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Introduction: Early detection of cognitive decline is essential for preventing
dementia progression, yet conventional screening tools such as the Mini-
Mental State Examination (MMSE) require trained examiners and substantial
time. Building on evidence that dementia is associated with tactile and visual
perceptual deficits, this study examined whether the Sound Symbolic Word
Texture Recognition Test (SSWTRT)—a rapid, self-administered task using
Japanese sound-symbolic words (SSWs)—could identify individuals with
suspected cognitive decline through machine learning analysis.

Methods: A total of 233 participants diagnosed with idiopathic normal pressure
hydrocephalus (mean age = 77.1 + 7.3 years) completed the SSWTRT, which
presents 12 close-up images of material surfaces and requires selecting one
of eight SSWs to describe perceived texture. Each response was scored by its
concordance with normative data from healthy young adults. Using these 12 item
scores, together with participants’ age and education, several machine learning
classifiers were trained to predict MMSE-based groups (<27 vs. >28). Model
performance was evaluated via five-fold cross-validation, and interpretability
was examined using SHapley Additive exPlanations (SHAP).

Results: Among the tested models—K-Nearest Neighbors, Random Forest,
and Support Vector Machine (SVM)—the balanced SVM achieved the highest
performance (accuracy = 0.71, precision = 0.72, recall = 0.72, F1 = 0.72, AUC = 0.72).
SHAP analysis revealed that responses to specific images, especially those depicting
soft or coarse textures, strongly influenced classification outcomes. Some image
items showed effects opposite to the intended scoring direction, indicating possible
interference from age-related sensory decline rather than cognitive factors.
Discussion: These findings demonstrate that machine learning applied to SSWTRT
responses can moderately classify individuals with potential cognitive decline
using a non-invasive, resource-efficient approach. The model’s interpretability
analysis highlighted key image features and response tendencies associated
with cognitive status, providing guidance for test refinement. Although the
current cohort consisted solely of iINPH patients, limiting generalizability, the
proposed framework offers a promising foundation for scalable, language-
specific cognitive screening tools.

KEYWORDS

sound symbolic words, texture recognition, dementia, neuropsychological tests,
machine learning, SHAP
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1 Introduction

In response to the increasing number of elderly individuals with
dementia due to population aging, dementia measures have recently
been prioritized as one of the most critical issues in social security
policies in advanced countries. Early detection of cognitive decline,
including mild cognitive impairment (MCI), which lies between normal
cognitive aging and dementia, and the implementation of appropriate
interventions, may prevent the onset of dementia (Livingston et al.,
2024; Ngandu et al., 2015; Cooper et al., 2024). Therefore, the early
detection of cognitive decline is crucial in dementia countermeasures.

The Mini-Mental State Examination (MMSE) (Folstein et al.,
1975) is one of the most widely used screening tests for dementia.
However, its implementation requires assistance from trained
professionals, posing challenges to widespread and cost-effective
deployment (Sakamoto, 2016). Additionally, patients may be reluctant
to undergo cognitive function tests due to concerns about potential
cognitive impairment or fear of poor performance. Therefore, the
development of an easy-to-administer cognitive screening test that
allows patients to take it comfortably and can detect the early stages
of dementia would be beneficial.

To develop a test for detecting cognitive decline in people with
dementia, we focused on texture recognition abilities, which are
essential in everyday life. Previous studies have shown that people
with Lewy body dementia and Alzheimer’s disease differ from those
without in their ability to recognize the texture of images presented
to them, particularly in their difficulty distinguishing between wet
and shiny objects in photographs (Oishi et al., 2018). In addition, it
was reported that their perception of the freshness of vegetables
through texture perception was significantly reduced (Oishi et al.,
2020). Moreover, several previous studies have reported that
dementia patients experience a decline in texture recognition ability
(Battelli et al., 1997; Cavina-Pratesi et al., 2010; Bassi et al., 1993).

However, only a few studies have focused specifically on texture
recognition ability. Against this background, we recently reported a
method to test how subjects recognize the surface texture of common
objects, either through verbal expressions or from photographs of the
objects (Kamohara et al., 2024).

When communicating the textures to others, sound symbolic words
(SSWs) are often used, especially among Japanese people. In this context,
synesthetic associations between sounds and sensory experiences (sound
symbolism) have been proven for several decades (Jespersen, 1921;
Newman, 1933; Taylor, 1963; Werner and Wapner, 1952; Brown et al.,
1955; Hinton et al., 2006; Nuckolls, 1999; Wertheimer, 1958; Sapir, 1929).

Regarding the cross-modal correspondence between sounds and
visual shapes shown by studies Ramachandran and Hubbard (2001),
Kohler (1929), and Maurer et al. (2006), words such as “marma” and
“bouba” tend to be associated with round shapes, while words such as
“takete” and “kiki” tend to be associated with angular shapes.

In addition, several recent studies have shown the relationship
between the iconic sounds of sounds and the sense of touch (Wong
et al., 2022; Sakamoto and Watanabe, 2018).

SSWs, or onomatopoeias as they are commonly called, are the
verbalization of auditory information from the environment. A
previous study by Hashimoto et al. (2014) showed that SSWs are more
frequently used by aphasic patients than healthy subjects and are less
likely to be affected by aphasia symptoms, and some recent studies
have also shown a link between the symbolic sound of sounds and the
tactile sensation (Dingemanse and Majid, 2012).
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Motivated by these previous studies, we developed a screening test
named the Sound Symbolic Words Texture Recognition Test (SSWTRT)
(Kamohara et al., 2024) aimed at the early detection of mild dementia
and reported the results. Unlike many psychological tests, the proposed
test does not require a specialized assistant and can be administered in
a short time. The correlation coefficient between the total score of the
SSWTRT and the MMSE score was r > 0.45, and in classification using
the total score of the SSWTRT as the cutoff value, the classification
performance for subjects with an MMSE score of 27 or less was
specificity 0.74 and sensitivity 0.62 (AUC 0.7, cutoff value = 7.34).

Although the SSWTRT is a test designed to evaluate the state of the
subject’s texture perception, based on the characteristics described
above, improving the accuracy of classifying individuals with suspected
cognitive decline (e.g., MMSE <27) is thought to be of practical value in
dementia screening. In our previous report, we classified subjects based
on the total score in the SSWTRT. However, as the tendency of responses
to each question differs depending on the group classified according to
the MMSE score, further improvement in classification performance
can be expected by utilizing these individual differences. In this paper,
we design a machine learning method that treats the answers to each
question as individual elements and reports its performance.

There is a wide range of previous research into using machine
learning to predict diseases based on patient health data. For example,
it is known that diabetes and heart disease can be diagnosed with a
high degree of accuracy by using health data such as a patient’s age,
blood pressure, and lifestyle habits (Kopitar et al., 2020; Subramani
et al., 2023). One example of previous research applying machine
learning to the diagnosis of Alzheimer’s disease is a reported attempt
at early diagnosis using MRI data (Pan et al., 2020).

The fact that decisions made by machine learning models are
conducted in a black box has long been a significant problem in using
these models for disease diagnosis. In particular, since misdiagnosis
of a disease can harm the patient’s health, it is extremely important to
understand the basis for the model’s judgment.

SHapley Additive exPlanations (SHAP), a method based on
Shapley values from game theory, provides a quantitative explanation
of how each feature contributes to a machine learning model’s
predictions (Lundberg and Lee, 2017). This makes it easier to explain
the model’s workings to stakeholders involved in the implementation
of the model in society. In recent years, some studies have been
reported that have attempted to examine the explanatory potential of
SHAP models using patient physiological data (Yang et al., 2024);
(Dharmarathne et al., 2024).

2 Sound Symbolic Words Texture
Recognition Test

2.1 SSWRTR

In the SSWTRT, participants are shown a total of 12 close-up
photographs of material surfaces (Supplementary Figure S1). For each
image, as shown in Supplementary Figure S2, they are asked to select
one of the eight SSW options that best represent the texture they
perceive when touching the material. The details of the image stimuli
used in the SSWTRT and the method for selecting SSW's are described
in our previous study Kamohara et al. (2024) and shown in
Supplementary Figures S1, S2, and Table 1.
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TABLE 1 List of selected sound symbolic words (SSWs) and their
corresponding meanings.

Sound symbolic
word

Meaning

zara-zara A texture and overall appearance that is coarse and has

a strong roughness

tsuru-tsuru A surface that is flat and glossy. A state of being
smooth. Frequently used for hard materials such as

boards or metals.

fuwa-fuwa Softly swollen or puffed up in appearance

sara-sara Lacking moisture or stickiness

gotsu-gotsu Angular and hard in appearance. Not flexible or

supple.

sube-sube Smooth and pleasing to the touch; the condition of

skin or hair is smooth

nuru-nuru Slimy and slippery, causing discomfort, as if

something mucous-like is clinging

deko-boko A surface that is not flat, having bumps and

indentations

Adapted from Kamohara et al. (2024), under CC BY 4.0 license.

The selected responses are then converted into scores by
comparing them with the distribution of responses from a previous
study conducted on a group of young, healthy participants. This
scoring system is designed to assign higher scores to responses that
align with those commonly chosen by young, healthy participants,
while responses that deviate receive lower scores. Specifically, if a
participant selects xj(ls j£8) as the answer to the question H;
(1 <i< 12), the score is calculated using the following formula:

P(x,|H;)

max P (x{H;)

Score(xy,Hj )=

Here, P(xj|Hi) denotes the probability (the frequency obtained
in an experiment on healthy subjects) that the healthy group will
choose the answer x; for question H;. For example, selecting the most
common response among healthy controls yields a score of 1, while
selecting an option never chosen by them results in a score of 0.

Response patterns in the high-MMSE group closely matched
those of healthy young controls, whereas the low-MMSE group more
often endorsed options seldom chosen by controls. Figure 1 shows
the distributions for Image 1 (fabric close-ups). Controls most
frequently endorsed the sound-symbolic word fuwa-fuwa (“flufty”;
soft, pufty). In contrast, endorsements of fuwa-fuwa declined in the
low-MMSE group, while selections of zara-zara (“gritty”; rough,
snagging) and nuru-nuru (“slimy”; slippery, unpleasant) increased.
Distributions of the
Supplementary Figures 3(a-1).

remaining images are shown in

2.2 Participant

A total of 233 subjects, including 102 subjects reported in our
previous paper (patients who visited Juntendo University Hospital and
Juntendo University Tokyo Koto Geriatric Medical Center from January
to August 2023) and 131 patients who visited Juntendo University
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Hospital and Juntendo University Tokyo Koto Geriatric Medical Center
from September 2023 to May 2024. The mean age of the participants was
77.06 years, with a SD of 7.25. Among the participants, 111 were male
and 122 were female, and the patients were diagnosed with probable or
definite iNPH by neurosurgeons and neurologists according to the
Japanese iNPH guidelines (Dingemanse and Majid, 2012).

2.3 Ethical approvals

This study was approved by the Research Ethics Committee of
Juntendo University, Tokyo, Japan (E22-0100). The preliminary
experiment protocol was approved by the Research Ethics Committee
of The University of Electro-Communications, Tokyo, Japan
(#18026). The study adhered to the tenets of the Declaration of
Helsinki, and written informed consent was obtained from all
participants, including the preliminary experiment.

3 Classification using machine
learning

In this section, we first describe the dataset used in the study.
We then report the procedure for constructing the machine learning
models and their classification performance. Finally, we present the
results of the SHAP analysis, highlighting which variables the models
considered most important for sample classification.

3.1 Data

This section provides an overview of the data used for machine
learning. As described above, the dataset includes a total of 233
samples. Each record contains 14 attributes: the SSWTRT score
calculated from each subject’s responses to the 12 images, the total
score for the 12 questions on the SSWTRT, and the subject’s MMSE
score. Figure 2 shows the correlation coeflicient matrix between the
scores for the 12 questions in the SSWTRT, the total score of the
SSWTRT, and the MMSE score. The correlation coefficient between the
total score of the 12 questions in the SSWTRT and the MMSE score
was 0.45. To better understand the correlation between the SSWTRT
total score and the MMSE score, a scatter plot is shown in Figure 3.

Figure 4 shows the box plot of the SSWTRT scores divided into
two groups based on the MMSE score. In this study, a cutoff
indicating cognitive decline was set based on previous research on
the criteria for diagnosing MCI, and participants were divided into
two groups (Cuoco et al., 2025; Zhang et al., 2021).

A significant difference (<0.001**, t-test) was confirmed between
the mean scores of the group with an MMSE score of 27 or less, which
suggests cognitive decline, and the group with an MMSE score of 28 or
more. The number of subjects in the group with an MMSE score of 27
or less was 111, and the number of subjects in the group with an MMSE
score of 28 or more was 126. The original dataset also included results
from other cognitive assessments, such as the FAB and RAVLT, as well
as demographic information such as participant age. However, since
the aim of this study was to evaluate the classification performance of
the SSWTRT as an independent screening tool requiring minimal time
and resources, we only utilized data on participants’ age, education
levels, and responses to each question on the SSWTRT. Comparison of
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FIGURE 1
Distribution of subjects’ responses to Image 1. A shift from “fuwa-fuwa (fluffy)” to “zara-zara (gritty)” and “nuru-nuru (slimy)” was observed in the
low-MMSE group.

the SSWTRT with the results of other mental tests was provided in our
previous paper (Kamohara et al., 2024).

3.2 Model build and performance
evaluation

Using the differences in response trends between groups in the
SSWTRT discussed in the previous section, we designed a machine
learning model to classify subjects with an MMSE score of 27 or less,
suspected of having mild cognitive impairment. In addition to the scores
of each subject’s responses to the 12 questions, we included age and years
of education as input features, with missing values in years of education
imputed by the mean. We applied three machine learning methods:
K-nearest neighbors (KNNs), random forest classifier (RFC), and
support vector machine (SVM). For RFC and SVM, we evaluated models
both with and without applying balance control techniques (Bach et al.,
2019; Chawla et al, 2002; Lin et al, 2020) designed to improve
performance on minority classes in imbalanced data. Model performance
was evaluated using 5-fold cross-validation, based on accuracy, precision,
recall, F1 score, and AUGC, selecting the model that achieved the highest
F1 score. For hyperparameter tuning with 5-fold cross-validation, the
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dataset was divided into five folds, and for each candidate set of
hyperparameters, the model was repeatedly trained on four folds and
evaluated on the remaining one. The five evaluation scores obtained were
averaged, and the hyperparameters yielding the best mean performance
were selected. Finally, the model was retrained on the entire dataset using
the optimal hyperparameters to obtain the final model.

3.3 Result

For each method, we optimized each model using the
hyperparameters in the ranges shown in Table 2 and compared the
performance of each model on five indices: accuracy, precision,
recall, F1 score, and AUC (ROC-AUC score) (Table 3; Figure 5).
The best performance, except for AUC, was achieved using SVM
with SMOTE. The best model had accuracy = 0.71, precision = 0.72,
recall = 0.72, F1 score =0.72, and AUC = 0.72. The confusion
matrix for the classification results for 47 validation set samples
(20% of 233 total participants) using this model is shown in
Figure 6.

Using the best SVM model, we performed ROC analysis using the
distance between each sample and the hyperplane (Figure 7). The TPR
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FIGURE 2
Correlation coefficient matrix between SSWTRT question scores, total score, and MMSE score.

increased to 0.7 or higher when the FPR was approximately 0.3, which
is a balanced operating point that maintains relatively high sensitivity
while also ensuring a certain level of specificity. The optimal threshold
for application will vary slightly depending on the combination with
other screening tests and will need to be adjusted depending on
whether sensitivity or specificity is prioritized.

3.4 Model explanations

In this section, we describe the results of investigating the
decision-making process of the machine learning model developed in
this study using SHAP. Using SHAP, we can quantitatively evaluate the
degree of influence of each input feature on prediction, which not only
helps us understand the model’s decision-making process but also
allows us to evaluate whether the decision is reliable. Model
explainability helps to gain understanding from various stakeholders
when implementing the developed model in society, and contributes
to continuous model development, data collection, and improvement
of experimental conditions.

The analysis using SHAP in this section was performed on the
SVM model that achieved the highest classification performance in
the comparison of indicators in the previous section. Figure 8
presents the SHAP summary plot, in which the features on the
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vertical axis are arranged in descending order of their impact on the
model output. In the SHAP summary plot, the horizontal axis
represents the feature importance (SHAP values), with red points
indicating higher feature values and blue points indicating lower
values. The horizontal spread reflects variability in the impact of
each feature.

As shown in the figure, when participants were classified into
MMSE score groups using the SSWTRT question scores, the most
important question was identified as Image 01. Notably, the
importance of responses to Image 01 exceeded that of participants’
years of education or age. The SHAP values transition from red to
blue from left to right, indicating that higher Image 01 scores
exert a stronger effect in pushing the classifier’s output toward
Class 0 (i.e., the group with MMSE >28). Subsequently, years of
education, Image 10, age, Image 05, and Image 07 followed in
descending order of variable influence. For these image-related
items, the model appeared to learn that higher response accuracy
increased the likelihood of classification into the cognitively
normal group. In contrast, for items such as Images 12 and 09,
higher response accuracy was associated with a greater likelihood
of classification into Class 1. As shown in the correlation
coefficient matrix in the previous section, Images 01 and 05
exhibited relatively high correlations with MMSE scores, whereas
Images 09 and 12 demonstrated low or even negative correlations.
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FIGURE 3
Scatter plot shows the correlation between SSWTRT total scores and MMSE scores.

These findings suggest that such questions may not function
effectively in the classification process. However, the contribution
of these variables (Images 09 and 12) to the classification was low.
The SSWTRT question scores were originally derived from data
obtained from young adults presumed to be free of cognitive
impairment. Therefore, the decision-making process of the
machine learning model—linking higher scores on certain
questions with a greater likelihood of cognitive decline—deviates
from the intended scoring design and requires further refinement.
Approaches for addressing this issue will be discussed in the
following section. Figures 9a—d illustrates decision plots that show
how the classifier evaluated the features of individual samples in
the test set and produced classifications. SHAP decision plots are
visualization tools that reveal how a machine learning model
generates By displaying the cumulative
contributions of each feature alongside the final output, they

its predictions.

enable detailed analysis of the decision-making process for each
sample. Figures 9a,b present decision plots for correctly classified
samples, whereas Figures 9c,d depict those for misclassified
samples. Comparisons between these plots provide insights into
potential improvements for both the SSWTRT test and
the classifier.

In the decision plots of misclassified participants, the
classifier’s outputs tend to cluster approximately 0.5 across many

Frontiers in Artificial Intelligence

samples, in contrast to the patterns observed in correctly classified
cases. For example, in the misclassified class 1 sample shown in
Figure 9c¢, all outputs fall within the narrow range of 0.45-0.52.
Moreover, in many misclassified samples, the decision paths of
Image 01 and years of education intersect, suggesting the need for
refinement to better detect such specific patterns.

4 Discussion

We demonstrated that utilizing responses to individual
questions in the SSWTRT improved classification accuracy into
MMSE-based groups that indicate a possible risk of cognitive
decline. The ROC analysis demonstrated moderate discriminative
ability (AUC = 0.72), with sensitivity and specificity approximately
0.72 at the optimal threshold, suggesting potential utility as a
supplementary measure rather than a standalone diagnostic test.
Importantly, the SSWTRT can be administered without requiring
specialized personnel, thereby reducing the burden on examiners,
while patients may experience less anxiety or embarrassment
This
administration, combined with the possibility of implementation

compared to conventional cognitive tests. ease of

on a single device such as a tablet, makes the test potentially more
accessible and cost-effective.
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FIGURE 4

Class

MMSE = 28

MMSE = 27

4 6 8 10
SSWTRT Score

Boxplot compares SSWTRT scores between MMSE <27 and MMSE >28 groups (p < 0.001).

TABLE 2 Optimized hyperparameters.

Classifier
KNN

n_neighbors

Hyperparameter

Values

3,5,7,9

Description

Number of neighbors to consider when classifying a data point.

weights Uniform, distance Weighting method for neighbors; ‘distance’ assigns greater weight to closer neighbors.
P Manbhattan, euclidean Distance metric: p = 1 (Manhattan), p = 2 (Euclidean).
Random forest n_estimators 50, 100, 200 Number of trees in the forest.
max_depth None, 5, 10 Maximum depth of each tree; controls model complexity.
min_samples_split 2,5,10 Minimum number of samples required to split an internal node.
SVM C 0.1,1,10 Regularization parameter: balances margin size and misclassification.
kernel linear, RBF Kernel type used to transform the input data space.

TABLE 3 Performance evaluation of models.

Classifier Best Params (summary) Accuracy Precision Recall F1 score AUC

KNN n_neighbors: 5, 0.65 0.66 0.65 0.65 0.66
p: Manhattan,
weights: uniform

REC (no balancing) n_estimators: 50, 0.70 0.70 0.69 0.70 0.74
max_depth: 10,
split: 10

REC (balanced) n_estimators: 100, 0.69 0.70 0.69 0.69 0.74
max_depth: None,
split: 10

SVM (no balancing) C: 10, 0.68 0.70 0.68 0.68 0.71
kernel: RBF

SVM (balanced) C: 10, 0.71 0.72 0.72 0.72 0.72
kernel: RBF
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Confusion matrix for SVM classification results from the validation
dataset.

Model interpretability analysis using SHAP indicated that
some images may play an important role in classification, while
others may not. Since a higher SSWTRT total score is closer to the
texture perception of healthy subjects, each score is expected to
have a positive effect on predicting the MMSE group, but some
questions showed the opposite effect. This may be due to perceptual
misjudgment caused by an age-related decline in sensory function
rather than cognitive function itself, introducing noise into the
prediction process. Considering previously reported visual
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FIGURE 7
Receiver operating characteristic (ROC) analysis of the SVM classifier,
where decision scores were obtained from the signed distances of
samples to the separating hyperplane.

characteristics in dementia patients, such as reduced contrast
sensitivity (Risacher et al., 2013; Hutton et al., 1993), future studies
should increase the number of test images and analyze the
relationship between image features and classification performance.

The analysis of the SHAP decision plot showed that many of the
misclassified samples had classifier outputs concentrated at
approximately 0.5, suggesting that they were samples for which the
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FIGURE 8
SHAP summary plot shows the importance and directionality of each feature (image score) in the classification model.

classifier was “unconfident” In actual screening sites, it may
be effective to present the confidence level of the output and
introduce a multi-stage evaluation method that combines other
tests as necessary.

The SSWTRT presents each question with eight response
options, and scoring is computed using the formula detailed in
Section 2. This mechanism assigns higher scores to responses that
align more closely with those of healthy individuals, while deviations
result in lower scores. In this study, a machine learning model was
constructed using the 12 individual question scores together with age
and years of education as input features. Beyond numerical scoring,
leveraging the categorical nature of selected response options as
features could provide additional insights. While this approach
would lead to a sparser feature space requiring a larger dataset, it
may offer a potential solution to the observed classification limitations.

Future research should focus on collecting a larger dataset,
evaluating alternative feature representations, and analyzing
different
Additionally, optimizing image selection to enhance classification

variations in feature importance across images.
efficacy could further improve the performance of the SSWTRT and
strengthen its role as a practical and accessible screening tool for

cognitive decline.

5 Limitations

This study has several limitations. First, the participants consisted
exclusively of patients diagnosed with idiopathic normal pressure
hydrocephalus (iNPH). Therefore, the findings and the proposed
model should be interpreted with caution, as their generalizability to

Frontiers in Artificial Intelligence

other populations—such as patients with Alzheimer’s disease,
individuals with mild cognitive impairment, or cognitively healthy
elderly adults—remains highly uncertain and requires further
validation. Second, some SSWTRT scores may be influenced by
age-related sensory decline (e.g., visual or tactile), not purely cognitive
deterioration. This could introduce noise or reverse the intended
relationship between score and cognitive state. Finally, since the
SSWTRT utilizes Japanese sound symbolic words (SSWs), the test’s
cultural and linguistic specificity limits its immediate applicability to
non-Japanese-speaking populations. Future studies should explore
language-independent representations of texture recognition.

6 Summary

In this study, we analyzed both the previously reported results of
the SSWTRT and newly collected experimental data, developing
multiple machine learning models to predict participants MMSE score
groups (>28 or <27) using individual question scores, years of
education, and age as explanatory variables. Among these, the best-
performing classifier achieved an accuracy of 0.71, a precision of 0.72,
arecall of 0.72, an F1 score of 0.72, and an AUC of 0.72. These results
indicate that classification based on individual SSWTRT question
scores provides higher accuracy compared to conventional models that
rely solely on the total test score. This finding highlights the potential
utility of integrating SSWTRT with machine learning techniques for
screening individuals at risk of cognitive decline, as defined by MMSE
scores, rather than focusing only on overall performance.

Model explainability analysis further revealed that certain image-
based questions were more informative for classification than

frontiersin.org
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FIGURE 9
SHAP decision plots generated from the Random Forest classifier. The plots show feature contributions for all test samples stratified by classification
outcome: (a) correctly classified samples of Class 1, (b) correctly classified samples of Class 0, (c) misclassified samples of Class 1, and (d)
misclassified samples of Class O.

participants’ demographic factors, such as age and years of education.
Conversely, the analysis suggested that some items may contribute to
classification in a direction opposite to that intended by the original
test design. These insights provide an important foundation for
refining both the test itself and the machine learning models built
upon it.

Future studies will focus on examining the characteristics of
items that exert strong influence versus those with minimal impact
on classification, to further improve predictive accuracy. Notably, the
developed model is lightweight and computationally efficient,
indicating the potential for real-time inference with minimal resource
requirements. Taken together, these findings imply that the proposed
framework may have practical value as a scalable screening tool for
individuals at risk of cognitive decline, although further refinement
and validation are needed to establish its clinical applicability.
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