with diseases. To describe the structural composition of
the DenseNet201-MHSA architecture on a quantitative level, the
frequency and structure of its primary type of layers are outlined
in Table 6.

TABLE 6 Layer-wise summary of the DenseNet201-MHSA architecture.

Layer type Output shape Description

Input 224 × 224 × 3 RGB image input

Conv2D (3×3, s=2) 112 × 112 × 64 Initial feature extractor

BatchNorm + ReLU 112 × 112 × 64 Normalization and
activation

Conv2D × 200 Varies Dense convolutional units

BatchNorm × 201 Varies Applied post-conv

ReLU × 201 Varies Non-linearity

Concatenate × 98 Varies Dense feature reuse

MaxPool2D × 1 56 × 56 × ∗ Downsampling

AvgPool2D × 3 Varies Spatial reduction

ZeroPad2D × 2 Varies Size preservation

GlobalAvgPool2D 1 × 1 × C Vector output

Lambda × 2 (B, S, E) Tensor reshape

MHSA (B, S, E) Self-attention

LayerNorm (B, S, E) Normalize features

Add (B, S, E) Residual link

Dense (512) (B, 512) Feature projection

Dropout × 2 (B, ·) Regularization

Dense (256) (B, 256) Abstraction

Dense (Classifier) (B, 1285) Class logits

Softmax (B, 1285) Probability output

3.5.2 InceptionV3-MHSA
InceptionV3-MHSA is an architecture that begins with a single

input layer, followed by 94 convolutional layers, coupled with
batch normalization and activation layers, to facilitate balance and
speed during training. It features four max pooling layers and
nine average pooling layers, which can progressively downsample
the spatial dimension while preserving essential features. The 15
concatenated layers interconnect the inception modules, enabling
multi-scale feature learning across various convolutional branches.
The spatial dimensions are flattened into a compact feature vector,
which is then fed into three dense layers, followed by a final
classification layer with average pooling (also known as global
average pooling). To avoid overfitting, dropout is applied twice per
layer, whereas two lambda layers can be used to apply customized
tensor operations. A layer normalization layer has been added
to improve stability during training and to provide consistent
feature scaling across four attention heads. An MHSA layer
has been added before the final dense layers to improve spatial
feature representation. Such an arrangement enables InceptionV3-
MHSA to successfully learn local and global patterns in the
apple leaf dataset. Table 7 presents the key layer summary of the
InceptionV3-MHSA architecture.

3.5.3 VGG19-MHSA
The VGG19-MHSA model architecture begins with a single

input layer, followed by 16 successive convolutional layers that
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TABLE 7 Layer-wise summary of the InceptionV3-MHSA architecture.

Layer type Output shape Description

Input 299 × 299 × 3 RGB image input

Conv2D (3×3) 149 × 149 × 32 Edge extraction

Conv2D (3×3) 147 × 147 × 32 Spatial refinement

Conv2D (3×3) 147 × 147 × 64 Feature expansion

MaxPooling2D 73 × 73 × 64 Downsampling

Conv2D (1×1) 73 × 73 × 80 Channel projection

Conv2D (3×3) 71 × 71 × 192 Depth increase

MaxPooling2D 35 × 35 × 192 Further reduction

Mixed0 (Incep-A) 35 × 35 × 256 Multi-branch features

Mixed1 (Incep-A) 35 × 35 × 288 Expanded features

Mixed2 (Incep-A) 35 × 35 × 288 Repeat extraction

Mixed3 (Incep-B) 17 × 17 × 768 Deeper abstraction

Mixed4–7 17 × 17 × 768 Inception-B stack

Mixed8 (Incep-C) 8 × 8 × 1280 Wider features

Mixed9–10 8 × 8 × 2048 Final feature blocks

GlobalAvgPool2D 1 × 1 × 2048 Vector output

Dense (B, 1, 285) Class logits

Dropout (B, 1, 285) Regularization

Lambda (B, S, E) Reshape for attention

MHSA (B, S, E) Self-attention

LayerNorm (B, S, E) Feature normalization

Add (B, S, E) Residual link

Dense (FFN) (B, 512) Intermediate projection

Dropout (B, 512) Regularization

Dense (classifier) (B, 1, 285) Final output

generate hierarchical features from the input image. These are
interspersed with five max pooling layers to compact the spatial
dimensions while preserving essential structures. There is a global
average pooling layer in between, which reduces the spatial features
to a small representation after feature extraction. It goes through
a triplet-dense layer, with two injection dropout layers to help
prevent overfitting and improve generalization. A MHSA layer,
consisting of four attention heads, is added to enable the model to
focus on various regions of space and perform global contextual
reasoning. A layer normalization layer will be used to stabilize
the attention output, and two lambda layers will be employed to
inject custom operations, enabling greater architectural flexibility.
The features with attention are brought to an earlier representation
via an additional layer, enriching the final classification pathway.
Table 8 presents the key layer summary of the VGG19-MHSA
architecture.

3.5.4 Xception-MHSA
The Xception-MHSA has a single input layer, and the

remaining layers comprise 116 convolutional layers that use
depthwise separable convolutions to learn fine spatial features at

TABLE 8 Layer-wise summary of the VGG19-MHSA architecture.

Layer type Output shape Description

Input 224 × 224 × 3 RGB image input

Block1_Conv1 224 × 224 × 64 3×3 conv layer

Block1_Conv2 224 × 224 × 64 3×3 conv layer

Block1_Pool 112 × 112 × 64 2×2 max pool

Block2_Conv1 112 × 112 × 128 3×3 conv

Block2_Conv2 112 × 112 × 128 3×3 conv

Block2_Pool 56 × 56 × 128 2×2 max pool

Block3_Conv1–4 56 × 56 × 256 4 conv layers

Block3_Pool 28 × 28 × 256 2×2 max pool

Block4_Conv1–4 28 × 28 × 512 4 conv layers

Block4_Pool 14 × 14 × 512 2×2 max pool

Block5_Conv1–4 14 × 14 × 512 4 conv layers

Block5_Pool 7 × 7 × 512 2×2 max pool

GlobalAvgPool2D 1 × 1 × 512 Vector flattening

Dense (B, 1, 285) Fully connected layer

Dropout (B, 1, 285) Regularization

Lambda (B, S, E) Reshape for attention

MHSA (B, S, E) Self-attention

LayerNorm (B, S, E) Normalize output

Lambda (B, S, E) Tensor reshape

Add (B, S, E) Residual connection

Dense (FFN) (B, 512) Intermediate projection

Dropout (B, 512) Regularization

Dense (Output) (B, 1285) Final logits

low resolution automatically. This has been accompanied by 126
batch normalization layers and 126 activation functions, which
enhance both nonlinearity and learning stability. It is done through
max pooling, and the feature maps are down-sampled three times.
It also has nine average pooling layers, and the final layer is a
global average pooling layer that reduces the spatial dimensions
to a feature vector. The network has three dense layers for final
prediction, with two dropout layers in between for regularization.
A Multi-Head Self-Attention Mechanism is added to increase
feature interaction across the globe, utilizing four heads. Layer
normalization is then applied to stabilize the attention output
process. Custom computation is implemented across two lambda
layers, and 24 add layers are strategically distributed to combine
intermediate representations, thereby maintaining information
flow through residual connections. The last representation is
detailed not only in the local context but also in the international
context. Table 9 presents the key layer summary of the Xception-
MHSA architecture.

3.5.5 NasNetMobile-MHSA
The NASNetMobile-MHSA model comprises a model

framework that begins with an input layer, followed by a
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TABLE 9 Layer-wise summary of the Xception-MHSA architecture.

Layer type Output shape Description

Input 224 × 224 × 3 RGB image input

Block1_Conv1 112 × 112 × 32 Entry conv

+ BN + ReLU 112 × 112 × 32 Normalize + activate

Block1_Conv2 112 × 112 × 64 Entry conv

+ BN + ReLU 112 × 112 × 64 Normalize + activate

Block2_SepConv1–2 56 × 56 × 128 Entry separable convs

+ Pool + Add 56 × 56 × 128 Downsample + residual

Block3 (×2) 28 × 28 × 256 Middle separable + residual

Block4 (×2) 14 × 14 × 728 Deep separable convs

Block5–12 (×8) 14 × 14 × 728 Repeated convs + residuals

Block13 14 × 14 × 1024 Final middle conv

+ Pool + Add 7 × 7 × 1024 Downsample + residual

Block14 7 × 7 × 2048 Exit flow conv

GlobalAvgPool2D 1 × 1 × 2048 Feature vector

Dense (B, 1285) Class projection

Dropout (B, 1285) Regularization

Lambda (B, S, E) Reshape for attention

MHSA (B, S, E) Self-attention layer

LayerNorm (B, S, E) Normalize features

Lambda (B, S, E) Reshape for FFN

Add (B, S, E) Residual skip connection

Dense (FFN) (B, 512) Intermediate dense

Dropout (B, 512) Regularization

Dense (Output) (B, 1285) Final logits

composition of 36 conventional convolutional layers and a massive
160 separable convolutional layers, all parametrized to be space-
aware. All convolutions are followed by the same number of batch
normalization layers and activation layers, with 192 per instance,
to train the networks to greater depth and learn non-linear
representations. All eight max pooling and 52 average pooling
layers are used to perform the spatial reduction and refinement.
It features a zero-padding and cropping architecture, utilizing 24
zero-padding and 4 cropping layers, respectively, to adjust the
parameter input dimensions to fit the desired dimensions while
preserving edge information. The network extensively utilizes 20
concatenation layers and 81 addition layers to reduce the number
of features across branches for combination. After the feature
maps, they undergo global average pooling and are fed into three
dense layers for classification, with two dropout layers introduced
to curb overfitting. There is an MHSA layer with four heads, which
enables modeling of global context, and a layer normalization
layer that stabilizes the training process. Two lambda layers
also enable custom tensor operations, making the architecture
even more flexible. Table 10 shows the key layer summary of the
NasNetMobile-MHSA architecture.

TABLE 10 Layer-wise summary of the NasNetMobile-MHSA architecture.

Layer type Output shape Description

Input 224 × 224 × 3 RGB image input

Stem_Conv1 112 × 112 × 32 Initial conv layer

BN + ReLU 112 × 112 × 32 Normalization + activation

SepConv1 56 × 56 × 64 Depthwise separable conv

SepConv2 56 × 56 × 128 Feature expansion

MaxPool1 28 × 28 × 128 Downsampling

SepConv3—4 28 × 28 × 256, 512 Deeper conv layers

SepConv5 14 × 14 × 512 Further depth

MaxPool2 14 × 14 × 512 Downsampling

SepConv6 7 × 7 × 1, 024 Final conv output

GlobalAvgPool 1 × 1 × 1024 Feature flattening

Dense1 (B, 1, 285) Fully connected layer

Dropout1 (B, 1, 285) Regularization

Lambda (B, S, E) Reshape for attention

MHSA (B, S, E) Multi-head self-attention

LayerNorm (B, S, E) Normalize attention
output

Add (B, S, E) Residual connection

Dense2 (FFN) (B, 512) Feed-forward layer

Dropout2 (B, 512) Regularization

Dense3 (Out) (B, 1, 285) Final classification

Softmax (B, 1, 285) Class probabilities

3.5.6 LeafSightX: proposed hybrid deep feature
fusion Dense201 and InceptionV3

The proposed LeafSightX model is a combination of the
DenseNet201 and InceptionV3 architectures, applied to a deep
feature fusion strategy complemented by Multi-Head Self-
Attention structures (Li et al., 2023). The model takes in processed
input images. In parallel, the two pre-trained networks each have
a global average pooling and an attention layer to extract rich
(and complementary) features. The versions of these features will
then be concatenated and run through fully connected layers
with dropout as regularization, and, lastly, classification will be
performed. The architecture has a total of 114 concatenation layers,
294 convolutional layers, 295 batch normalization and activation
layers each, and two Multi-Head Attention modules. Other
elements include pooling layers, layer normalization, and residual
connections introduced through Lambda and zero-padding layers,
making the model’s design tightly structured and capable of
fulfilling its purpose. In detail, the LeafSightX model architecture
is illustrated in Figure 5, which features a dual backbone feature
extractor, self-attention modules with shared parameters across
different heads, and a combination pattern that collectively learns
discriminative representations for classifying apple leaf diseases.
Table 11 provides a layer-wise summary of the proposed LeafSightX
architecture and its training details. Algorithm 1 illustrates the
overall workflow of the proposed LeafSightX model.
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FIGURE 5

Architecture of the proposed LeafSightX model (the dual backbone feature extraction, multi-head self-attention modules, and the fusion mechanism
that jointly learn discriminative representations for apple leaf disease classification).

TABLE 11 Layer-wise summary of the LeafSightX architecture (DenseNet + InceptionV3 + MHSA).

Layer/block Output shape Description

Input and pre-processing

Input layer 224 × 224 × 3 RGB input leaf image (rescaled to [0,1])

Feature extraction branches

DenseNet201 backbone 7 × 7 × 1920 Pre-trained on ImageNet; all convolutional blocks frozen (no fine-tuning). Extracts dense hierarchical
features with skip connections.

Global average pooling (DenseNet) 1 × 1 × 1920 Reduces spatial dimensions by averaging each feature map.

MHSA (DenseNet) (B, 1920) Multi-Head Self-Attention with 4 heads, key dimension 64; captures inter-feature dependencies.

InceptionV3 backbone 5 × 5 × 2048 Pre-trained on ImageNet; all layers frozen. Extracts multi-scale convolutional features via Inception blocks.

Global average pooling
(InceptionV3)

1 × 1 × 2048 Aggregates feature maps into global feature vectors.

MHSA (InceptionV3) (B, 2048) Multi-Head Self-Attention applied to Inception features for contextual refinement.

Fusion and classification head

Concatenate (feature fusion) (B, 3968) Concatenates the DenseNet201 and InceptionV3 MHSA-enhanced feature vectors.

Dense layer 1 (B, 512) Fully connected layer with 512 neurons, ReLU activation, L2 regularization (1 × 10−4).

Dropout 1 (B, 512) Dropout with 0.3 rate to prevent overfitting.

Dense layer 2 (B, 256) Fully connected layer with 256 neurons, ReLU activation, L2 regularization.

Dropout 2 (B, 256) Dropout with 0.3 rate.

Output layer (Softmax) (B, 5) Dense layer with 5 units (number of classes), Softmax activation to output class probabilities.

Training and optimization details

Optimizer – Adam optimizer (learning rate adjusted via ReduceLROnPlateau).

Loss function – Categorical cross-entropy.

Callbacks – Early stopping (patience = 5), Learning rate reduction (factor = 0.5).

3.6 Model training settings

CNN baseline models and the proposed LeafSightX framework
were trained with reasonable hyperparameters and approaches to

provide a fair and comparable assessment. Images were resized
and normalized, and pretrained weights were used to speed up
convergence. Four attention heads, Multi-Head Self-Attention
modules, were combined to capture global dependencies. The
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Input: Training dataset D = {(xi,yi)}Ni=1 with images
xi ∈ R

224×224×3, labels yi ∈ {1, . . .,C}, C = 5
classes.

Output: Trained classification model
fθ :R224×224×3 → �C−1, where �C−1 is
probability simplex.

Function LeafSightXModel(x)
F1 = GlobalAvgPool(DenseNet201(x)) ;
// DenseNet201 features (frozen weights)

F′1 = MultiHeadSelfAttention(F1) ; // Apply
Multi-Head Self-Attention

F2 = GlobalAvgPool(InceptionV3(x)) ;
// InceptionV3 features (frozen weights)

F′2 = MultiHeadSelfAttention(F2) ; // Apply
Multi-Head Self-Attention

F = [F′1 ⊕ F′2] ; // Concatenate feature vectors
h1 = σ(W1F+ b1) ;
hdrop1 = Dropout(h1,p = 0.3) ;
h2 = σ(W2h

drop
1 + b2) ;

hdrop2 = Dropout(h2,p = 0.3) ;
ŷ = Softmax(W3h

drop
2 + b3) ;

return ŷ ;

Algorithm 1. LeafSightX: dual-backbone transfer learning with
multi-head self-attention.

Adam optimizer with categorical cross-entropy loss was used
to train the given model, along with regularization methods,
dropout, and L2 weight decay, to prevent overfitting. The use
of early stopping and learning rate scheduling addressed training
robustness. In particular, it has used the ReduceLROnPlateau
callback to monitor the validation loss and reduce the learning
rate by a factor of 0.5 after 3 consecutive poor epochs. The
overall training settings used across all models are described
in Table 12.

3.7 Proposed model explainability

To enhance the interpretability of the LeafSightX model, we
employed Grad-CAM, which operates on both DenseNet201 and
InceptionV3 backbones. Grad-CAM provides class-discriminative
heatmaps by calculating the gradient of a class score over the feature
maps of the preceding convolutional layer. The approach can help
identify areas in the input image that make the most significant
contribution to the model’s predictions.

In every backbone, activations of the last convolutional
layer were used to generate heatmaps of the original images
of leaves. These visual explanations showed that DenseNet201
and InceptionV3 both focused on biologically significant areas,
including disease lesions, texture alterations, and color aberrations.
Grad-CAM demonstrates that the LeafSightX model determines
actions by considering relevant visual elements, thereby increasing
transparency and reliability in disease classification.

TABLE 12 Training settings and hyperparameters for CNNs and
LeafSightX.

Parameter Value/description

Input image size 224 × 224 × 3

Pretrained models DenseNet201, InceptionV3, VGG19,
NASNetMobile, Xception

Proposed framework LeafSightX (DenseNet201-MHSA +
InceptionV3-MHSA fusion)

Base model weights ImageNet

Attention mechanism Multi-Head (4 heads, key_dim = 64)

Dropout rate 0.3

L2 regularization 1 × 10−4

Output activation Softmax (multi-class)

Loss function Categorical crossentropy

Optimizer Adam

Learning rate 1 × 10−3 (default)

Batch size 32

Epochs Up to 40 (with early stopping)

Early stopping Monitor val_loss, patience = 5

ReduceLROnPlateau Monitor val_loss, factor = 0.5, patience = 3

Shuffle data True (train), False (val/test)

Color mode RGB

Number of classes 5 (Healthy, Alt., Rust, Gray, Brown Spot)

3.8 Evaluation metrics

To comprehensively assess the performance of the proposed
LeafSightX model, multiple evaluation metrics were employed.

Accuracy measures the overall correctness of the predictions
and is defined as:

Accuracy = TP + TN
TP + TN + FP + FN

where TP is true positives, TN is true negatives, FP is false positives,
and FN is false negatives.

Precision evaluates how well the model identifies positive cases,
defined as:

Precision = TP
TP + FP

Recall measures the model’s ability to detect actual positive
cases:

Recall = TP
TP + FN

F1-Score balances precision and recall using their harmonic
mean:

F1 = 2 · Precision · Recall
Precision + Recall

A confusion matrix summarizes all TP, FP, TN, and FN values,
providing a clear view of classification errors.
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TABLE 13 Comparison of train, validation, and test accuracy for different models.

Model Train accuracy Validation accuracy Test accuracy

DenseNet201 0.9980 0.9890 0.9878

InceptionV3 0.9989 0.9841 0.9830

VGG19 0.9930 0.9670 0.9732

Xception 0.9988 0.9792 0.9781

NASNetMobile 0.9819 0.9609 0.9611

LeafSightX (proposed) 0.9998 0.9902 0.9964

Area Under the ROC Curve (AUC) measures the model’s
ability to distinguish between classes across different thresholds. In
contrast, Precision-Recall AUC (PR AUC) quantifies the trade-off
between precision and recall over varying thresholds.

Finally, the robustness and reliability of LeafSightX were
evaluated against baseline models using statistical significance
testing, ensuring that observed improvements are not due to
chance.

4 Results and discussion

In this section, we systematically analyze the performance of the
proposed LeafSightX model in comparison to established baselines.
We explore its accuracy, robustness, and interpretability through
extensive experiments, emphasizing its potential to advance
automated plant disease diagnosis. The discussion highlights key
insights gained from the results and situates our findings within the
broader context of agricultural AI applications.

4.1 Model performance overview

The classification accuracy of all the evaluated models was
comparatively assessed on the training, validation, and test sets
and is presented in Table 13. The training accuracies of all
architectures were high, indicating that features can be well learned
for leaf disease classification. DenseNet201 and InceptionV3 were
found to generalize well, with both validation and test accuracy
well above 98%, whereas VGG19 and NASNetMobile performed
relatively poorly, possibly because features are not extracted
optimally, or the models are too small. The proposed LeafSightX
model outperformed all baselines, achieving 99.02% and 99.64%
accuracy on the validation and test sets, respectively, which are
similar to its training accuracy of 99.98%. The slight performance
difference reflects the excellent overfitting mitigation enabled by
the dual-backbone fusion and MHSA modules, which enhance
discriminative feature representation. These findings highlight the
strengths and potential of LeafSightX for real-world applications as
an agricultural diagnostic system.

4.2 Comprehensive performance metrics:
precision, recall, F1-score, AUC, and PR
AUC

To provide a comprehensive evaluation beyond accuracy,
Table 14 presents additional performance metrics including

precision, recall, F1 score, AUC, and PR AUC across training,
validation, and test sets. These metrics assess class balance, model
sensitivity, and confidence calibration. The proposed LeafSightX
model consistently outperforms all baseline models, achieving
mean precision, recall, and F1 scores of more than 0.99 on
both the validation and test sets. The high recall with low false
positives implies strong identification of diseased cases, whereas
F1 scores indicate a balanced classification. AUC and PR AUC
values near 1.000 indicate high discrimination and a strong
precision-recall trade-off, which is significant when the classes are
unbalanced. Conversely, there is a visible drop in these measures
between the training, validation, and test sets when using baseline
models, indicating overfitting and poor generalization. These
findings support the robustness, reliability, and applicability of
the proposed model for the accurate diagnosis of leaf diseases in
precision agriculture.

4.3 Assessing model generalization via
5-fold cross-validation

To assess the models’ strength and generalization, a 5-fold
cross-validation was conducted, and the results are shown in
Table 15. In 5-fold cross-validation, the dataset is divided into five
equal parts. Each part is used once as a validation set, while the
remaining four are used for training. The process repeats five
times to ensure all data is tested. LeafSightX achieved the best
performance across all folds, with an average validation accuracy
of 99.19% and a low standard deviation of 0.14%, indicating stable
performance across data splits. Its average Cohen’s Kappa of 0.9917
validates predictions well beyond chance. Validation AUC and
PR AUC were also very high, 0.9998 and 0.9994, respectively,
indicating good discriminative power and multi-class performance
even when classes are unbalanced. The nearest baseline was
DenseNet201, achieving an average validation accuracy of 99.02%
and a Kappa of 0.9876. InceptionV3 and Xception obtained fairly
good results of about 97%–98% accuracy, but with a bit more
variation. VGG19 and NASNetMobile showed lower accuracy
and Kappa scores, and poorer generalization, likely due to fewer
features. On the whole, these findings indicate that LeafSightX
exhibits consistent, reliable, and robust performance and justify the
efficiency of dual-backbone fusion and MHSA for managing leaf
diseases in practice.

4.4 Computational cost analysis

The radar chart in Figure 6 illustrates the computational
cost of six deep learning models used for Apple Leaf disease
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TABLE 14 Average precision, recall, F1-score, AUC, and PR-AUC for train, validation, and test sets.

Model Dataset Precision Recall F1-score AUC PR AUC

DenseNet201 Train 0.9982 0.9982 0.9982 1.0000 1.0000

Validation 0.9903 0.9891 0.9897 0.9998 0.9995

Test 0.9898 0.9876 0.9887 0.9996 0.9988

InceptionV3 Train 0.9991 0.9991 0.9991 1.0000 1.0000

Validation 0.9912 0.9866 0.9889 0.9997 0.9991

Test 0.9920 0.9838 0.9879 0.9995 0.9986

VGG19 Train 0.9940 0.9940 0.9940 0.9999 0.9997

Validation 0.9737 0.9679 0.9708 0.9991 0.9972

Test 0.9796 0.9709 0.9752 0.9987 0.9962

Xception Train 0.9990 0.9988 0.9989 1.0000 1.0000

Validation 0.9886 0.9814 0.9850 0.9992 0.9975

Test 0.9861 0.9803 0.9832 0.9991 0.9974

NASNetMobile Train 0.9832 0.9799 0.9815 0.9997 0.9991

Validation 0.9735 0.9601 0.9668 0.9986 0.9959

Test 0.9688 0.9392 0.9538 0.9981 0.9946

LeafSightX (proposed) Train 0.9999 0.9997 0.9998 1.0000 1.0000

Validation 0.9957 0.9913 0.9935 0.9998 0.9994

Test 0.9964 0.9960 0.9962 1.0000 1.0000

classification in terms of training time, test inference time, and
per-sample inference time. On the whole, DenseNet201 has a
moderate training time of 364.30 seconds, a relatively high test
inference time of 23.32 seconds, and a per-sample time of 0.0284
seconds, compared to InceptionV3, which has the longest training
time of 467.86 seconds, the highest test inference time of 10.17
seconds, and a per-sample time of 0.0124 seconds, respectively.
In comparison, the VGG19 has a better training time of 758.99
seconds, with test inference times of 10.63 seconds and 0.0129
seconds per sample, respectively. Conversely, Xception proves
efficient across the board, with training, test, and per-sample
inference times of 387.49, 8.65, and 0.0105 seconds, respectively.
Equally, NASNetMobile has the lowest training time of 304.92
seconds, with average test inference and per-sample times of 12.23
seconds and 0.0149 seconds, respectively. Lastly, the proposed
LeafSightX model has comparatively high computational costs:
633.85 seconds for training, 30.03 seconds for test inference, and
0.0365 seconds per-sample inference. Thus, the chart can serve well
to indicate the trade-offs in the training and inference efficiency of
the models for Apple Leaf disease detection.

4.5 Performance evaluation via learning
curves, confusion matrix, and AUC-based
metrics

To comprehensively assess the proposed model’s performance,
we employ a suite of visual evaluation tools. These include learning
curves to monitor training dynamics, a confusion matrix to

analyze class-wise predictions, and AUC-based metrics to evaluate
classification quality under varying thresholds. Such visualizations
provide deeper insight into the model’s strengths, weaknesses, and
generalization behavior.

4.5.1 Performance trends across training epochs
Figure 7 shows the training and validation loss curves

of all evaluated models. To start with, the loss curves for
DenseNet201 demonstrate effective learning, with training and
validation losses steadily declining from initial values of 2.0927
and 0.3448, respectively, to 0.2059, suggesting robust generalization
with little overfitting. Concurrently, InceptionV3 shows a slight
decrease in training loss [0.7851 to 0.0680], but validation loss
ranges from 0.3592 to 0.1259, suggesting slight fluctuations but
good generalization. Conversely, VGG19 converges more slowly
once the training loss has reduced to 0.0734 and validation
loss to 0.1281, indicating higher computational and slower
optimization. Conversely, Xception shows a more fluent and
efficient convergence: the training loss is reduced to 0.0718,
and the validation loss to 0.1450. NASNetMobile shows rapid
convergence, with training and validation losses dropping to
0.1048 and 0.1881, respectively, suggesting a fast learning process
and sensible levels of generalization. Lastly, the LeafSightX
model achieves the best performance: the training loss drops
to 0.0365, and the validation loss to 0.0900, demonstrating
excellent optimization, stability, and generalization. Overall, the
loss curves indicate that all models converge, and LeafSightX has
the most efficient and effective training dynamics among all other
evaluated models.
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TABLE 15 5-Fold validation metrics for different models.

Model Fold Val accuracy Val Kappa Val AUC Val PR AUC

DenseNet201 1 0.9927 0.9907 0.9999 0.9996

2 0.9902 0.9876 0.9999 0.9997

3 0.9817 0.9768 0.9999 0.9996

4 0.9902 0.9876 0.9999 0.9997

5 0.9963 0.9954 0.9999 0.9998

Avg ± SD 0.9902 ± 0.0051 0.9876 ± 0.0063 0.9999 ± 0.0 0.9997 ± 0.0001

InceptionV3 1 0.9810 0.9759 0.9985 0.9956

2 0.9703 0.9625 0.9988 0.9963

3 0.9779 0.9720 0.9995 0.9983

4 0.9741 0.9672 0.9987 0.9963

5 0.9718 0.9641 0.9984 0.9947

Avg ± SD 0.9750 ± 0.0046 0.9683 ± 0.0048 0.9988 ± 0.0004 0.9962 ± 0.0012

VGG19 1 0.9703 0.9624 0.9987 0.9964

2 0.9650 0.9558 0.9987 0.9960

3 0.9787 0.9730 0.9990 0.9969

4 0.9596 0.9488 0.9978 0.9931

5 0.9649 0.9553 0.9986 0.9956

Avg ± SD 0.9677 ± 0.0067 0.9591 ± 0.0077 0.9986 ± 0.0004 0.9956 ± 0.0013

Xception 1 0.9703 0.9624 0.9989 0.9967

2 0.9673 0.9587 0.9982 0.9943

3 0.9832 0.9788 0.9991 0.9977

4 0.9787 0.9730 0.9993 0.9976

5 0.9657 0.9562 0.9989 0.9969

Avg ± SD 0.9730 ± 0.0067 0.9658 ± 0.0078 0.9989 ± 0.0004 0.9966 ± 0.0013

NASNetMobile 1 0.9612 0.9509 0.9979 0.9933

2 0.9756 0.9692 0.9988 0.9967

3 0.9764 0.9701 0.9990 0.9973

4 0.9642 0.9547 0.9983 0.9941

5 0.9611 0.9505 0.9978 0.9933

Avg ± SD 0.9677 ± 0.0074 0.9591 ± 0.0083 0.9984 ± 0.0005 0.9949 ± 0.0017

LeafSightx 1 0.9924 0.9904 0.9999 0.9997

2 0.9943 0.9928 0.9997 0.9992

3 0.9899 0.9871 0.9998 0.9991

4 0.9911 0.9888 0.9999 0.9997

5 0.9918 0.9896 0.9998 0.9993

Avg ± SD 0.9919 ± 0.0014 0.9917 ± 0.0020 0.9998 ± 0.0001 0.9994 ± 0.0003

4.5.2 Confusion matrix analysis
The classification performances of the models in classifying

leaf diseases are shown in the confusion matrices in Figure 8.
DenseNet201 accurately recognized the majority of classes,
including 136 healthy leaves, all cases of Alternaria leaf spot, and
rust and gray spot, which were slightly confused with brown

spot. The same was observed in InceptionV3, with the minor
misclassifications being between rust and brown spot, but healthy
leaves and Alternaria leaf spot were generally correct. VGG19
had more misclassifications, particularly on rust, gray spot, and
healthy leaves, suggesting a low discriminative capacity. Xception
produced more evenly distributed errors, with most samples
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FIGURE 6

Radar plot illustrating the computational cost of six deep learning models for Apple Leaf disease classification, including training time, test inference
time, and per-sample inference time.

correctly classified and only slight misclassifications in a few
categories. NASNetMobile was more confused, especially with
healthy leaves being classified as rust 15 times, 7 Rust predicted
as Gray Spot, 4 Brows spot predicted as Rust, but the rest of the
classes had few misclassifications. The proposed model, LeafSightX,
was the most effective, with the fewest misclassifications. There
were 138 correct classifications of healthy leaves and one incorrect
classification of brown spot. Alternaria leaf spot contained no
errors. Rust was correct on 196 of its predictions with only two
small misclassifications. In all 205 and 172 cases, respectively,
the gray and brown spots were correctly identified. The findings
indicate that LeafSightX is more accurate and less confusing,
especially in rust, gray spot, and brown spot. The findings
affirm the conclusion that LeafSightX performs better in the
performance-based class, especially against rust, gray spot, and
brown spot, indicating superior performance compared to the
other models.

4.6 Model calibration, statistical
significance, and reliability metrics

Additional complementary indicators and tests were
implemented to conduct a comprehensive assessment of the
reliability, calibration, and statistical significance of the measured
classification models. The Brier Score is a metric that assesses the
precision of probabilistic forecasts and their calibration across all
classes. The nonparametric p-values were robust, and permutation
testing was used to determine whether the observed best accuracies
are substantially larger than those expected by chance. To establish
a competition on confidence levels for accuracy measurements,
bootstrap resampling was implemented to provide insight into the
performance’s stability. Lastly, Cohen’s Kappa statistic measures

the extent to which predicted labels match the actual ones above
chance level, thereby serving as an additional metric of reliability.
The average Brier Scores, accuracy, permutation test p-values,
bootstrap accuracy with 95% confidence interval, and Cohen’s
Kappa scores are summarized in Table 16. These statistics are
calculated for all models.

The low average Brier Scores across all models, ranging from
0.0001 for the proposed LeafSightX model on the training set
to 0.0122 for NASNetMobile on the test set, indicate perfect
calibration of the predicted probabilities and well-calibrated
confidence estimates. Accuracy scores also emphasize the models’
predictive abilities: LeafSightX achieves 99.98 on the training data
and 99.64 on the test data, whereas all models achieve over 96
on the test data. Its results are confirmed by p-values from the
permutation tests, which are always less than 0.001, indicating that
the classification performance significantly outperforms random
chance alone. The 95% confidence intervals obtained with the
Bootstrap are stringent; i.e., the accuracy of the LeafSightX test is
estimated at 99.15–100.00, and the accuracy of the DenseNet201
test is estimated at 98.05–99.39, indicating a stable and accurate
range of estimates. Additionally, the Cohen Kappa values in the test
set are impressive (0.9506, NASSNetMobile; 0.9954, LeafSightX),
demonstrating the reliability of the models’ labels despite the
predicted and actual labels achieving near-perfect performance,
which is significantly better than chance.

All of these complementary measures, granted by probabilistic
calibration using the Brier Score, statistical verification using
permutation testing, quantification of uncertainty using bootstrap
confidence intervals, and agreement and consistency using the
Cohen Kappa, form an in-depth and stringent evaluation scheme.
The method has been used to create transparency and reliability
in model evaluation, and this strategy has supported the real-
world applicability of such classifiers for disease identification in
agriculture. To evaluate the calibration of our proposed LeafSightX
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FIGURE 7

Training and validation loss and accuracy curves across epochs for six models: (a) DenseNet201, (b) InceptionV3, (c) VGG19, (d) Xception, (e)
NASNetMobile, and (f) LeafSightX. The figure provides a comprehensive comparison of training and validation performance across all models.
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FIGURE 8

Confusion matrices for various deep learning models on apple leaf disease classification, showing true vs. predicted labels for five classes: Healthy
leaf, Alternaria leaf spot, Rust, Gray spot, and Brown spot.

model, we present the Expected Calibration Error (ECE) bar plot,
which illustrates how well the predicted probabilities align with
actual outcomes across different confidence bins, as presented
in Figure 9.

Figure 9 presents the Expected Calibration Error (ECE) per
bin of five classes of plant leaf disease. The x-axis is the
average predicted probability, and the y-axis is the proportion of
positives in each probability bin. The color-coded bars indicate
the distribution of predicted probabilities of each disease group.
The dotted diagonal line indicates that the calibration is perfect;
that is, the predicted probabilities are equal to the actual class
frequencies. As shown in the figure, most classes are well-calibrated

in terms of the predictability of their probabilities, with their
bars tending to closely or broadly follow the diagonal line.
Nevertheless, Gray spot and Brown spot exhibit calibration flaws,
especially in higher-probability bins, suggesting the model is
either overconfident or underconfident for these classes. We also
include the Confidence Distribution Curve and Max-confidence
Histogram for the proposed LeafSightX system, to further
assess the model’s confidence across all disease classes. These
additions provide more information about the model’s behavior
and, as such, help evaluate and optimize model calibration,
especially for more challenging courses such as Gray spot and
Brown spot.
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TABLE 16 Average brier scores, accuracy, permutation p-values, bootstrap accuracy (95% CI), and Cohen’s kappa.

Model Dataset Avg. brier
score

Accuracy Permutation Bootstrap
accuracy

95% CI Kappa
(test)

p-value

DenseNet201 Train 0.0006 0.9980 0.0001 0.9980 0.9968–0.9989 –

Validation 0.0035 0.9890 0.0001 0.9890 0.9817–0.9951 –

Test 0.0039 0.9878 0.0001 0.9878 0.9805–0.9939 0.9846

InceptionV3 Train 0.0004 0.9989 0.0001 0.9989 0.9982–0.9997 –

Validation 0.0048 0.9841 0.0001 0.9843 0.9744–0.9927 –

Test 0.0049 0.9830 0.0001 0.9826 0.9732–0.9915 0.9784

VGG19 Train 0.0023 0.9930 0.0009 0.9930 0.9910–0.9948 –

Validation 0.0090 0.9670 0.0009 0.9671 0.9536–0.9792 –

Test 0.0085 0.9732 0.0009 0.9733 0.9611–0.9842 0.9661

Xception Train 0.0005 0.9988 0.0009 0.9988 0.9980–0.9995 –

Validation 0.0073 0.9792 0.0009 0.9792 0.9683–0.9890 –

Test 0.0065 0.9781 0.0009 0.9777 0.9672–0.9866 0.9723

NASNetMobile Train 0.0051 0.9819 0.0009 0.9819 0.9787–0.9849 –

Validation 0.0110 0.9609 0.0009 0.9609 0.9487–0.9744 –

Test 0.0122 0.9611 0.0009 0.9611 0.9477–0.9732 0.9506

LeafSightX
(Proposed)

Train 0.0001 0.9998 0.0009 0.9999 0.9995–1.0000 –

Validation 0.0030 0.9902 0.0009 0.9902 0.9829–0.9963 –

Test 0.0011 0.9964 0.0009 0.9963 0.9915–1.0000 0.9954

FIGURE 9

Expected calibration error (ECE) bar plot for the proposed
LeafSightX model, showing the alignment between predicted
probabilities and actual outcomes across different confidence bins.

Figure 10 shows the Confidence Distribution Curve (left) and
the Histogram of Maximum Prediction Confidence (right) for the
proposed LeafSightX system. The Confidence Distribution Curve
shows that many predictions have a distinctly strong score of zero
or one, indicating that the model is very sure in its predictions. In

contrast, only a small number have a moderate score. This suggests
that the model is likely to give firm predictions, either sure of
its classification or unsure, instead of giving a wide spectrum of
probability values.

This is further supported by the Histogram of Maximum
Prediction Confidence, which indicates that most samples have
maximum predicted probabilities close to 1. It means the model is
always certain about its predictions, though the number of samples
with lower confidence is significantly lower. The results imply that
the model is confident in its predictions, but additional calibration
may be needed to better handle less certain cases.

4.7 Ablation study: evaluating the impact
of multi-head self attention on LeafSightX
and backbone models

In our ablation study, we evaluated the test accuracy
of DenseNet201, InceptionV3, and their combinations
without Multi-Head Self Attention (MHSA). Without MHSA,
DenseNet201, InceptionV3, and the DenseNet + InceptionV3
fusion achieved test accuracies of 0.9854, 0.9672, and 0.9927,
respectively, as observed from Table 1. After integrating MHSA,
DenseNet201, and InceptionV3, the models achieved 0.9878 and
0.9830, while the fusion model reached the highest accuracy
of 0.9964. These results indicate that MHSA improves the
model’s ability to focus on relevant spatial features, enhancing
classification performance.
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FIGURE 10

Confidence distribution curve and maximum prediction confidence histogram for the proposed LeafSightX system.

The combination of DenseNet201 and InceptionV3 with
MHSA outperforms all individual models. The improvement over
the fusion model without MHSA highlights the importance of
attention mechanisms in identifying key patterns and producing
more reliable predictions. These findings confirm LeafSightX’s
effectiveness in achieving superior accuracy and generalization,
establishing it as a robust tool for leaf disease classification and
agricultural diagnostics.

4.8 Interpretation of learned features in the
fusion backbone using Grad-CAM

The Grad-CAM visualizations for the DenseNet201 and
InceptionV3 backbones are shown in Figures 11, 12, respectively,
highlighting the spatial regions of leaf images that most
influence model predictions. The Grad-CAM visualizations of
DenseNet201 and InceptionV3 as backbone models are presented
in Figures 11, 12, respectively. These backbones are the main
feature extractors used in LeafSightX, and the heatmaps provide
insight into their pattern preferences for identifying disease-
specific features before fusion, which is helpful for interpretation
and reliability.

Figure 11 indicates that DenseNet201 concentrates on the
regions of the affected places that include water-soaked blotches,
necrotic lesions, and distortion of the edges of the leaf. MHSA is yet
another refinement of this focus, making the localization features
more semantically precise and relevant. These findings indicate
that DenseNet201 can capture physiologically significant patterns,
consistent with visual clues identified by plant pathologists, and
provide valuable additions to disease classification.

Similarly, in Figure 12, the Grad-CAM heatmaps of the
InceptionV3 backbone highlight critical indicators, including
textural changes, fungal plaques, and tissue atrophy. These
visualizations show that InceptionV3 effectively identifies disease-
relevant regions, capturing precise patterns essential for accurate
diagnosis. The backbone demonstrates the ability to focus
on disease-specific variations across spatial scales, enhancing

interpretability and reliability. Analyzing individual backbones is
crucial for understanding and validating the model’s decision-
making, especially in domains like agriculture and plant pathology.

Though Grad-CAM can be successfully used to visualize the
spatial attention of individual backbones, feature fusion, which
is repeated concatenation, then attentions and fully connected
layers, breaks the spatial alignment of features to the original
image, and reliable Grad-CAM heatmaps of the fused output are
technically infeasible. However, Grad-CAM visualizations of the
individual backbones are highly interpretable. Regions of interest
are always aligned with areas affected by the disease and verified as
biologically relevant by plant pathology experts, so it is plausible
to expect that the fused LeafSightX model will capture these
important features even better and increase its interpretability and
diagnostic accuracy.

4.9 Comparative results using an additional
dataset

Table 17 presents the comparative results of several deep
learning architectures evaluated on an additional dataset (Dhar,
2023). The performance comparison shows that all models
achieved consistently high accuracy across training, validation,
and test sets, indicating strong generalization. Among them, the
proposed LeafSightX model achieved the best overall performance,
with a test accuracy of 0.9969 and an F1-score of 0.9970, surpassing
all baseline architectures. DenseNet201 and InceptionV3 also
demonstrated strong performance, achieving test accuracies over
0.99 and near-perfect AUC and PR AUC values. However, their
marginally lower precision and recall suggest a minor imbalance in
class prediction compared to the proposed method. The consistent
superiority of LeafSightX across all metrics, including both AUC
(0.9999) and PR AUC (1.0000), confirms its robustness and
adaptability to unseen data. These results validate the scalability and
generalization potential of the proposed framework, showing that
it maintains high discriminative power when applied to datasets
beyond the primary experimental setup.
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FIGURE 11

Grad-CAM visualization for DenseNet201 backbone.
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FIGURE 12

Grad-CAM visualization for InceptionV3 backbone.

4.10 Benchmarking LeafSightX against
existing literature

The current deep learning models employed to predict
apple leaf maladies are compared in detail with LeafSightX

in Table 18. The suggested LeafSightX achieves an impressive
99.64% accuracy, surpassing all evaluated approaches, which
generally report accuracies ranging from 66.8% to 99.51%. This
outstanding outcome underscores the efficacy of a double-
backbone architecture integrating DenseNet201 and InceptionV3
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TABLE 17 Comparative performance of deep learning models on the apple leaf disease dataset (additional dataset results).

Model Accuracy Performance metrics AUC scores

Train Validation Test Precision Recall F1-score AUC PR AUC

DenseNet201 1.0000 0.9977 0.9964 0.9964 0.9965 0.9965 0.9999 0.9999

InceptionV3 0.9999 0.9884 0.9882 0.9882 0.9883 0.9882 0.9998 0.9994

VGG19 0.9887 0.9766 0.9779 0.9779 0.9778 0.9779 0.9990 0.9973

Xception 0.9999 0.9874 0.9887 0.9888 0.9887 0.9888 0.9997 0.9992

NasNetMobile 1.0000 0.9889 0.9884 0.9886 0.9884 0.9885 0.9997 0.9991

LeafSightX
(proposed)

1.0000 0.9982 0.9969 0.9970 0.9970 0.9970 0.9999 1.0000

TABLE 18 Comparative analysis of existing models and LeafSightX for apple leaf disease detection.

References Model Accuracy XAI

Liu and Li (2024) A-Net 92.7% mAP@0.5 No

Wang et al. (2025) ELM-YOLOv8n 96.7% mAP@0.5 No

Gong and Zhang (2023) YOLOv8 Variant 86.9% mAP@0.5 No

Lv and Su (2024) YOLOv5-CBAM-C3TR 92.4% Accuracy No

Scientific (2025) VGG-DAGSVM 96.5% Accuracy No

Luo (2025) AppleLite-YOLOv8 97.56% Precision, 94.38% Recall No

Rajput et al. (2024) EfficientNetB0 + Neutrosophic Logic 99.51% Accuracy No

Parashar and Johri (2024) CNN + Canny Edge 94.76% Accuracy No

Rohith et al. (2025) ResNet + VGG19 98.9% Accuracy (Validation) No

Liu et al. (2024) MCDCNet 66.8% Accuracy No

Zhang et al. (2023) BCTNet 85.23% Accuracy No

Khan et al. (2022) Two-Stage System 88% Classification Accuracy No

Zhang et al. (2024) Inc-RPN 49.0% Recall, 34.0% mAP No

This Study LeafSightX (DenseNet201 + InceptionV3 fusion) 99.64% Yes

with MHSA, enhancing the model’s ability to extract both local
and global features of the disease from leaf images. Unlike
most prior studies, LeafSightX is the inaugural work to integrate
XAI, thereby ensuring transparent, interpretable predictions. In
conjunction with heightened trust among end users, Grad-CAM
heatmaps can help agricultural specialists derive actionable insights
by highlighting diseased areas of leaves. Moreover, LeafSightX
achieves these enhancements without imposing a significant
computational burden, while preserving efficient runtime inference
and resource allocation. The trade-off between high accuracy,
interpretability, and computational intensity makes LeafSightX
viable for application in a low-resource agricultural context.
Consequently, our framework bridges the divide between advanced
research and practical application, resulting in more user-friendly
and dependable instruments for diagnosing plant diseases.

5 Conclusion

This study has led to the development of LeafSightX. This
diagnostic framework leverages deep learning to address key

challenges in the automated diagnosis of apple leaf diseases,
including limited generalizability, interpretability issues, and
sensitivity to domain shifts. LeafSightX achieves this by
combining features from the DenseNet201 and InceptionV3
backbones using Multi-Head Self-Attention, effectively capturing
both detailed and high-level spatial information. A robust
preprocessing and augmentation pipeline, along with Grad-CAM
visualizations for explanations, further enhances the model’s
reliability and transparency. Experimental results indicate that
LeafSightX delivers outstanding performance, with 99.64%
accuracy, an F1-score above 0.996, and perfect AUC and
PR-AUC scores, all while maintaining low inference latency,
making it suitable for real-time applications in the field. These
results surpass multiple baselines and demonstrate the model’s
consistency across cross-validation splits, as evidenced by a
mean Cohen’s Kappa of 0.9917 and a standard deviation of
0.0020. Also, the proposed LeafSightX framework was trained
and evaluated on an additional independent apple leaf disease
dataset, achieving a test accuracy of 99.69%, demonstrating
its robustness and generalizability. The broader significance
of this research lies in its dual focus on predictive accuracy

Frontiers in Artificial Intelligence 22 frontiersin.org

https://doi.org/10.3389/frai.2025.1689865
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Haque et al. 10.3389/frai.2025.1689865

and model interpretability, meeting the increasing demand
for trustworthy AI in agricultural diagnostics. LeafSightX
stands as a feasible solution, particularly effective for on-device
deployment in underprivileged rural areas. In terms of limitations,
LeafSightX was primarily trained on region-specific datasets,
which may limit its generalizability to apple leaf diseases in other
geographic regions.

Future research will involve further development
of LeafSightX as an apple leaf disease detector using
large datasets, as a component of edge computing
systems, and adaptation to the temporal dynamics
of leaf infections through sequential imaging. Finally,
LeafSightX will be a more intelligent, explainable
instrument to improve control of apple leaf disease in
precision agriculture.
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