
Frontiers in Artificial Intelligence 01 frontiersin.org

Machine learning-based 
detection of cognitive decline 
using SSWTRT: classification 
performance and decision 
analysis
Yuji Nozaki 1*, Chihiro Kamohara 2,3, Ryota Abe 1, Taiki Ieda 1, 
Madoka Nakajima 3 and Maki Sakamoto 1

1 Department of Informatics, Graduate School of Informatics and Engineering, The University of 
Electro-Communications, Chofu, Japan, 2 Research Institute for Diseases of Old Age, Juntendo 
University School of Medicine, Tokyo, Japan, 3 Department of Neurosurgery, Juntendo University 
School of Medicine, Tokyo, Japan

Introduction: Early detection of cognitive decline is essential for preventing 
dementia progression, yet conventional screening tools such as the Mini-
Mental State Examination (MMSE) require trained examiners and substantial 
time. Building on evidence that dementia is associated with tactile and visual 
perceptual deficits, this study examined whether the Sound Symbolic Word 
Texture Recognition Test (SSWTRT)—a rapid, self-administered task using 
Japanese sound-symbolic words (SSWs)—could identify individuals with 
suspected cognitive decline through machine learning analysis.
Methods: A total of 233 participants diagnosed with idiopathic normal pressure 
hydrocephalus (mean age = 77.1 ± 7.3 years) completed the SSWTRT, which 
presents 12 close-up images of material surfaces and requires selecting one 
of eight SSWs to describe perceived texture. Each response was scored by its 
concordance with normative data from healthy young adults. Using these 12 item 
scores, together with participants’ age and education, several machine learning 
classifiers were trained to predict MMSE-based groups (≤27 vs. ≥28). Model 
performance was evaluated via five-fold cross-validation, and interpretability 
was examined using SHapley Additive exPlanations (SHAP).
Results: Among the tested models—K-Nearest Neighbors, Random Forest, 
and Support Vector Machine (SVM)—the balanced SVM achieved the highest 
performance (accuracy = 0.71, precision = 0.72, recall = 0.72, F1 = 0.72, AUC = 0.72). 
SHAP analysis revealed that responses to specific images, especially those depicting 
soft or coarse textures, strongly influenced classification outcomes. Some image 
items showed effects opposite to the intended scoring direction, indicating possible 
interference from age-related sensory decline rather than cognitive factors.
Discussion: These findings demonstrate that machine learning applied to SSWTRT 
responses can moderately classify individuals with potential cognitive decline 
using a non-invasive, resource-efficient approach. The model’s interpretability 
analysis highlighted key image features and response tendencies associated 
with cognitive status, providing guidance for test refinement. Although the 
current cohort consisted solely of iNPH patients, limiting generalizability, the 
proposed framework offers a promising foundation for scalable, language-
specific cognitive screening tools.
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1 Introduction

In response to the increasing number of elderly individuals with 
dementia due to population aging, dementia measures have recently 
been prioritized as one of the most critical issues in social security 
policies in advanced countries. Early detection of cognitive decline, 
including mild cognitive impairment (MCI), which lies between normal 
cognitive aging and dementia, and the implementation of appropriate 
interventions, may prevent the onset of dementia (Livingston et al., 
2024; Ngandu et al., 2015; Cooper et al., 2024). Therefore, the early 
detection of cognitive decline is crucial in dementia countermeasures.

The Mini-Mental State Examination (MMSE) (Folstein et  al., 
1975) is one of the most widely used screening tests for dementia. 
However, its implementation requires assistance from trained 
professionals, posing challenges to widespread and cost-effective 
deployment (Sakamoto, 2016). Additionally, patients may be reluctant 
to undergo cognitive function tests due to concerns about potential 
cognitive impairment or fear of poor performance. Therefore, the 
development of an easy-to-administer cognitive screening test that 
allows patients to take it comfortably and can detect the early stages 
of dementia would be beneficial.

To develop a test for detecting cognitive decline in people with 
dementia, we  focused on texture recognition abilities, which are 
essential in everyday life. Previous studies have shown that people 
with Lewy body dementia and Alzheimer’s disease differ from those 
without in their ability to recognize the texture of images presented 
to them, particularly in their difficulty distinguishing between wet 
and shiny objects in photographs (Oishi et al., 2018). In addition, it 
was reported that their perception of the freshness of vegetables 
through texture perception was significantly reduced (Oishi et al., 
2020). Moreover, several previous studies have reported that 
dementia patients experience a decline in texture recognition ability 
(Battelli et al., 1997; Cavina-Pratesi et al., 2010; Bassi et al., 1993).

However, only a few studies have focused specifically on texture 
recognition ability. Against this background, we recently reported a 
method to test how subjects recognize the surface texture of common 
objects, either through verbal expressions or from photographs of the 
objects (Kamohara et al., 2024).

When communicating the textures to others, sound symbolic words 
(SSWs) are often used, especially among Japanese people. In this context, 
synesthetic associations between sounds and sensory experiences (sound 
symbolism) have been proven for several decades (Jespersen, 1921; 
Newman, 1933; Taylor, 1963; Werner and Wapner, 1952; Brown et al., 
1955; Hinton et al., 2006; Nuckolls, 1999; Wertheimer, 1958; Sapir, 1929).

Regarding the cross-modal correspondence between sounds and 
visual shapes shown by studies Ramachandran and Hubbard (2001), 
Köhler (1929), and Maurer et al. (2006), words such as “marma” and 
“bouba” tend to be associated with round shapes, while words such as 
“takete” and “kiki” tend to be associated with angular shapes.

In addition, several recent studies have shown the relationship 
between the iconic sounds of sounds and the sense of touch (Wong 
et al., 2022; Sakamoto and Watanabe, 2018).

SSWs, or onomatopoeias as they are commonly called, are the 
verbalization of auditory information from the environment. A 
previous study by Hashimoto et al. (2014) showed that SSWs are more 
frequently used by aphasic patients than healthy subjects and are less 
likely to be affected by aphasia symptoms, and some recent studies 
have also shown a link between the symbolic sound of sounds and the 
tactile sensation (Dingemanse and Majid, 2012).

Motivated by these previous studies, we developed a screening test 
named the Sound Symbolic Words Texture Recognition Test (SSWTRT) 
(Kamohara et al., 2024) aimed at the early detection of mild dementia 
and reported the results. Unlike many psychological tests, the proposed 
test does not require a specialized assistant and can be administered in 
a short time. The correlation coefficient between the total score of the 
SSWTRT and the MMSE score was r > 0.45, and in classification using 
the total score of the SSWTRT as the cutoff value, the classification 
performance for subjects with an MMSE score of 27 or less was 
specificity 0.74 and sensitivity 0.62 (AUC 0.7, cutoff value = 7.34).

Although the SSWTRT is a test designed to evaluate the state of the 
subject’s texture perception, based on the characteristics described 
above, improving the accuracy of classifying individuals with suspected 
cognitive decline (e.g., MMSE ≤27) is thought to be of practical value in 
dementia screening. In our previous report, we classified subjects based 
on the total score in the SSWTRT. However, as the tendency of responses 
to each question differs depending on the group classified according to 
the MMSE score, further improvement in classification performance 
can be expected by utilizing these individual differences. In this paper, 
we design a machine learning method that treats the answers to each 
question as individual elements and reports its performance.

There is a wide range of previous research into using machine 
learning to predict diseases based on patient health data. For example, 
it is known that diabetes and heart disease can be diagnosed with a 
high degree of accuracy by using health data such as a patient’s age, 
blood pressure, and lifestyle habits (Kopitar et al., 2020; Subramani 
et al., 2023). One example of previous research applying machine 
learning to the diagnosis of Alzheimer’s disease is a reported attempt 
at early diagnosis using MRI data (Pan et al., 2020).

The fact that decisions made by machine learning models are 
conducted in a black box has long been a significant problem in using 
these models for disease diagnosis. In particular, since misdiagnosis 
of a disease can harm the patient’s health, it is extremely important to 
understand the basis for the model’s judgment.

SHapley Additive exPlanations (SHAP), a method based on 
Shapley values from game theory, provides a quantitative explanation 
of how each feature contributes to a machine learning model’s 
predictions (Lundberg and Lee, 2017). This makes it easier to explain 
the model’s workings to stakeholders involved in the implementation 
of the model in society. In recent years, some studies have been 
reported that have attempted to examine the explanatory potential of 
SHAP models using patient physiological data (Yang et al., 2024); 
(Dharmarathne et al., 2024).

2 Sound Symbolic Words Texture 
Recognition Test

2.1 SSWRTR

In the SSWTRT, participants are shown a total of 12 close-up 
photographs of material surfaces (Supplementary Figure S1). For each 
image, as shown in Supplementary Figure S2, they are asked to select 
one of the eight SSW options that best represent the texture they 
perceive when touching the material. The details of the image stimuli 
used in the SSWTRT and the method for selecting SSWs are described 
in our previous study Kamohara et  al. (2024) and shown in 
Supplementary Figures S1, S2, and Table 1.
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The selected responses are then converted into scores by 
comparing them with the distribution of responses from a previous 
study conducted on a group of young, healthy participants. This 
scoring system is designed to assign higher scores to responses that 
align with those commonly chosen by young, healthy participants, 
while responses that deviate receive lower scores. Specifically, if a 
participant selects ( )≤ ≤jx 1 j 8  as the answer to the question iH  
( )≤ ≤1 i 12 , the score is calculated using the following formula:

	

( ) ( )
( )

≤ ≤

= n i
n i

j i
1 j 8

P x |H
Score x ,H

max P x |H

Here, ( )j iP x |H  denotes the probability (the frequency obtained 
in an experiment on healthy subjects) that the healthy group will 
choose the answer jx  for question iH . For example, selecting the most 
common response among healthy controls yields a score of 1, while 
selecting an option never chosen by them results in a score of 0.

Response patterns in the high-MMSE group closely matched 
those of healthy young controls, whereas the low-MMSE group more 
often endorsed options seldom chosen by controls. Figure 1 shows 
the distributions for Image 1 (fabric close-ups). Controls most 
frequently endorsed the sound-symbolic word fuwa-fuwa (“fluffy”; 
soft, puffy). In contrast, endorsements of fuwa-fuwa declined in the 
low-MMSE group, while selections of zara-zara (“gritty”; rough, 
snagging) and nuru-nuru (“slimy”; slippery, unpleasant) increased. 
Distributions of the remaining images are shown in 
Supplementary Figures 3(a–l).

2.2 Participant

A total of 233 subjects, including 102 subjects reported in our 
previous paper (patients who visited Juntendo University Hospital and 
Juntendo University Tokyo Koto Geriatric Medical Center from January 
to August 2023) and 131 patients who visited Juntendo University 

Hospital and Juntendo University Tokyo Koto Geriatric Medical Center 
from September 2023 to May 2024. The mean age of the participants was 
77.06 years, with a SD of 7.25. Among the participants, 111 were male 
and 122 were female, and the patients were diagnosed with probable or 
definite iNPH by neurosurgeons and neurologists according to the 
Japanese iNPH guidelines (Dingemanse and Majid, 2012).

2.3 Ethical approvals

This study was approved by the Research Ethics Committee of 
Juntendo University, Tokyo, Japan (E22-0100). The preliminary 
experiment protocol was approved by the Research Ethics Committee 
of The University of Electro-Communications, Tokyo, Japan 
(#18026). The study adhered to the tenets of the Declaration of 
Helsinki, and written informed consent was obtained from all 
participants, including the preliminary experiment.

3 Classification using machine 
learning

In this section, we first describe the dataset used in the study. 
We then report the procedure for constructing the machine learning 
models and their classification performance. Finally, we present the 
results of the SHAP analysis, highlighting which variables the models 
considered most important for sample classification.

3.1 Data

This section provides an overview of the data used for machine 
learning. As described above, the dataset includes a total of 233 
samples. Each record contains 14 attributes: the SSWTRT score 
calculated from each subject’s responses to the 12 images, the total 
score for the 12 questions on the SSWTRT, and the subject’s MMSE 
score. Figure 2 shows the correlation coefficient matrix between the 
scores for the 12 questions in the SSWTRT, the total score of the 
SSWTRT, and the MMSE score. The correlation coefficient between the 
total score of the 12 questions in the SSWTRT and the MMSE score 
was 0.45. To better understand the correlation between the SSWTRT 
total score and the MMSE score, a scatter plot is shown in Figure 3.

Figure 4 shows the box plot of the SSWTRT scores divided into 
two groups based on the MMSE score. In this study, a cutoff 
indicating cognitive decline was set based on previous research on 
the criteria for diagnosing MCI, and participants were divided into 
two groups (Cuoco et al., 2025; Zhang et al., 2021).

A significant difference (<0.001**, t-test) was confirmed between 
the mean scores of the group with an MMSE score of 27 or less, which 
suggests cognitive decline, and the group with an MMSE score of 28 or 
more. The number of subjects in the group with an MMSE score of 27 
or less was 111, and the number of subjects in the group with an MMSE 
score of 28 or more was 126. The original dataset also included results 
from other cognitive assessments, such as the FAB and RAVLT, as well 
as demographic information such as participant age. However, since 
the aim of this study was to evaluate the classification performance of 
the SSWTRT as an independent screening tool requiring minimal time 
and resources, we only utilized data on participants’ age, education 
levels, and responses to each question on the SSWTRT. Comparison of 

TABLE 1  List of selected sound symbolic words (SSWs) and their 
corresponding meanings.

Sound symbolic 
word

Meaning

zara-zara A texture and overall appearance that is coarse and has 

a strong roughness

tsuru-tsuru A surface that is flat and glossy. A state of being 

smooth. Frequently used for hard materials such as 

boards or metals.

fuwa-fuwa Softly swollen or puffed up in appearance

sara-sara Lacking moisture or stickiness

gotsu-gotsu Angular and hard in appearance. Not flexible or 

supple.

sube-sube Smooth and pleasing to the touch; the condition of 

skin or hair is smooth

nuru-nuru Slimy and slippery, causing discomfort, as if 

something mucous-like is clinging

deko-boko A surface that is not flat, having bumps and 

indentations

Adapted from Kamohara et al. (2024), under CC BY 4.0 license.
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the SSWTRT with the results of other mental tests was provided in our 
previous paper (Kamohara et al., 2024).

3.2 Model build and performance 
evaluation

Using the differences in response trends between groups in the 
SSWTRT discussed in the previous section, we designed a machine 
learning model to classify subjects with an MMSE score of 27 or less, 
suspected of having mild cognitive impairment. In addition to the scores 
of each subject’s responses to the 12 questions, we included age and years 
of education as input features, with missing values in years of education 
imputed by the mean. We applied three machine learning methods: 
K-nearest neighbors (KNNs), random forest classifier (RFC), and 
support vector machine (SVM). For RFC and SVM, we evaluated models 
both with and without applying balance control techniques (Bach et al., 
2019; Chawla et  al., 2002; Lin et  al., 2020) designed to improve 
performance on minority classes in imbalanced data. Model performance 
was evaluated using 5-fold cross-validation, based on accuracy, precision, 
recall, F1 score, and AUC, selecting the model that achieved the highest 
F1 score. For hyperparameter tuning with 5-fold cross-validation, the 

dataset was divided into five folds, and for each candidate set of 
hyperparameters, the model was repeatedly trained on four folds and 
evaluated on the remaining one. The five evaluation scores obtained were 
averaged, and the hyperparameters yielding the best mean performance 
were selected. Finally, the model was retrained on the entire dataset using 
the optimal hyperparameters to obtain the final model.

3.3 Result

For each method, we  optimized each model using the 
hyperparameters in the ranges shown in Table 2 and compared the 
performance of each model on five indices: accuracy, precision, 
recall, F1 score, and AUC (ROC-AUC score) (Table 3; Figure 5). 
The best performance, except for AUC, was achieved using SVM 
with SMOTE. The best model had accuracy = 0.71, precision = 0.72, 
recall = 0.72, F1 score = 0.72, and AUC = 0.72. The confusion 
matrix for the classification results for 47 validation set samples 
(20% of 233 total participants) using this model is shown in 
Figure 6.

Using the best SVM model, we performed ROC analysis using the 
distance between each sample and the hyperplane (Figure 7). The TPR 

FIGURE 1

Distribution of subjects’ responses to Image 1. A shift from “fuwa-fuwa (fluffy)” to “zara-zara (gritty)” and “nuru-nuru (slimy)” was observed in the 
low-MMSE group.
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increased to 0.7 or higher when the FPR was approximately 0.3, which 
is a balanced operating point that maintains relatively high sensitivity 
while also ensuring a certain level of specificity. The optimal threshold 
for application will vary slightly depending on the combination with 
other screening tests and will need to be  adjusted depending on 
whether sensitivity or specificity is prioritized.

3.4 Model explanations

In this section, we  describe the results of investigating the 
decision-making process of the machine learning model developed in 
this study using SHAP. Using SHAP, we can quantitatively evaluate the 
degree of influence of each input feature on prediction, which not only 
helps us understand the model’s decision-making process but also 
allows us to evaluate whether the decision is reliable. Model 
explainability helps to gain understanding from various stakeholders 
when implementing the developed model in society, and contributes 
to continuous model development, data collection, and improvement 
of experimental conditions.

The analysis using SHAP in this section was performed on the 
SVM model that achieved the highest classification performance in 
the comparison of indicators in the previous section. Figure  8 
presents the SHAP summary plot, in which the features on the 

vertical axis are arranged in descending order of their impact on the 
model output. In the SHAP summary plot, the horizontal axis 
represents the feature importance (SHAP values), with red points 
indicating higher feature values and blue points indicating lower 
values. The horizontal spread reflects variability in the impact of 
each feature.

As shown in the figure, when participants were classified into 
MMSE score groups using the SSWTRT question scores, the most 
important question was identified as Image 01. Notably, the 
importance of responses to Image 01 exceeded that of participants’ 
years of education or age. The SHAP values transition from red to 
blue from left to right, indicating that higher Image 01 scores 
exert a stronger effect in pushing the classifier’s output toward 
Class 0 (i.e., the group with MMSE ≥28). Subsequently, years of 
education, Image 10, age, Image 05, and Image 07 followed in 
descending order of variable influence. For these image-related 
items, the model appeared to learn that higher response accuracy 
increased the likelihood of classification into the cognitively 
normal group. In contrast, for items such as Images 12 and 09, 
higher response accuracy was associated with a greater likelihood 
of classification into Class 1. As shown in the correlation 
coefficient matrix in the previous section, Images 01 and 05 
exhibited relatively high correlations with MMSE scores, whereas 
Images 09 and 12 demonstrated low or even negative correlations. 

FIGURE 2

Correlation coefficient matrix between SSWTRT question scores, total score, and MMSE score.
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These findings suggest that such questions may not function 
effectively in the classification process. However, the contribution 
of these variables (Images 09 and 12) to the classification was low. 
The SSWTRT question scores were originally derived from data 
obtained from young adults presumed to be  free of cognitive 
impairment. Therefore, the decision-making process of the 
machine learning model—linking higher scores on certain 
questions with a greater likelihood of cognitive decline—deviates 
from the intended scoring design and requires further refinement. 
Approaches for addressing this issue will be  discussed in the 
following section. Figures 9a–d illustrates decision plots that show 
how the classifier evaluated the features of individual samples in 
the test set and produced classifications. SHAP decision plots are 
visualization tools that reveal how a machine learning model 
generates its predictions. By displaying the cumulative 
contributions of each feature alongside the final output, they 
enable detailed analysis of the decision-making process for each 
sample. Figures 9a,b present decision plots for correctly classified 
samples, whereas Figures  9c,d depict those for misclassified 
samples. Comparisons between these plots provide insights into 
potential improvements for both the SSWTRT test and 
the classifier.

In the decision plots of misclassified participants, the 
classifier’s outputs tend to cluster approximately 0.5 across many 

samples, in contrast to the patterns observed in correctly classified 
cases. For example, in the misclassified class 1 sample shown in 
Figure 9c, all outputs fall within the narrow range of 0.45–0.52. 
Moreover, in many misclassified samples, the decision paths of 
Image 01 and years of education intersect, suggesting the need for 
refinement to better detect such specific patterns.

4 Discussion

We demonstrated that utilizing responses to individual 
questions in the SSWTRT improved classification accuracy into 
MMSE-based groups that indicate a possible risk of cognitive 
decline. The ROC analysis demonstrated moderate discriminative 
ability (AUC = 0.72), with sensitivity and specificity approximately 
0.72 at the optimal threshold, suggesting potential utility as a 
supplementary measure rather than a standalone diagnostic test. 
Importantly, the SSWTRT can be administered without requiring 
specialized personnel, thereby reducing the burden on examiners, 
while patients may experience less anxiety or embarrassment 
compared to conventional cognitive tests. This ease of 
administration, combined with the possibility of implementation 
on a single device such as a tablet, makes the test potentially more 
accessible and cost-effective.

FIGURE 3

Scatter plot shows the correlation between SSWTRT total scores and MMSE scores.

https://doi.org/10.3389/frai.2025.1689182
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Nozaki et al.� 10.3389/frai.2025.1689182

Frontiers in Artificial Intelligence 07 frontiersin.org

FIGURE 4

Boxplot compares SSWTRT scores between MMSE ≤27 and MMSE ≥28 groups (p < 0.001).

TABLE 2  Optimized hyperparameters.

Classifier Hyperparameter Values Description

KNN n_neighbors 3, 5, 7, 9 Number of neighbors to consider when classifying a data point.

weights Uniform, distance Weighting method for neighbors; ‘distance’ assigns greater weight to closer neighbors.

p Manhattan, euclidean Distance metric: p = 1 (Manhattan), p = 2 (Euclidean).

Random forest n_estimators 50, 100, 200 Number of trees in the forest.

max_depth None, 5, 10 Maximum depth of each tree; controls model complexity.

min_samples_split 2, 5, 10 Minimum number of samples required to split an internal node.

SVM C 0.1, 1, 10 Regularization parameter: balances margin size and misclassification.

kernel linear, RBF Kernel type used to transform the input data space.

TABLE 3  Performance evaluation of models.

Classifier Best Params (summary) Accuracy Precision Recall F1 score AUC

KNN n_neighbors: 5, 0.65 0.66 0.65 0.65 0.66

p: Manhattan,

weights: uniform

RFC (no balancing) n_estimators: 50, 0.70 0.70 0.69 0.70 0.74

max_depth: 10,

split: 10

RFC (balanced) n_estimators: 100, 0.69 0.70 0.69 0.69 0.74

max_depth: None,

split: 10

SVM (no balancing) C: 10, 0.68 0.70 0.68 0.68 0.71

kernel: RBF

SVM (balanced) C: 10, 0.71 0.72 0.72 0.72 0.72

kernel: RBF
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FIGURE 5

Performance comparison among five machine learning models based on accuracy, precision, recall, F1 score, and AUC.

Model interpretability analysis using SHAP indicated that 
some images may play an important role in classification, while 
others may not. Since a higher SSWTRT total score is closer to the 
texture perception of healthy subjects, each score is expected to 
have a positive effect on predicting the MMSE group, but some 
questions showed the opposite effect. This may be due to perceptual 
misjudgment caused by an age-related decline in sensory function 
rather than cognitive function itself, introducing noise into the 
prediction process. Considering previously reported visual 

characteristics in dementia patients, such as reduced contrast 
sensitivity (Risacher et al., 2013; Hutton et al., 1993), future studies 
should increase the number of test images and analyze the 
relationship between image features and classification performance.

The analysis of the SHAP decision plot showed that many of the 
misclassified samples had classifier outputs concentrated at 
approximately 0.5, suggesting that they were samples for which the 

FIGURE 6

Confusion matrix for SVM classification results from the validation 
dataset. FIGURE 7

Receiver operating characteristic (ROC) analysis of the SVM classifier, 
where decision scores were obtained from the signed distances of 
samples to the separating hyperplane.
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classifier was “unconfident.” In actual screening sites, it may 
be  effective to present the confidence level of the output and 
introduce a multi-stage evaluation method that combines other 
tests as necessary.

The SSWTRT presents each question with eight response 
options, and scoring is computed using the formula detailed in 
Section 2. This mechanism assigns higher scores to responses that 
align more closely with those of healthy individuals, while deviations 
result in lower scores. In this study, a machine learning model was 
constructed using the 12 individual question scores together with age 
and years of education as input features. Beyond numerical scoring, 
leveraging the categorical nature of selected response options as 
features could provide additional insights. While this approach 
would lead to a sparser feature space requiring a larger dataset, it 
may offer a potential solution to the observed classification limitations.

Future research should focus on collecting a larger dataset, 
evaluating alternative feature representations, and analyzing 
variations in feature importance across different images. 
Additionally, optimizing image selection to enhance classification 
efficacy could further improve the performance of the SSWTRT and 
strengthen its role as a practical and accessible screening tool for 
cognitive decline.

5 Limitations

This study has several limitations. First, the participants consisted 
exclusively of patients diagnosed with idiopathic normal pressure 
hydrocephalus (iNPH). Therefore, the findings and the proposed 
model should be interpreted with caution, as their generalizability to 

other populations—such as patients with Alzheimer’s disease, 
individuals with mild cognitive impairment, or cognitively healthy 
elderly adults—remains highly uncertain and requires further 
validation. Second, some SSWTRT scores may be  influenced by 
age-related sensory decline (e.g., visual or tactile), not purely cognitive 
deterioration. This could introduce noise or reverse the intended 
relationship between score and cognitive state. Finally, since the 
SSWTRT utilizes Japanese sound symbolic words (SSWs), the test’s 
cultural and linguistic specificity limits its immediate applicability to 
non-Japanese-speaking populations. Future studies should explore 
language-independent representations of texture recognition.

6 Summary

In this study, we analyzed both the previously reported results of 
the SSWTRT and newly collected experimental data, developing 
multiple machine learning models to predict participants’ MMSE score 
groups (≥28 or ≤27) using individual question scores, years of 
education, and age as explanatory variables. Among these, the best-
performing classifier achieved an accuracy of 0.71, a precision of 0.72, 
a recall of 0.72, an F1 score of 0.72, and an AUC of 0.72. These results 
indicate that classification based on individual SSWTRT question 
scores provides higher accuracy compared to conventional models that 
rely solely on the total test score. This finding highlights the potential 
utility of integrating SSWTRT with machine learning techniques for 
screening individuals at risk of cognitive decline, as defined by MMSE 
scores, rather than focusing only on overall performance.

Model explainability analysis further revealed that certain image-
based questions were more informative for classification than 

FIGURE 8

SHAP summary plot shows the importance and directionality of each feature (image score) in the classification model.
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participants’ demographic factors, such as age and years of education. 
Conversely, the analysis suggested that some items may contribute to 
classification in a direction opposite to that intended by the original 
test design. These insights provide an important foundation for 
refining both the test itself and the machine learning models built 
upon it.

Future studies will focus on examining the characteristics of 
items that exert strong influence versus those with minimal impact 
on classification, to further improve predictive accuracy. Notably, the 
developed model is lightweight and computationally efficient, 
indicating the potential for real-time inference with minimal resource 
requirements. Taken together, these findings imply that the proposed 
framework may have practical value as a scalable screening tool for 
individuals at risk of cognitive decline, although further refinement 
and validation are needed to establish its clinical applicability.
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